$A D$

REPORT NO T94-10

NUMERICAL MODEL OF THE THERMAL BEHAVIOR OF AN EXTREMITY IN A COLD ENVIRONMENT INCLUDING COUNTER-CURRENT HEAT EXCHANGE BETWEEN THE BLOOD VESSELS

U S ARMY RESEARCH INSTITUTE OF
 ENVIRONMENTAL MEDICINE

Natick, Massachusetts

DTIC qUairty Inspected 3

REPORT DOCUMENTATION PAGE					form approves OMEN=:-1.018e
1. AGENEY USE ONLY (Leave b		2. R March ${ }^{\text {P }} 994$			
4. Numerical Model of the Thermal Behavior of an Extremity in a Cold Environment Including Counter-Current Heat Exchange Between the Blood Vessels				5. FUNDING NUMBERS	
6 Author(s) Avraham Shitzer, Leander A. Stroschein, Paul Vital, Richard R. Gonzalez, Kent B. Pandolf					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Institute of Environmental Medicine Natick, MA, 01760-5007				8. PERFORMIEG ORGAN:ZATIORIREPORT NUMBER	
9. SPONSORING MONITORING A	ENC	Y $\operatorname{NAME}(\mathrm{S})$ AND ADDRESS(ES		$\begin{array}{r} 10 \text { SPON } \\ \text { AGEN } \end{array}$	SORING MONITORNG ncy report nunegh
11. SUPPLEMESTREY NOTESApproved for public release; distribution unlimited					
12a. DISTRIBUTION AVAILABILTT	STA	tement		12b. DISTRIBUTION CODE	
13. ABSTFACT (Maximum 200́woras) A numerical model of the thermal behavior of an extremity, e.g., finger, is presented. The model includes the effects of: (a) heat conduction (b) metabolic heat generation, (c) heat transport by blood perfusion, (d) heat exchange between the tissue and the large blood vessels, and, (e) arterio-venous heat exchange. Heat exchange with the environment through a layer of thermal insulation, depicted by thermal handwear is also considered. The tissue is subdivided into four concentric layers. The layers described, from the center outward, as core, muscle, fat and skin. Differential heat balance equations are formulated for the tissue and the major artery and the major vein. These coupled equations are solved numerically by the alternating direction method employing a Thomas algorithm. The numerical scheme was tested extensively for stability and convergence. Results of the convergence tests are presented and discussed and the dependence on the number of grid points is demonstrated. Plots of tissue and blood temperatures along selected nodes of the model are shown for different combinatio. is of parameters. The effect of counter-current heat exchange between the artery and the vein on the thermal balance of the extremity is presented. This shows clearly the conservation of energy achieved due to this mechanism. The report is concluded by considering the effects of cold induced vasodilatation on tissue temperature cycling.					
14. SUBJECT TERMS numerical model, physiological model, extremity model, countercurrent, heat exchange, blood profusion, heat conduction, cold induced vasodilation, heat balance, alternating direction method, Thomas algorithm, thermal insulation, cold					15. NUMBER OF PAGES 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified		SECURITY CLASSIFICATION Of This page Unclassified	19. SECURITY CLIASTIFICATIONOF ABSTRACTUnclassified		20. LIMITATION OF ABS UL
NSN 7500.0: 280.5500					

NUMERICAL MODEL OF THE THERMAL BEHAVIOR OF AN EXTREMITY IN A COLD ENVIRONMENT INCLUDING COUNTER-CURRENT HEAT exchange between the blood vessels

by

Avraham Shitzer, Leander A. Stroschein, Paul Vital, Richard R. Gonzalez and Kent B. Pandolf

Accesion For
NTIS CRA\&A
DTIC TAB
Unannounced
Jubtrication

TABLE OF CONTENTS

LIST OF FIGURES iii -
LIST OF TABLES - v-
ACKNOWLEDGEMENT vi
INTRODUCTION -1-
ANALYSIS - 2 -
PHYSICAL AND PHYSIOLOGICAL PARAMETERS - 17 -
testing of the numerical code - 20 -
RESULTS AND DISCUSSION - 27
REFERENCES - 37 .
GLOSSARY -40-
VARIABLES - 40 -
GREEK LETTERS -42 -
SUPERSCRIPTS -42.
SUBSCRIPTS - 42 -
APPENDIX A - Derivation of the equations for the various matrix nodal points A1 -
Center i-node; regular j-node A1 -
External i-node; regular j-node A3
Interface i-node; regular j -node A6
End j-node; regular i-node A8 -
End j-node; external i-node A11
End j-node; center i-node A11 -
End j-node; interface i-node A13
APPENDIX B - Heat transfer coefficients for the major blood vessels - B1 -
APPENDIX C - Program source code listing and operating instructions C1 -
Program Environment C1
Description of program Units C2 -
UNIT FINGER93.PAS \{ main program \} C2
UNIT VAR_SP.PAS C2 -
UNIT TISUE_SP.PAS - C3
UNIT PHYS SP.PAS - C4
OUTPUT FILES - C 5
OVERVIEW OF PROGRAM OPERATION - C5
Running the Program C8
PROGRAM SOURCE CODE LISTINGS C11 -

1. FINGER93.PAS C11
2. VAR_SP.PAS - C20 -
3. TISUE_SP.PAS C27-
4. PHYS_SP.PAS - C42
APPENDIX D - DISTRIBUTION LIST D1

LIST OF FIGURES

1. Schematic diagram of the cylindrical model of an extremity 3
2. Cross section through the cylindrical model showing the four radial tissue compartments 8
3. Cross section of a typical control volume of the cylindrical model 9
4. Comparison of temperature distributions along the finger model calculated by an analytical model [20] and the present model 22
5. Ratios of steady-state heat flow in vs. heat flow out as affected by the number of divisions in the axial direction 26
6. Steady state temperature distributions of the external surface of the finger model as affected by the number of divisions in the axial direction 26
7. Steady state temperature distributions of a bare finger in still air for basal and nutritional blood flows 28
8. Steady state temperature distributions of a gloved finger in still air for basal and nutritional blood flows 29
9. Steady state temperature distributions of a bare finger in windy air for basal and nutritional blood flows 30
10. Steady state temperature distributions of a gloved finger in windy air for basal and nutritional blood flows 31
11. Temperature variations on the dorsal tip of the bare and gloved finger model with nutritional blood flow for still and windy air 32
12. Effect of counter-current heat exchange on arterial and venous temperature distributions 34
13. Dorsal temperature variations at the tip and middle of the finger model for cold induced vasodilatation 35
A1. Identification of nodal points in the numerical grid A2
A2. Schematic diagram of the center node A4
A3. Schematic diagram of the external-regular node A5
A4. Schematic diagram of the interface node A7
A5. Schematic diagram of the end j - regular i node A9
A6. Schematic diagram of the end j - external i node A12
B1. Schematic representation of an "influence" volume enclosing a major blood vessel B2
B2. Schematic diagram of an artery-vein pair B4

LIST OF TABLES

1. Coefficients of the radial-direction $\left[\mathrm{A}_{r}\right]$ matrix 13
2. Coefficients of the axial-direction $\left[A_{2}\right]$ matrix 14
3. Coefficients of the $\{S\}$ vector 15
4. Property values used in the numerical computations 19
5. Heat transfer coefficients for combinations of wind conditions for a bare and gloved finger 21
6. Parameters used in the numerical computations 25

ACKNOWLEDGEMENT

The authors wish to acknowledge the expert help provided by Ms. Laurie A. Blanchard, Sgt. Julio Gonzalez and Ms. Deborah A. Toyota. This work was carried out while the senior author held a Senior NRC Research Associateship at USARIEM.

INTRODUCTION

Heat exchange between the human and the environment has always been a topic of great interest as this is one of the essential manifestations of homeothermy. This interest has intensified over the past few decades as the understanding of the mechanisms involved are spurred on by human's venturing into extreme environments, e.g., outer space. Even less extreme environments may pose life threatening challenges to humans and the literature is laden with examples of both heat, [1] and cold, [2] related casualties.

Physiological studies, in which human subjects are exposed to extreme environmental conditions are essential for collecting data on the actual thermal behavior of men and women. These studies are employed to generate detailed and reliable databases and to test thermoregulation theories. Much information may also be gained by formulating models which sitiunate qualitatively the thermal behavior of the human body. The chief advantage of these models is their ability to predict and point out trends and limitations while avoiding the dangers and cost involved in actually performing, time consuming and sometimes hazardous experiments. Their inherent disadvantage resides in the necessity to verify their predictions. A variety of models simulating human thermal behavior have been developed. These range from models of single organs, e.g., [3-5] to models of the entire body, e.g., [6-9].

In this report a detailed model of an extremity exposed to cold weather is developed. The reasons for choosing an extremity are two-fold: (a) a model of an extremity may serve as a "building block" for other elements, and, (b) the extremities are usually the most vulnerable body elements particularly in cases involving operations in cold weather.

The extremity is depicted as a right-angle cylinder in which heat flows in both the radial and axial directions. Around the entire external surface of the cylinder different layers of insulation may be applied through which heat is exchanged with the environment. Heat is also exchanged internally by conduction and with the blood flowing both in the major blood vessels and in the vessels of the capillary bed. Counter-current heat exchange between the major blood vessels is also taken into ascount.

The model is presented as a consistent set of energy balance equations and is solved by a finite-difference, alternating directions numerical scheme employing the Thomas algorithm. This scheme has been tested extensivnly for stability, convergence and accuracy. It was also run for a number of cases to demonstrate its fundamental capabilities.

ANALYSIS

Energy balance in a right - angle circular cylinder depicted in Fig. 1 is expressed by:

$$
\begin{align*}
& \rho c \frac{\partial T^{*}}{\partial t^{*}}=k\left[\frac{1}{r^{*}} \frac{\partial}{\partial r^{*}}\left(I^{*} \frac{\partial T^{*}}{\partial r^{*}}\right)+\frac{\partial^{2} T^{*}}{\partial z^{*}}\right]+G_{a}+ \tag{1}\\
& w_{b} C_{b}\left(T_{z}^{*}-T^{*}\right)+u_{a}\left(T_{a}^{*}-T^{*}\right)+u_{v}\left(T_{V}^{*}-T^{*}\right)
\end{align*}
$$

where the term on the left hand-side represents the rate of change of stored energy and the terms on the right hand-side express radial and axial heat conduction, metabolic heat generation rate, heat exchange with the capillary bed and heat exchange with a large artery and a large vein, respectively. All properties and variables are defined in the Glossary and asterisks indicate dimensional variables.

The following boundary and initial conditions are specified for the problem:
At the center of the cylinder an adiabatic condition is formulated to satisfy symmetry requirements:

$$
\begin{equation*}
\frac{\partial T^{*}}{\partial r^{*}}=0 \quad-r^{*}=0 \tag{2}
\end{equation*}
$$

On the outer circumferential surface of the cylinder heat is exchanged with the environment by convection:

$$
\begin{equation*}
\frac{\partial T^{*}}{\partial r^{*}}=\frac{h}{k}\left(T_{0}^{*}-T^{*}\right) \quad r^{*}=R \tag{3}
\end{equation*}
$$

At the base of the cylinder a variable temperature is assumed:

$$
\begin{equation*}
T^{*}=T_{1}^{*}\left(t^{*}\right) \quad \text { © } z^{*}=0 \tag{4}
\end{equation*}
$$

Figure 1: Schematic diagram of the cylindrical model of an extremity

At the tip of the cylinder convective heat exchange with the environment occurs:

$$
\begin{equation*}
\frac{\partial T^{*}}{\partial z^{*}}=\frac{h_{1}}{k}\left(T_{0}^{*}-T^{*}\right) \quad \quad z^{*}=L \tag{5}
\end{equation*}
$$

Initially the temperature distribution in the cylinder is expressed by an arbitrary function:

$$
\begin{equation*}
T^{*}=T_{i}^{*}\left(I^{*}, z^{*}\right) \quad t^{*}=0 \tag{6}
\end{equation*}
$$

Equation (1) contains terms expressing the two modes by which heat is exchanged between the tissue and the circulatory system. In these expressions T_{a}^{*} and T_{v}^{*} represent arterial and venous temperature distributions, respectively. It is assumed that the cylinder is traversed by one each of these large blood vessels in the axial direction (Fig. 1). In addition to exchanging heat with the surrounding tissue, these two vessels are also coupled by counter-current heat exchange. Two separate, but coupled heat balance equations are now written for the large artery and the large vein, respectively:

$$
\begin{align*}
& M_{a} c_{b} \frac{d \bar{T}_{a}^{*}}{d t}=\dot{H}_{a, i n} C_{b} T_{a, 1 n}^{*}-\dot{\mu}_{a, \text { out }} c_{b} T_{a, \text { out }}^{*}+ \tag{7}\\
& \qquad \int u_{a}\left(\bar{T}^{*}-\bar{T}_{a}^{*}\right) d v+h_{a v}\left(\bar{T}_{v}^{*}-\bar{T}_{a}^{*}\right)-\int w_{b} c_{b} \bar{T}_{a}^{*} d v
\end{align*}
$$

and,

$$
\begin{align*}
& M_{v} C_{b} \frac{d \bar{T}_{v}^{*}}{d t^{*}}=\dot{H}_{v, t_{n}} C_{b} T_{v, 1 n}^{*}-\dot{H}_{v, \text { out }} C_{b} T_{v, \text { out }}^{*}+ \tag{8}\\
& \qquad \int u_{v}\left(\bar{T}^{*}-\bar{T}_{v}^{*}\right) d v+h_{a v}\left(\bar{T}_{a}^{*}-\bar{T}_{v}^{*}\right)+\int w_{b} c_{b} \bar{T}^{*} d v
\end{align*}
$$

The terms on the left hand-side of Equations (7) and (8) represent the rate of change of the average amount of energy stored in the blood contained at any instance in these two vessels. The terms on the right hand-side of these equations represent, respectively, the enthalpy fiux into and out of the control volume, the contribution to the heat balance due to the heat exchange with the average temperature of the surrourding tissue, T, and the contribution due to counter-current heat exchange between the two large blood vessels. The remaining terms in Equations (7) and (8) indicate, respectively, the drainage into and the collection from the tissue by capillary perfusion as the two vessels traverse the cylinder. The heat transfer coefficients between the blood vessels and the surrounding tissue (u_{a} and u_{v}), and between the two blood vessels (h_{av}) are derived in Appendix B.

