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AB S TRACT

A comprehensive study of the measurement of star formation histories from colour–

magnitude diagrams (CMDs) is presented, with an emphasis on a variety of subtle issues

involved in the generation of model CMDs and maximum likelihood solution. Among these

are the need for a complete sampling of the synthetic CMD, the use of proper statistics for

dealing with Poisson-distributed data (and a demonstration of why x 2 must not be used),

measuring full uncertainties in all reported parameters, quantifying the goodness-of-fit, and

questions of binning the CMD and incorporating outside information. Several example star

formation history measurements are given. Two examples involve synthetic data, in which the

input and recovered parameters can be compared to locate possible flaws in the methodology

(none were apparent) and measure the accuracy with which ages, metallicities and star

formation rates can be recovered. Solutions of the histories of seven Galactic dwarf

spheroidal companions (Carina, Draco, Leo I, Leo II, Sagittarius, Sculptor and Ursa Minor)

illustrate the ability to measure star formation histories given a variety of conditions –

numbers of stars, complexity of star formation history and amount of foreground

contamination. Significant measurements of ancient .8Gyr star formation are made in all

seven galaxies. Sculptor, Draco and Ursa Minor appear entirely ancient, while the other

systems show varying amounts of younger stars.

Key words: methods: numerical – methods: statistical – Local Group – galaxies: stellar

content.

1 INTRODUCTION

The evolution of galaxies can be studied two ways – one can either

look at high redshift to observe the past directly, or one can look at

the fossil remains of past events in nearby galaxies. These

approaches are complementary, as the first is more direct (the

ancient light is being observed now) but allows only a statistical

comparison of the events seen happening at different ages (we

cannot be entirely sure which systems at high redshift are analo-

gous to which systems in the nearby Universe). In contrast the

measurement of the star formation history of a nearby galaxy (one

for which stellar content is resolved) allows one to trace the history

of a single system, but it is difficult to determine that history in an

unambiguous way.

The measurement of star formation histories via comparisons of

observed and synthetic colour–magnitude diagrams (CMDs) is an

active field that is evolving rapidly. The first papers on the topic

arrived in the literature only slightly more than a decade ago, with

Tosi, Greggio & Focardi (1989) and Bertelli et al. (1992) two early

attempts to derive the star formation histories of composite

populations (stars of a range of ages and metallicities). As opposed

to isochrone fitting in single-population objects, such as globular

clusters, the measurement of a star formation history of a

composite system is a daunting task – SFR(t, Z), distance,

extinction/reddening, initial mass function (IMF) and binary

distribution are all unknowns at some level; while the comparison

of CMDs was done subjectively. In order to cope with the vast

combinations of parameters possible given limitations in computer

speed and the number of subjective comparisons that could be

made, these early studies limited the parameter space, generally

measuring only a small set of SFR(t) functions and assuming fixed

values for all other parameters.

The work of Gallart et al. (1996a), studying the old stellar

content of NGC 6822, was the first attempt to quantify the

subjective CMD comparisons. In that work, the authors

constructed a large number of parameters, each of which measured

the position, size, and/or number of stars of a certain feature of the

CMD. This allowed the first quantitative judgment of a star

formation history, although both the procedures for generating

synthetic CMDs and comparing CMDs were still extremely slow,

forcing a solution of only SFR(t) and Z(t).

The shift to a fully quantitative analysis was proposedPE-mail: dolphin@noao.edu
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independently by Dolphin (1997) and Aparicio, Gallart & Bertelli

(1997), who proposed binning the CMD into sections and

performing a x 2 minimization on the number of stars in each

section to determine the star formation history. Dolphin (1997)

demonstrated the sensitivity of such a method to metallicity,

distance, and extinction, and as well as its ability to correctly

reconstruct the star formation history of a synthetic population;

Aparicio et al. (1997) applied a remarkably similar algorithm to a

study of LGS 3. The advantage in such a technique lay in its ability

to use all parts of the CMD in measuring the star formation history

– thus allowing it to be used on photometry of any quality and

depth – as well as the obvious advantage of having a single-

parameter fit that can be used in a numerical minimization.

The number of groups working on this topic continues to

increase: Tolstoy & Saha (1996); Holtzman et al. (1999); Olsen

(1999); Hernandez, Gilmore & Valls-Gabaud (2000); Harris &

Zaritsky (2001) is only a partial list of other groups that are using

CMDs to measure past star formation histories. These techniques

have been applied to many of the Local Group galaxies, as well as a

few galaxies just outside the Local Group. Despite the large

number of papers on this topic, the literature lacks thorough

methodology papers describing modern techniques, largely

because of the incremental improvements in methods that have

been implemented by each group. An example of this is the series

of papers by Dolphin – Dolphin (1997) presenting the initial

method; Dolphin (2000a), Dolphin et al. (2001a), Miller et al.

(2001) and Dolphin (2001), each containing minor improvements

to the technique – which forces the reader to follow a paper trail to

determine what any one group is currently doing. Another

significant void in the literature is a realistic estimation of how well

one can measure star formation histories under a variety of

conditions – number of stars in the CMD, amount of foreground

contamination, and complexity of star formation.

The present work attempts to fill these needs in the literature, in

addition to addressing commonly made mistakes. This paper is

divided into two main sections – a detailed description of how

to measure star formation histories from CMDs and application to

artificial and real data.

2 ANALYS IS PROCEDURE

In any measurement of the star formation history, one fundamental

question must be addressed: what set of star formation histories

could have created the observations? In order to answer this

question, the following steps must be taken:

(i) generate synthetic CMD based on theoretical isochrones;

(ii) account for incompleteness and observational errors;

(iii) measure the best star formation history and its quality;

(iv) measure the allowable range of other star formation histories.

Each of these steps will be addressed in the sections below.

2.1 Synthetic CMD generation

The generation of synthetic CMDs, as described in this paper, is a

two-step process – generation of ‘clean’ CMDs and the

introduction of incompleteness and observational errors. (The

reason for the split is merely a computational one. Generation of

the clean CMDs is the most time-consuming part of the entire

measurement, but only needs to be done once; application of

observational errors will be different at different assumed distance

and extinction values.) The end result of this process is intended to

be a model CMD – the probability distribution from which the

observed data are drawn. The question of binning the CMD versus

storing individual stars will be addressed in Section 2.3. For the

time being, we will simply assume that the CMD is to be binned.

As was pointed out by Dolphin (1997), a CMD of a composite

population is simply the sum of the CMDs of its constituent parts.

Thus, for any given distance, extinction, IMF and binary distri-

bution, the CMD corresponding to any SFR(t,Z) can be computed

as the sum of its parts. (If one wishes to solve also for distance or

any of the other ‘fixed’ parameters, separate solutions must be

made at each combination of fixed parameters.) This makes it

unnecessary to spend the vast computational resources used in

early studies, as the ‘partial CMDs’ – model CMDs containing

small ranges in age and metallicity – need to be computed only

once. If one computes each partial CMD with the same star

formation rate, such as 1M( yr21, the model CMD for an arbitrary

star formation history is given by

mi ¼
j

X

rjci;j; ð1Þ

where mi is the full model CMD in bin i, rj is the star formation rate

for partial CMD j in M( yr21, and ci,j is bin i of partial CMD j. This

relation makes the computational problem much easier, but

determining ci,j is nevertheless a non-trivial procedure. The usual

procedure for this process is to populate each partial CMD

randomly with a large number of stars randomly drawn from the

age and metallicity range, and an adopted IMF. Although an

attractive algorithm for its simplicity, it is impossible in practice to

sample the model CMD adequately this way as the density of

points on the CMD varies by many orders of magnitude between

the lower main sequence and the Hertzsprung gap. Additionally,

such a ‘random drawing’ routine inevitably adds random errors to

the CMD, thus making the CMD comparison one of data–data

rather than data–model. Since we can determine the underlying

model via the process described here, there is no need to apply a

statistically weaker data–data comparison that assumes no

knowledge of the model.

Thus we seek to find an algorithm that will generate a true model

CMD. In order to accomplish this, one must completely sample all

possible combinations of mass (including secondary mass in

unresolved binary systems), metallicity and age comprising the

partial CMD. The process will thus first involve calculating a

sufficiently large number of isochrones, so that the space between

adjacent isochrones is much smaller than the CMD bin size. For

example, the Girardi et al. (2000) isochrones with (Z, log t) of

(0.001, 8.50) and (0.001, 8.55) have a maximum separation of

DV ¼ 0:45mag and DðV 2 IÞ ¼ 0:10. Even if using a coarse

binning size of 0.1mag in V, this would require small steps of

approximately Dlog t ¼ 0:005. The isochrones at (0.001, 8.50) and

(0.004, 8.50) have maximum separations of DV ¼ 1:04 and

DðV 2 IÞ ¼ 0:71, thus requiring small steps in metallicity

(,0.02 dex) to fill in the CMD adequately. These values are only

samples; the actual step sizes used in model generation depend on

the spacing between isochrones and the CMD binning size. It

should be noted that one cannot hope to actually measure ages and

metallicities at this level of precision; however the presence of

those isochrones is necessary in order to provide a complete model

CMD. It is clear that an interpolation scheme is mandatory in this

process; the details of this are beyond the scope of this paper.

Once the set of needed isochrones has been established, each
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isochrone is then considered in turn and divided into an appropriate

number of points. Again, the step size is a function of the CMD

binning size. Each point is weighted by the IMF, the mass

difference between it and the adjacent points, and the step sizes in

age and metallicity. Binaries are also added at this point; again it is

necessary to sample the range of secondary masses to at least the

accuracy of the binned CMD.

The result of this process can be thought of as a ‘blurred

isochrone’, centred roughly on the central age and metallicity used

for the partial CMD. What is critical is that all possible masses,

metallicities, ages and binary combinations within this range are

accounted for in the binned CMD; this goal can only be achieved

by the procedure outlined above.

2.2 Simulating observational conditions

Of course, an observed CMD is never purely a pure isochrone;

photometric errors, blending, incompleteness, bad/false detections

and foreground contamination all complicate matters. In generat-

ing an accurate model CMD, all of these factors must be taken into

account. As was pointed out by Gallart, Aparicio & Vilchez

(1996b), the problems of photometric errors, blending, and

incompleteness can be addressed in one step through the use of a

library of artificial star tests. Indeed, this is the only accurate way of

addressing these problems, as incompleteness is a function of the

observed magnitude of a star rather than its true magnitude,

blending errors depend on the density of stars and the relative

distributions within the CMD, and even simple photometric errors

are biased and non-Gaussian.

