Numerical Methods using MATLAB

Abhishek K Gupta

Numerical Methods using MATLAB

Copyright © 2014 by Abhishek K Gupta

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0155-8

ISBN-13 (electronic): 978-1-4842-0154-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr Lead Editor: Ewan Buckingham Technical Reviewer: Shubham Tomar

Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, Jim DeWolf, Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,

Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Jill Balzano Copy Editor: Barnaby Sheppard Compositor: SPi Global

Indexer: SPi Global Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at www.apress.com. For detailed information about how to locate your book's source code, go to www.apress.com/source-code/.

Dedicated to My Parents Shri Basant Prasad & Smt Damayanti Gupta

Contents at a Glance

About the Author	xii
Acknowledgments	XI
Introduction	xvi
■Chapter 1: Introduction to MATLAB	1
■ Chapter 2: Matrix Representation, Operations and Vectorization	13
■ Chapter 3: Numerical Techniques	27
■ Chapter 4: Visualization	39
■ Chapter 5: Introduction to Simulation	49
Chapter 6: Monte Carlo Simulations	69
Chapter 7: Optimization	81
■ Chapter 8: Evolutionary Computations	93
■ Chapter 9: Regression and Model Fitting	107
■ Chapter 10: Differential Equations and System Dynamics	119
Index	133

Contents

About the Author	xiii
Acknowledgments	xv
Introduction	xvii
■Chapter 1: Introduction to MATLAB	1
Introduction	1
Interface	2
Command Window	2
Current Directory	2
Workspace	3
Figures	3
Command History	3
Editor	3
Help Browser	3
Getting Started	3
Creating a Matrix	
Functions	5
The Difference Between Functions and Scripts	7
Special Matrices	
Other Variable Types	9
Character Variables	
Cells	

CONTENTS

Logical Variables	9
Structures	9
Saving/Loading Variables	10
Plots	10
Chapter 2: Matrix Representation, Operations and Vectorization	13
Matrix Representation	
Conventional Sense: Matrices	
Data Sense: Arrays	14
Model Representation	15
Operations	15
Matrix Operations	15
Dot (array) Operators	16
Operations for Models	19
Indexing	20
Normal Indexing	20
Linear Indexing	21
Logical Indexing	22
Vectorization	23
Example 1. Creating C such that C(i,j)=A(i)^B(j)	23
Example 2. Calculating the Sum of Harmonics	23
Example 3. Conversion to Matrix Operations	24
Example 4. Selective Inversion	24
Tips for Performance Improvement	25
Vectorization	25
Preallocating Arrays	26
Fixed Type Variables	26
Chapter 3: Numerical Techniques	27
Differentiation	
Partial Differentiation	
Computing Higher Derivatives	

Integration	31
Multi-dimensional Integration	32
Integration Over an Infinite Range	32
Multidimensional Integration over Non-rectangular Intervals	33
Solving Equations	34
Polynomial Functions	34
Zeros of a General Function	34
Interpolation	36
One-dimensional Interpolation	36
Data Fitting and Polynomial Interpolation	37
Arbitrary Interpolation	38
■ Chapter 4: Visualization	39
Line Plots	39
Plot Options	41
Multiple Plots	42
Annotations	42
Handles	42
2D plots	43
Quiver Plots	43
3D Plots	44
Animations	45
A Clock Animation	45
Wave Motion	46
Movies	47
■ Chapter 5: Introduction to Simulation	49
One Step Simulations	49
Iterative Methods	51
Simulation of Real World Processes	53
Discrete Processes	53
Simulation of Continuous Time Processes	

CONTENTS

Example: Balls in a 2D Box	59
Animation	60
Motion in a Force Field	62
Event-based Simulations	64
Chapter 6: Monte Carlo Simulations	69
Random Sampling	69
The Third Moment of a Gaussian Random Variable	69
Moments of Random Processes	70
Sampling from a Given Distribution	71
Inbuilt Functions	
Rejection Sampling	72
Gibbs Sampling	73
Statistical Performance	76
Computation of pi	
Communication Channels	77
Birth-Death Processes	77
Multidimensional Integrals	78
Summary	
Chapter 7: Optimization	81
Optimization Overview	81
The Optimization Goal	81
Design Parameters	81
Constraints	82
The Optimization Domain	82
The Optimization Problem	82
Mathematical Approach	82
Implementation	83
Extensive Search	
The Gradient Descent Method	84

Built-in Functions in MATLAB	85
Defining an Objective Function	85
Defining Constraints	85
Optimization Options	86
Problem Structures	86
Output Format	86
Minimization Problems	87
Equation Solving	90
Summary	91
Chapter 8: Evolutionary Computations	93
The Rastrigin Function	
Particle Swarm Optimization	
Algorithm	
Implementation	95
Example	97
The Genetic Algorithm	99
Representation	99
Initialization	100
Selection	100
Crossover	100
Mutation	101
New Generation	102
Store the Best Chromosome of the Generation	102
Termination Conditions	102
Iterations	102
Output	102
Function Definition	103
Example	103
The Inbuilt Function ga	104
Summary	106