Two additional mass conservation equations are required for both large blood vessels:

$$
\begin{equation*}
{\dot{m_{a, i n}}}^{\boldsymbol{m}_{a, \text { out }}+\int w_{b} d v} \tag{9}
\end{equation*}
$$

and,

$$
\begin{equation*}
\dot{m}_{v, t n}=\dot{m}_{v, \text { out }}-\int w_{b} d v \tag{10}
\end{equation*}
$$

Prior to applying a numerical solution to the coupled Equations (1), (7) and (8), subject to boundary and initial conditions (2)-(6), these equations are rewritten in dimensionless forms:

$$
\begin{align*}
& \frac{\partial T}{\partial \tau}=\frac{\alpha}{\alpha_{b}} \frac{1}{r} \frac{\partial}{\partial x}\left(x \frac{\partial T}{\partial x}\right)+\frac{1}{a^{2}} \frac{\partial^{2} T}{\partial z^{2}} \\
& +\Psi \cdot\left[q+\left(W+\sigma_{a}\right)\left(T_{a}-T\right)+\sigma_{v}\left(T_{v}-T\right)\right] \\
& \frac{d \bar{T}_{a}}{d \tau}=\frac{R^{2}}{M_{a} C_{b} \alpha_{b}}\left[\dot{m}_{a, I_{n}} C_{b} T_{a, i n}-\dot{m}_{a, \text { out }} C_{b} T_{a, \text { out }}+\right. \\
& \left.\int u_{a}\left(\bar{T}-\bar{T}_{a}\right) d v+h_{a v}\left(\bar{T}_{v}-\bar{T}_{a}\right)-\int w_{b} c_{b} \bar{T}_{a} d v\right] \\
& \frac{d \bar{T}_{v}}{d \tau}=\frac{R^{2}}{M_{v} c_{b} \alpha_{b}}\left[\dot{H}_{v, i n} c_{b} T_{v, \text { in }}-\dot{\mu}_{v, \text { out }} C_{b} T_{v, \text { out }}+\right. \\
& \left.\int u_{v}\left(\bar{T}-\bar{T}_{v}\right) d v+h_{a v}\left(\bar{T}_{a}-\bar{T}_{v}\right)+\int w_{b} c_{b} \bar{T} d v\right] \\
& \frac{\partial T}{\partial r}=0 \tag{14}\\
& \frac{\partial T}{\partial T}=B I\left(T_{0}-T\right) \tag{15}\\
& \text { - } r=0
\end{align*}
$$

$$
\begin{array}{ll}
T=T_{1}(t) & z=0 \\
\frac{\partial T}{\partial z}=B I_{1}\left(T_{0}-T\right) & z=1 \\
T=T_{1}(I, z) & E=0
\end{array}
$$

where,

$$
\begin{align*}
& \boldsymbol{T}=\frac{\boldsymbol{r}^{*}}{R} \tag{19}\\
& \mathbf{z}=\frac{\mathbf{z}^{*}}{L} \tag{20}\\
& \boldsymbol{T}=\frac{\boldsymbol{a}_{b} t^{*}}{R^{2}} \tag{21}\\
& T=\frac{T^{*}}{T e^{2} \boldsymbol{p}} \tag{22}
\end{align*}
$$

$a^{2}=\left(\frac{L}{R}\right)^{2} \frac{a_{b}}{a}$
$F=\frac{\rho_{b} C_{b}}{\rho C}$
$G=\frac{q_{n} \cdot R^{2}}{T \theta_{\operatorname{mp}} \cdot k_{b}}$

$$
\begin{equation*}
W=\frac{w_{b} \cdot c_{b} \cdot R^{2}}{k_{b}} \tag{26}
\end{equation*}
$$

$$
\begin{align*}
& U_{a \operatorname{ar} V}=\frac{u_{a \operatorname{ax} v} \cdot R^{2}}{k_{b}} \tag{27}\\
& B 1=\frac{h \cdot R}{k} \tag{28}
\end{align*}
$$

and,

$$
\begin{equation*}
B 1_{1}=\frac{h_{1} \cdot L}{k} \tag{29}
\end{equation*}
$$

A finite-difference solution is formulated for the above set of dimensionless equations. The cylinder is divided into four radial compartments depicting the core, muscle, fat and skin, respectively, as shown in Fig. 2. Each of these compartments, the boundaries of which are determined by anatomical and anthropometric considerations, may be further subdivided radially according to the required details of the temperature variations in the cylinder. Axial divisions are uniformly spaced. A cross section of a typical control volume is shown in Fig. 3.

As a first step in the numerical solution, Equation (11) is multiplied by a hollow cylindrical volume element of thickness $d r$ and length dz and integrated:

$$
\begin{array}{r}
\int_{r-\frac{\Delta x}{2}}^{r+\frac{\Delta x}{2}} \int_{x-\frac{\Delta z}{2}}^{s+\frac{\Delta z}{2}} \frac{\partial T}{\partial \tau} r d r d z=\int_{r-\frac{\Delta x}{2}}^{r+\frac{\Delta x}{2}} \int_{z-\frac{\Delta z}{2}}^{s+\frac{\Delta z}{2}}\left\{\frac{a}{\alpha_{b}} \frac{1}{x} \frac{\partial}{\partial x}\left(x \frac{\partial T}{\partial r}\right)+\frac{1}{a^{2}} \frac{\partial^{2} T}{\partial z^{2}}+\right. \tag{30}\\
\left.T \cdot\left[q+\left(W+U_{a}\right)\left(T_{a}-T\right)+D_{V}\left(T_{V}-T\right)\right]\right\} r d r d z
\end{array}
$$

The temporal derivative on the left hand-side of Equation (30) is calculated by a forward difference. In evaluating this derivative, a half time step is assumed to facilitate a solution of this two-dimensional problem by the method of alternating directions [10]. In this method the solution of the resulting set of difference equations is performed in two half time steps: first the temperatures in one direction, e.g., radial, are calculated for the first half time step, based on the values of the temperatures at the current time in the other direction. Next, the temperatures at the other direction, e.g., axial, are evaluated for the next half time step based on the values obtained for the first spatial direction in the first half time step. This completes a full time step, and these values are used to initiate the next full time-step iteration.

Figure 2: Cross section through the cylindrical model showing the four radial tissue compartments

Figure 3: Cross section of a typical control volume of the cylindrical model

Accordingly, the integration of Equation (30) yields:

$$
\begin{align*}
& \frac{T_{1, j}^{n+\frac{1}{2}}-T_{1, j}^{n}}{\frac{\Delta T}{2}} r_{i} \cdot \Delta r \cdot \Delta z= \\
& \frac{\alpha}{\alpha_{b}}\left\{\left(I_{i}+\frac{\Delta I}{2}\right) \frac{T_{i+1, j}^{n+\frac{1}{2}}-T_{i, j}^{n+\frac{1}{2}}}{\Delta I}-\left(I_{i}-\frac{\Delta I}{2}\right) \frac{T_{i, j}^{n+\frac{1}{2}}-T_{i-1}^{n+\frac{1}{2}}}{\Delta I}\right\} \Delta z+ \\
& \frac{1}{a^{2}} x_{1} \Delta r \frac{T_{i, j+1}^{n}-2 T_{i, j}^{n}+T_{i, j-1}^{n}}{\Delta z}+q \cdot F \cdot I_{i} \cdot \Delta x \cdot \Delta z+ \tag{31}\\
& \left(W+U_{a}\right) \cdot \Psi\left\{T_{a}^{n+\frac{1}{2}}-\frac{T_{1, j}^{n+\frac{1}{2}}+T_{i, j}^{n}}{2}\right\} r_{i} \cdot \Delta r \cdot \Delta z+ \\
& \boldsymbol{U}_{\nabla} \cdot \Psi\left\{T_{\nabla}^{n+\frac{1}{2}}-\frac{T_{i, j}^{n+\frac{1}{2}}+T_{i, j}^{n}}{2}\right\} r_{1} \cdot \Delta x \cdot \Delta z
\end{align*}
$$

where superscript n indicates full time steps and i and j indicate radial and axial divisions, respectively.

Canceling identical factors, rearranging and redefining the temporal and spatial divisions by:

$$
\begin{align*}
& h_{x}=\Delta \boldsymbol{r} \tag{32}\\
& h_{z}=\Delta z \tag{33}\\
& \delta=\frac{\Delta \tau}{2} \tag{34}
\end{align*}
$$

yields:

$$
\begin{align*}
\frac{T_{i, j}^{n+\frac{1}{2}}-T_{i, j}^{n}}{\delta}= & \frac{a}{a_{b}}\left\{\frac{1}{h_{r}^{2}}\left[T_{i+1, j}^{n+\frac{1}{2}}-2 T_{i, j}^{n+\frac{1}{2}}+T_{i-1, j}^{n+\frac{1}{2}}\right]+\frac{1}{2 T_{1} h_{r}}\left[T_{i+1, j}^{n+\frac{1}{2}}-T_{i-1, j}^{n+\frac{1}{2}}\right]\right\}+ \\
& \frac{1}{a^{2} h_{z}^{2}}\left[T_{i, j+1}^{n}-2 T_{i, j}^{n}+T_{i, j-1}^{n}\right]+G \cdot T+ \tag{35}\\
& \left(W+U_{a}\right) \cdot T\left[T_{a}^{n+\frac{1}{2}}-\frac{T_{i, j}^{n+\frac{1}{2}}+T_{i, j}^{n}}{2}\right]+ \\
& U_{v} \cdot T\left[T_{V}^{n+\frac{1}{2}}-\frac{T_{i, j}^{n+\frac{1}{2}}+T_{i, j}^{n}}{2}\right]
\end{align*}
$$

Equation (35) is the general finite-difference, or discretized, equation for the tissue temperatures. This equation may more conveniently be rewritten in the following form:

$$
\begin{gathered}
T_{i-1}^{n+\frac{1}{2}}\left\{\frac{\alpha}{\alpha_{b}} \delta\left[-\frac{1}{h_{r}^{2}}+\frac{1}{2 I_{1} h_{x}}\right]\right\}+T^{n+\frac{1}{2}}\left\{1+\delta\left[\frac{\alpha}{\alpha_{b}} \frac{2}{h_{x}^{2}}+\frac{T\left(W+U_{a}+U_{v}\right)}{2}\right]\right\}+ \\
T_{1+1}^{n+\frac{1}{2}}\left\{\frac{\alpha}{\alpha_{b}} \delta\left[-\frac{1}{h_{r}^{2}}-\frac{1}{2 I_{1} h_{r}}\right]\right\}= \\
T_{j-1}^{n}\left\{\frac{\delta}{a^{2} h_{z}^{2}}\right\}+T^{n}\left\{1-\delta\left[\frac{2}{a^{2} h_{z}^{2}}+\frac{T\left(W+U_{a}+U_{v}\right)}{2}\right]\right\}+T_{j+1}^{n}\left\{\frac{\delta}{a^{2} h_{z}^{2}}\right\}+ \\
\delta \cdot \bar{Y}\left\{q+\left(W+U_{a}\right) T_{a}^{n+\frac{1}{2}}+U_{v} T_{v}^{n+\frac{1}{2}}\right\}
\end{gathered}
$$

For simplicity a certain notation convention is adopted in Equation (36) regarding the spatial indices. Accordingly, whenever a nominal spatial index i or j occurs, it is dropped out from the equation. This leaves only stepped indices to be specifically indicated, e.g., $\mathrm{T}_{\mathrm{i}, \mathrm{j}+1}$ is represented by T_{j+1}, etc.

Equation (36) is evaluated for all nodal points in the cylindrical domain. The process involves substitution of the boundary conditions \{equations (14)-(17)\}, accounting for the dissimilar nodal spacings at the boundaries between the various tissue compartments in the
radial direction, substitution of zero values for perfusion near the external boundaries, etc. Details of the derivation are presented in Appendix A.

This process yields a set of algebraic equations for all the tissue nodal points. Each equation in this set usually includes three terms for the radial direction and three additional terms for the axial direction. An additional term not containing unknown tissue temperatures, is also included in each equation. At the boundaries in both directions only two terms are present, yielding tri-diagonal matrices for the algebraic set of equations. This property of the set of equations renders it solvable by the Thomas algorithm [11]. To apply this algorithm Equation (36) is now written in matrix notation:

$$
\begin{equation*}
\left[I-\delta \cdot A_{r}\right] \cdot\left\{T_{1}^{n+\frac{1}{2}}\right\}=\left[I+\delta \cdot A_{z}\right] \cdot\left\{T_{j}^{n}\right\}+\delta \cdot\left\{s^{n+\frac{1}{2}}\right\} \tag{37}
\end{equation*}
$$

where $[l]$ is a unit matrix, A_{T} and A_{z} are the elements of the tri-diagonal matrices in the radial and axial direction, respectively, and $\left\{\mathrm{S}^{n+1 / 2}\right\}$ is a one dimensional vector containing all remaining terms in Equation (35) which do not multiply the tissue temperatures. Derivation of these quantities for all nodal points is presented in Appendix A and a summary of all coefficients is given in Tables 1-3.

It is noted that Equation (36) indicates the calculation of the first half time-step only. To complete a full time-step, an equation similar to Equation (36) is required:

$$
\begin{equation*}
\left[I-\delta \cdot A_{z}\right] \cdot\left\{T_{f}^{n+1}\right\}=\left[I+\delta \cdot A_{x}\right] \cdot\left\{T_{t}^{n+\frac{1}{2}}\right\}+\delta \cdot\left\{s^{n+\frac{1}{2}}\right\} \tag{38}
\end{equation*}
$$

The particular formulation employed in the present analysis assumes that the S-vector in Equations (37) and (38) is evaluated only once per full time-step, i.e., at the one half timestep. It is then maintained constant for the two calculation passes in both radial and axial directions. The S -vector contains the temperatures of the large blood vessels at the axial nodal points which provide the thermal coupling between the tissue and the circulatory system. To calculate these temperatures, a forward-difference approximation for the time derivatives in Equations (12) and (13) is employed. Two additional assumptions are made, regarding the average arterial and venous blood temperatures and average tissue temperature appearing in these equations. First the average temperature of the blood in any one of the two vessels is taken as an arithmetic mean of the two enclosing axial nodal points:

$$
\begin{equation*}
\bar{T}_{b}=\frac{1}{2}\left(T_{b, \text { in }}+T_{b, \text { out }}\right) \tag{39}
\end{equation*}
$$

NODE	1．1	i	i＋1
Э然			
或気	0	$-\frac{\alpha}{a_{s}} \cdot \frac{2}{h_{r}^{2}}-\Psi \frac{W+U_{0}+U_{v}}{2}$	$\frac{a}{a s} \cdot \frac{2}{h_{r}^{2}}$
	$\frac{\alpha}{\alpha_{0}} \cdot \frac{1}{(1+\gamma) \cdot h_{f}^{(-)}}\left\{\frac{2 \cdot \gamma}{h_{f}^{(-1)}}-\frac{1}{r_{f}}\right\}$	$\begin{gathered} -\frac{\alpha}{\alpha_{\Delta}} \cdot \frac{1}{h_{r}^{(-)}}\left\{\frac{2 \cdot \gamma}{h_{r}^{(-)}}-\frac{1-\gamma}{r_{1}}\right\} \\ -\Phi \frac{W+U_{\Delta}+U_{v}}{2} \end{gathered}$	0
	$\frac{a}{\alpha_{b}} \cdot \frac{2}{h_{r}^{2}}-\Psi \frac{W+U_{0}+U_{v}}{\theta}$	$\begin{aligned} & -\frac{a}{a_{\Delta}} \cdot\left\{\frac{2}{h_{r}^{2}}+\left[1+\frac{2}{h_{r}}\right] \cdot B l\right\} \\ & -\Psi \frac{3 \cdot\left(W+U_{a}+U_{v}\right)}{8} \end{aligned}$	$\frac{\alpha}{a_{b}} \cdot \frac{r^{2}}{(1+\gamma) \cdot h_{r}^{(-)}}\left\{\frac{2}{h_{r}^{(-)}}+\frac{1}{r_{1}}\right\}$
凫	$\frac{a}{\alpha_{2}} \cdot \frac{1}{h_{r}} \cdot\left\{\frac{1}{h_{r}}-\frac{1}{2 \cdot r_{1}}\right\}$	$-\frac{a}{\alpha_{b}} \cdot \frac{2}{h_{r}^{2}}-\frac{\text { P } \cdot W}{2}$	$\frac{a}{a_{s}} \cdot \frac{1}{h_{r}} \cdot\left\{\frac{1}{n_{r}}+\frac{1}{2 \cdot r_{1}}\right\}$
䍃亭	0	$-\frac{\alpha}{\alpha_{\Delta}} \cdot \frac{2}{h_{r}^{2}}-\frac{\text { q } \cdot W}{2}$	$\frac{\alpha}{\alpha_{\Delta}} \cdot \frac{2}{h_{r}^{2}}$
	$\frac{a}{\alpha_{b}} \cdot \frac{1}{(1+\gamma) \cdot h_{r}^{(-)}}\left\{\frac{2 \cdot \gamma}{h_{r}^{(-)}}-\frac{1}{r_{r}}\right\}$	$\begin{gathered} -\frac{a}{\alpha_{b}} \cdot \frac{1}{h_{f}^{(-)}}\left\{\frac{2 \cdot \gamma}{\left.h_{f}^{(-)}-\frac{1-\gamma}{r_{f}}\right\}}\right. \\ -\frac{\Psi \cdot w}{2} \end{gathered}$	$\frac{a}{a_{b}} \cdot \frac{\gamma^{2}}{(1+\gamma) \cdot h_{r}^{(-)}}\left\{\frac{2}{h_{r}^{(-)}}+\frac{1}{r_{r}}\right\}$
	$\frac{\alpha}{\alpha \alpha_{B}} \cdot \frac{2}{h_{r}^{2}}-\frac{\Psi \cdot W}{8}$	$\begin{gathered} -\frac{\alpha}{a_{b}}\left\{\frac{2}{h_{r}^{2}}+\left[1+\frac{2}{h_{r}}\right] \cdot B_{r}\right\} \\ -\frac{3 \cdot \Phi \cdot w}{8} \end{gathered}$	0

Table 1：\quad Coefficients in the radial－direction $\left[A_{\downarrow}\right]$ matrix．

Table 2: Coefficients in the axial-direction $\left[A_{2}\right]$ matrix.