Thus the necessary procedure for simulating the first three

observational effects is to generate a very large library of artificial

stars, which includes the necessary range of input magnitudes and

colours with a sufficiently large number of stars input at each

location on the CMD so that the distribution of recovered

photometry is adequately sampled. For each point on the partial

CMD created in Section 2.1, it is necessary to multiply its weight

by the completeness fraction and distribute that weight according

to the distribution of recovered artificial stars.

It is also possible to correct for foreground contamination in a

consistent manner. Again it is necessary to realize that foreground

stars in the observed data are randomly drawn from an intrinsic

distribution in the same manner as the object stars. Thus they can

be modelled in the same manner as the object stars – by

constructing a model foreground CMD. This is usually not done

with isochrones; the common procedure is instead to observe a

second field nearby (in terms of Galactic coordinates) the object

field but well beyond the limits of the object being studied. A small

amount of smoothing of the foreground CMD is generally

necessary, and the resulting CMD can be added to the partial

CMDs to create a better representation of the model from which

the observed data are drawn. This procedure is clearly superior

to the more commonly-used ‘statistical subtraction’, as the

subtraction process inevitably leaves residuals (oversubtraction

and undersubtraction) and thus a CMD that is not representative of

the underlying star formation history. It will be demonstrated in

Section 4.6 that, when treated properly, foreground contamination

can be dealt with easily.

A final problem is the presence of bad points – short-period

variables, stars hit by cosmic rays in one image, bad pixels, etc. –

that cannot be modelled either by the partial CMDs or by a

foreground CMD. Again, it is necessary to attempt to create the

underlying model distribution from which these ‘objects’ are

drawn. This model consists largely of two distributions. Purely

artificial objects, such as cosmic rays and bad pixels, are likely to

be spread anywhere on the observed CMD, and should be fitted

with a flat distribution. Short-period variables and stars plus cosmic

rays will likely fall near the observed distribution of points, and

should be modelled by smoothing either the observed or model

CMD (usually the observed CMD). As with the foreground CMD,

the ‘bad point’ CMD is to be added to the partial CMDs when

determining the model CMD for a star formation history. Thus

equation (1) becomes

mi ¼
j

X

rjci;j þ f i þ bpi; ð2Þ

where fi is bin i of the foreground CMD and bpi is bin i of the

combined bad point CMD.

2.3 Comparison of model CMD with data

When faced with the task of fitting data to a model, most scientists

tend to think first of using x 2. As x 2 is simply related to the

differences between data and model and the predicted 1s errors,

there is a certain intuitive attractiveness to this approach. Less

appreciated, though, is the fact that minimizing x 2 is actually a

maximum-likelihood calculation for the case of data with Gaussian

errors and known uncertainties at each point. This can be

demonstrated trivially as follows. Pi denotes the probability that

the observation n is drawn from model m, mi is the model value of

bin i, ni is observed value of bin i, and si is the uncertainty of bin i.

Pi ¼
ffiffiffiffiffiffiffiffiffiffiffi

1

2ps2
i

s

e20:5ðni2miÞ2 /s2
i : ð3Þ

We can define a ‘Gaussian likelihood ratio’ as the probability that

observed data point ni was drawn from a model equal to mi divided

by the probability that it was drawn from a model equal to ni. (This

is equivalent to the term ‘relative probability’ used by Tolstoy &

Saha 1996.)

GLRi ¼
ffiffiffiffiffiffiffi

s2
ni

s2
mi

s

e20:5ðni2miÞ2/s2
mi ; ð4Þ

where smi equals the expected uncertainty with model mi and sni is

that for model ni. Multiplying the individual Gaussian likelihood

ratios and taking the logarithm, we obtain

22 lnGLR ¼
i

X

ln
s2
mi

s2
ni

þ
i

X ðni 2 miÞ2
s2
mi

; ð5Þ

or simply

22 lnGLR ¼ x 2 þ
i

X

ln
s2
mi

s2
ni

: ð6Þ

Thus, if the observational error distribution is a smooth Gaussian,

and if the si values do not change during the fit [in which case

lnðs2
mi/s

2
miÞ ¼ 0�, minimizing x 2 is the equivalent of finding the

model most likely to have produced the observations. However,

neither of these assumptions is true in CMD analysis – the data

follow a Poisson distribution, and s2
mi ¼ mi while s

2
ni ¼ ni.

The danger in using x 2 to minimize Poisson-distributed data is

that the determined ‘solution’ will not actually be the correct

solution. Examples are given by Mighell (1999); the reader can

easily verify this fact by populating an array with, on average,
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1 point per bin and minimizing x 2 to find the mean. Depending on

the formulation of x 2 used, one’s ‘fit’ will be incorrect by up to 42

per cent. Mighell (1999) proposes an alternative statistic ðx2gÞ that
will minimize properly, but a better solution can be found by

deriving a statistic based on a Poisson, rather than Gaussian,

probability function.

Instead of using a x 2 fit, with its implicit assumptions of the

data, one should instead use a maximum likelihood parameter

based on the Poisson probability distribution,

Pi ¼
m

ni
i

emini!
: ð7Þ

The ‘Poisson likelihood ratio’ is analogous to the Gaussian

likelihood ratio (x 2) in equation (4). Cancelling the ni! terms in

numerator and denominator, we have

PLRi ¼
m

ni
i eni

n
ni
i emi

; ð8Þ

the ratio of the probability of drawing ni points from model mi to

that of drawing ni points from model ni. The cumulative likelihood

ratio is given by

PLR ¼
i

Y mi

ni

� �ni

eni2mi ; ð9Þ

and the Poisson equivalent of x 2 is

22 lnPLR ¼ 2
i

X

mi 2 ni þ ni ln
ni

mi

: ð10Þ

An examination of this parameter indicates that it shares many of

the same features as x 2, namely that it is zero when ni ¼ mi and

that the expectation value and variance are 1 and 2, respectively, at

large values of mi. Additionally, minimizing this parameter is truly

a maximum likelihood calculation, and applying this parameter to

the example given above will result in a correct determination of

the mean. Thus, given the presence of a Poisson-based statistic that

can be minimized in the same manner as x 2, there is no good

reason to use x 2 to fit a CMD, as x 2 will always minimize to the

wrong solution.

Before turning our attention to more general aspects of finding

the best fit, we need to address a pair of statistics. First is the Saha

W statistic (Saha 1998):

W i ¼
ðmi þ niÞ!
mi!ni!

: ð11Þ

As noted by Saha (1998), this parameter is proportional to the

probability that observed data sets mi and ni are drawn from the

same model distribution, without any knowledge of what that

model is. It is therefore a data–data comparison and cannot be used

for the model–data comparison we wish to perform. (The fact that

one is taking a factorial of a non-integer mi is the first indication

that it is unsuitable for such a task.) Incidentally, a related statistic

can be used for comparison of data with a randomly drawn

synthetic CMD, though it is significantly more complex than the

Poisson likelihood ratio. Rather than determining the likelihood

that two data sets are random realizations the same model (the

basis of the W statistic), one instead measures the likelihood that

the observed data are a random realization of some linear

combination of the models from which the synthetic CMDs are

drawn. This probability is given by

P ¼
i

Y

8

<

:

1

ni
j

Q

sij!

ð

1

mi1¼0

· · ·

ð

1

min¼0

e
2

j

P

ðcjþ1Þmij

j

X

cjmij

0

@

1

A

ni

j

Y

ðmsij
ij dmijÞ

2

4

3

5

9

=

;

; ð12Þ

where ni is the number of observed points in CMD bin i, sij is the

number of synthetic points in CMD bin i of partial CMD j, mij is

the underlying model in CMD bin i of partial CMD j, and cj is the

star formation rate corresponding to partial CMD j. Substituting

xij ¼ mijðcj þ 1Þ and yj ¼ cj/ðcj þ 1Þ, this simplifies slightly to

P ¼
i

Y

8

>

<

>

:

j

Qð12 yjÞsij

ni!
j

Q

sij!

ð

1

xi1¼0

· · ·

ð

1

xin¼0

j

X

yjxij

0

@

1

A

ni

j

Y

ðe2xijx
sij
ij dxijÞ

2

4

3

5

9

>

=

>

;

: ð13Þ

Expanding the first sum inside the integral to a polynomial, the

integral is reduced to a set of gamma functions, which can be easily

solved.

The final statistical treatment to be considered is the Bayesian

inference scheme proposed by Tolstoy & Saha (1996), which is

usually seen as a ‘bin-free’ statistic. However, if the CMD binning

grid is sufficiently fine, so that mi adequately describes the density

of model points everywhere within the bin (in other words, the

binning size is smaller than the CMD features), then their

probability of measuring a point in CMD bin i becomes merely the

fraction of model points that are in that CMD bin, or

Pi ¼
mi

j

P

mj

: ð14Þ

In this equation Pi is the probability of an observed point falling in

CMD bin i, and mi is (as before) the number of model points in

CMD bin i. This formulation is a slight improvement over their

equation (11), as it allows for the more accurate treatment of

observational errors described in Section 2.2 instead of the

unbiased Gaussian errors assumed by Tolstoy & Saha (1996). The

cumulative probability of drawing the entire observed data set ni is

thus given by

P ¼
i

Y mi

j

P

mj

0

B

@

1

C

A

ni

; ð15Þ

which produces

22 lnP ¼
i

X

ni ln
mi

j

P

mj

: ð16Þ

Aside from factors of the model normalization ðPmiÞ, equation
(16) will minimize identically to equation (10) above – the only

difference is that equation (16) throws away the overall star

formation rate information and thus returns only relative star

formation rates, while equation (10) does not. As there is nothing to

be gained by using equation (16) instead of equation (10), we will

not discuss the Bayesian inference scheme further. It should be
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noted, however, that use of Bayesian inference (as formalized in

equation 16) is not an ‘error’ in the sense that a x 2 fit is wrong; it

simply is of less value than the Poisson likelihood ratio.

2.4 Determination of the best fit

Something that is frequently considered in minimization solutions

is the particular algorithm used to determine the best fit.

Specifically, genetic and annealing algorithms are commonly

applied because these are less likely to be trapped in local minima.