CONTENTS

Chapter 9: Regression and Model Fitting	107
Regression	107
Linear Regression	107
Nonlinear Regression	110
Generalized Linear Regression	112
Time Series Analysis	113
Autocorrelation and Proposing Models	113
Regression	114
Forecasting	114
Neural Networks	115
Feedforward Networks	115
Summary	118
Chapter 10: Differential Equations and System Dynamics	119
Differential Equations	119
Ordinary Differential Equations	119
Partial Differential Equations	125
System Dynamics	128
Simulation of the System	129
Summary	132
Indov	122

About the Author

Abhishek K Gupta received his B.Tech. and M.Tech. degrees in Electrical Engineering from IIT Kanpur, India, in 2010. He is currently a Ph.D. student at The University of Texas at Austin, where his research has focused on stochastic geometry and its applications in wireless communication. His other research interests include multiuser MIMO systems and optimization. He was a recipient of a GE-FS Leadership Award from the General Electric (GE) Foundation and the Institute of International Education in 2009. He is also the author of the book MATLAB by Examples (2010) and a blog with the same name. He has been teaching MATLAB and its applications in engineering for many years.

Acknowledgments

I want to give my sincere thanks to Shruti Desai who helped me in revising this book and reporting errors by carefully reviewing the complete manuscript and providing me with constructive feedback. I want to express my deep acknowledgement to Dr Shaun A Forth for introducing me to MATLAB.

I am very thankful to the entire editing team at Apress Media for their continuous support and patience and for making this book a reality while keeping the whole writing experience smooth and enjoyable. I am thankful to my friends Somsubhra Barik and Harpreet Singh for giving me constant support at all times. Lastly, I want to express my gratitude to God, my parents, my sisters Rashmi, Gunjan and Sonali and their significant others who have been with me at every moment of my life.

Introduction

I had my first experience with MATLAB in my second year of engineering while working on control systems design. Later on, in my internship, I got an opportunity to develop a package named MAD in MATLAB under Dr Shaun A Forth at DCMT, UK. From there on, my interest in MATLAB kept on increasing. The journey thus started never stopped and MATLAB has become an inseparable component of my research life. I have become a big fan of MATLAB due to its simplicity and its vectorization capability. I enjoy programming in MATLAB. This book is my attempt to make others a fan of it too.

This book presents a wide range of numerical methods and their implementation in MATLAB with the help of examples to make the learning more interactive. A conventional method to teach numerical methods is to first give a detailed discussion of such methods and then present a few examples. This method is very far from being efficient and by the time the actual implementation comes, the user who is mainly interested in solving his own problems has already given up. This book takes a very different approach by stressing the concept of trying out techniques by oneself, and attempts to start the discussion with examples long before the actual theory is introduced. The idea behind the book came to me when I taught a course on MATLAB to a small batch of students at my home institution. During the course, I had encountered the problems which students face while learning it. As a student and researcher I understand what a researcher or student looks for in a book and hence I believe this book will prove to be valuable to the intended audience. Instead of bombarding users with theory and information, the book only gives concise and practical information to help you to effectively solve your research problem in less time.

This book presents each and every topic in a very concise and readable format which helps you to learn quickly and effectively. This book can also serve as a complementary book for a MATLAB course in engineering colleges. Also, it is designed to be a companion in your research anywhere you go. This book assumes that the user has a basic knowledge of MATLAB programming and quickly covers the MATLAB basics in the first chapter. If the user is not familiar with MATLAB, he should read some basic MATLAB books prior to starting this book. One such book is written by me and titled "MATLAB by Examples", published by Finch Publications (2010).

This book is divided into 10 chapters. The first two chapters are written to help users to quickly understand MATLAB. Chapter 1 covers the basic programming paradigm of MATLAB, including how to write functions, scripts and data structures. Chapter 2 quickly covers one of the most important features of MATLAB known as vectorization, which will help you to write efficient programs in MATLAB.

The third chapter is probably the most important chapter and provides the foundation of the book. It covers all the important operations basic to any numerical computation. Once the user is familiar with these fundamental operations and learns how to implement them, the rest of the book should come naturally to him.

The fourth chapter provides a quick tutorial for visualizing any output and results in MATLAB using simple plots and animations.

The fifth chapter discusses the primary concepts and methodology behind any numerical simulation. It talks about how we can solve any numerical computations using MATLAB and presents some key examples to elaborate on the topics more clearly. Building on the fifth chapter, the sixth chapter incorporates random components in any system or simulation and introduces the idea behind Monte Carlo simulations.

Chapter 7 acquaints you with the powerful tool of optimization in MATLAB. Since MATLAB provides a wide range of inbuilt functions to solve any optimization problem, this chapter gives a comprehensive review of all the important methods. However, learning to implement such methods from scratch is also crucial to developing a proper understanding and approach towards numerical methods. The chapter also elaborates on the paradigm behind the full implementation of such methods with examples. Building on this, Chapter 8 presents a brief but complete description of evolutionary algorithms such as the genetic algorithm and swarm intelligence algorithms, e.g. particle swarm optimization.

Chapter 9 is written for data scientists and statisticians. Regression and model fitting play an important role in all modern era applications, be it time-series analysis or market prediction in the financial domain or the recommender system in online economics. This chapter covers the main approach behind regression with an appropriate amount of theory to provide an optimal reading and learning experience for the users.

Chapter 10 is written for control system engineers and researchers interested in understanding the dynamics of any system. It is built on Chapters 5 and 6 and, using tools from these two chapters and inbuilt functions, it provides a concise yet detailed overview of simulating the dynamics and time evolution of real world continuous and discrete systems.