Table 3: Coefficients of the $\{S\}$ vector.

Similarly, the average tissue temperature for exchanging heat with any of the large blood vessels, is taken as the arithmetic mean of the tissue temperatures at the two enclosing axial nodal points:

$$
\begin{equation*}
\bar{T}=\frac{1}{2}[T(1, f)+T(i, f-1)] \tag{40}
\end{equation*}
$$

With these assumptions the integrals indicated in Equations (12) and (13) are replaced by numerical summations to yield:

$$
\begin{align*}
& \bar{T}_{a}^{n+\frac{1}{2}}(j)=\Delta \tau\left\{\left[\frac{1}{\Delta \tau}-2 \cdot B_{a}(f-1)+A_{a} \cdot \operatorname{SON} 1-Y_{a}-H_{a v}\right] \bar{T}_{a}^{n}(f)+\right. \tag{41}\\
& \left.\quad\left[2 \cdot B_{a}(f-1)-A_{a} \cdot \operatorname{SON} 1\right] T_{a}^{n}(j-1)+\frac{1}{2} Y_{a} \cdot \operatorname{SON} 2+H_{a v} \cdot \bar{T}_{v}^{n}(j)\right\}
\end{align*}
$$

and,

$$
\begin{align*}
& \bar{T}_{v}^{n+\frac{1}{2}}(j)=\Delta \tau\left\{\left[\frac{1}{\Delta \tau}+2 \cdot B_{v}(j-1)-2 \cdot A_{v} \cdot \operatorname{SUNI}-Y_{v}-H_{v a}\right] \bar{T}_{v}^{n}(j)+\right. \\
& {\left[-2 \cdot B_{v}(j-1)+A_{v} \cdot \text { SUNI }\right] T_{v}^{n}(j-1)+\frac{1}{2} Y_{v} \cdot \operatorname{SUNZ}+H_{v a} \cdot \bar{T}_{a}^{n}(j)+} \tag{42}\\
& \left.\frac{1}{2} A_{v} \cdot \operatorname{SUNK}\right\}
\end{align*}
$$

where:

$$
\begin{equation*}
A_{a \operatorname{arv}}=\left(\frac{R}{r_{a \operatorname{Ax}}}\right)^{2} \tag{43}
\end{equation*}
$$

$$
\begin{aligned}
& B_{a \operatorname{ar} V}=A_{a \operatorname{ax} v} \frac{\dot{m}_{a g r v}}{\rho_{b} \cdot{\tilde{\alpha_{b}}} \cdot \pi \cdot \Delta L}
\end{aligned}
$$

$$
\begin{align*}
& H_{a v a r v e}=A_{a \operatorname{ar}} v \frac{h_{a v}}{k_{b} \cdot \pi \cdot \Delta L} \\
& \text { SUNE }=\sum_{1=0}^{N-1} W(1, j-1) \cdot\left(I_{1+1}^{2}-r_{1}^{2}\right) \tag{47}\\
& \operatorname{SUNQ}=\sum_{i=0}^{N-1}\{T(i, j-1)+T(i, j)\} \cdot\left(r_{1+i}^{2}-r_{i}^{2}\right) \tag{48}
\end{align*}
$$

and,

$$
\begin{equation*}
\operatorname{SUM} 3=\sum_{i=0}^{W-1} W(i, j-1) \cdot\{T(i, j-1)+T(i, j)\} \cdot\left(r_{1+1}^{2}-r_{1}^{2}\right) \tag{49}
\end{equation*}
$$

According to the present formulation, the symmetry condition at the centerline of the cylinder, Equation (2), is satisfied by excluding the first one-half division in the radial direction, Fig. A.2. However, in performing the summations indicated in Equations (47)-(49), the contribution of this region is included in order that mass conservation requirements be satisfied.

PHYSICAL AND PHYSIOLOGICAL PARAMETERS

Three interrelated groups of parameters are required for calculating the temperature field in the model. These are: (a) geometrical parameters, depicting the anatomical details
of the modeled organ, (b) thermophysical parameters, representing, primarily, the transport properties of the tissue, and, (c) physiological parameters simulating variables such as blood flow or metabolic heat generation rate.

Accurate and detailed information on these parameters is not available. Moreover, individual variabilities among humans make it almost impossible to formulate a universal set of parameters for the model. Nevertheless, a reasonably accurate set of parameters may be identified for the purpose of studying the behavior of the model.

Table 4 lists the properties used in the model. Data are given for the four compartments, or organs which make up the model, i.e., core, muscle, fat and skin. Additional data are given for blood. Most of the entries in Table 4 were compiled from References [8] and [12]. Blood perfusion and metabolic heat generation rates were estimated as follows. According to Burton [13], the average blood flow in the finger of a subject "who is comfortable as regards the temperature of the surroundings" is in the range of 15-40 $\mathrm{cc} / \mathrm{min} / 100 \mathrm{cc}$ tissue. We assumed the lower limit of this range to be representative of the basal blood flow rate in the unperturbed finger. Converted into SI units, and assuming Table 4 value for blood density, this basal value is given by $2.65 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{sec}$. This basal rate was used for calculating the organ-specific values by assuming the geometrical values of Table 4 and accounting for the absence of blood flow in the fat layer.

Also listed in Table 4 are the values for "nutritional" blood flow rates in the various organs of the finger. These values represent the flow rates in a fully constricted finger exposed to a cold environment. Values in the literature for this condition are in the range of $0.3-1.0 \mathrm{cc} / \mathrm{min} / 100 \mathrm{cc}$ tissue [13-15]. For most of this study we assumed a nutritional blood flow value of $0.5 \mathrm{cc} / \mathrm{min} / 100 \mathrm{cc}$ tissue or, $0.0883 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{sec}$. Values for the different organs of the finger are listed in Table 4.

Yet another set of values relates to the basal metabolic heat generation rate in the various organs. These were estimated by assuming that the nutritional blood flow rate is maintained for the purpose of supporting the metabolic activities of the tissues under all conditions. Thus, average oxygen extraction rates may be assumed for estimating the basal metabolic heat generation rates. According to Cooney [16], typical oxygen concentration levels in the blood are 0.195 and 0.145 liter O_{2} liter blood for tissue inlet and outlet, respectively. The average caloric equivalent of 1 liter of oxygen may be taken at 20.9 kJ (5 kcal) to yield the basal metabolic heat generation values listed in Table 4.

In listing these values, one adjustment was made in regard to the metabolic rate of the fat layer. Although basal blood flow rate to this organ was assumed to be practically zero, some metabolic activity could stili be assumed for this organ. Accordingly, a very low level of $5 \mathrm{~W} / \mathrm{m}^{3}$ was arbitrarily assigned to the fat layer.

	RATIO OF ORGAN TO FINGER RADIUS, $\mathrm{R}_{\mathrm{i}} / \mathrm{R}$	THERMAL CONDUC. TIVITY. $\mathrm{w} / \mathrm{m}^{\circ} \mathrm{C}$	SPECIFIC HEAT, $\mathrm{kJ} / \mathrm{kg}^{\circ} \mathrm{C}$	DENSITY. $\mathrm{kg} / \mathrm{m}^{3}$	BASAL METABOLIC RATE, W / m^{3}	BASAL BLOOD FLOW RATE, $\mathrm{kg} / \mathrm{m}^{3} \mathrm{sec}$	NUTRI- TIONAL BLOOD FLOW RATE, $\mathrm{kg} / \mathrm{m}^{3} \mathrm{sec}$
CORE	0.7057	1.064	2.102	1401	170.5	5.195	0.173
MUSCLE	0.7954	0.418	3.136	1057	631.9	19.225	0.641
FAT	0.8099	0.204	2.520	900	5.0	0	0
SKIN	1.0000	0.293	3.780	1057	247.4	7.526	0.251
BLOOD	--	0.450	3.899	1060	--	------	--

Table 4: Property values used in the numerical computations.

Heat transfer coefficients used to represent the conditions at the surface of the finger are listed in Table 5. Four combinations are considered: bare and gloved finger in either still air (free convection) or windy air ($15 \mathrm{~km} / \mathrm{hr}$). The values were calculated by standard engineering equations [17] for a 0.08 m long, 0.015 m diameter cylinder. A distinction was made between the cylindrical surface of the finger along its axis versus the spherical-like tip. The glove was represented by a 3-layer ensemble depicting a $2.86 \mathrm{~mm}(0.09 \mathrm{in}$) wool layer, 1 mm of still air gap and a 1.27 mm (0.05 in) leather shell. Also shown in this table are the equivalent clo values of the various entries which conform well to the range of values measured on a variety of gloves [18,19].

TESTING OF THE NUMERICAL CODE

A rigorous series of benchmark tests was devised and carried out to verify the stability and convergence of the numerical code written for the model. Programming was done in Turbo Pascal Version 6.0 for IBM-compatible personal computers. Appendix C contains a complete listing of the source code and the operating instructions for the program.

In the first group of tests, all physiological parameters, i.e., $q_{m}, w_{b}, u_{a}, u_{v}$ and $h_{a v}$ were set to zero. This rendered the problem a simple, two dimensional heat transfer problem. In tests \#1-3, the heat transfer coefficients on the surfaces of the cylinder, h_{1} and h_{c} were also set to zero thereby creating an adiabatic cylinder except for the base ($z=0$). In test \#1 initial and boundary temperatures at $\mathrm{z}=0$ were set to $30^{\circ} \mathrm{C}$ and the program was run for 200,000 time steps, 0.1 second each. Throughout the test no temperature changes were observed anywhere in the mesh, as is to be expected. In tests \#2 and 3, a change was made in the boundary condition at $\mathbf{z = 0}$ after the initial 100 time steps. In test \#2, run for 100,00 time steps, 1 second each, the change was from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$. The inverse change was made in test \#3 which was run for a total of 300,000 time steps. In both cases the temperatures anywhere in the mesh approached the boundary temperatures and remained stable.

In test \#4 an active heating source was introduced into the cylinder, i.e., $q_{m}>0$, while still maintaining the other parameters inactive as above. Values used for the heating source were those listed in Table 4 for the basal metabolic heat generation rate. The program was run for a total of 2,000,000 time steps, 0.1 second each. Mesh temperatures have stabilized after 600,000 time steps.

The results of the cylinder model, with an internal heating source, were compared to those calculated by a one-dimensional analytical solution [20]. The comparison between the surface (external) temperatures as calculated by this model and those of the analytical model is shown in Fig. 4. It is noted that precise comparison of these two cases

	$h_{c}\left[\frac{W}{m^{2}{ }^{\circ} \mathrm{C}}\right]$	$h_{1}\left[\frac{W}{m^{2}{ }^{\bullet} C}\right]$
BARE FINGER, STILL AIR	$\begin{gathered} 7.02 \\ (0.913 \mathrm{clo}) \end{gathered}$	$\begin{gathered} 9.46 \\ (0.672 \mathrm{clo}) \end{gathered}$
BARE FINGER, $15 \mathrm{~km} / \mathrm{hr}$ WIND	$\begin{gathered} 67.2 \\ (0.095 \mathrm{clo}) \end{gathered}$	$\begin{gathered} 90.3 \\ (0.071 \mathrm{clo}) \end{gathered}$
GLOVE, STILL AIR	$\begin{gathered} 5.17 \\ (1.240 \mathrm{clo}) \end{gathered}$	$\begin{gathered} 8.09 \\ (0.792 \mathrm{clo}) \end{gathered}$
GLOVE, 15 km/hr WIND	$\begin{gathered} 10.02 \\ (0.640 \mathrm{clo}) \end{gathered}$	$\begin{gathered} 13.09 \\ (0.490 \mathrm{clo}) \end{gathered}$

Table 5: Heat transfer coefficients for combinations of wind conditions for a bare and gloved finger.

Figure 4: Comparison of temperature distributions along the finger model calculated by an analytical model [20] and the present model.
is not possible since no radial temperature variations are included in the analytical model. Nevertheless, the two sets of plotted results seem to agree well, with the numerical results slightly under predicting the analytical ones at the shorter times into the run.

In test \#5, q_{m} was reset to zero and h_{1} and h_{c}, the heat transfer coefficients with the environment, were set to a very high value of $700 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$. Initial mesh temperatures were set at $30^{\circ} \mathrm{C}$ and the environmental temperature was maintained at $26^{\circ} \mathrm{C}$. After 100 time steps, the boundary temperature at $\mathrm{z}=0$ was reset to $20^{\circ} \mathrm{C}$ and the program was run for 100,000 time steps, 1 second each. Due to the high value of the heat transfer coefficients used, a rather flat temperature profile of $26^{\circ} \mathrm{C}$ was established and maintained throughout the mesh except for a short drop to $20^{\circ} \mathrm{C}$ visualized near the base of the cylinder, as is to be expected.

In test \#6, blood perfusion was activated at the basal values listed in Table 4. Other parameters were maintained inactive. Initial mesh and arterial temperatures were set at 20° C. After the initial 1000 time steps, 0.1 second each, both mesh and arterial temperatures were reset to $30^{\circ} \mathrm{C}$ at $\mathrm{z}=0$. The test was run for a total of 200,000 time steps and mesh temperatures converged on $30^{\circ} \mathrm{C}$ and remained stable for the duration of the test.

A similar test was run with the addition of heat exchange between the major blood vessels and the mesh points. Results of this test \#7 were essentially similar to those of test \#6.

In test \#8 counter-current heat exchange between the major blood vessels themselves was also activated. Running conditions were identical to those of test \#6 except that a total of $1,000,000$ time steps were utilized. Mesh temperatures have stabilized at $30^{\circ} \mathrm{C}$ after 100,000 time steps.

As was to be expected, the execution of the code was sensitive to the size of the time step and the number of spatial divisions used in the numerical code. These two topics are discussed separately. It is firstly noted that the method of alternating directions applied to the solution of the mesh temperatures yields an unconditionally stable scheme of solution [10]. Thus, the source for this sensitivity must reside in Equations (7) and (8) representing the heat balance in the major blood vessels. These two equations are essentially first order ordinary differential equations. Thus, the terms multiplying the independent variables on the right hand-sides may be used to estimate the maximal time step that will ensure stability of the Euler's scheme used to solve them.

In the present analysis this maximal time step is determined by calculating the numerical values of the coefficients of the independent variables in Equations (41) and (42). The larger of the two values, TOTAL, is then substituted into the following equation:

$$
\begin{equation*}
\Delta \tau=\frac{0.4}{\operatorname{TOTAL}} \tag{50}
\end{equation*}
$$

to yield the time step which ensures numerical stability. Values obtained by Equation (50) are conservative since a factor of 2 may be used instead of 0.4 [21]. Experience with running of the code proved that this requirement on the time step could, indeed, be relaxed somewhat without adversely affecting the stability of the code.