However, it is worth considering whether this is actually a valid

concern. Given any arbitrary star formation history rj that produces

a model CMD given by mi, the Poisson likelihood ratio will be

given by

fitðrjÞ ¼ 2
i

X

j

X

rjci;j þ f i þ bpi

2

4

3

52 ni

þ ni ln
ni

j

P

rjci;j þ f i þ bpi
: ð17Þ

If dvj is a small vector in the direction of the best fit, the Poisson

likelihood ratio at rj þ dvj is given by

fitðrj þ dvjÞ ¼ 2
i

X

j

X

ðrj þ dvjÞci;j þ f i þ bpi

2

4

3

52 ni

þ ni ln
ni

j

Pðrj þ dvjÞci;j þ f i þ bpi
: ð18Þ

The change in the likelihood ratio by introducing dvj is

2
i

X

j

X

dvjci;j

2

4

3

52 ni ln 1þ j

P

dvjci;j

j

P

rjci;j þ f i þ bpi

2

6

4

3

7

5

8

>

<

>

:

9

>

=

>

;

: ð19Þ

Since the vector dvj is arbitrarily small, we can approximate

lnð1þ x) by x, producing

Dfit ¼ 2
i

X

j

X

dvjci;j

2

4

3

5 12
ni

mi

� �

8

<

:

9

=

;

: ð20Þ

Since any movement toward the best fit will lower the model

CMD where it is currently overestimated ðPj dvjci;j , 0 where

ni/mi , 1Þ and raise it where it is underestimated ðPj dvjci;j . 0

where ni/mi . 1Þ, Dfit will always be negative when moving in the

right direction. Thus there are no local minima in the solution for

SFR(t, Z), and any reasonable minimization algorithm can be used.

This is generally accomplished by using a minimization routine,

such as FRPRMN from Numerical Recipes (Press et al. 1992), to

measure the values of rj (equation 2) that minimize the fit para-

meter. Alternately, one can apply the variational calculus technique

of Hernandez et al. (1999), although significant additions to their

method must be made to adequately deal with observational effects

and a function SFR(t, Z) that varies with two parameters. Since the

variational calculus approach assumes SFR(t) to be continuous on

a time-scale of 0.1Gyr, and since it is demonstrated in the next

section that the high resolution in age and metallicity that is

required when using the variational calculus technique actually

increases the uncertainties in the measurement, we will adopt the

former technique.

Regarding the specific choice of minimization routine, any of

the general routines given in Numerical Recipes – AMOEBA,

POWELL, DFPMIN or FRPRMN – will work, given trivial

modifications to eliminate negative star formation rates. Downhill

simplex (AMOEBA) and Powell’s method (POWELL) are the

simplest, requiring only the ability to measure the fit parameter

given any star formation history. As noted by Press et al. (1992),

Powell’s method converges significantly faster than a downhill

simplex, and thus is preferred. The remaining two algorithms are

potentially faster, provided that they can be supplied with the fit

parameter and derivatives at any arbitrary star formation history

and that the measurement of the derivatives takes less time than N

computations of the fit parameter (N being the number of partial

CMDs). Using the Poisson likelihood ratio defined in equation (10)

and the model CMD defined in equation (2), the derivative is given

by

df

drk
¼

i

X df

dmi

dmi

drk
¼ 2

i

X

12
ni

mi

� �

ci;k: ð21Þ

The quantity 12 ðni/miÞ needs to be calculated only once in each

CMD bin (and is the longest part of the calculation), allowing the

full set of derivatives to be calculated in little more time than the fit

parameter itself. In terms of the choice between the Davidon–

Fletcher–Powell (DFP) algorithm and the Fletcher–Reeves–

Polak–Ribiere (FRPR) algorithm, I have found that the DFP

algorithm (as implemented by Press et al. 1992) frequently fails to

converge, while the FRPR algorithm has no such difficulties; the

recommendation is thus for the use of the FRPR algorithm

(FRPRMN in Press et al. 1992).

This algorithm converges very quickly if near the minimum

(sufficiently close that the fit parameter becomes quadratic);

however it can take some time if far away. A very fast way to

provide a rough initial value is to start with all star formation rates

set to zero and incrementally add to the rates with the most

negative gradients. This requires scaling the partial CMDs to

contain comparable numbers of stars, since otherwise the rates

producing the most stars – rather than those most resembling the

observed CMD – will be filled in this technique. This scaling

concern is also present in FRPRMN, as it is essentially a

sophisticated steepest-descent algorithm.

As both the number of iterations required and the time taken per

iteration scale as N in the FRPR algorithm and in the initial seeding

algorithm, the total time for convergence scales as N 2. If one is

using a very large number of partial CMDs, it may be preferable to

sacrifice accuracy for speed. An algorithm that will give a good

(though not excellent) fit to the data while scaling as N is given

here. Beginning with an initial guess (usually of a constant star

formation rate), the following two-step iteration procedure is made

until sufficient convergence is reached. The first step is a

measurement of the model CMD (mi) using equation 2; the second

is an updating of the star formation rates rj using

rj ¼ rj0
i

P

ci;jni/mi

i

P

ci;j
: ð22Þ

This is a very crude algorithm, and does not converge to high

precision quickly. However, it reaches moderate levels of

convergence fast enough that, for N . 150, the speed

improvement is significant and outweighs the small amount of

accuracy lost.
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2.5 Determination of the uncertainties

Once one follows the process above and determines a ‘best fit’, the

resulting numbers are the star formation rates corresponding to

each partial CMD and the overall fit parameter. Arriving at these

values is certainly important in star formation history studies, but

two central questions remain unanswered: (1) how far from the best

fit is the ‘true fit’, and (2) how good is the best fit. This and the

following section address these questions. The ‘true fit’ is defined

here as the fit corresponding to the actual star formation history.

The first question is of fundamental importance, because merely

quoting the ‘best-fitting star formation history’ is useless unless

one also provides a measurement of the uncertainties. In Gaussian

data fit using x 2, for example, we know that the mean x 2 (not

reduced) difference between the underlying model and the best fit

equals the number of free parameters in the fit. (This, of course, is

why one uses the number of ‘degrees of freedom’ – the number of

measurements minus the number of parameters – when calculating

a reduced x 2.)

For Poisson-distributed data, however, the expectation value of

the Poisson likelihood ratio is not a constant value, but rather varies

with the number of model points in each bin. Assuming that the

fit is most driven by the bins contributing the most to the variance

of the fit parameter, the mean difference between the fit parameter

of the best fit and underlying model will be the sum of the

expectation values of the first N fit parameters of the bins with

the largest expected variances (N being the number of free

parameters in the solution). This sounds more complex than it is, as

the variance and expectation values can be calculated easily for any

number of model points. In practice, this value is generally a little

more than N, as the expectation values slightly exceed 1.0 where

the variances are the highest. One can therefore approximate the

difference as equalling the number of free parameters in the fit; a

proper calculation requires calculating the fit parameter expec-

tation value and variance (both are functions of the number of

model points) in each CMD bin.

A brief comment regarding the determination of the number of

free parameters should be made. Although, by definition, this

should equal the total number of partial CMDs, plus one for any

foreground or bad star CMD that was fitted, plus one for any ‘fixed

parameter’ that was fitted, the number is generally much smaller.

There are two reasons for this – the restriction of non-negative star

formation rates and the inclusion of partial CMDs that in no way

resemble any part of the observed CMD.

The effect of the first can be demonstrated easily. Fitting 10

Gaussian-distributed points, all with mean values of 0, to the line

y ¼ aþ bx with no restrictions on a and b returns a mean x 2 of

8:0–10 points minus 2 free parameters. Requiring a $ 0 causes the

mean x 2 to equal 8.5, effectively producing 1.5 free parameters

since a , 0 half the time; the same is true of b. Finally, requiring

both a $ 0 and b $ 0 returns a mean x 2 of 9.32. The average

number of free parameters in this fit (2 if both a and b are positive,

1 if one is positive, and two if neither is positive) equals 0.68; thus

the effective number of free parameters in a fit that restricts

parameters from being negative is simply equal to the number of

positive parameters in the solution.

Any partial CMDs that are completely orthogonal to the

observed CMD likewise do not add to the effective number of free

parameters. For example, one can again consider 10 Gaussian-

distributed points, and fit to y ¼ af 1ðxÞ þ bf 2ðxÞ. If f2(x) is zero in

the range of x values used in these points, the mean x 2 is 9.0 even

though there are technically two free parameters in the fit. Since, in

a CMD fit, a partial CMD is not zero everywhere, b will be

constrained (and forced to zero) by the lack of observed stars where

its partial CMD is non-zero, we can again simply ignore any star

formation rates that are measured to be zero when counting free

parameters.

The presence of nearly degenerate isochrones, however, does not

decrease the effective number of free parameters. For example,

fitting 10 Gaussian-distributed points with x values between 0 and

9 to the curve y ¼ aþ bxþ cx 1:000001 returns a mean x 2 of 7.0,

despite the nearly complete degeneracy of the second and third

terms ð91:000001 ¼ 9:00002Þ. In practice, the parameters b and c are

generally determined to be very large and opposite numbers, so the

limitation of non-negative star formation rates will cause one to be

zero and thus not counted as a free parameter. In either case, the

presence of nearly degenerate isochrones in the solution requires

no additional effort in measuring the effective number of free

parameters.

Thus armed with knowledge of the minimized fit parameter and

the expected difference between the minimized fit parameter and

the fit parameter of the underlying model, one can search all free

parameters to determine the range of acceptable values.

Measurement of the uncertainties in determinations of fixed

parameters such as distance, extinction, etc. are quite simple, as a

separate solution must be made for each combination (because the

partial CMDs will be different if any fixed parameters change).

One can determine the best fit at each trial distance, for example,

and the range of distances producing fit values within the

acceptable range gives the uncertainty in distance.

Measurement of uncertainties of the star formation rate and

metallicity, however, requires slightly more work. The uncertain-

ties come from two sources – uncertainties in the fixed parameters

and acceptable ranges within any one fit – which must be added in

quadrature. The first source is easy to quantify as one can simply

find the extreme values of star formation rates and metallicities in

the fits returning acceptable fit parameters. The second source of

uncertainty is more difficult, and requires a trial-and-error testing

of the acceptable range. During such a test, a parameter should be

fixed to a variety of values, with the other parameters re-solved to

minimize the fit. By allowing the other parameters to vary, one will

find the true uncertainty for that parameter, including the effects of

correlated errors (as is usually seen in adjacent isochrones).

