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ABSTRACT

This paper addresses the numerical problem of performing a pole residue
expansion on noisy data. A method of combining dissimilar data sets to
achicve an effective increase in signal-to-noise ratio is tested on computer
venerated data simulating scattering from a sphere and from a thin wire. The
data is corrupted with white Gaussian noisce and the algorithm is tested for
sipgnal-to-noise ratios ranging from -10 dB to 60 dB. An iterative version of
the algorithm is also tested. Finally, the problem of filtering noise from
relatively quiet data is discussed and a novel filtering algorithm is presented.

I. INTRODUCTION

This paper addresses the numerical problem of performing a pole residue
expansion on noisy data. Previous investigators [1,2] have shown that even
relatively low noise levels severely diminish the accuracy of the pole residue
expansion. In a recent paper by Ksienski [2], a method of combining dissimilar
data sets to achieve an effective increase in signal-to-noise ratio was
presented and shown to be effective for sphere data at relatively low noise
levels.  In the' present paper the method is tested on sphere data at much
hizher noise levels as well as on data associated with scattering from a thin
wirce. An iterative technique suggested in Ksienski [2] is also tested.
Finally, the problem of filtering noise from relatively quiet data is
discussed and a novel filtering algorithm is presented.

2. MULTIPLE DATA SETS
2.1 Tormulation. Before presenting the numerical results asscciated with
combining dissimilar data sets, a brief summary of the theoretical foundation

is presented. A more detailed presentation is given by Ksienski [2]. The
data will be represented using the standard pole residue expansion
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where k is an index to the various measurements and Nl(ju) represents noise
S

and clutter. The representation in terms of conjugate pole pairs is used to
explicitly show that Fk(jw) is an even function of the circular frequency w

and is associated with a real function of time. We wish to combine K such
data sets in a manner so as to have a maximum signal-to-noise ratio in the
composite data set, where the noise is assumed to have zero mean and be
independently and identically distributed. Assuming a linear combination with
arbitrary complex weighting coefficients, the composite data set is
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and by interchanging the order of summation and noting the invariance of the
poles s with measurement number k,
m
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In general, it will only be possible to maximize one b or ¢ at a time. This
m m

is because for different choices of m the a will not vary in unison with k.

Thus, the increased signal-to-noise ratio, and hence increased accuracy, will

only be obtained for the pole s or s . However, since the specification of
m m

the pole is arbitrary, several poles may be obtained through successively
emphasizing different bm or ¢ . For the present, we restrict ourselves to
' m
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obtaining an improved estimate of s , which necessitates maximizing Ib
From (4), we may write 1 1
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where w = [w ,w ,...,w, ] and a = [a ,a ,...,a, | . Without loss in
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generality, the weighting vector may be constrained to satisfy ww = 1. Then,

noting the dot product formulation of (6), the maximum b will occur for
1
f

W = T ' (7)
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evaluate the energy associated with the noise N(jw), we take the expectation
of the noise squared

and tor this optimal choice of the weight ing vector, |l)
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and assuming the variance of the noise is equal to 0° in cach of the
measurements Fk(jm)
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Thus the energy associated with the noise will not increase with w normalized
as in (7). 1If K data sets are combined each containing an approximately equal
excitation of the mode associated with the desired pole, the signal-to-noise
ratio will increase by about a factor of K. For any set of residues, the
resulting weighting coefficients will produce the maximum possible increase

in signal-to-noise ratio. However, this is dependent upon an accurate
knowledge of the residues which is generally not available. Two solutions

to this problem have been devised, and both focus upon increasing the accuracy
of the weighting vector w. First, the error due to variation in the estimate
of the real part of the pole (which often constitutes a majority of the error)
may be reduced by modifying (7). Assuming that the primary effect of a pole
and its associated residue is in the immediate vicinity of the pole, it is
possible to get a first estimate of the residue which would have resulted had
the pole been constrained to have a different real part. Since for a fixed
residue the component of the signal at a point on the j. axis closest to the
pole is inversely proportional to the real part of the pole, an improved
weiphting vector may be obtained by normalizing each element of the weighting
vector (i.e., the residue) by the real part of the pole associated with each

residue.  Thus (7) is used with a redefined as
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where s, refers to the estimate of the pole $_ obtained from the ith data set.

The second method of improving w requires additional computation. Since the
application of the algorithm should result in improved residues (using the
technique described below), these improved residues may be used to construct

a new and presumably more accurate weighting vector. Thus, improvements may
be made through the iterative application of the algorithm. The results of
the application of the original algorithm as well as the iterative version are
presented in the next section. !