The sensitivity of the code to the number of divisions used in the numerical network became apparent when an overall steady state heat balance was calculated for the finger model. In all cases studied the number of divisions in the radial direction was kept constant at 12 (Table 6). A relatively simple combination of parameters was used in the computations in which the finger was assumed to be insulated from the environment, no metabolic heat was generated and no counter-current heat exchange between the major blood vessels was allowed. In addition, the thermal conductivities of all tissue compartments were made uniform at the value of the muscle. Under these conditions, the only heat supply to the tissue was due to blood perfusion and the only heat removal mechanism was by conduction at the base of the finger, i.e., at $z=0$.

Figure 5 shows the ratios calculated for the heat transported by the major blood vessels to the heat conducted away as a function of the number of axial divisions. It is evident that a heat balance is not satisfied for the smaller number of divisions in the axial direction. Only when 20 divisions are used, the heat source essentially equals the heat sink to satisfy a heat balance.

A similar, but more involved, set of benchmark tests was also run. In this set both metabolic heat production and heat exchange with the environment at the finger tip were included in addition to blood perfusion and heat conduction at the finger base. A steady-state energy balance offset of about 32\% was initially obtained for 25 axial and 9 radial divisions. This offset gradually dropped to less than 1% when 75 axial divisions were used. This value was deemed quite satisfactory for a steady-state energy balance and served as an additional verification of the numerical code.

Temperature distributions along the external surface of the model are plotted in Fig. 6 also as functions of the number of axial divisions. It is clearly seen that the final temperature obtained is a function of the number of divisions in the axial direction. For the particular case studied here it seems that 20 divisions yield quite an accurate result. This, however, required a much longer running time than for the fewer divisions. Thus, the desired accuracy of the results may have to be determined by considerations such as the total CPU time required for running the program for a given computer.

Based on the series of benchmark tests as outlined here, it may be concluded that the code written for the model is stable and converges to reasonable results for the entire range of parameters considered here.

LENGTH OF CYLINDER, cm				8.0
DIAMETER OF CYLINDER, cm				1.5
DIAMETER OF ARTERY, cm				0.2
DIAMETER OF VEIN, cm				0.3
DISTANCE BETWEEN ARTERY AND VEIN, cm				Eq. (B9)
HEAT TRANSFER COEFFICIENT BETWEEN ARTERY OR VEIN AND THE TISSUE (U_{a} or U_{v})				Eq. (B6)
COUNTERCURRENT HEAT EXCHANGE COEFFICIENT BETWEEN ARTERY AND VEIN (h_{a} or h_{v})				Eq. (B8)
NUMBER OF DIVISIONS IN THE RADIAL DIRECTION				
CORE	MUSCLE	FAT	SKIN	TOTAL
3	3	2	4	12

Table 6: Parameters used in the numerical computations.

Figure 5 (top): Ratios of steady state heat flow in vs. heat flow out as affected by the number of divisions in the axial direction.

Figure 6 (bottom): Steady state temperature distributions of the external surface of the finger model as affected by the number of divisions in the axial direction.

RESULTS AND DISCUSSION

A number of cases are considered to demonstrate the range of capabilities of this model. Additional parameters used in these demonstrations are listed in Table 6.

Figures 7-10 show the steady state temperature distributions in the finger model for combinations of insulation (bare vs. gloved finger), wind velocities and finger blood flow. In all these cases the environmental temperature was maintained at $0^{\circ} \mathrm{C}$. and finger base temperature as well as incoming arterial blood temperature were kept constant at $30^{\circ} \mathrm{C}$.

All four figures demonstrate the major role played by blood flow in the thermal economy of the finger. It is clearly noted that rather comfortable temperatures are maintained in the finger for as long as blood flow remains high (at basal level in this case). The exception is the case of the bare finger in a windy environment of $15 \mathrm{~km} / \mathrm{hr}$ in which the enhanced heat loss offsets much of the beneficial effect of high blood flow to the finger.

In all cases studied, temperature of the distal segments of the finger dropped to very low levels and almost equilibrated with the environment. This is the case even when a twolayer glove is donned on the hand as is also suggested in another study [22]. The only difference among the cases studied here is in the time course of change in these temperatures. This difference is shown in Fig. 11 in which finger tip skin temperatures are plotted vs. time for all 4 cases. Low blood flow, at the nutritional level, which is to be expected for this low environmental temperature, was assumed for all cases.

As seen in Fig. 11, the bare finger in windy air will be the quickest to drop in temperature. It would practically equilibrate with the environment after about 10 minutes. The gloved finger, under the same windy environment, would be much better protected and would require about 60 minutes before it equilibrates with the environment. Interestingly, a bare finger in still air seems to be better protected than a gloved finger in windy air.

These results may also be presented in terms of endurance times, defined as the time for any temperature on the finger to reach $5^{\circ} \mathrm{C}$. Accordingly, the endurance times for the bare and gloved fingers in windy air would be about 2.5 and 22 min, respectively. These times would be longer, at 32 and 43 minutes, respectively, when the bare and gloved fingers are exposed to still air.

Figure 7: Steady state temperature distributions of a bare finger in still air for basal and nutritional blood flows.

Figure 8: \quad Steady state temperature distributions of a gloved finger in still air for basal and nutritional blood flows.

Figure 9: \quad Steady state temperature distributions of a bare finger in windy air for basal and nutritional blood flows.

Figure 10: Steady state temperature distributions of a gloved finger in windy air for basal and nutritional blood flows.

Figure 11: Temperature variations on the dorsal tip of the bare and gloved finger model with nutritional blood flow for still and windy air.

The effect of counter-current heat exchange between the major blood vessels is demonstrated in Fig. 12. Numerical values of the parameters used for this figure are listed in Table 6. The two groups of curves in Fig. 12 show the steady state arterial and venous temperature distributions along the finger with and without counter-current heat exchange between these vessels. As soon as this mechanism is activated, the arterial temperature seems to drop considerably due to the exchange of heat with the cooler vein.

The main purpose of counter-current heat exchange is to conserve body heat in a cold environment. This is effected by firstly depriving the extremity of the rich supply of blood, as is assumed here by dropping blood flow from basal to nutritional level. An additional effect is achieved by lowering the temperature of the extremity through the thermal coupling which exists between the major blood vessels and the tissues. The arterial temperature along the extremity is made to loose heat by counter-current heat exchange to the cooler vein. This, in turn, causes tissue temperatures to decrease as the artery constitutes the main heat source for the extremity. In the case shown in Fig. 12, about 0.093 W is lost to the environment from the finger which decreases to 0.08 W for a reduction of about 14% in finger heat loss when counter-current heat exchange is activated.

Another case of cold induced vasodilatation (CIVD) in the finger is shown in Fig 13. CIVD is known to occur in a percentage of the population and is manifested by rather periodic increases in finger skin surface temperatures, e.g., [23,24]. Although the precise mechanism for this phenomenon is not thoroughly understood, there is ample evidence to indicate that intermittent increases in the otherwise constricted blood flow to the finger cause these temperature changes.

In calculating the data for Fig. 13, it was assumed that the periodic blood flow changes may best be approximated by triangular-shaped surges. These surges were assumed to occur only in and adjacent to the tip of the finger while blood supply to the other segments of the finger remained unchanged. The initial temperature of the entire bare finger, exposed to still air at $0^{\circ} \mathrm{C}$, was set at $30^{\circ} \mathrm{C}$. At the beginning of the exposure, blood flow in the finger was assumed to drop to the nutritional level (Table 4). This situation was assumed to persist for 20 min. Next, a 3 minute linear increase to 10 times the initial value in blood flow to the tip of the finger was allowed followed by a symmetrical decrease back to the nutritional level. Nutritional blood flow was next maintained for 15 minutes and was followed again by an identical triangular-shaped change in blood flow to the tip of the finger. During the final 15 minutes of the run, blood flow was reset to the nutritional level.

Skin temperature variations are shown in Fig. 13 for three locations along the finger. The curves are plotted for the base, the middle point along the finger and for the tip of the finger. The solid line represents finger tip temperature variations for constant nutritional blood flow without the periodic bouts of CIVD. It thus provides a worst case scenario for comparison purposes. It is clearly seen that increases in blood flow causeincreases in finger temperatures, as is to be expected. These changes are more pronounced at the tip of the finger than at the more proximal locations primarily because blood flow changes due to CIVD are assumed to take place in this area only.

Figure 12: Effect of counter-current heat exchange on arterial and venous temperature distributions.

Figure 13: Dorsal temperature variations at the tip and middle of the finger model for cold induced vasodilatation.

Another interesting result relates to the course of change in finger tip temperature for the case shown here. It seems that CIVD, which may be characterized as a heating source, causes the tissue temperatures to increase noticeably for as long as it is active. Once this mechanism gets shut off, tissue temperatures resume the exponential-like decay to levels close to those attained without CIVD. This decay is enhanced by the larger temperature difference between the tissue and the environment that has been established as a result of CIVD. As a matter of fact the temperature difference at the finger tip after one hour between the case involving CIVD and the one without it would be a mere $0.8^{\circ} \mathrm{C}$, for the case presented here.

It is recognized that the details shown in Figs. 7-13 are dependent on the parameters and assumptions used in the computations. However, certain trends are clearly indicated which will likely vary in detail and magnitude as the values of these parameters are altered.

REFERENCES

1. Knockel, J.P., Environmental heat illness. An eclectic review, Arch. Intern. Med., 133:841-864, 1974.
2. McCarroll, J.E., Denniston, J.C., Piere, D.R. and Farese, L.J., Behavioral evaluation of a winter warfare training exercise, US Army Research Institute of Environmental Medicine, Report No. T 1/78, 1977.
3. Pennes, H.H., Analysis of tissue and arterial blood temperature in the resting forearm, J. Appl. Physiol., 1:93-122, 1948.
4. Mitchell, J.W., Galvez, T.L., Hengle, J., Myers, G.E. and Siebecker, K.L., Thermal response of human legs during cooling, J. Appl. Physiol., 29:859-865, 1970.
5. Eberhart, R.C., Heat transfer for models in specific organs, in: Heat Transfer in Medicine and Biology: Analysis and Applications, A. Shitzer and R.C. Eberhart (eds.), Plenum Press, N.Y., 1:273-321, 1985.
6. Wissler, E.H., An analysis of factors affecting temperature levels in the nude human, in: Temperature: its Measurement and Control in Science and Industry, J.D. Hardy (ed.), Reinhold, N.Y., Part 3, 603-612, 1963.
7. Stolwijk, J.A.J. and Hardy, J.D., Temperature regulation in man - a theoretical study, Pflugers Arch., 291:129-162, 1966.
8. Arkin, H. and Shitzer, A., Model of thermoregulation in the human body, Reports No. EEC-148 (Part I - the heat transfer model), EEC-149 (Part II - the control model) and EEC-150 (Part III - model behavior and comparison to experimental results of exercising, heat stressed subjects), Energy Engineering Center, Faculty of Mechanical Engineering, Technion, Israel Institute of Technology, Haifa, Israel, 1984.
9. Tikuisis, P., Gonzalez, R.R. and Pandolf, K.B., Thermoregulatory model for immersion of humans in cold water, J. Appl. Physiol., 64(2):719-727, 1988.
10. Ames, W.F., Numerical Methods for Partial Differential Equations, Thomas Nelson and Sons, New York, 1977.
11. Young, D.M., Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.
12. Stolwijk, J.A.J. and Hardy, J.D., Control of body temperature, in: Handbook of Physiology, Ch. 4, 59-60, 1977.
13. Burton, A.C., The range and variability of the blood flow in the human fingers and the vasomotor regulation of body temperature, Am. J. Physiol., 127:437-453, 1939.
14. Freeman, N.E., The effect of temperature on the rate of blood flow in the normal and in the sympathectomized hand, Am. J. Physiol., 113:384-398, 1934.
15. Lotens, W.A., A simple model for foot temperature simulation, TNO-Report 1ZF, 1989.
16. Cooney, D. O., Biomedical Engineering Principles - An Introduction to Fluid, Heat and Mass Transport Phenomena, Marcel Dekker, Inc., New York, 1976.
17. Ozisik, M.N., Heat Transfer - A Basic Approach, McGraw Hill Book Co., N.Y., 1985.
18. United States Army Research Institute of Environmental Medicine, Table of best available data on gloves, unpublished.
19. Santee, W.R., personal communication, 1992.
20. Shitzer, A., Stroschein, L.A., Santee, W.R., Gonzalez, R.R. and Pandolf, K.B., Quantification of conservative endurance times in thermally insulated cold stressed digits, J. Appl. Physiol., 71 (6):2528-2535, 1991.
21. Myers, G. E., Analytical Methods in Conduction Heat Transfer, McGraw Hill, New York, 1971.
22. Goldman, R.F., The Arctic soldier: Possible research solutions for his protection, In: Science in Alaska, Proc. of the 15th Alaskan Science Conference, College, Alaska, G. Dahlgren ed., Alaska Division, Assn. for the Advancement of Science, pp. 401-419, 1964.
23. Lewis, T., Observations upon the reactions of the vessels of the human skin to cold, Heart, 15:177-208, 1930.
24. Livingstone, S.D., Changes in cold-induced vasodilatation during Arctic exercises, \mathbf{J}. Appl.Physiol., 40(3):455-457, 1976.
25. Elkowitz, A.B., Shitzer, A. and Eberhart, R.C., Transient temperatures in tissues with non-uniform blood flow distributions, ASME Transactions, Journal of Biomechanical Engineering, 104(3), 202-208, 1982.
26. Mitchell, J.W. and Myers, G.E., An analytical model of the countercurrent heat exchange phenomena, Biophysical J., 8:897-911, 1968.
27. Keller, K.H. and Seiler, L., An analysis of peripheral heat transfer in man, J. Appl. Physiol., 30(5):227-234, 1971.
28. Holman, J.P., Heat Transfer, McGraw Hill Book Co., New York, 2nd ed., 1968.

GLOSSARY

VARIABLES

a - dimensionless ratio of cylinder length to radius multiplied by the ratio of blood to tissue thermal diffusivities, Eq. (23).
$A_{(a 0 y)}$ - dimensionless ratio of cylinder to blood vessel radii, Eq. (43).
[A] - coefficient matrix in radial direction, Eqs. (37) and (38).
$\left[A_{2}\right] \quad$ - coefficient matrix in axial direction, Eqs. (37) and (38).
$\mathrm{B}_{(\mathrm{a} \text { orv) }}$ - dimensionless ratio of blood flow rate to blood mass contained in a vessel element per unit of normalized time, Eq. (44).
$\mathrm{Bi} \quad$ - Biot modulus indicating the dimensionless ratio between heat convected by the environment to heat conducted in the cylinder, Eqs. (28) and (29).
c - specific heat, $J \cdot \mathrm{~kg}^{-1} \bullet^{\circ} \mathrm{C}^{-1}$.
h - heat transfer coefficient between the cylinder and the environment at the circumferential surface, $\mathrm{W} \cdot \mathrm{m}^{-2}{ }^{\circ} \mathrm{C}^{-1}$
$h_{1} \quad$ - heat transfer coefficient between the cylinder and the environment at the cylinder tip, W•m $\mathrm{m}^{-2} \circ^{\circ} \mathrm{C}^{-1}$
$h_{\text {(r o r 2) }}$ - dimensionless distance between two adjacent nodes in the radial or axial direction, respectively.
$\mathrm{h}_{\mathrm{av}} \quad$ - heat transfer coefficient between concomitant artery - vein pairs, $\mathrm{W} \cdot{ }^{\circ} \mathrm{C}^{-1}$.
$H_{\text {(av or va) }}$ - dimensionless heat transfer coefficient between concomitant artery - vein pairs, Eq. (46).
$k \quad$ - thermal conductivity, $\mathrm{W} \cdot \mathrm{m}^{-1.0} \mathrm{O}^{\circ} \mathrm{C}^{-1}$
L - cylinder length, m.
$m_{(a ~ o r v)}$ - mass flow rate of arterial or venous blood, kg^{-1}.
M - total number of nodal points in axial direction.
$M_{(a \mathrm{ocv})}$ - mass of arterial or venous blood contained in a vessel element, kg .