An alternate approach to the problem is to use a Monte Carlo

test. The usual method for doing this is to build a large number of

simulated observed CMDs, using the best-fitting fixed parameters

and star formation history and solve for the histories of those

CMDs. Any difference between the average solved values and the

input values indicates a bias in the solution, while the scatter

indicates the uncertainties. Such a test is not, in fact, correct in the

strictest sense, as one should actually attempt to find the range of

input parameters that produce the same star formation history as

did the observed data. However, if one’s star formation history

routine is unbiased (which can be tested by solving simulated data,

as is done below in Sections 3.1 and 3.2) the Monte Carlo test

should provide a reasonably accurate estimate of the uncertainties.

If the solution is biased (such as if one is using a x 2 fit), the Monte

Carlo test cannot be used reliably.

A final caution should be given against arbitrarily high precision

in the recovered star formation history. Hernandez, Gilmore &

Valls-Gabaud (2000) measure star formation rates from 0–15Gyr

with steps of 0.1Gyr, thus effectively using 150 free parameters in

the fit. For the same objects they studied, I will use 11 age bins in

my solutions. The coarser binning strategy produces smaller
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uncertainties for two reasons. First, the acceptable range in the fit

parameter increases linearly with the number of free parameters; as

the fit parameter essentially goes as the square of errors in the

parameters, using 11 free parameters instead of 150 decreases

uncertainties by a factor of 3.7. Secondly, a bin of 0.1Gyr can have

its star formation rate varied quite severely before generating a bad

fit; bins of 1Gyr or more have much less freedom. This contributes

another factor of N to the uncertainties [not
ffiffiffiffi

N
p

, because errors in

adjacent bins are correlated], giving the coarse (11-bin) fit another

factor of 13.6 improvement in precision, or a total of a factor of 50

improvement in the error bars. As the solutions presented below are

generally 1–2s detections using an 11-bin resolution (thus

necessitating yet lower resolution), an accurate measurement of the

Hernandez et al. (2000) uncertainties would indicate that each

point on their curves has a true uncertainty of atleast 10 times its

measured value!

2.6 Measurement of the fit quality

The final main issue that must be addressed here is that of the

goodness-of-fit. This is an entirely different question from that

discussed in the previous section. The last section discussed the fit

parameters of various solutions given one observed data set; this

section discusses the fit parameters of various observed data sets

drawn from the same solution. For example, again using the

analogy of Gaussian-distributed data, the mean difference of x 2

between solution producing the best fit and the solution from which

the data were drawn equals the number of free parameters in the

solution. However, the variance of x 2 for many data sets drawn

from the same model distribution equals twice the number of

degrees of freedom.

The goodness-of-fit can be quantified in at least two ways –

using a percentile or a number of s of error – either of which is

acceptable. The first test is done by generating a large number of fit

parameters for artificial data that were drawn randomly from the

best-fitting model. Since one already knows the number of model

points in each CMD bin (determined during the minimization

process), this can be done very quickly. By determining where or if

the minimized fit parameter (plus the correction for the number of

free parameters, as described in Section 2.5), falls within the

histogram of random drawings, one can ascertain the goodness of

the fit. Such a technique was used by Hernandez et al. (2000).

The second test can be also done easily, as the expectation values

and variances of the fit parameter in each CMD bin were

determined as described in Section 2.5. By adding these, a

combined expectation value and variance can be determined for the

best-fitting model. To quantify the fit quality, the minimized fit

parameter (again corrected for the number of free parameters) can

be framed in terms of s away from an ideal fit, using the following

definition:

Q ¼ fit parameter2 expectation value
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

variance
p : ð23Þ

If Q is zero, the data represent a typical random drawing from the

best model. If Q is 1, the data are 1s worse than a typical random

drawing from the best model. Since most scientists are more

familiar with x 2 values, I also define an ‘effective x 2’:

x2eff ¼ 1þ Q
ffiffiffiffiffiffiffiffi

2/N
p

; ð24Þ
where N should equal the number of CMD bins containing either

stars or some minimum number of model points. (N could also be

defined as the total number of CMD bins, but a bin with zero model

points and zero observed points does not contribute to the Poisson

likelihood ratio and thus one could obtain arbitrarily good x2eff
values by making a vast CMD.)

2.7 Binning the CMD

Until now, the question of the exact technique for CMD binning

has not been mentioned, as it was not relevant. The techniques

described earlier – synthetic CMD generation, the Poisson

likelihood ratio, and the methods for determining uncertainties and

goodness-of-fit – are valid for any binning scheme. The obvious

choice of a binning size is sufficiently small that CMD features are

not lost, with the bin size comparable to the size of the smallest

features to which one wishes to be sensitive; this is also the

condition necessary for equivalence between binned and unbinned

statistics as noted above.

Occasionally, one will find that the fit needs to be weighted

towards large-scale features in order to (for example) place the red

giant branch (RGB) in the correct position. Since the acceptable

range of fit parameters (Section 2.5) is a function primarily of the

number of free parameters, fit parameters calculated at various

binning sizes can be averaged together and treated normally. (One

must account for this when measuring uncertainties and fit quality,

of course.)

To consider the effect of two bin sizes, consider the following

two examples. In the first case, there is a 4 £ 4 block of CMD bins,

all with observed values 1s above the model values plus random

scatter of 1s. (For simplicity, this discussion will be in terms of

Gaussian-distributed data and x 2; the principles hold true for

Poisson-distributed data.) The x 2 from this set of bins is 2 per bin,

fit a total of x 2 ¼ 32 compared with an expectation value of x 2 ¼
16 for 16 bins. In contrast, consider the same block of bins, with

half 1s high and half 1s low. This likewise has a x 2 of 32. Now

combining the 4 £ 4 block of bins into a single bin, we re-examine

the two cases. In the first, the x 2 value is 17, again 16 higher

than the expectation value of x 2 ¼ 1 for 1 bin. In the second,

however, the x 2 value is 1, equal to the expectation value. The

conclusion of this exercise is that increasing the bin sizes does not

increase the sensitivity of the fit parameter to large features; rather

it decreases the sensitivity of the fit parameter to small features.

This may be necessary in some instances, but it should be done

with caution.

The final issue regarding binning schemes is whether to use

‘smooth binning’ (dividing the entire CMD into equal-sized

rectangular bins) or ‘irregular binning’ (selecting specially-shaped

bins for different CMD regions). As mentioned previously, the

Poisson likelihood ratio is valid for any binning scheme, so either

should work. Smooth binning is statistically advantageous in that

they make no a priori assumptions regarding the data and generally

produce more degrees of freedom in the fit (and is used in this

work); irregular binning can account better for known errors or

uncertainties in the data or theoretical isochrones.

2.8 Incorporation of outside information

The fitting procedure described in this paper makes no a priori

assumptions regarding the distance, extinction, SFR(t,Z), etc.

While this allows a pure, unbiased estimate of these parameters,

there are frequently constraints that should be applied in order to

measure the star formation history as accurately as is possible.

The simplistic approach would be to limit the search space to
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correspond to the maximum allowable values of distance,

extinction, metallicity, etc. However, the incorporation of outside

information can be done in a way more consistent with the

‘maximum likelihood’ approach that is favoured here. Recalling

that the fit parameter is merely22 ln(probability), one can factor in

the probabilities of the trial star formation history matching other

observational data in the same way.

For example, if the mean metallicity of a galaxy is known to be

k½Fe=H�l ¼ 21:5^ 0:3 with Gaussian errors, but the trial fit has a

mean metallicity of ½Fe=H� ¼ 22:1, one can add 4.0 to the fit

parameter, thus giving the metallicities equal weight as the

photometry. (The value of four comes from the Gaussian likelihood

ratio, x 2.) In practice, there are several complications to using

spectroscopic metallicity information. First, the stars used in

spectroscopic surveys (red giants, for example) are generally not

representative of all stars in the galaxy. Specifically, red giants are

older than upper main sequence stars, so using k½Fe=H�l of

ages older than 2Gyr may be more appropriate than a k½Fe=H�l
of all ages. Secondly, most objects show significant spreads in

metallicity; it would be preferable to compare the histograms of

metallicities rather than just the means. Finally, one must be careful

about what one means by ‘metallicity’. The metallicity used in the

models is [M/H]; that coming from spectroscopic studies is

generally the abundance of one or more elements, such as [Fe/H] or

[Ca/H], and is not necessarily the same value.

However, after accounting for all of these possibilities,

constraints from spectroscopic studies, variable star distance

measurements, extinction maps, etc. can (and should) be added

to the fit parameter, producing a combined fit parameter. This

will allow one to answer not only the question of ‘how well does

the star formation history match the present photometry?’, but

‘how well does the star formation history match all known

information about this galaxy?’. Answering the second question

clearly provides more stringent constraints on the solution than

the first.

3 APPLICATION TO DATA

Having detailed a method for the determination of star formation

histories, we now study its application to data sets, both simulated

and real. The tests with simulated data will examine how well star

formation histories can be measured when the isochrones are a

perfect match to the data; the tests with real data allow us to

examine the effects of possible errors in the theoretical isochrones.

Given that there are certainly errors at some level, the question that

must be answered is whether or not one can obtain a reasonable star

formation history given these very good but imperfect theoretical

models. The Galactic dwarf spheroidal companions provide ideal

targets for this test, because (1) they are sufficiently close that the

ancient main sequence turn-off (MSTO) is visible, (2) they are

sufficiently far that line-of-sight depth is not a large problem, (3)

they have little dust to cause internal reddening, and (4) the

majority have relatively simple star formation histories.

The procedure used to measure star formation histories was

identical to that described in Section 2, except that no

incorporation of outside data (as described in Section 2.8) was

made. This limitation was intentional, as the purpose of these

tests is to determine the capabilities of CMD analysis alone. (At

any rate, given that the WFPC2 field of view is much smaller

than the galaxies, we cannot expect to obtain star formation

histories as good as those obtained from wide-field ground-based

images.)

3.1 Synthetic galaxy 1: single-population

The first test of the method is an attempt to reconstruct a simple

single-burst population, with the CMD shown in Fig. 1. To provide

a reasonable comparison to Leo II, a true distance modulus of

21.60 with zero extinction, as well as the Leo II artificial star

library, was used when generating the synthetic data. The stars

were distributed evenly in age between 11 and 12Gyr, and in

metallicity between ½M=H� ¼ 21:75 and 21.65 – here and

elsewhere, ½M=H� ; logðZ/0:02Þ on the scale of the Girardi et al.

(2000) isochrones – effectively creating a single-population

system (in terms of galaxy field populations). The total number of

stars in the CMD is 16 449. This galaxy will also serve as an

illustration of the analysis procedure.