After the composite data set is formed, it must be subjected to a pole
and residue extraction procedure. The alporithm due to Levy [3] and
Sanathanan and Koerner [4] assumes that the poles and residues exhibit
conjugate symmetry. This is generally appropriate as it is equivalent to
requiring the frequency data to correspond to a real function of time.
Untortunately, Fcomp(jm) does not have conjugate symmetry. This may be seen

from (3), (4), and (5), where for an arbitrary complex weighting coefficient

W the resulting bm and ¢ will not be equal. This problem may be
38 m R

circumvented by using the algorithm derived in Ksienski [2], which does not
force the residues to occur in conjugate pairs. The implementation of this
algorithm requires negative frequency information which is obtained from the
data sets Fk(jw) by employing conjugate symmetry. Atter the accuracy of the

pole location is improved, the next step is to compute the residues relative
to the new pole estimate. Constraining a pole to a particular location is

not an easy task [1], but the algorithm presented in Ksienski [2], by
constraining the poles to occur in conjugate pairs without similarly restrict-
ing the residues, provides a simple alternative. Since the data set Fk(jm)

corresponds to a real function of time, its negative frequency values are given
by Fk(j¢) = Fk(—jm). A second set of data, call it I(jw), is constructed so

that I(j@) = -[(-jw) and thus corresponds to an imaginary function of time.
1(j.~) may then be added to Fk(jm) and the sum expanded as a series of poles

which are then constrained to occur in conjugate pairs. Noting that Fk(jm)

has an even real part and an odd imaginary part while 1(jw) has an odd real
part and an even imaginary part, the pole residue expansion of Fcomp(ju) is

immediately separable into components due to Fk(jm) and I(jw). Specifically,

the pole residue expansion of Fk(jm) may be written as
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Thus, the second data set mav be used to constriin the poles of F (juw)
without corrupting the residues. k

2.2 Results. The procedure was tested on two objects, a sbhere and a
thin wire with length-to-diameter ratio of 50 to 1. For the case of the wire,
poles were extracted from computer generated data associated with current
measurement on the surface of a wire. The wire was divided along its length
into 50 sections to facilitate analysis by the NEC program [5]. ‘The wire was
illuminated with a plane wave electromagnetic field, with the axils of the wire
par:llel to the direction of the electric field. The frequency of the
il unination was stepped from (uL/ct) = 0.2 to 4.0 in steps of.O.l. The
computer simulated current measurements of the 5th, 10th, 15th, éOth, and 25th
scetions were then individually subjected to a pole residue expansion. A pole



common Lo all Tive data sels was located at (slyca) - -0.08/7 + 10.8855. The
estimate of the pole as obtained from the ive data sets apreed to this value
to within 0.2 percent. This value is also in relative agreement with that
obtained by Tesche [6]. For the sphere, the pole residue expansion was
performed on computer generated data corresponding to current probe measure-
ments at 4 = 0, 10, 20, and 30 degrees, with wa/c = 0.2 to 4 by 0.1. The
location of the primary pole for the sphere may be determined analytically [1],
and lies at sa/c = -0.5 + 1.866.

Since the benefit of the algorithm may be attributable to increasing the
signal-to-noise ratio, the amount of improvement which might be reasonably
expected can be determined by first examining the increasce in accuracy which
oceurs when the signal-to-noise ratio is directly varied. The data was
corrupted with computer generated white, Caussian noise at levels necessary to
produce signal-to-noise ratios of -19 dB to 60 dB in steps of 2.0 dB. The
signal-to-noise ratio is defined as the total energy in the original
uncorrupted data sets, Fk(jm), divided by the total expected noise energy

contained in these data sets. The range of errors associated with the pole as
extracted from the Fk(jm) is shown in Fig. 1 for each noise level as falling

between the two horizontal marks. The fact that the pole for the wire is much
more resonant than the pole for the sphere permitted the SEM to be performed
at much higher noise levels for the wire than for the sphere. The errors
plotted in Fig. 1 for signal-to-noise ratios less than 15 dB are those
associated with the wire data, while those for signal-to-noise ratios greater
than 10 dB are associated with the sphere data. For each noise level a
composite data set, Fk(jw) was created using the above procedure, and the

specific case of wire data with signal-to-noise ratio of 0 dB is shown in
Fig. 2 as the dashed line. The pole was extracted from Fcomp(jm) and the error'

associated with this pole is marked with a triangle. A second composite data

set was created using the estimates of the poles and residues as obtained via

the first F (jw) and the error associated with the pole extracted from this
comp

second F (ju) is marked with a circle. Finally, the error associated with
comp

)
the pole as extracted from the original data set Fk(jm), with the strongest

excitation of the dominant mode (the 25th section for the wire and the J =0
case for the sphere) is marked with an X.