N - total number of nodal points in radial direction.
$q_{m} \quad$ - volumetric metabolic heat generation rate, $W \cdot \mathrm{~m}^{-3}$.
q - dimensionless volumetric heat generation rate, Eq. (25).
r - radial coordinate, m.
r - dimensionless radial coordinate, Eq. (19).
R - cylinder radius, m.
\{S\} - vector of terms in matrix equations, Eqs. (37) and (38).

$t \quad-$ time, s.
$\mathrm{T}^{*} \quad$ - temperature, ${ }^{\circ} \mathrm{C}$.
$\mathrm{T}_{1}^{*} \quad$ - temperature at base node, ${ }^{\circ} \mathrm{C}$.
$\mathrm{T}_{\mathrm{i}}^{*} \quad$ - initial temperature distribution in the cylinder, ${ }^{\circ} \mathrm{C}$.
Temp - reference temperature, ${ }^{\circ} \mathrm{C}$.
T - dimensionless temperature, Eq. (22).
$u_{\text {(a orv) }}$ - heat transfer coefficient between an artery or a vein, respectively, and the surrounding tissue, $\mathrm{W} \cdot \mathrm{m}^{-3} \cdot{ }^{\circ} \mathrm{C}^{-1}$.
$U_{(a \operatorname{lor})}$ - modified dimensionless heat transfer coefficient between an artery or a vein, respectively, and the surrounding tissue, Eq. (45).
$\mathrm{w}_{\mathrm{b}} \quad$ - volumetric blood perfusion rate, $\mathrm{kg} \cdot \mathrm{m}^{-3} \cdot \mathrm{~s}^{-1}$.
W - dimensionless volumetric blood perfusion rate, Eq. (26).
$Y_{\text {(a orv) }}$ - dimensionless heat transfer coefficient between an artery or a vein and the surrounding tissue, Eq. (27).
$z^{*} \quad-$ axial coordinate, m.
z - dimensionless axial coordinate, Eq. (20).

GREEK LETTERS

α - thermal diffusivity, $\mathrm{m}^{2} \cdot \mathrm{~s}^{-1}$.
$\boldsymbol{\gamma}$ - ratio of radial nodal divisions immediately preceding to immediately following a tissue compartment interface, Eq. (A.10).
δ - dimensionless half a time step, Eq. (34).
ρ - density, $\mathrm{kg}^{\circ} \mathrm{m}^{-3}$.
τ - dimensionless time, Eq. (21).
Ψ - dimensionless ratio of blood to tissue thermal inertias, Eq. (24).

SUPERSCRIPTS

* - dimensional quantity.
- - average value.

SUBSCRIPTS

a - arterial.
b - blood.
i - integer (radial direction).
i - initial.
j - integer (axial direction).
n - integer (time).
r - radial.
t-tissue.
v - venous.
2 - axial.
0 - environmental.

APPENDIX A - Derivation of the equations for the various matrix nodal points

In this section the elements in the matrix equations, (37) and (38), are derived. Derivation is performed for the different nodal points included in the domain for which the solution is sought, i.e., center nodes, interface nodes, etc. shown in Fig. A.1. The derivation begins with rewriting the general discretized partial differential equation, Equation (35):

$$
\begin{align*}
& \frac{T_{i, j}^{n+\frac{1}{2}}-T_{i, j}^{n}}{\delta}=\frac{a}{a_{b}} \frac{1}{h_{z}}\left\{T_{i+1, j}^{n+\frac{1}{2}}\left[\frac{1}{h_{y}}+\frac{1}{2 I_{1}}\right]-T_{i, j}^{n+\frac{1}{2}} \frac{2}{h_{r}}+T_{i-1}^{n+j} \frac{1}{2}\left[\frac{1}{h_{r}}-\frac{1}{2 I_{i}}\right]\right\}+ \\
& \frac{1}{a^{2} h_{1}^{2}}\left[T_{1, j+1}^{n}-2 T_{1, j}^{n}+T_{1, j-1}^{n}\right]+ \\
& G \cdot F+\left(W+U_{a}\right) \cdot \Psi\left[T_{z}^{a+\frac{1}{2}}-T_{a v}\right]+U_{v} \cdot T\left[T_{v}^{n+\frac{1}{2}}-T_{a v}\right] \tag{A.1}
\end{align*}
$$

where T_{av} is a time-average tissue temperature given generally by:

$$
\begin{equation*}
T_{a v}=\frac{T^{n+\frac{1}{2}}+T}{2} \tag{A.2}
\end{equation*}
$$

The specific conditions at the various nodal points are now substituted into Equation (A.1).

Center i-node; regular j-node

In order to satisfy the adiabatic condition specified for this boundary, Equation (14), and to retain a truncation error of the order of $\mathrm{O}\left(\mathrm{h}_{r}^{2}\right)$, a central-difference numerical approximation is employed:

$$
\begin{equation*}
\frac{\partial T}{\partial r}-\frac{T_{i+1, j}-T_{i-1, j}}{2 h_{T}}=0 \tag{A.3}
\end{equation*}
$$

(1) center i; regular j
(2) external i; regular j
(3) regular and interface i; regular j
(4) regular i; end j
(5) external i; end j
(6) center i; end j
(7) interface i; end j

Figure Ai: Identification of nodal points in the numerical grid
with geometrical details shown in Fig. A.2. It follows from Equation (A.3):

$$
\begin{equation*}
T_{1+1}=T_{1-1} \quad I_{1}=I_{0}=0 \tag{A.4}
\end{equation*}
$$

which yields upon substitution into Equation (A.1):

$$
\begin{align*}
& T_{i-1}^{n+\frac{1}{2}}\{0\}+T^{a+\frac{1}{2}}\left\{1+\frac{\alpha}{a_{b}} \frac{2 \delta}{b_{r}^{2}}+\frac{\delta \cdot \Psi\left(W+D_{a}+D_{v}\right)}{2}\right\}+T_{i+1}^{n+\frac{1}{2}}\left\{-\frac{\alpha}{a_{b}} \frac{2 \delta}{h_{r}^{2}}\right\} \\
&=T_{y-1}\left\{\frac{\delta}{a^{2} h_{z}^{2}}\right\}+T\left\{1-\frac{2 \delta}{a^{2} h_{z}^{2}}-\frac{\delta \cdot \Psi\left(W+U_{a}+U_{v}\right)}{2}\right\}+T_{y+1}\left\{\frac{\delta}{a^{2} h_{z}^{2}}\right\} \\
&+\delta \cdot \Psi\left\{g+\left(W+U_{a}\right) T_{a}^{n+\frac{1}{2}}+U_{v} T_{v}^{n+\frac{1}{2}}\right\}
\end{align*}
$$

External i-node; regular j-node

The boundary condition to be satisfied at these nodes is Equation (15). The numerical approximation to this equation, depicted in Fig. A.3, which retains the desired truncation error, is:

$$
\begin{equation*}
\frac{\partial T}{\partial r}=\frac{T_{i+1}-T_{i-1}}{2 h_{r}}=B i\left(T_{0}-T_{i}\right) \tag{A.6}
\end{equation*}
$$

which yields:

$$
\begin{equation*}
T_{1+1}=T_{i-1}+2 \cdot h_{x} \cdot B i\left(T_{0}-T_{1}\right) \tag{A.7}
\end{equation*}
$$

Next, a correction is applied to the equivalent tissue temperature at the external node to account for the difference in the heat exchange with capillary perfusion [25]:

$$
\begin{equation*}
T_{o q}=\frac{T_{t-1}}{4}+\frac{3}{4} T_{1} \tag{A.8}
\end{equation*}
$$

Figure A2: Schematic diagram of the center node

$$
---------i+1
$$

Figure A3: Schematic diagram of the external-regular node

Substitution of Equations (A.7) and (A.8) into Equation (A.1) obtains:

$$
\begin{align*}
& T_{i-1}^{n+\frac{1}{2}}\left\{-\frac{2 \delta}{h_{r}^{2}} \frac{a}{\alpha_{b}}+\frac{\delta \cdot T \cdot\left(W+D_{a}+D_{v}\right)}{8}\right\}+ \\
& T^{n+\frac{1}{2}}\left\{1+\frac{\alpha}{a_{b}} \frac{2 \delta}{h_{r}^{2}}+\frac{\alpha}{a_{b}} \delta\left(1+\frac{2}{h_{r}}\right) B i+\frac{3 \cdot \delta \cdot F \cdot\left(W+U_{a}+U_{v}\right)}{8}\right\}+T_{i+1}^{n+\frac{1}{2}}\{0\}= \\
& T_{f-1}\left\{\frac{\delta}{a^{2} h_{z}^{2}}\right\}+T\left\{1-\frac{2 \delta}{a^{2} h_{z}^{2}}-\frac{3 \cdot \delta \cdot \Psi \cdot\left(W+U_{a}+\sigma_{v}\right)}{8}\right\}+T_{J+1}\left\{\frac{8}{a^{2} h_{z}^{2}}\right\}+ \\
& \delta \cdot T\left\{q+\left(W+U_{a}\right) \cdot\left[T_{a}^{n+\frac{1}{2}}-\frac{1}{8} T_{i-1}\right]+\sigma_{V}\left[T_{\nabla}^{n+\frac{1}{2}}-\frac{1}{8} T_{i-1}\right]\right\}+ \\
& \frac{a}{a_{b}} \delta\left(1+\frac{2}{h_{z}}\right) T_{0} \cdot B i \tag{A.9}
\end{align*}
$$

Interface i-node; regular j-node

(including a regular i -node; regular j -node by setting $\gamma=1$)

Interface nodes define the boundaries between the various compartments, or organs, of the limb model, e.g., core-muscle interface, etc. Numerically the subdivisions in each of the compartments may be different depending on the extent of any specific compartment and the desired numerical details. Additionally, tissue properties generally vary among compartments which further justifies the definition of these interfaces. Figure A. 4 depicts the interface region between two adjacent tissue compartments in the radial direction. The ratio of the subdivision immediately preceding the interface to that following it, is defined by:

$$
\begin{equation*}
\boldsymbol{\gamma}=\frac{\boldsymbol{h}_{\boldsymbol{r}}^{-}}{\boldsymbol{h}_{\boldsymbol{r}}^{+}} \tag{A.10}
\end{equation*}
$$

for simplicity, the superscripts in Equation (A.10) are omitted with the convention:

$$
\begin{equation*}
h_{x} \equiv b_{x}^{-}=I_{i}-x_{i-1} \tag{A.11}
\end{equation*}
$$

Figure A4: Schematic diagram of the interface node

The following numerical approximations are used in order to retain a truncation error of order $\mathrm{O}\left(\mathrm{h}_{\mathrm{r}}^{2}\right)$ [10]:

$$
\begin{align*}
& \frac{\partial^{2} T}{\partial r^{2}}=\frac{1}{h_{r}^{2}}\left\{\frac{2 \gamma}{1+\gamma} T_{1-1}-2 \gamma T+\frac{2 \gamma^{2}}{1+\gamma} T_{1+1}\right\}+O\left(h_{x}^{2}\right) \tag{A.12}\\
& \frac{\partial T}{\partial r}=\frac{1}{2 h_{r}}\left\{\frac{-2}{1+\gamma} T_{i-1}+2(1-\gamma) T+\frac{2 \gamma^{2}}{1+\gamma} T_{1+1}\right\}+O\left(h_{x}^{2}\right) \tag{A.13}
\end{align*}
$$

After Equations (A.10) - (A.13) are substituted into Equation (A.1), the following expression is obtained:

$$
\begin{align*}
& T_{I-1}^{n+\frac{1}{2}}\left\{-\frac{\alpha}{a_{b}} \frac{\delta}{h_{r}(1+\gamma)}\left[\frac{2 \gamma}{h_{r}}-\frac{1}{r_{i}}\right]\right\}+ \\
& T^{n+\frac{1}{2}}\left\{1+\frac{\alpha}{a_{b}} \frac{\delta}{h_{r}}\left[\frac{2 \gamma}{h_{r}}-\frac{1-\gamma}{r_{1}}\right]+\frac{\delta \cdot F\left(W+U_{a}+U_{v}\right)}{2}\right\}+ \\
& T_{i+1}^{n+\frac{1}{2}}\left\{-\frac{\alpha}{a_{b}} \frac{\delta \cdot \gamma^{2}}{h_{x}(1+\gamma)}\left[\frac{2}{h_{r}}+\frac{1}{I_{i}}\right]\right\}= \tag{A.14}\\
& T_{y-1}\left\{\frac{\delta}{a^{2} h_{z}^{2}}\right\}+T\left\{1-\frac{2 \delta}{a^{2} h_{z}^{2}}-\frac{\delta \cdot \Psi\left(W+U_{a}+U_{v}\right)}{2}\right\}+ \\
& T_{j+1}\left\{\frac{\delta}{a^{2} h_{z}^{2}}\right\}+\delta \cdot \Psi\left\{q+\left(W+U_{a}\right) T_{a}^{n+\frac{1}{2}}+U_{v} T_{v}^{n+\frac{1}{2}}\right\}
\end{align*}
$$

End j-node; regular i-node

In the present analysis it is assumed that the major blood vessels terminate (artery) and originate (vein) in the j-node immediately preceding the end j-node, as depicted in Fig. A. 5. Thus, heat exchange with the circulatory system is performed at this node with the capillary bed only. The boundary condition at this node is Equation (17) which is approximated by:

$$
\begin{equation*}
\frac{\partial T}{\partial z}=\frac{T_{j+1}-T_{j-1}}{2 h_{z}}=B i_{1}\left(T_{0}-T_{f}\right) \tag{A.15}
\end{equation*}
$$

Figure A5: Schematic diagram of the end j - regular i node
which is rewritten as:

$$
\begin{equation*}
T_{f+1}=T_{f-1}+2 b_{x} B 1_{1}\left(T_{0}-T_{f}\right) \tag{A.16}
\end{equation*}
$$

yielding, following substitution into Equation (A.1):

$$
\begin{gather*}
T_{i-2}^{n+\frac{1}{2}}\left\{-\frac{a}{a_{b}} \frac{\delta}{h_{r}}\left[\frac{1}{h_{r}}-\frac{1}{2 I_{i}}\right]\right\}+T^{n+\frac{1}{2}}\left\{1+\frac{a}{a_{b}} \frac{2 \delta}{h_{r}^{2}}+\frac{8 \cdot F \cdot W}{2}\right\}+ \\
T_{i+1}^{n+\frac{1}{2}}\left\{-\frac{\alpha}{a_{b}} \frac{\delta}{h_{x}}\left[\frac{1}{h_{r}}+\frac{1}{2 I_{1}}\right]\right\}= \tag{A.17}\\
T_{j-1}\left\{\frac{2 \delta}{a^{2} h_{z}^{2}}\right\}+T\left\{1-\frac{2 \delta}{a^{2} h_{z}^{2}}\left[1+h_{z} B i_{1}\right]-\frac{8 \cdot F \cdot W}{2}\right\}+ \\
T_{y+1}\{0\}+\delta \cdot T\left\{G+W T_{a}^{n+\frac{1}{2}}\right\}+8 \frac{2 B I_{2} T_{0}}{a^{2} h_{z}}
\end{gather*}
$$

End J-node; external I-node

At this node, which is depicted in Fig. A.6, Equations (15), (17) (or their approximations Equations (A.7) and (A.16)\} and the modification given by Equation (A.8) are to be satisfied. Additionally the major blood vessels origination-termination assumption is also applied to yield:

$$
\begin{align*}
& q_{1-2}^{n+\frac{1}{2}}\left\{-\frac{E}{E_{b}} \frac{28}{b_{2}^{2}}+\frac{8 \cdot F \cdot M}{8}\right\}+ \\
& T^{n+\frac{1}{2}}\left\{1+\frac{a^{2}}{a_{b}} \frac{28}{h_{r}^{2}}+\frac{a_{b}}{a_{b}} \delta\left[1+\frac{2}{h_{y}}\right] B 1+\frac{3 \cdot 8 \cdot I \cdot M}{8}\right\}+m_{1+1}^{2+\frac{1}{2}}\{0\}= \\
& r_{j-1}\left\{\frac{28}{a^{2} b_{z}^{2}}\right\}+T\left\{1-\frac{28}{a^{2} h^{2}}\left[1+h_{g} B_{1}-\frac{3 \cdot 8 \cdot F \cdot m}{8}\right]\right\}+T_{j+1}\{0\}+ \tag{A.18}
\end{align*}
$$