The first set of decisions that must be made is which CMD

region to study and which binning size to use. In order to retain

information regarding the oldest MSTO stars while eliminating the

stars with the worst photometric error, faint-end cuts of V , 25:0

and I , 24:5 will be used in this solution. On the bright end, we cut

off where the incompleteness due to saturation reaches 50 per cent,

which gives requirements of V . 17:5 and I . 16:5. A CMD

binning size of 0.05mag in V by 0.025mag in ðV 2 IÞ is

sufficiently small to ensure that all CMD information is retained.

(The 1 £ 2 shape of the rectangles was chosen to give similar

sensitivity in both distance and extinction, as EðV 2 IÞ/AV is

slightly more than 0.4.) The ‘observed’ CMD, binned accordingly,

is shown in Fig. 2.

The second set of decisions will be which parameter space to

explore. Because we are attempting to ascertain the degree of

accuracy with which the star formation history of a galaxy can be

recovered, we will attempt a solution with very high resolution

(higher than will be used below when studying the real galaxies).

The metallicity step size will be 0.1 dex in [M/H], the age step size

will range from 0.3Gyr at low ages to 1Gyr at high ages, and the

distance modulus and extinction (AV) will both be solved with a

resolution of 0.02mag. Because we have not retained any of the

lower main sequence, it will be impossible to determine the IMF or

Figure 1. CMD of synthetic galaxy 1. The isochrone corresponds to the

mean age and metallicity of the galaxy, 11.5Gyr and ½M=H� ¼ 21:7.
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binary distribution; these values have been fixed at a Salpeter slope

and a binary fraction of 40 per cent with flat secondary mass

function. Using these parameters, there are 19 time bins and 19

metallicity bins, for a total of 361 partial CMDs. The pure partial

CMD corresponding to the input age and metallicity is shown in

Fig. 3. After application of observational errors (from the artificial

star tests), the pure partial CMD becomes the final partial CMD

shown in Fig. 4.

A comparison of Figs 2 and 4 shows that the simulated observed

CMD was indeed drawn from the model CMD, in that the overall

shape and density of points are the same, and no bin with a model

value of zero has a non-zero number of observed points. (The last

point is not obvious from the printed images, given the limitations

of grey-scaling.) Because of this, it is possible to make a

statistically valid fit of the simulated observations given the

ensemble of partial model CMDs. Solving for SFR(t,Z) at a variety

of distance/extinction combinations, I was able to measure a

minimized fit parameter and its corresponding distance, extinction,

and star formation history.

The number of effective free parameters in the solution is 9–7

star formation rates returned non-zero values, plus distance and

extinction. The mean difference between the fit parameters of the

best fit and underlying star formation history is 9.8, meaning that

the error bars are given by all star formation histories with fit

parameters within 9.8 of the minimum (1088.1). The distance

½ðm2MÞ0 ¼ 21:60^ 0:02� and extinction ðAV ¼ 0:00^ 0:01Þ
can be immediately determined based on the best fits at each

distance and extinction; both values agree with the input values.

The measured star formation rate is shown in panel (b) of Fig. 5,

and matches the input star formation history extremely well. At the

1s level, there has been a small amount of bleeding from the

11–12Gyr bin into adjacent bins; however the input and recovered

histories are consistent at the 2s level and the bleeding amounts to

a loss of only 3 per cent of the star formation in the peak bin. The

metallicity was measured correctly, with a determined value of

½M=H� ¼ 21:70^ 0:05 dex.

In order to determine the quality of the fit, the expectation value

of the fit parameter (1089.9) and its expected variance (1937.1)

must be calculated. Comparing with the corrected fit parameter

value of 1097.9, this translates into a goodness-of-fit value of

Q ¼ 0:18, or x2eff ¼ 1:01, meaning a statistically consistent fit to

the ‘observed’ data. (In terms of percentiles, the fit is consistent at

the 44 per cent level, meaning that it is better than 44 per cent of

random drawings.)

The chance of having a good fit is enhanced, of course, as the

binning of both age and metallicity matches that used when

creating the model. Whether or not a bad choice of bins affects the

Figure 3. Pure model CMD (shown in grey-scale), calculated with an age of

11–12Gyr and metallicity of ½M=H� ¼ 21:75 to 21.65. The limits on the

plot are those used in the solution: 17:5 , V , 25:0 and

20:3 , V 2 I , 2:0.

Figure 4. Partial CMD (shown in grey-scale), calculated with an age of

11–12Gyr and metallicity of ½M=H� ¼ 21:75 to 21.65. The limits on

the plot are those used in the solution: 17:5 , V , 25:0 and

20:3 , V 2 I , 2:0.

Figure 2. ‘Observed’ CMD of synthetic galaxy 1, shown in grey-scale. The

limits on the plot are those used in the solution: 17:5 , V , 25:0 and

20:3 , V 2 I , 2:0.

Star formation history measurement 99

q 2002 RAS, MNRAS 332, 91–108

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
3
2
/1

/9
1
/9

7
5
0
7
7
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



star formation history can be tested by running a solution using a

different binning scheme. By solving with the logarithmic age

scheme used for the observed galaxies, one gets a worst-case

estimate (as the break between the oldest two bins falls at the age of

this system). In making this test, I found a very poor fit quality

ðQ ¼ 7:19 and x2eff ¼ 1:37Þ, but measured the correct distance,

extinction and star formation history. The conclusion is thus that

binning choices can hurt the fit quality, but are unlikely to affect the

measured values or their uncertainties. This result is not entirely a

surprise, as the nature of the maximum likelihood ratio causes the

solution to attempt to match all observed points with model points,

even if this causes other model points to fall where observed points

do not. (For example, finding one star where the model predicts

zero stars has a probability of 0.0, while finding no stars where one

is predicted has a probability of 0.37.) Thus all component

populations will be fitted.

In order to apply this test to more distant galaxies, it is also

important to answer the question of how well the input star

formation history can be recovered in more distant galaxies where

the ancient main-sequence turn-offs are not present. To accomplish

this, the star formation histories were calculated using photometric

cut-offs brighter by 1.5 and 3.5mag in both V and I. Increasing the

cut-offs by 1.5mag limits the solution to the RGB and HB;

increasing by 3.5 limits it to just the upper RGB. The measured star

formation histories from these solutions are shown in panels (c)

and (d) of Fig. 5.

The solution with the full RGB and horizontal branch (HB) was

extremely successful, measuring the distance ½ðm2MÞ0 ¼
21:60^ 0:02�; extinction ðAV ¼ 0:00^ 0:01Þ, star formation

history and mean metallicity ð½M=H� ¼ 21:70^ 0:05Þ with nearly

the same accuracy as the fit to the entire CMD. In fact, increasing

the number of stars by a factor of 4 to compensate for the 1.5mag

lost (1.5mag of distance modulus equals a factor of 2 in distance)

would have produced a final solution to the same level of accuracy

as the full fit. The reason for the equally accurate solution is

threefold. First, despite losing the main-sequence turn-off, nearly

all evolved stars remain above the photometric cut-off. Secondly,

age and metallicity are not completely degenerate on the RGB,

allowing a sensitive numerical fit to ascertain the correct star

formation history. Finally, the HB morphology is sensitive to age,

which also helps to break the degeneracy. The last reason is as

much a help as a hindrance, however, as the theoretical isochrones

generally have much greater systematic uncertainties in the HB

than in the RGB.

The solution measuring the upper RGB alone lost a great deal of

information. Although the distance and extinction measurements

were both accurate ½ðm2MÞ0 ¼ 21:64^ 0:15 and AV ¼ 0:00^

0:03� they were not precise. Increasing the number of stars by a

factor of 25 to compensate for the greater distance would reduce

the distance and extinction uncertainties, but would not greatly

improve the star formation history measurement. Specifically, with

only the upper RGB, an acceptable fit can be obtained with stars of

any age between 7 and 15Gyr, owing to the near-degeneracy of age

and metallicity.

3.2 Synthetic galaxy 2: composite population

The second synthetic galaxy, the CMD of which is shown in Fig. 6,

is a system with a more complex star formation history. The same

input parameters were used, except for the metallicity and age

distribution. As is clear from the CMD, the star formation history

consists of three bursts:

(i) 0.6 to 1.0Gyr, ½M=H� ¼ 21:0, ,5000 stars;

(ii) 2 to 5Gyr, [M/H] increasing from 21.4 to 21.2, ,11 000

stars;

(iii) 8 to 13Gyr, [M/H] increasing from 21.7 to 21.6, ,16 000

stars.

This star formation history was chosen to maximize the possibility

Figure 6. CMD of synthetic galaxy 2. The isochrones correspond to the

mean ages and metallicities of the three bursts. The youngest is 0.8Gyr and

½M=H� ¼ 21:0, the middle is 3.6Gyr and ½M=H� ¼ 21:3, and the oldest is

10.0Gyr and ½M=H� ¼ 21:6.

Figure 5. Star formation histories of Synthetic Galaxy 1. Panel (a) is the

input history, panel (b) is the measured history using the entire CMD, panel

(c) is the measured history without the turn-off, and panel (d) is the

measured history with only the upper RGB. Rates are given relative to the

lifetime average rate of 3:44 £ 1025 M( yr21.
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of error in the solution. The metallicity enrichment law used here

exactly matches the age–metallicity pseudo-degeneracy, in that the

RGB colour is the same at for stars of all ages. (This is the reason

for the metallicity skips between the bursts.) Likewise, the system

does not contain stars of extreme ages (0 or 15Gyr), allowing the

solution to err in finding such stars. Finally, the three bursts have

different shapes. The young burst has a constant star formation

rate, the middle burst has the lowest rate in the middle of the burst,

and the oldest burst has highest rate in the middle. The total number

of stars in the CMD is 32 518.

The recovered star formation history, given in panels (b) and (c)

of Fig. 7, has a minimized fit parameter of 2990.3. Because of the

more complex star formation history of this galaxy, the number of

free parameters in the fit was larger (37 star formation rates plus

distance and extinction ¼ 39Þ, which produced a maximum

acceptable fit parameter of 3032.7. The fit quality is not excellent

ðQ ¼ 1:80 and x2eff ¼ 1:06Þ, but is consistent at better than a 2s (5

per cent) level.