There are several important features which are exhibited in Fig. 1. The
most noticeable is the apparent effect of the pole resonance on the accuracy
of extraction of the desired pole; the expansion performed on the wire data
with signal-to-noise ratio of 10 dB preduced more accurate results than sphere
data with signal-to-noise ratio of 50 dB. Additionally, the rate ot |
improvement in accuracy of pole extraction with increasing signal-to-noise
ratio is certainly not a smooth function. For the wire, there is a large jump
at -2 dB and for the sphere there is a 15 dB region centered at 40 dB where
increasing the signal-to-noise ratio has a negligible effect upon the accuracy
of the pole extracticn. Given these peculiarities, the improvement resulting
from extracting the pole from FC mp(jm) produces fairly reasonable results.

In regions where the slope is steep the improvement resulting from extracting
the pole from the composite data set produces verv nice results (remembering
that the percent error is graphed on a logarithmic scale), while in regions
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Fip. 2@ Wire data for S/N = 0 dB. Solid line - 25th section; dashed line -
composite data set.

where the slope is effectively zero, the improvement is negligiblc, Taken as
a whole, the pole extracted from the composite data set is almost always
better than that obtained from the data set with the greatest excitation of
the desired mode, and quite often is better than any of the original estimates.
This is with the exception of the region where all of the initial estimates

of the pole are in error by greater than 50 percent, as this gencrally makes
the associated residues effectively meaning'-ss.  However, when at least some
of the estimates of the pole are accurate good results are still obtained.

For example, at 0 dB the wire data has an estimate of the pole which is
accuriate to 7 percent and another estimate which has a greater than 80 percent
error.  Not only does the algorithm work in this case, but the iterative



application ob the algorithm is able to use the improved estimate of the
residues to obtain an even better estimate for the desired pole.

3. FILTERING OF DATA

3.1 Background. While experimenting with the method of Levy, San.thanan,
and Koerner [4], [5] (LSK algorithm) on sphere data, sparsely sampled data
sets (39 points) and densely sampled data sets (189 points) with identical
signal-to-noise ratios were found to yield poles and residues of comparable
accuracies. This observation is somewhat disconcerting since the denser data set
has almost five times the information of the sparse one and yet the LSK
algorithm can not extract any better results. This fact has encouraged
research into the possibilities of filtering the data before using it to find
poles and residues. Unfortunately the use of filtering to improve the
accuracy of the poles found by the 1.SK algorithm is somewhat more difficult
than tirst expected.  TIndeed several different factors tend to make it so.

First, even if a filter is successful in improving the signal-to-noise
ratio by, for example, what would otherwise be a respectable 10 dB, there is
no assurance that the locations of the poles will improve. The authors found
that sphere data with signal-to-noise ratios of 20 dB, 30 dB, and 40 dB all
had comparable crrors in the lTocation of the poles. Only when the signal-to-
noise ratio increased to 50 dB and 60 dB did the locations of the poles tend to
improve. Another problem is that for sphere data very little noise is
acceptable, as stated before the noise must be some 50 dB or 60 dB down from
the signal for good results. This means that what ever filting scheme is
used it must work on the noise without corrupting the signal. Ideally the
tilter should not alter the data at all in the limit as the noise tends to
zero.

This places several limitations on the choice of the nature of the filter.
For example, filters which exhibit a "phase shift' cannot be used since they
will move the location of the resonant peaks in the data thus shifting the
imaginary part of the pole. Also standard zero phase low pass filters cannot be
used since they round out peaks in the data thus changing the real part of
the pole to be less resonant. Additionally various types of transform filters
which suffer from aliasing problems are unacceptable since they also corrupt
the signal.

Despite these difficulties the authors have developed a filtering scheme
which has had some success in improving the location of the poles for sphere
data. This scheme is a type of finite window moving aperture filter. However,
whereas the standard linear moving aperture filter [7] has a fixed weighting
function, this scheme is a nonlinear filter where the weighting function is
allowed to change from data point to data point.