End j-node; center i-node

At this node both Equations (A.4) and (A.16) apply to yield:

$$
\begin{gather*}
T_{1-1}^{n+\frac{1}{2}}\{0\}+T^{n+\frac{1}{2}}\left\{1+\frac{\alpha}{a_{b}} \frac{2 \delta}{h_{r}^{2}}+\frac{\delta \cdot \Psi \cdot W}{2}\right\}+T_{1+1}^{n+\frac{1}{2}}\left\{-\frac{\alpha}{a_{b}} \frac{2 \delta}{h_{x}^{2}}\right\}= \\
T_{y-1}\left\{\frac{2 \delta}{a^{2} h_{z}^{2}}\right\}+T\left\{1-\frac{2 \delta\left(1+h_{z} B I_{1}\right)}{a^{2} h_{z}^{2}}-\frac{\delta \cdot T \cdot W}{2}\right\}+T_{y+1}\{0\}+ \tag{A.19}\\
\delta \cdot \Psi\left\{G+W T_{a}^{n+\frac{1}{2}}\right\}+\delta \frac{2 B 1_{1} T_{0}}{a^{2} h_{z}}
\end{gather*}
$$

Figure A6: Schematic diagram of the end j - external i node

End J-node; interface l-node

At this node Equations (A.12), (A.13) and (A.16) are substituted to yield:

$$
\begin{aligned}
& T_{i-1}^{n+\frac{1}{2}}\left\{-\frac{\alpha}{E_{b}} \frac{8}{h_{r}(1+\gamma)}\left[\frac{2 Y}{h_{r}}-\frac{1}{I_{i}}\right]\right\}+ \\
& T^{n+\frac{1}{2}}\left\{1+\frac{a}{a_{b}} \frac{\delta}{h_{r}}\left[\frac{2 Y}{h_{I}}-\frac{1-Y}{r_{1}}\right]+\frac{\delta \cdot F \cdot W}{2}\right\}+ \\
& T_{1+1}^{n+\frac{1}{2}}\left\{-\frac{a}{\alpha_{b}} \frac{8 \gamma^{2}}{h_{r}(1+\gamma)}\left[\frac{2}{h_{r}}+\frac{1}{I_{1}}\right]\right\}= \\
& T_{j-1}\left\{\frac{28}{a^{2} h_{z}^{2}}\right\}+T\left\{1-\frac{2 \delta}{a^{2} h_{z}^{2}}\left[1+h_{z} B I_{1}\right]-\frac{8 \cdot T \cdot W}{2}\right\}+T_{y+1}\{0\}+ \\
& \delta \cdot \Psi\left\{q+W \cdot T_{a}^{n+\frac{1}{2}}\right\}+\delta \frac{2 \cdot B i_{1} \cdot T_{0}}{a^{2} h_{s}}
\end{aligned}
$$

APPENDIX B - Heat transfer coefficients for the major blood vessels

Under the assumptions of the present study the two major blood vessels, an artery and a vein, traverse each body element in the axial direction, Fig. 1. These vessels exchange heat with the surrounding tissue. Additionally under certain circumstances there may also be direct heat exchange between the two vessels. Mitchell and Myers [26] assumed that each one of these major vessels resides alone in the tissue. An improved assumption is due to Keller and Seiler [27] and Arkin and Shitzer [8] according to which an "influence volume" is defined by enclosing each vessel by a larger concentric cylinder, Fig. B.1. The conduction shape factor for this situation is given by [28]

$$
\begin{equation*}
S F_{1}=\frac{2 \cdot \pi \cdot \Delta L}{\ln \binom{R_{c}}{r_{\& \Omega \Sigma} v}} \tag{B.1}
\end{equation*}
$$

where R_{c} is the radius of the enclosing cylinder. As a first approximation this radius may be set as the half distance between the centers of the major blood vessels, D. Thus,

$$
\begin{equation*}
R_{c}=\frac{1}{2} D \tag{B.2}
\end{equation*}
$$

The amount of heat exchanged between any of these vessels and the surrounding tissue is now given by

$$
\begin{equation*}
g=\frac{2 \cdot \pi \cdot \bar{k} \cdot \Delta L}{\ln \left(\frac{R_{c}}{r_{a, 0 \mathrm{~V}}}\right)} \Delta T_{\text {overall }}^{*} \tag{B.3}
\end{equation*}
$$

where k is a volume weighted average value for tissue thermal conductivity given by

$$
\begin{equation*}
\bar{k}=\frac{1}{V} \int k d V \tag{B.4}
\end{equation*}
$$

and

Figure B1: Schumatic representation of an "influence" volume enclosing a major blood vessel

$$
\begin{equation*}
\Delta T_{\text {overall }}^{*}=T^{*}-T_{\text {veasel }}^{*} \tag{B.5}
\end{equation*}
$$

The integral in Equation (B.4) is performed numerically by the trapezoidal rule. The overall temperature difference in Equation (B.5) includes an average value, T , representing the tissue surrounding the blood vessel. This average tissue temperature is calculated by performing the integrations indicated in Equations (7) and (8). For these integrals a volummerric average heat transfer coefficient, u_{a} orv is required. This is obtained by "distributing" the overall heat transfer coefficient over the volume of the entire body element to obtain

The direct heat exchange between the artery and the vein may be approximated by assuming a conduction shape factor for two parallel cylinders exchanging heat, the centers of which are spaced by D [28], Fig. B2:

$$
\begin{equation*}
S F_{2}=\frac{2 \cdot \pi \cdot \Delta L}{\cosh ^{-1}\left(\frac{D^{2}-I_{a}^{2}-I_{v}^{2}}{2 \cdot I_{a} \cdot I_{v}}\right)} \tag{B.7}
\end{equation*}
$$

The overall heat transfer coefficient between these cylinders is given by

$$
\begin{equation*}
h_{a v}=\frac{2 \cdot \pi \cdot \bar{k} \cdot \Delta L}{\cosh ^{-1}\left(\frac{D^{2}-I_{a}^{2}-I_{v}^{2}}{2 \cdot I_{z} \cdot I_{v}}\right)} \tag{B.8}
\end{equation*}
$$

The distance between the centers of the two major blood vessels is usually known, or can be inferred, for any body element. For the purposes of the present computations we assume this distance to be given by four times the geometric average of the radii of these vessels [8]

$$
\begin{equation*}
D=4 \cdot\left(I_{a} \cdot I_{v}\right)^{\frac{1}{2}} \tag{B.9}
\end{equation*}
$$

Figure B2: Schematic diagram of an artery-vein pair
which yields upon substitution into Equation (B.8)

$$
\begin{equation*}
h_{a v}=\frac{2 \cdot \pi \cdot \bar{k} \cdot \Delta L}{\cosh ^{-1}\left(7-\frac{r_{a}^{2}+r_{v}^{2}}{2 \cdot r_{a} \cdot r_{v}}\right)} \tag{B.8}
\end{equation*}
$$

APPENDIX C - Program source code listing and operating instructions

Program Environment

1. Hardware requirements : 386 or 486 PC with a 80×87 math coprocessor.
2. TURBO PASCAL 6.0 installed and operating.
3. BGI directory loaded in the TP directory enabling the graphics interface to operate.
4. Option Switches -
A. COMPILE menu bar - DESTINATION set to disk.
B. OPTION menu bar - COMPILER set to the 8087 processing mode. MEMORY SIZE - STACK SIZE set to 65520.

The program consists of four files:

1. FINGER93.PAS is the main body of the program.
2. VAR_SP.PAS is a Turbo Pascal UNIT containing all global declarations.
3. TISUE_SP.PAS is a Turbo Pascal UNIT containing the procedures necessary to generate the coefficients for the tissue equations.
4. PHYS_FIN.PAS is a Turbo Pascal UNIT containing all procedures dealing with anatomical data.

The system of Pascal programs utilizing a main program which accesses three UNITS was necessary since files in TURBO PASCAL 6.0 cannot exceed 65 K bytes.
N.B. - all units must be re-compiled to disk each time changes are made to the code under consideration. Turbo Pascal requires that a *.TPU file exist on disk for each UNIT in the program. Consequently, the units must be recompiled each time the user makes changes to these files. Compiling these files with the destination switch set to menory will not create the necessary *.TPU files for the program to execute successfully. THE UNITS MUST BE COMPILED

Description of program Units

UNIT FINGER93.PAS \{ main program \}

1. Procedure Initialize;

Generates formula calculations for all values required by the program. Data for this procedure is acquired from the CONST section of UNIT VAR_SP.
2. Procedure Data_Dump;

Generates file output of initial and calculated data that wail be used by the program.

UNIT VAR_SP.PAS

This unit contains all CONSTant declarations, data TYPEs and VARiable declarations used by the program. For testing purposes, the initial values assigned in the CONSTant section may be altered. This area has been identified by the internal documentation. No changes should be made in the TYPE sections or the VAR sections since these will have a substantial impact on program execution. VAR_SP must be saved and recompiled to disk each time the test values are changed. This unit contains six sub-modules which function as utilities of calculation procedures for the generation of coefficients required by the tissue equations.

1. FUNCTION GAMMA

Calculates the gamma values as required.
2. PROCEDURE PAUSE_CRT

A utility that allows the user to halt the programs execution as required.
3. PROCEDURE DERIVE_CENTER_TEMP

Derives the temperature at $I=0$.
4. PROCEDURE DUMP_HALF_ARRAYS

Outputs the all values of the temperature arrays at the half time step.
5. PROCEDURE DUMP_T_ARRAYS

Outputs the all values of the temperature arrays.
6. PROCEDURE CALC_TA_TV_HALF

Calculates the values for arterial and venous temperatures. Variables TA_BAR, TV_BAR, TA_NODE, and TV_NODE are calculated here in preparation for the calculation of the S_VECTOR values.

UNIT TISUE_SP.PAS

1. Procedure Axial_Dir;

Imports the I and J coordinates, identifies the type of node using enumerated data types and calculates three coefficients for the given I, J location. These are stored in the ORIG_A_Z_COEF array which is used for tissue traversal in the Radial Direction to generate the constant term prior to accessing the code for Thomas' Algorithm.
2. Procedure Rad_Dir;

Generates coefficients utilizing the same approach described above. The coefficients are stored in array ORIG_A_R_COEF and are used in the axial traversal of the tissue matrix to generate the constant term prior to accessing the code for Thomas' Algorithm.
3. Procedure Establish_coef_arrays;

Driver block containing nested loops which call procedures 1 and 2 listed above, thereby loading the coefficient arrays.

4. Procedure Traverse;

Contains the following nested procedures:
a. Procedure Thomas;

Contains code for Thomas Algorithm.
b. Procedure First_Traverse_Radial;

Moves appropriate coefficients from arrays generated earlier into variables needed by Procedure Thomas. This procedure then calls the Thomas algorithm procedure and places the new temperatures into the tissue temperature matrix. A single dimension array is used as an intermediary data structure in order to hold the I, J coordinates and corresponding temperatures.
c. Procedure Second_Traverse_Axial;

Organized in the same manner as the First_Traverse procedure. This procedure traverses the temperature matrix in the Axial direction.
d. Main Block of Procedure Traverse;

Driver block for establishing the temperature matrix and nested looping structure for the number of time steps and print intervals.

UNIT PHYS_SP.PAS

This unit contains the following five procedures:

1. PROCEDURE Anatomical_Input;
2. PROCEDURE Num_Divisions;

These procedures load variables with the necessary anatomical data.
3. PROCEDURE Width_Calculation;

Determines the width of each organ, H - values and gamma values.
4. PROCEDURE Est_Interfaces;

Establishes the location of the organ interfaces and stores them in a data structure of type SET.
5. PROCEDURE Create_Arrays;

Establishes a set of values for each organ and a series of arrays containing R_i and Hr - values indexed to each I location.

OUTPUT FILES

The following two external output files are automatically created when the program is executed.

1. D_VALUES.DAT

File contains a listing of all significant values used during the current program run. Some of these are echo prints of values entered in the CONST section of VAR_SP.PAS, while others are the result of formula calculations.
2. R_TEMPS.DAT

This file contains a printout of the time step, arterial, venous, and tissue temperatures generated of at each time step, at user determined intervals during program execution.

OVERVIEW OF PROGRAM OPERATION

1. Prior to running the program, be certain that the following programming conditions have been established:
A. Turbo Pascal has been properly installed with all the BGI files in the BGI directory within the TP directory.
B. COMPILE menu bar DESTINATION has been set to DISK.
C. OPTIONS menu bar has been processor.
2. Changing program parameters:
A. Accessible Parameters are found in the VAR_SP.PAS program unit. These have been separated from the rest of the code by the following sets of comments:

B. The parameters within the CONTROL POINT SECTION include:

GC_DELTA_SEC \{ delta value in seconds \}
GC_LENGTH and GC_DIAMETER \{ in centimeters \}
Radial Divisions
Axial Divisions
TA, TV, TISSUE_TEMP, ENVIRONMENTAL_TEMP, and NORMALIZING_TEMP \{ in Degrees C.\}

BASAL METABOLIC RATES
BASAL BLOOD FLOW RATES

VARIABLES IN OTHER SECTIONS OF THE CODE MUST NOT BE ALTERED!
3. When changes are made to any of the above listed parameters, the program must be re-compiled to disk before execution in order to generate the appropriate *.TPU files.
N.B. - Turbo Pascal imposes a 65 K constraint with respect to variable memory utilization. A compiler error will occur if the radial and axial division entries generate an excessively large tissue matrix.
\{ ERROR 96 - TOO MANY VARIABLES \}
To avoid this problem it is recommended that the following limitations be observed:

TOTAL AXIAL DIVISIONS $<=12$ TOTAL RADIAL DIVISIONS $<=10$
4. DELTA VALUE - The access point for delta is through variable GC_DELTA_SEC which is usually represented as a fraction of a second. The program uses GC_DELTA_SEC to calculate a USER DETERMINED normalized delta value for program execution. The code also calculates a PROGRAM DETERMINED normalized delta value which is the MAXIMUM value for delta based on the existing program parameters. The USER DEFINED value must be less than or equal to the PROGRAM DETERMINED maximum delta value for the program to function effectively. However, if time constraints are important, the USER DEFINED delta value may slightly exceed the program determined maximum delta. The numerical integrity of the program results are directly influenced by the size of the USER DEFINED delta value. There will be an obvious breakdown in the numeric output if the USER DEFINED delta value is too large.

5. APPROXIMATE RUNNING TIME :

Hardware: $\quad 486 \mathrm{PC}$ running at 33 MHz
Axial Divisions:
10
Radial Divisions: 13
Running Time: $\quad 20,000$ time steps takes approximately 18 minutes.