From an examination of the history in panel (c) of Fig. 7, it is

clear that there are rather large uncertainties in the star formation

rates caused by the ability of the prolonged star formation episodes

to be modelled acceptably using different combinations of

populations. (This was not an issue for galaxy 1, since there was

only a single burst.) For example, the star formation measured in

the 2:5–3Gyr bin, while a correct measurement of the input value

can be moved to the adjacent bins without significantly hurting the

quality of the fit. Thus while the input star formation history was

recovered correctly, we do not have the ability to recover the

structure of the bursts with a high signal-to-noise ratio. In order to

compensate for this lack of time resolution in the bursts, panel (c)

of Fig. 7 shows the star formation history after additional binning

in a somewhat logarithmic scheme. As mentioned in Section 2.5,

the error bars tend to drop by roughly a factor of 2 (rather than by
ffiffiffi

2
p

Þ when combining two bins, because errors in adjacent bins are

correlated. As with synthetic galaxy 1, the metallicity was

measured very well, to an accuracy of roughly 0.15 dex in highly

populated age bins and 0.3 dex in less populated bins.

As with galaxy 1, I have run additional star formation history

solutions with photometric cut-offs that are brighter by 1.5 and

3.5mag. These results are shown in panels (d) and (e) of Fig. 7.

Once again, the ability to measure the distance ½ðm2MÞ0 ¼
21:59^ 0:05�; extinction ðAV ¼ 0:00^ 0:03Þ and star formation

history is essentially undiminished when subtracting 1.5mag from

the photometric cut-off. Even without increasing the number of

stars (the 1.5mag of loss again corresponding to a factor of 2 in

distance, or a factor of 4 in number of stars in the field of view), all

input parameters were correctly measured. However, the solution

with 3.5mag lost was poorly constrained, with large amounts of

star formation again falling into adjacent bins. All values were

measured accurately given the uncertainties, of course, but the

uncertainties were extremely large.

The conclusion from the limited-photometry solutions is that,

while it is always preferable to have photometry reaching to

ancient main-sequence turn-offs, star formation histories can be

measured accurately when the photometry reaches onlyMV ¼ þ2.

With more restricted photometry, however, only broad features of

the star formation history (perhaps a time resolution of log t ¼ 0:5Þ
can be obtained.

3.3 Real galaxy: Leo II

After analysing the pair of synthetic galaxies, we finally turn our

attention to the measurement of star formation histories of a real

galaxy. Leo II will provide the primary example, because it is the

only system in this sample with many stars and a primarily old star

formation history.

The data were all obtained from the Hubble Space Telescope

archive using OTFC; all data sets are non-proprietary. The list of

Figure 7. Star formation histories of Synthetic Galaxy 2. Panel (a) is the

input history, panel (b) is the measured history using the entire CMD, panel

(c) is the measured history using the entire CMD, rebinned for smaller

uncertainties, panel (d) is the measured history without the turn-off, and

panel (e) is the measured history with only the upper RGB. Rates are given

relative to the lifetime average rate of 4:68 £1025 M( yr21.

Table 1. Observations.

Galaxy Prog ID Date F555W exposures F814W exposures Reference

Carina GTO 5637 Jan 1995 200s, 2 £ 1100s 200s, 2 £ 1100s PI Westphal
Draco GTO 6234 Jun 1995 200s, 2 £ 1000sa 200s, 1100s, 1300s Grillmair et al. 1998
Leo I GO 5350 Mar 1994 350s, 3 £ 1900s 300s, 3 £ 1600s Gallart et al. 1999a
Leo II GO 5386 May 1994 2 £ 80s, 8 £ 600s 2 £ 80s, 8 £ 600s Mighell & Rich 1996
Sagittariusb GO 6614 May-Oct 1996 6 £ 160s, 2 £ 600s 5 £ 160s, 2 £ 500s Mighell et al. 1997
Sculptor GTO 6866 Dec 1997 2 £ 1200s, 2 £ 1300s 4 £ 1300s Monkiewicz et al. 1999
Ursa Minor GTO 6282 Jul 1995 200s, 2 £ 1100sa 200s, 2 £ 1100s PI Westphal

aF606W was used for Draco instead of F555W.
bSix pointings were obtained in Sagittarius, comprising of three pairs of partially-overlapping fields. One pair is 08:2 from
the centre, the second is 28:4 from the centre, and the third is a field containing only Galactic foreground stars.
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observations is given in Table 1. The data were cosmic-ray cleaned

and combined using the CRCLEAN algorithm of HSTPHOT (Dolphin

2000b), which is able to combine exposures at different gain

settings, to provide one deep F555W image and one deep F814W

image.

HSTPHOTwas then used to obtain stellar photometry and artificial

star tests using 43 600 artificial stars. Stars (both real and artificial)

were required to have x , 2:5, S=N . 5, and jsharpnessj , 0:3 in

order to be considered detections. Aperture corrections were

determined separately for each chip and image, and are accurate to

half a per cent (the typical solution had 45 bright stars with an rms

scatter of 0.03mag). CTE loss corrections and transformations to

VIwere made using an updated calibration solution from that given

by Dolphin (2000c); the new equations are available on the author’s

web site (http://www.noao.edu/staff/dolphin/wfpc2_calib/).

The Leo II CMD is shown in Fig. 8. The 50 per cent

completeness regimes, determined using artificial star tests, are

15:9 , V , 27:1 and 14:8 , I , 26:1 (the bright limit determined

by saturation and the faint limit by loss of photons).

Table 2 lists literature values of the distance, extinction and RGB

metallicity, as well as semi-empirical measurements of the distance

and extinction calculated from my CMDs (when possible). A

sanity check on the photometric calibration is that the values agree;

in the case of Leo II this is true. Table 2 also lists the values

obtained from the CMD-fitting algorithm; a sanity check on the fit

is the agreement between the semi-empirical and CMD-fitting

values.

The CMD of Leo II contains a total of 12 642 stars, of which

5188 are brighter thanMV ¼ þ4 ðV ¼ 25:6Þ and are thus useful in

measuring the star formation history. With the brightest stars in an

ancient, metal-poor population falling near MV ¼ 23 ðV ¼ 18:6Þ,
the photometry limits thus encompass the necessary range. The

CMD shows the basic features of an old population – a strong

horizontal branch and weak upper main sequence. However, the

width of the main-sequence turn-off region, presence of main-

sequence stars above the turn-off and stars in the red clump region

(above the red horizontal branch) all indicate the presence of a

younger stellar population as well.

The star formation history analysis technique used for the two

synthetic galaxies was then applied to Leo II. The minimized fit

parameter was 2335.9, with acceptable values as up to 2374.9. The

fit quality parameters were Q ¼ 2:15 and x2eff ¼ 1:09, meaning that

the fit is acceptable at the 2.15s level.

While the synthetic galaxies were constructed purely for the

purpose of testing the method, we hope to obtain some basic

scientific results from the studies of the real galaxies. The age

resolution for the Leo II solution was logarithmic, because

isochrones are more evenly spaced in log t than in t. In order to

reduce the number of free parameters, these solutions used a

metallicity resolution of 0.15 dex instead of 0.1 dex and 11 time

bins rather than 19. However, because of the possibility of

foreground stars and bad stars, we included all three sources of

contamination – a foreground star CMD, a bad star CMD

consisting of a completely random distribution, and a bad star

CMD consisting of the observed data smoothed with a Gaussian

kernel with s ¼ 0:2mag in ðV 2 IÞ and 0.4mag in V. As should be

Figure 8. Observed ðV 2 IÞ, V CMD of Leo II; N ¼ 12 642;

NðMV , 4Þ ¼ 5188. The overplotted isochrone corresponds to the mean

values of the best solution: ½Fe=H� ¼ 21:13 and t ¼ 9:44Gyr.

Table 2. Distance and extinction values.

Literature Semi-empirical CMD fitting
Galaxy (m 2 M )0

a
AV

b [M/H]c (m 2 M )0 AV (m 2 M )0 AV

Carina 20.03 ^ 0.09 0.20 22.0 ^ 0.2 19.94 ^ 0.20d 0.19 ^ 0.10e 20.19 ^ 0.13 0.00 ^ 0.14
Draco 19.58 ^ 0.15 0.08 22.0 ^ 0.15 19.60 ^ 0.18f 0.27 ^ 0.15e 19.49 ^ 0.11 0.28 ^ 0.08
Leo I 21.99 ^ 0.20 0.11 21.5 ^ 0.4 21.84 ^ 0.14d 0.02 ^ 0.05e 21.80 ^ 0.06 0.04 ^ 0.05
Leo II 21.63 ^ 0.09 0.06 21.9 ^ 0.1 21.67 ^ 0.10f 0.12 ^ 0.07e 21.55 ^ 0.08 0.00 ^ 0.09
Sagittarius (central) 17.20 ^ 0.15g 0.47 20.3 ^ 0.2h ... ... 17.11 ^ 0.14 0.46 ^ 0.11
Sagittarius (outer) 17.20 ^ 0.15g 0.37 20.3 ^ 0.2h ... ... 17.09 ^ 0.17 0.45 ^ 0.13
Sculptor 19.54 ^ 0.08 0.06 21.8 ^ 0.1 ... ... 19.45 ^ 0.31 0.06 ^ 0.19
Ursa Minor 19.14 ^ 0.10i 0.10 22.2 ^ 0.1 19.28 ^ 0.25f ... 19.16 ^ 0.11 0.12 ^ 0.09

aExcept where noted, distances were taken from Mateo’s (1998) compilation of literature values.
bCalculated using the maps of Schlegel, Finkbeiner & Davis (1998).
cExcept where noted, metallicities were taken primarily from Mateo’s (1998) compilation of literature values of [Fe/H].
dMeasured using both the RGB tip, calibrated with the Girardi et al. (2000) isochrones, and the red clump technique described by
Dolphin et al. (2001b) and Girardi & Salaris (2001).
eMeasured using the RGB colour, as per Sarajedini (1994).
fMeasured using the horizontal branch magnitude, with the calibration of Carretta et al. (2000).
gFrom Bellazzini et al. (1999a).
hFrom Alard (2001), Bonifacio et al. (2000) and Cole (2001).
iIncludes a more recent measurement by Mighell & Burke (1999).
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clear from the lack of distant outliers in the CMD in Fig. 8, the first

and second sources are negligible (and were measured to be zero),

while a small contribution from the smoothed observed CMD was

needed to produce the best fit.

The measured star formation history is shown in Fig. 9. The

obvious feature of this star formation history is a prolonged star

formation epoch, lasting from 15Gyr ago until about 5–6Gyr ago.