The filtering process begins with discrete frequency domain data, H(k),
consisting of a signal plus noise, S(k) and N(k). The real part and imaginary
part of the data will be filtered separately so that the analysis will concern
only real quantities. A weighting function, wm(k) where integer k ranges

from =M to M, is used to generate filtered data, ﬁ(k) as followsi:
M
H(m) = wm(k)H(m + k)
k=-M



where M ois the order of the filter. The filtered data is then used with the
LSK algorithm to find poles and residues. The following section is a
derivation of the weighting function Wm(k).

3.2 Filter Derivation. The assumptions about the noise that will be made
are as follows:

EIN(K)T = 0 | (1)
E[NCKON(])] = 0 if k # 3 (2)
FINT(K)] = o . ()
Further, the tollowing restrictions will apply to the weighting function
M
Z W (k) =1 ‘ (4)
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W (k) = W (k) . (5)
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The weipghting function will be an even function so that the peaks in the data
will not shift in position.

[t is also assumed that the signal is varying slowly enough compared to
the width of the window so that it can be accurately represented by a
quadratic expansion, that is:

S(m + k) = ao +ak+ak’ ; for -M <k <M . (6)
1 2 -

Of course the values of A), a , and a will depend on the choice of m.
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With this filter the estimate of S(m) will be
M
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and so an error measure can be defined as:
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measure can be found
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By the proper choice of the wm(k) values it is desirable to minimize the

expected value of the error measure. Therefore the values of the weighting
function must satisfy
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for J = 1,2,...,M . (10)

This leads to M linear equations which can be solved for the M unknowns wm(l)
through w (M). The values of wm(O) can be found from relation (4). For

example, thn
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Notice that if a = 0, that is the signal has no curvature, the weighting

2
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function is uniform so that the most noise possible can be eliminated. Notice
alsuo if 0° = 0 then the estimate of $(m) is correct to the extent that the
data can be represented by a quadratic expansion.

Therefore, to find the optimum weighting function for a given size
. 3 ~ . ey . C ! .
window the variance of the noise and the a coefficient for each-data point

must be known. Usually the noise variance is at least approximatelv known,



however the a coefficients require some knowledge of the signal without noise.
2

Hence the values of these a coefficients can only be estimated from the signal
2

plus noise data. For this reason the filter will only work on data with a
relatively high signal-to-noise ratio (> = 20 dB).

The a coefficients are found by a best curve fit with the data over the
2

range of the window plus one point. The error between the curve:fit and
data is defined as: !

M+1
n = [H(m + k) - (ao + a
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The coefficients a through a are then chosen to minimize n. This leads to
3
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the following equation for the a coefficients
- 2
i

Zkz -ZH(m+k) - Zl 'Zsz(m-i-k)

(29 3oy

Using this relation and knowing the noise variance o? weighting functions
for each data point can be generated and the data filtered.

(12)
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3.3 Results of Filtering. Figure 3 shows noisy sphere data (S/N = 40 dB),
and the same data filtered with M = 1 and M = 2 filters. The filter was
tested on various sphere data with noise. On sparsely sampled data (39 points)
no improvement was made in the location of the first dominant pole for any
signal-to-noisé ratio. On more densely sampled data (189 points) improvement
was made when the signal-to-noise ratio was between 50 dB and 60 dB. With
signal-to-noise ratios greater than 60 dB the unfiltered data yielded the
correct result to one percent accuracy anyway and filtering did not improve it.
However, with a 55 dB signal-to-noise ratio the average error of the first
dominant pole was 7 percent. After filtering with M = 1 this average error
fell to 3.5 percent and with M = 2 fell to 2.5 percent. It should be noted
that similar improvements can be obtained with more traditional filters,
such as a uniformly weighted moving aperture, for this data. However a
uniform weighted filter actually increases errors with other types of data
sets, whereas our filter will not. For example, the unfiltered error of the
39 point data set with 55 dB signal-to-noise ratio averaged 7 percent, but
after filtering with a uniform aperture with M = 1 the error went to 8 percent
and with M = 2 climbed to 31 percent. Our filter however, had an average
error of still 7 percent for both M =1 and M = 2 filters. In conclusion
the presented filter can improve the location of poles found with the LSK
algorithm if both the density of the sampled data and the initial signal-to-
noise ratio are sufficient. 1In addition this filter will not stétistically
increase errors of the poles and residues where more traditional filters may.
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