Running the Program

1. Be sure that the TURBO PASCAL 6.0 environment has been properly configured.
a. Compller and Option switches have been properly set. (see Program Environment.)
b. FINGER93.PAS, VAR_SP.PAS, PHYS_SP.PAS, TISUE.PAS files currently reside in the TP directory.
c. FINGER93.PAS, VAR_SP.PAS, PHYS_SP.PAS, TISUE.PAS files have been opened on the TURBO PASCAL DESKTOP.
2. If any of the CONTROL POINT parameters are to be changed, use the mouse to double click on the VAR_SP.PAS to bring the program text into the editor.
a. Change values in the CONTROL POINT SECTION.
b. Compile VAR_SP.PAS to disk.
c. If no compilation errors exist, double click on VAR_SP.PAS to exit and return to the desktop.
3. Single click on FINGER93.PAS.
4. Click RUN on the menu bar and click RUN on the pull down menu OR press <CTRL> F9 to execute the program.
5. Press <RETURN $>$ at the title screen.
6. Check the USER DETERMINED DELTA value against the PROGRAM DETERMINED MAXIMUM DELTA value.
a. The value for GC_DELTA_SEC which was entered in the CONTROL POINT section of UNIT VAR_SP.PAS is used to calculate the delta value which will be accessed by the program. The program also determines a maximum acceptable delta value under the existing parameters. It is essential that the USER DETERMINED DELTA value does not exceed the PROGRAM DETERMINED MAXIMUM DELTA value.
b. At the time step prompt enter a number 1.
c. At the interval prompt enter a number 1 .
d. USER DETERMINED DELTA and the PROGRAM DETERMINED MAXIMUM DELTA values will appear on the screen. Be sure that the USER DETERMINED DELTA is less than or equal to the PROGRAM DETERMINED MAXIMUM DELTA value.
e. After checking the relationship between the USER DETERMINED DELTA and the PROGRAM DETERMINED DELTA follow the prompts at the bottom of the screen pressing <RETURN> until program execution terminates.
f. If the USER DETERMINED DELTA is greater than the PROGRAM DETERMINED DELTA, repeat steps 2 and 3 using a smaller GC_DELTA_SEC value until the correct relationship is obtain between the USER DETERMINED DELTA and the PROGRAM DETERMINED MAXIMUM DELTA values. DO NOT proceed to STEP 7 unless a valid DELTA value has been obtained.
7. Click on program FINGER93.PAS and then press <CTRL> F9 to begin executing the program for the desired time interval.
a. At the time step prompt, enter the desired number of total times steps for the program run. TOTAL TIME STEPS $=$ total clock minutes * 60 / GC_DELTA_SEC
b. At the interval prompt, enter the time step interval at which to display data on the screen and send data to output file R_TEMPS.DAT

INTERVAL = interval minutes * 60 / GC_DELTA_SEC
c. GC_DELTA_SEC $=0.08$
total clock minutes $=62$ minutes
print interval $=\quad 1$ minute
TOTAL TIME STEPS $=46500$
INTERVAL = 750
7. When the program begins execution, a time step counter appears on the screen. Temperature output to both screen and file R_TEMPS.DAT will occur at the time step INTERVAL established in step 6. Follow the prompts at the bottom of the screen to continue execution or to view the graph of the important temperatures generated at the established INTERVAL.
8. Upon program completion, two files will have been created in the TP directory:
a. File D_VALUES.DAT contains the CONTROL POINT values used in program run as well as formula calculations.
b. File R_TEMPS.DAT contains the information that was printed to the screen at the established INTERVALS during the program run.
c. To view these files on the screen use the MS-DOS TYPE command.

PROGRAM SOURCE CODE LISTINGS

1. FINGER93.PAS

```
{..
    program description : A numerical solution for the thermal
                                    exchange of extremities in a cold environment
                                    based on the model developed by Dr. Avraham Shitzer.
    written for : USARIEM, Natick
    written by : Paul Vital
    language : PASCAL 6.0
    WORKING COPY --- FINGER v3.0 - AUGUST 27, 1993
PROGRAM FINGER_93 (INPUT,OUTPUT);
USES
    var_sp, phys_sp, tisue_sp, DOS, CRT, PRINTER;
PROCEDURE DESTINATION;
            {......... determines output channel printer/crt.
                ...................
    BEGIN
        CLRSCR;
        ASSIGNCRT (F);
        REWRITE (F);
        ASSIGN(F2,'D VALUES.DAT');
        REWRITE(F2);
        ASSIGN (OUT DATA, 'R TEMPS.DAT');
    REWRITE (OUT_DATA);
    END;
PROCEDURE DATA DUMP;
    {...prints axial and radial coefficients as well as results of
        all formula initializations.
        .}
    VAR
        INDEX,I,J : INTEGER;
        H_TOTAL : REAL;
    BEGINN (* data_dump *)
        CTRSTR;
        WRITE ('DUMP DATA [Y, N1 ? ');
        IF UPCASE (READKEY) = 'Y' THEN
            BEGIN
                WRITELN (F2, 'DATA DLMP' : 47);
                    WRITEIN (F2);
                WRITE (F2,'PHYSICAL LENGIH = ');
                WRITELN (F2,LEN : 10:7, 'meters' : 10);
                WRITELN (F2,'DIAMETER' = ':20, DIAM : i0:7,'meters' : 10);
                WRITEEN (F2);
            WRITELN (F2, 'Radii of artery and vein {umits = meters }');
                WRITEIN (F2, 'RA = ':10,RA:7:4);
                WRITETN (F2, 'R_V = ':10,R_V:7:4);
                    WRITEELN (F2);
                WRITEIN(F2);
                WRITEIN (F2,'INITIAL VALUES -----------------------------------------
```

```
WRITELN (F2);
WRITETN (F2, 'TA = ':25, TA :3);
WRITETN (F2, 'TV = ':25, TV :3);
WRITEIN (F2, 'Tissue temperature = ':25, mesh_TEMP:3);
WRITELN (F2);
WRITEXN (E2,' Envirommental temperature = ', t 0 * nommalizing_temp:4:2);
WRITEIN (F2, 'W values {units = kg. blood / Cu.m tissue / sec }');
WRITELN (F2, 'CORE':28, Core blood meters :10:3);
WRITEIN (F2, 'MUSCIE':28, mus blood mete. 3 :10:3);
WRITEIN (F2, 'FAT' :28, fat bIood méters:10:3);
WRITELN (F2, 'SKIN' :28, skin_bloōd_meters :10:3);
WRITEEN (F2);
WRITEEN (F2, 'organ radius to finger ratio {R_i/R }');
WRITEIN (F2, 'OORE RATIO':28, core ratio :10:4);
WRITEIN (F2, 'MUSCIE RATIO':28, muscle ratio :10:4);
WRITEIN (F2, 'FAT RATIO':28, fat ratio:10:4);
WRITESN (F2, 'SKIN RATIO':28, skin__ratio:10:4);
WRITELN (F2);
WRITEIN (F2,'thermal conductivity {units = Watt /m / deg.C }');
WRITELN (F2, 'CORE THERM CON':28, core, therm con :10:3);
WRITFIN (F2, 'MUE OE THER M CON':28, mis_therm_con :10:3);
WRITEIN (F2, 'FAT THERM CON':28, fat therm con-:10:3);
WRITEEN IF2, 'SKIN IHEKM CON':28, skin therm con :10:3);
WRITELN (F2, 'BLOOD THERM CON' 28, blood_therm_con :10:3);
WRITELN (F2);
WRITEIN (F2,' 'heat capacity { units = J / kg / deg. C }');
WR-TELN (F2, 'CORE HIEAT CAP':28, core heat_cap : 10:2);
WRITE"N (F2, 'MUSCIE HEAT CAP':28,mus_heat_Cap :10:2);
WRITL N (F2, 'FAT HEAT CAP':28, fat heat cap:10:2);
WRITELN (F2, 'SKIN HEAT CAP':28, skin heāt_cap :10:2);
WRITELN (F2, 'BLOOD HEAT CAP':28, bloōd_heät_cap :10:2);
WRITEIN (F2);
WRITEIN (F2,'density {units = kg / cu. m }');
WRITEIN (F2, 'CMRE DENSITY':28, core density :10:2);
WRITEIN (F2, 'MU, ILE DENSITY':28, mus̃_density :10:2);
WRITELN (F2, 'FAT DENSITY':28, fat deñsity :10:2);
WRITELN (F2, 'SKIN DENSITY':28, skin_density :10:2);
WRITIEIN (F2, 'BLOOD DENISTY':28, blo\overline{Od_density :10:2);}
WRITELN (F2);
WRITELN (F2, 'M = ',M);
WRITEEN (F2, 'N = ',N);
WRITELN (F2);
WRITEIN (F2;'CORE MUSCLE INTERFACE EXISTS AT I VALIE OF ', I_CORE_MUS);
WRITELN (F2);
WRITELN (F2, 'MUSCLE-FAT INIERFACE EXISTS AT I VAUUE OF ',I_MUS_FAT);
WRITELN (F2);
WRITEIN (F2, 'FAT-SKIN INIERFACE EXISTS AT I VALUE OF ',I_FAT_SKIN);
WRITELN (F2);
WRITEIN (F2, 'SKIN SURFACE EXISTS AT I VALUE OF ', SKIN_SURFACE);
WRITEEN (F2);
```


(* DUMP FORMULA CALCULATIONS *)

```
WRITELN (F2, 'FORMULA CALCULATIONS':50);
WRITELN (F2);
WRITELN (F2,'DELTA sec = ',DELTA sec:13:10, ', secs');
WRITELN (F2, 'DELTA'= ',DELTA:13:IO, ' normalized');
WRUTETN '12,'PROGRAM CAICULATED MAXIMMM DELTA VALUE = ', MAX_DELTA : 20:15);
WRITEIN (F2,'USER DETERMINED delta = ',DELTA:20:15);
WRITEIN (F2);
WRITEIN (F2,'A_a = ', a_a:20:10);
WRITETN (F2,'A-v = ', a_v:20:10);
WRITEIN (F2);
WRITE (F2, '****** subscript locations are one greater than');
WRITEIN (F2,' tissue location *****');
WRITEEN (F2);
FOR I := 1 TO N DO
    BEGIN
    WRITE (F2, 'Q ARRAY PHYS[',I,'] = ',Q ARRAY PHYS[I]:15:10);
    WRITELN (F2,'Tq_array_nml' [':20,i,''丁 = ',q_array_nrmi [i]:15:10);
    END;
WRITELN (F2);
```

```
        WRITEIN (F2, 'U a phys = ',U a phys :12:5,'U a = ':10,U a :12:5);
        WRITENN (F2, 'U_v_phys = ',U_v_phys :12:5,'U_v = ':10,U_v :12:5);
        WRIIEIN (F2);
        *RITEIN (F2, 'K_AVG = ', K_AVG : 20:15);
    WRITENLN (F2);
    WRITEIN (F2,'HANVPHYS = ', HA N EHYS : 20:15);
    WRITENN (F2, 'Ha-v}= ', hav \ \ I2%5);
    WRITEIN (F2,'H_V_a = ', H_V_a : 12:5);
    WRITETN (F2);
    FOR I := 1 TO N DO
        BEGIN
            WRITE (F2,'w b nrml [',I,'] = ',w_b_nrml [ I ]:10:6);
            WRITEMN (F2,Tw_array [':20, I, ']='',w_array [I ]:10:6);
        END;
    WRITEIN (F2);
    WRITEIN (F2,'capillary loss data :');
    WRITEIN (F2,' caplllary sum = ', capil sum:20:10);
    WRITENN (F2,' capillary loss = ', capillary loss:20:10);
    WRITEIN (F2,' starting MA = ', start_m_a:20:10);
    WRITELN (F2);
    FOR J := 1 TÓ M DO
        BEGIN
        KRITE (F2, 'ma [',J,'] = ',ma[J]:20:14);
        WRITEIN (F2, 'm_v [':20,J,'']=,'m_v[J]:20:14);
        END;
    WRITIEIN (F2);
    WRITEIN (F2,'w_b normalizing_val = ',W_b_normalizing_val : 20:14);
    WRITETN (F2);
    WRITEIN (F2, 'H1= ', H1: 10:4);
    WRITEIN (F2, 'H_C = ', H_C: 10:4);
    WRITETN (F2);
    WRITELN (F2,'B_i_C = ', B_i:20:14);
    WRITEILN (F2);
    FOR INDEX := 1 TO N DO
        WRITEIN (F2,'B_i_1 [',index,'] = ',P_I_1[INDEX]:10:8);
    WRITESN (F2);
    END;
END; (* data dump *)
(*====ッ=================== FORMULAS & TRAVERSAL PROCEDURES ======================**)
FUNCTION PLACE ( I: INTEGER) : ORGAN;
\{..........translates I value to enumerated datatype used to access organ_values array........................
```


BEGIN

```
IF I IN CORE SET THEN
PLACE := CCORE
ELSE
IF I IN MUS SET THEN
PLACE := PMUSCLE
EISE
IF I IN FAT SET THEN
PLACE := FFAT
EISE
IF I IN SKIN SET THEN
PLACE := SSKIN;
END: (* place*)
PROCETOURE TEMP_INITIALIZE;
```


VAR

```
I,J : INTEGER;
SUM : EXTENDED;
BEGIN
```

```
    (* initialize temperature array *)
    FOR I := O TO N DO
        FOR J:=1 TO M DO
            TEMP_GRID [I,J] := MESH_TEMP / NORMALIZING_TEMP;
        (* initialize and normalize venus and arterial temp arrays *)
            (* assign t a node and calculate_v_node *)
    FOR J := 1 TO M-I DO
    t_a_node [J] := TA / NORMALIZING_TEMP;
        SUM := 0.0;
        FOR J := M-1 TO M DO
        FOR I :=1 TO N DO
            SUM := SUM + TEMP_GRID[I,J];
        T_V_NODE[M-1] := SUM / (N * 2);
        (* m-2 is original start point *)
            for j := m-1 downto I do
            t_v_node [j] := TV / NORMALIZING_TEMP;
        (* initialize t_v_bar, t_a_bar srrays *)
        FOR J := 2 TO M-1 DO
            T_A_BAR [J] :=0.5 * (T_A_NODE [J-1] + T_A_NODE [J]);
    FOR J :=-2 TO M-1 DO
            T_V_BAR [J] := 0.5 * (T_V_NODE [J-1] + T_V_NODE [J]);
        (* assign dummy values to unused array elements *)
        t_a_bar[m] := -9999.9;
(* -t_v_bar[m] := -9999.9; *)
                t_ a_nōde[m] := -9999.9;
(* t_v_node[m] := -9999.9; *)
TA := TA BAR;
T-V := T_VBAR;
old t_a_node := t_a node;
old_t_v_node := t_v_node;
END; (* TEMP_INITIALIZE *)
```

PROCETDIRE INITIALIZE;

```
{............initializes all necessary formula calculations
                and temperature values..........................
```

VAR

```
    I, J : INTEGER;
    I IOC : ORGAN;
    T\overline{OTAL, total a, total_v, SUM, UaSQRT, UVSQRT, EXP1, GAMM : extended;}
    index : orgañ;
    function hyperbol_cos (x : extended):extended;
        { inverse hyperbolic cosine function, used to calculate H_a_v }
        var
        val, el,e2,e3 : extended;
        function power (base : extended; exp : integer):extended;
            var
                index : integer;
                temp : extended;
        begin
                term := 1;
```

```
            for index := 1 to exp do
                temp := temp * base;
            power := temp;
        end; (* power *)
    begin (* hyperbol cos *)
    el := 1/ (2 * Sof (x));
    e2 := 1/(4 * PONER (x,4));
    e3 := 1 / (6 * POWER (x,6));
    val := IN (2 * x) - (1/2) * e1 - (3/8) * e2 - (15/48) * e3;
    hyperbol cos := val;
end; (* hyperbol_cos *)
BEGIN (* initialize *)
(* INITIIALIZE ORGAN VALLE ARRAYS USING VALJES FROM CONST BLOCK
        themal conductivity *)
ORG VALS [CCORE].THERM CON := core therm con;
ORGVALS [MMUSCLE].THERM CON := mu\overline{s}}\mathrm{ therm
ORGVAIS [FFAT].THERM CON := fat_therm_con;
ORGTVAIS [SSKIN]. THERMM CON:= skin therm con;
ORG_VALS [BBLOOD].THEPM_CON := blO\overline{Od_therm_con;}
    (* heat capacity *)
ORG VALS [CCORE].HEAT CAP := core heat cap;
ORGVALS [MMUSCIE].HEAT CAP := mus heaE cap;
ORGVALS [FFAT].HEAT CAP := fat heat cap;
ORG VALS [SSKIN].HEAF CAP := skin_heaE_cap;
ORG_VALS [BBLOOD].HEAT_CAP := blood_heāt_cap;
(* density *)
```

```
ORG VALS [CCORE].DENSITY := cOre density;
```