The break at 5–6Gyr is quite clear; the mean star formation rate at

high ages is 7.3 times that at low ages. This finding is consistent

with the star formation history recovered by Mighell & Rich

(1996), but is more extended (and older) than that found by

Hernandez et al. (2000). The reason for the discrepancy is unclear,

but it should be noted that the younger history measured by

Hernandez et al. (2000) cannot create the observed blue HB; thus

some amount of older stars is necessary. It is also apparent from the

1.75s detection of star formation in the 2–4Gyr bin that star

formation extended until between 2 and 4Gyr ago.

The measured metallicity values are surprisingly high. The

photometric metallicity measurement by Mighell & Rich (1996),

using the technique proposed by Sarajedini (1994) applied to these

same data, gave a value of ½Fe=H� ¼ 21:60^ 0:25, while the

preferred mean metallicity measured here is 21:13þ0:09
20:31 – a

difference of nearly half a dex. It should be noted, however, that the

½Fe=H� ¼ 21:58 red giant branch (M2) of Da Costa & Armandroff

(1990) used by Mighell & Rich has the same colour as an

interpolated Girardi et al. (2000) isochrone of metallicity ½Fe=H� ¼
21:27 and log t ¼ 10:15, consistent with the metallicities

measured by Carretta & Gratton (1997) for the similar-metallicity

clusters NGC 3201, M10 and NGC 6752. Additionally, one must

account for the fact that the mean age of a star in Leo II (9.4Gyr) is

much lower than that for a typical globular cluster; the same-colour

isochrone at this age has a metallicity of ½Fe=H� ¼ 21:21. Thus the

metallicity measurements are entirely consistent; it is the scale

used for calibration that is different. That the present fit is

internally consistent is demonstrated by Fig. 8, which shows the

interpolated isochrone corresponding to the measured distance,

extinction, mean age and mean metallicity.

In summary, the primary result is that the CMD-fitting algorithm

produced the expected distance, extinction and star formation

history to within the uncertainties. Specifically, the extended star

formation observed in other studies was recovered accurately, with

.1s detections at high ages. Additionally, a small amount of

younger star formation was detected at the .1s level. Although

the measured metallicity is much higher than values found in the

literature, it is consistent once systematic differences in the

calibrations have been corrected.

4 S IX DWARF SPHEROIDALS

In this section, I cover briefly the solutions for seven additional

observed CMDs of six galaxies. Each CMD will present a

somewhat different challenge, with varying numbers of stars,

complexity of star formation, and amount of foreground

contamination. All were reduced identically with HSTPHOT and

the CMD analysis program.

4.1 Draco

The first dwarf examined will be the Draco dwarf spheroidal. From

a cursory examination of the CMD (Fig. 10), one expects a simple

(mostly old) star formation history, as the turn-off and RGB are

both extremely narrow. A possible sign of trouble is that the semi-

empirical extinction measurement is significantly greater than the

literature value; this is possibly because of the filters used (F606W

instead of the standard F555W). However, a zero-point error will

affect the measured distance and extinction, but not the determined

star formation history. Note that stars within half a magnitude of

the RGB tip would be saturated, but this should not significantly

affect the CMD solution as the upper RGB is not strongly

populated.

The measured star formation history is shown in panel (a) of

Fig. 11. As was expected from the visual examination of the CMD,

the only significant star formation episode appears to be at ancient

ages (.11Gyr ago). The constraints on the maximum amount of

younger star formation are given by the upper error bars; there is

the possibility of a significant amount of star formation (more

than the lifetime average rate) lasting until 8Gyr ago, but very

little since then. The mean metallicity is measured to be

½M=H� ¼ 21:7^ 0:4 dex. The conclusion of an entirely ancient

Figure 9. Star formation and chemical enrichment histories of Leo II. The

top panel shows the star formation rate, normalized to the lifetime average

rate of 3:8 £ 1025 M( yr21. The bottom panel shows the chemical

enrichment history. Although the solution was made with an age resolution

of 0.15 dex, this and the following figures are plotted with a resolution of

0.3 dex to make the features clearer.

Figure 10. Observed ðV 2 IÞ, V CMD of Draco; N ¼ 3371;

NðMV , 4Þ ¼ 285.

Star formation history measurement 103

q 2002 RAS, MNRAS 332, 91–108

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
3
2
/1

/9
1
/9

7
5
0
7
7
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



galaxy is consistent with that obtained by the other study of this

data set (Grillmair et al. 1998) as well as the ground-based work of

Carney & Seitzer (1986).

4.2 Ursa Minor

The Ursa Minor dwarf spheroidal is another system with a CMD

containing a moderate number of stars. Its CMD is shown in

Fig. 12; as with Draco, a narrow turn-off and RGB imply a simple

and predominantly old star formation history. A few stars exist

above the turn-off, implying either the presence of blue stragglers

or a small young population. Note that stars within 0.2mag of the

RGB tip would be saturated, but it is unlikely that many such stars

exist in this small field.

The measured star formation history is shown in panel (b) of

Fig. 11. As was expected from the visual examination of the CMD,

the only significant star formation episode appears to be at ancient

ages (.11Gyr ago). The mean metallicity was measured to be

½M=H� ¼ 21:5^ 0:3 dex. The conclusion of an entirely ancient

galaxy is consistent with that obtained by other studies of this data

set (Mighell & Burke 1999, Hernandez et al. 2000) – although care

should be taken in making too much of this comparison, as

Hernandez et al. (2000) had an error of more than 20.1mag in

their ðV 2 IÞ colours – as well as the ground-based work of

Olszewski & Aaronson (1985).

4.3 Sculptor

The extreme case, in terms of numbers of stars, is that of the

Sculptor dwarf spheroidal. While the Leo II CMD had 5188 stars

brighter than MV ¼ þ4, the Sculptor CMD (Fig. 13) has only 46.

The CMD cuts off at MV ¼ þ0:2 because of saturation; thus the

entire upper RGB is lost in these data. Given the small number of

evolved stars in the CMD, it is clearly impossible to measure the

star formation history with great precision. However, there the

CMD shows no evidence of young stars.

The measured star formation history is shown in panel (c) of

Fig. 11. Consistent with the visual examination of the CMD, we

again find an ancient galaxy. The constraints on the maximum

amount of younger star formation are quite weak, though, and it

is possible to have an acceptable fit with any one of the younger

low-resolution bins increased to the lifetime average star formation

rate. The mean metallicity is measured to be ½M=H� ¼ 21:5^ 0:6.

The conclusion of an entirely ancient galaxy is consistent with that

obtained by another study of this data set (Monkiewicz et al. 1999)

as well as the ground-based work of Da Costa (1984).

4.4 Leo I

Leo I is the first galaxy in this study to contain young stars. Its

CMD, shown in Fig. 14, shows an extremely broad turn-off,

ranging from ancient stars to very young stars. The main sequence

itself is dominated by a young population, and a few blue helium

Figure 12. Observed ðV 2 IÞ, V CMD of Ursa Minor; N ¼ 1941;

NðMV , 4Þ ¼ 172.

Figure 13. Observed ðV 2 IÞ, V CMD of Sculptor; N ¼ 819;

NðMV , 4Þ ¼ 46.

Figure 11. Star formation histories of three old systems: Draco, Ursa Minor

and Sculptor. Each is normalized relative to its lifetime average star

formation rate.
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burners are present. There is likely an HB extending bluewards

from the base of the red clump; however one cannot be entirely

sure that those are HB stars rather than young stars evolving off the

main sequence. It was the only object for which observations were

made before WFPC2 was cooled; the CTE corrections and

calibrations are thus somewhat more uncertain than for the other

objects in this sample. Nevertheless, as noted previously, any error

in the zero points (there is no reason to believe any such error

exists) would affect merely the distance and extinction

measurements; the recovered star formation history is unaffected.

The goodness-of-fit was by far the worst of the galaxies studied.

The Q value is 7.47, which is similar to that measured in the

poorly-binned solution of synthetic galaxy 1; this may indicate an

‘unlucky’ choice of time bins. Nevertheless, we can use the fact

that the difference between the fit parameters of the best fit and that

of the true fit is independent of the quality of the fit – in other

words, we can use the formalism defined in Section 2.5 to

determine the uncertainties.

The measured star formation history is shown in Fig. 15. Leo I

shows star formation detected at the 1s level at every age from

15Gyr ago until 0.5Gyr ago. The largest epoch of star formation

occurred recently, from 3 to 1Gyr ago, during which time the star

formation rate was 2.5 times the lifetime average. The burst

appears to have begun and ended quite quickly, as the star

formation history is inconsistent with a constant rate from 4Gyr

ago until the present. Additionally, ancient (.11Gyr) stars are

detected at the 1s level, despite confusion caused by the young

population.

Nearly all previous studies using these data (Gallart et al. 1999b;

Hernandez et al. 2000) have concluded that there was a strong

episode of star formation recently in Leo I. Gallart et al. (1999b)

estimated that most of the star formation occurred between 1Gyr

and 7Gyr ago; Hernandez et al. (2000) measured bursts centred

near 4 and 7.5Gyr. However, the results of Hernandez et al. (2000)

are skewed by an error of ,þ0.2mag in the photometric zero

points, thus making the stars appear older and explaining why the

two apparent peaks in my star formation history ð2–2:8 and

4–5:7GyrÞ are younger than those in theirs.

The study of the oldest stars from these data has had conflicting

results. Gallart et al. (1999b) found a negligible star formation rate

beyond 12Gyr, while Caputo et al. (1999) concluded that such star

formation likely exists. As noted above, I measure a presence of

star formation older than 11Gyr at the 1s level. The Gallart et al.

(1999b), result, however, is based on a very large assumed distance

modulus of 22.18; bringing Leo I to the distance determined here

would move some of their 9:4–12Gyr star formation into the

12–15Gyr range; the presence of old stars has been confirmed by

NTT observations of the outer regions of Leo I by Held et al.

(2000).

4.5 Carina

The Carina dwarf spheroidal is another system containing

relatively young stars. While its younger population does not

dominate the CMD (Fig. 16) as much as that of Leo I, the

significant foreground contamination makes the solution more

difficult. The main sequence extends to V , 22:5, corresponding

to an absolute magnitude of þ2.3. The smaller number of stars

Figure 14. Observed ðV 2 IÞ, V CMD of Leo I; N ¼ 31 064;

NðMV , 4Þ ¼ 22 290.

Figure 15. Star formation and chemical enrichment histories of Leo I. The

top panel shows the star formation rate, normalized to the lifetime average

rate of 8:5 £ 1025 M( yr21. The bottom panel shows the chemical

enrichment history.

Figure 16. Observed ðV 2 IÞ, V CMD of Carina; N ¼ 2772;

NðMV , 4Þ ¼ 609.
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makes stronger conclusions more difficult, of course – the 15 blue

helium burners seen in Leo I would scale down to 0.4 given the

relative numbers of stars in the two fields.

The distance and extinction values from the CMD fit, shown in

Table 2, are the only ones that disagree with semi-empirical values

calculated from the CMD. It is likely that the foreground

contamination and lack of a well-photometered lower main

sequence made the distance and extinction question poorly

constrained. This is a system for which incorporation of outside

information (such as the Schlegel et al. extinction value) would

clearly be profitable.

The measured star formation history is shown in panel (a) of

Fig. 17. Carina appears to show continuous star formation (at the

resolution possible) from its earliest star formation episode until

roughly 2Gyr ago. Optimal science can only be obtained with a

wider-field camera, of course; the primary purpose of studying

these data is to determine how precisely the star formation history

can be determined from this CMD.

For comparison, the previous studies of these data (Mighell

1997; Hernandez et al. 2000) have also noted strong intermediate-

age stellar populations. The bulk of stars found by Mighell (1997)

have ages between 4 and 10Gyr; Hernandez et al. (2000) measured

1-Gyr-wide peaks centred at 3, 5 and 8Gyr. Using ground-based

data, Hurley-Keller, Mateo & Nemec (1998) find a 3-burst

structure with ages 3, 7 and 15Gyr. The present work finds

significant amounts of stars younger than 4Gyr, contradicting

Mighell (1997) but agreeing extremely well with Hurley-Keller

et al. (1998). As with Leo I, there is some ambiguity as to whether

or not ancient stars exist. Mighell (1997) and Hurley-Keller et al.

(1998) found evidence of them, while Hernandez et al. (2000) did

not. Fig. 17 shows the presence of old (.8Gyr) stars at the 1s

level. As was the case for Leo II, the presence of a strong blue HB

(Smecker-Hane et al. 1994) would argue against the history

proposed by Hernandez et al. (2000), who find essentially no star

formation older than 10Gyr. A serious (,20.2mag in ðV 2 IÞ
error in their photometric zero point likely causes their spurious

result.

4.6 Sagittarius

The final galaxy to be examined is the Sagittarius dwarf spheroidal.

It provides an even more difficult challenge than Carina, as the

number of stars in the CMD is not significantly greater, while there

is a tremendous amount of foreground contamination. The CMDs

of the central field (08:2 from the centre) and outer field (28:4 from

the centre) are shown in Figs 18 and 19. Because of the foreground

contamination, only a very rough estimate of the star formation can

be made – there are no extremely young stars, but the central field

does appear to have a broad turn-off extending up to V , 20:4. The

turn-off in the outer field does not extend as high, but is still much

broader than those of Ursa Minor or Draco. In both fields, the CMD

cuts off about 2mag below the RGB tip. Given the foreground

contamination, however, it is unlikely that Sagittarius RGB stars

Figure 17. Star formation histories of two mixed-age systems: Carina and

Sagittarius. Each is normalized relative to its lifetime average star

formation rate.

Figure 18. Observed ðV 2 IÞ, V CMD of the central Sagittarius field;

N ¼ 6553; NðMV , 4Þ ¼ 809.

Figure 19. Observed ðV 2 IÞ, V CMD of the outer Sagittarius field; N ¼
3329; NðMV , 4Þ ¼ 408.
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would have been distinguishable from foreground main-sequence

stars.

Because of the possibility of differences in extinction and star

formation history, the CMDs of the two fields were fitted

separately. The measured star formation histories are shown in

panels (b) and (c) of Fig. 17. The central field shows measurable

star formation until ,2Gyr ago, while the outer field shows only

about half the number of young (,8Gyr) stars. Sagittarius is also

the only system for which significant chemical enrichment is

measured. The inner field shows a metallicity of ½M=H� ¼
21:1^ 0:4 dex at ages older than 8Gyr, which increased to

½M=H� ¼ 0:0^ 0:2 for the youngest large population of stars

ð2–4Gyr old). The history seen in the outer field is consistent, but

the uncertainties are larger because of the smaller number of stars.

No literature data currently exists using these WFPC2 images;

however a few ground-based studies have been carried out (Layden

& Sarajedini 1997; Marconi et al. 1998; Bellazzini, Ferraro &

Buonanno 1999a). Marconi et al. (1998) and Bellazzini et al.

(1999b) found very large metallicity dispersions, consistent with

the significant metallicity evolution measured in this work. The star

formation history is agreed to be extended, with a peak age agreed

to fall between 8 and 11Gyr; this compares favourably with the

mean ages measured here (8.6Gyr in the inner field and 9.8Gyr in

the outer field).

5 CONCLUSIONS

An examination of the technique for measuring star formation

histories has been presented. While the underlying concept –

finding the star formation history most likely to have produced the

observed data – is straightforward, there are a number of potential

traps that must be overcome. In generating synthetic CMDs, one

must take care to ensure that all possible outcomes have been

sampled; this is not done by ‘random drawing’ techniques in which

a certain number of stars are randomly drawn and placed on the

CMD. Instead, it is necessary to make a true model CMD – a CMD

that represents the probability distribution from which the data

could have been drawn. The first step is to make fine interpolations

of the isochrones in age, metallicity and mass so that all possible

single stars are accounted for. One must also account for the

possibility of binaries by considering a number of possible

secondary passes sufficiently large to create a smooth model CMD.

The final step in generating a partial CMD (CMD for a small range

of age and metallicity) is to apply the results of artificial star tests.

The model CMD can be generated from any combination of the

partial CMDs (different combinations correspond to different star

formation histories), plus a model of foreground contamination and

models of bad detections.

I have demonstrated the inadequacy of a x 2 minimization when

fitting Poisson-distributed data (as is the case here). Specifically, a

x 2 minimization will always minimize with the wrong star

formation history; the only question is how wrong the answer will

be. Instead, a Poisson likelihood ratio is recommended, the

equation given in equation (10). It has also been demonstrated that

the ‘Saha W’ (Saha 1998) statistic is not designed for model–data

comparisons. The Bayesian inference scheme of Tolstoy & Saha

(1996) provides an accurate solution of relative star formation rates

but not the overall mean star formation rate. The question of

binning versus non-binning is demonstrated to be unimportant, as

the same star formation rate will be obtained so long as the bin

sizes are as small as the smallest features of the model CMD.

Finally, techniques for measuring uncertainties and determining

the overall fit quality are given, as well as a method in which

outside data (such as a red giant metallicity distribution) can be

incorporated into the fit without use of a prior.

The technique was then applied to a pair of synthetic galaxies –

one single-population and one composite-population. The star

formation history of the single-population system was measured

with an age accuracy of ^0.03 dex and distance and extinction

accuracy of 0.02mag, provided that at least the RGB and HB were

included in the data (depth of MV ¼ þ2Þ. Most of the constraints

were lost, however, when restricting the solution to only the upper

RGB (depth of MV ¼ 0Þ; this introduced an age uncertainty of

^0.2 dex into the solution. Although the quality of the fit was

severely degraded when using an intentionally wrong set of age

bins, we note that the measured distance, extinction and star

formation history were all correct. The star formation history of the

synthetic composite-population system was measured with less

accuracy, with resolution of roughly ^0.07 dex producing

reasonable signal-to-noise ratio with photometric depth of

MV ¼ þ2. However, the solution with a photometric limit of

MV ¼ 0 was again very uncertain, with age resolution degraded to

^0.25 dex. The quoted resolutions, of course, are dependent upon

the number of stars in the observed field; the uncertainties scale as

1/
ffiffiffiffi

N
p

.

Finally, I showed measurements of the star formation histories of

seven dwarf spheroidal companions. While each data set had a

different quality (number of stars, photometric depth, and amount

of foreground contamination), the ability to measure uncertainties

accurately allows one to give the best answer and the uncertainty in

the measurement for each object. Thus the star formation history

can always be measured – even with the very poor Sculptor CMD

– but better data will naturally result in smaller uncertainties.

The technique-related findings of this study can be summarized

as follows.

(i) In every case, the calculated star formation history matched

with the qualitative star formation history obtained by a cursory

examination of the CMD. In nearly every case, the distance and

extinction were consistent with literature values.

(ii) The number of stars with MV , þ4 required to produce

results with signal-to-noise ratio .1 at moderate resolution

appears to be about 150 for an old system and 500–1000 for a

system with many young stars.

(iii) Even with the uncertainties in the isochrones, all CMDs

were well-fitted. The largest x2eff was 1.16, and only the Leo I fit

was worse than 2.5s from an ideal solution.

(iv) In the case of the Sagittarius dwarf, a large amount of

foreground contamination (more foreground stars than Sagittarius

stars) does not add significantly to the fit uncertainties. This is

likely because the main-sequence and MSTO of Sagittarius are

sufficiently separated from the bulge main sequence.

Scientifically, the results are limited by the fact that only a small

fraction of each galaxy was studied. The Leo spheroidals had

sufficient numbers of stars for accurate star formation history

measurements; the others produced only rough star formation

histories. The consistent feature of the star formation histories is

that ancient (.8Gyr) star formation was detected in all eight

CMDs at the 1s level. After the ancient burst, some (Ursa Minor,

Draco and Sculptor) show no evidence of young star formation.

Leo II shows star formation covering about half its lifetime, while

Carina and Sagittarius appear to have formed stars until ,2Gyr

ago. Finally, Leo I shows a very strong young burst, with its star
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formation rate 2–3Gyr ago nearly four times its lifetime average.

Results for the galaxies are summarized in Table 3.
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Table 3. Summary of results.

Quantity Ursa Minor Draco Sculptor Leo II Sagittarius Carina Leo I

ktl (Gyr) 12.7 12.2 11.5 9.4 9.0 7.2 6.1
st (Gyr) 1.9 2.3 3.1 3.1 3.7 3.3 4.1
k[M/H]la 21:5^ 0:3 21:8^ 0:4 21:5^ 0:6 21:1^ 0:3 20:6^ 0:4 21:2^ 0:4 21:0^ 0:2

aMetallicities are given on the scale of the Girardi et al. (2000) isochrones; ½M=H� ; logðZ/0:02Þ.
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