ORG VALS [CCORE].DENSITY := cOre density;
ORGVALS [MMUSCLE].DENSITY := mus_density;
ORGVALS [MMUSCLE].DENSITY := mus_density;
ORG VAIS [FFAT].DENSITY := fat deñsity;
ORG VAIS [FFAT].DENSITY := fat deñsity;
ORG VALS [SSKIN].DENSITY := skIn density;
ORG VALS [SSKIN].DENSITY := skIn density;
ORG_VAIS [BBLOOD].DENSITY := bloOd_density;
ORG_VAIS [BBLOOD].DENSITY := bloOd_density;
(* basal metabolic rate *)
(* basal metabolic rate *)
ORG VALS [CCORE] .METAB := core_metab;
ORG VALS [CCORE] .METAB := core_metab;
ORG VALS [MMUSCIE].METAB := mu\overline{s}}\mathrm{ metab;
ORG VALS [MMUSCIE].METAB := mu\overline{s}}\mathrm{ metab;
ORG_VALS [FFAT].METAB := fat metab;
ORG_VALS [FFAT].METAB := fat metab;
ORG-VALS [SSKIN].METAB := skin metab;
ORG-VALS [SSKIN].METAB := skin metab;
ORG_VALS [BBLOOD].METAB := -9999; (* -9999 is a filler value *)
ORG_VALS [BBLOOD].METAB := -9999; (* -9999 is a filler value *)
(* establish basal blood flow rate in cubic mevers *)

```
```

ORG VALS [CCORE] MEIERS BAS BLOOD := core blood meters;

```
ORG VALS [CCORE] MEIERS BAS BLOOD := core blood meters;
ORGVALS [MMUSCLE] .METERS BAS BLOOD := muS_blood meters;
ORGVALS [MMUSCLE] .METERS BAS BLOOD := muS_blood meters;
ORG VALS [FFAT] METERS BAS BLDOD := fat blood meEers;
ORG VALS [FFAT] METERS BAS BLDOD := fat blood meEers;
ORG_VAIS [SSKIN] .METERS RAS BLOOD := skin bloÖ_meters;
ORG_VAIS [SSKIN] .METERS RAS BLOOD := skin bloÖ_meters;
ORG_VALS [BBLOOD].METERS_BAS_BLOOD := -9999;
ORG_VALS [BBLOOD].METERS_BAS_BLOOD := -9999;
(* establish A_a and A_v Values *)
(* establish A_a and A_v Values *)
A_a := SQR (PHYS_RAD / Ra);
A_a := SQR (PHYS_RAD / Ra);
    (* establish normalizing value for w_b *)
    (* establish normalizing value for w_b *)
W_b_nonmalizing_val := (SQR (PHYS RAD) * ORG_VALS [BBLOOD].HEAT_CAP) /
W_b_nonmalizing_val := (SQR (PHYS RAD) * ORG_VALS [BBLOOD].HEAT_CAP) /
                        ORG_VAIS [BBLOOD].THERM_CON;
                        ORG_VAIS [BBLOOD].THERM_CON;
    (* establish blood alpha *)
```

 (* establish blood alpha *)
    ```
```

 BL_ALPHA := ORG VALSS [BBLOOD].THERM CON / ORG VALS [BBLOOD].HEAT_CAP);
 (* establish w_b_nrml array - basal blood flow rate in cubic meters
q-array_\overline{nrml, b i_1 array, THERM_CON_ARRAY, HEAT_CAP_ARRAY,}
DENSITY_ARRAY *T
(* N.B.
subscripts for tissue data access represent the interface
immediately above the tissue
FOR I := 1 TO N DO
BEGIN
I LOC := PLACE(I);
W-ARRAY [I] := ORG VALS [I LOC].METERS BAS_BLOOD;
Q ARRAY PHYS [I] := ORG VALS [I LOC].METAB;
THERM CON ARRAY [I] := ORG VALSTI LOC].THERM CON;
HEAT CAP ARRAY [I] := ORG VALS [ITLOC].HEAT CAP;
DENSITY ARRAY [I] := ORG VALS [I IOC].DENSTTY;
W_b_nmmI [I] := W_ARRAY[I] * W_B_NORMALIZING_VAL;
END;
W ARRAY [N] := 0.0;
Whb nrml [N] := 0.0;
WTb-nrml [0] := W b nrml [1];
W-ARRAY [0] := W ARRAY [1];
THERM_CON_ARRAY T0] := THERM_CON_ARRAY [1];

```
```

 (* checking for w_array values of zero so as to set
    ```
    (* checking for w_array values of zero so as to set
        u_a, u v, h_\overline{a}v, h_v_a to zero. ALH w_array values
        u_a, u v, h_\overline{a}v, h_v_a to zero. ALH w_array values
            must be zēro for u_a, u_v, h_a_v, h_v_a to be changed *)
            must be zēro for u_a, u_v, h_a_v, h_v_a to be changed *)
    W_zero_flag := true;
    W_zero_flag := true;
    FOR I := I TO N DO
    FOR I := I TO N DO
        IF W ARRAY [I] > 0 THEN
        IF W ARRAY [I] > 0 THEN
            W_zero_flag := false;
            W_zero_flag := false;
    K_AVG := 0.0;
    K_AVG := 0.0;
FOR I := 0 TO N-1 DO
FOR I := 0 TO N-1 DO
    K_AVG := K AVG + THERM CON ARRAY [I] *
    K_AVG := K AVG + THERM CON ARRAY [I] *
        (SQR(RADIAL_DIST_ARRAY [I+1]) - SQR(RADIAL_DIST_ARRAY [I]));
        (SQR(RADIAL_DIST_ARRAY [I+1]) - SQR(RADIAL_DIST_ARRAY [I]));
    re-assign w array to W TISSUE
    REASON : necessity to add n-1 tissue layers before interface
    adjustments have been made. In preparation for calculation
    of capillary data. values are found at exact tissues locations,
    not one value greater than actual tissue location.
for i := 1 to N-1 do
    W TISSUE [I] := w_array [i+1];
    w_tiss̃ue[0] := w_arra\overline{y} [1];
    (* apply equalizing formula on interface locations
        p=(GAMMA [i] * p- + p)/(1 + GAMMA [i])
        also determine B_i_1 and ALPHA_PROP arrays *)
FOR I := 1 TO N DO
        IF I IN I INTERFACES THEN
            BEGIN
                GAMM := GAMMA (I,H_r_ARRAY);
                THERM CON ARRAY [I] ;= (GAMM * THERM CON ARRAY [I-1] +
                M THERM CON ARRAY [ITIJ) / (1 + GAMM);
                    HEAT_CAP_ARRAY [I] := (GAMM * HEAT CAP ARRAY [I-I] +
            HEAT CAP ARRAY [I+1]T/ (1 + GAMM);
            DENSITY_ARRAY [I] := (GAMM* DENSITY_ARRAY [I-1] +
```

```
                                    DENSITY ARRAY [I+1]) / (1 + GAMM);
                        W ARRAY [I] := (GAMM * W ARRAY[I-1] + W ARRAY[I+1])/ (1+GAMM)
                        WTb nrml [I] := W ARRAY[I] * W B NORMALIZING VAL;
                    Q_ARRAY_PHYS [I] := (GAMM * Q ARRAY PHYSS [I-1] +
                        Q_ARRAY_PHYS TI+1])/(1 + GAMM);
```

 END;
 FOR I := 1 TO N DO
 BEGIN
 B_i_1 [I] := (H_1*LEN)/THERM_CON_ARRAY [I];
 ALPHA PROP [I] := THERM CON ARRAY [I] / (DENSITY_ARRAY [I] *
 Q_ARRAY_nml [I] : = Q ARRAY DHYS [I] * SQR(PH [YS RAD) /
 (NORMALIZING_TEMP * BLOOD_THERM_CON) ;
 (* b_i_1[i] := 0.0; *)
END;
(* establish U_a and U_v *)
IF W zero_flag THEN
BEGIN
UA $:=0.0$;
V
U
$:=0.0 ;$
HA $\dot{V}:=0.0$;
HV_A := 0.0;
END
BEGIN

Ua := (U a phys * SQR (PHYS RAD) / ORG VALS[BBLOOD]. THERMCON);
$U_{-}^{-} v:=\left(U_{-}^{-}\right.$-phys * SQR (PHYS_RAD) / ORG_VALS [BBLOOD]. THERM_CON);
UADIV : $=\mathrm{u} a /(\mathrm{n} \star \mathrm{m})$;
U_V_DIV $:=$ U_V / ($n \star m$);
(* establish H_a_v*)
H_a_v_PHYS := pi* physh z * 2 * K AVG /

H_A_V $:=H$ A V PHYS / (PI * ORG_VALS [BBLOOD]. THERM_CON *
FHYS H Z)* A a^{\prime}
H_V_A := HA VPPHYS / (PI * ORG_VALS [BBLOOD].THERM_CON *
END;
$\left\{\operatorname{reset} u_{-} a_{,} u_{-} v, h_{-} a_{-} v, h_{-} v_{-}{ }^{\prime}\right\}$
(*
h_a_v:=0.0;
$h^{-} \mathbf{v}^{-} \mathbf{a}:=0.0$;
*
(* U_V DIVIDED BY 5 TO ACCOUNT FOR COUNTERCURRENI HEAT EXCHANGE BETWEEN
THE BLOOD VESSELS *)

```
        IF (H,V_A <> 0) AND (H_A_V <> 0) THEN
```

 BEGIN
 \(\mathrm{UV}:=\mathrm{UV} / 5.0\);
 UTV_DIV := U_V_DIV / 5.0;
 end;
 (* establish m_a and m_v arrays *)
    ```
        (* establish DIMENSIONAL capillary loss *)
    CAPIL_SUM := 0.0;
    FOR I := 0 TO n-1 DO
        CAPIL_SUM := CAPIL SUM + W TISSUE [I] *
                            (SQR(PHYS_R_i[I+1T) - SQR(PHYS_R_i[I]));
CAPILILARY_LOSS := PI * PHYS H_z * CAPIL SUM;
STARTM_a-:=CAPILIARY_LOSS % AXIAL_DIVS;
M_a[1] \= START_M_a ;
FOR J := 2 TO M DO
    M_a[J]:= M_a[J-1] - CAPILLARY_LOSS;
(* controlling the negative zero *)
IF M_a [M] < CAPIILARY_LOSS THEN
    M_a [M] := 0.0;
Mv [M]:=0;
FOXR J:=M-1 DOWNTO 1 DO
    M_V[J] := M_V [J+1] + CAPILLLARY_LOSS;
(* establish B_a and B_v arrays *)
FOR J := 1 TO M DO
        BEGIN
        B_a [J] := (Ma [J] * SQR (PHYS RAD))
                            (ORG VALS [BBLOOD].DENSITY * PI * SQR (R_a) *
                        PHYS H z * BL ALPFHA);
        B_v [J] := (M v [J] F
                                (ORG VALS [BBLOOD].DENSITY * PI * SQR (R_v) *
                                PHYS_H_z * BL_ALPHA);
        END;
    (* establish B_i
        N.B. - B_I_C in data dump routine is B_i in the program code *)
    B_i := (h_c * PHYS_RAD) / ORG_VALS [SSKIN].THERM_CON;
(*b_i := 0.0;*)
(* calculate dimensionless DELITA *)
    SUM := 0.0;
    FOR I := O'TO N-1 DO
        SUM := SUM + W tissue [I] * (SQR(RADIAL DIST_ARRAY[I+1]) -
        SQR(RADIAL_DIST_ARRAY[I])T;
    total_a := -2 * b_a [1] + A_a * SUM - (A_A * U_a + H_a_v);
    total_v :=-2*bv [1] - 2* A_v*SUM - (A_V * U_v + H_v_a);
total-}:= abs(totaI_v)
if abs (total a) > abs (total_v) then
    total := abs(total_a);
DELTA := 0.4 / TOTAL ;
{deltaset}
MAX DELTA := DELTA;
DELTA SEC := GC_DELTA;
WRITEIN;
WRITEIN;
WRITEIN'('ORIGINAL DELTA IN SECONDS',DELTA_SEC:10:6);
WRITEIN;
WRITELN ('PROGPAM CALCULATED MAX DELTA VALUE = ', MAX_DELLTA : 20:15);
```

```
WRITEIN;
DELTA := DELTA SEC * BL ALPHA / SQR (PHYS RAD) ;
writeln ('USER CALCULATED delta = ',DELTA:20:15);
WRITELN;
PAUSE_CRT;
```

(* loading numeric constants into variables of type EXTENDED *)
one := c_one;
two := c-two;
three : $=$ - c three;
eight := c_eight;
(* normalize wtissue for use in t a_t_v calculations which require an absence of ganma values used in interface locations *)

FOR $I:=0$ TO N-1 DO
W_TISSUE[I] := W_TISSUE [I] * W_B_NORMALIIZING_VAL;
END; (*initialize *)

```
BEGIN (* main program *)
    clrscr;
    WRITE ('HOW MANY TTMESTEPS ? ');
    READLN (LCV_R);
    WRITETN;
    WRITELN;
    WRITE ('intervals at which to print temperature data ? ');
    READLN (INTERVAL);
    WRITELN;
    ANATOMICAL_INPUT (DIAM,IEN);
    NUM_DIVISIONS (CORE_DIVS, MUSCLE_DIVS, FAT_DIVS, SKIN_DIVS,N, M) ;
    WIDTH CALCULATIONS (H r CORE,H r MUS,H r FAT,H r SKIN, CORE MUS GAMMA,
                MU\S FAT GA\overline{MNA}, FAT SKTNN GAMMM\overline{MA, DIAM, LENN,}
                CORE_DIVS, MUSCIE DIVS,FAT DIVS, SKIN_DIV') ;
    EST_INTERFACES (I INIENFFACES, I CORE MUS, I MUS FAT, I FAT SKIN,
                        SKIN SURFACE, CORE DIVS, MUSCLE_DIVS, FAT DIVS, SKIN_DIVS);
    CREATE ARRAYS (H r ARRAY, RADIAL DIST ARRAY, I CORE MUS, I MUS FAT,
                I_FAT_SKTN, H_r_CORE, H_r_MUS, H_工_FAT, H_工_SKIN);
    DESTINATION;
    INITIALIZE;
    TEMP_INITIALIZE;
    DATA DLMP;
    TISSUE;
    CLOSE (F);
    CLOSE (E2);
    CLOSE (ONT_DATA);
    CIRSCR;
    WRITE ('PROGRAM COMPLETTED --------');
    PAUSE CRT;
END. (*-main program *)
```


2. VAR_SP.PAS

\{GLOBAL DECLARATION UNIT - INCLUDES CONST, TYPE AND VAR DECIARATIONS \}

UNIT var_sp;

INTERFACE
Uses CRT;
CONST
\{/////////////////// begin control point section $1111111111111111111111111111 \backslash\}$
(* GC_DELTA $=0.0$ will allow program to determine delta value. GC DELTA set to any other value will over-ride program caIculation of delta value.
n.b. - GC DELTA MUST BE GIVEN A VALUE IF ALL W VALUES have been SET TO ZERO. *)
(* DELTA IS A FUUL TIME STEP - it will be adjusted later in the tissue equations to be a half time step. In the blood equations DELTA will be a half time step for the first iteration of the loop and a full time step on all subsequent iterations.

```
            N.B. -- GC_DELTA REPRESENTS DELTA IN SECONDS *)
GC_DELTA = 1.0; (* PROGRAM MINIMUM = 0.0000015; *)
(* length and diameter must be in CENTIMETERS *)
GC_LEN = 8.0;
GC_DIA = 1.5;
(* control point for number of radial divisions *)
GC_CORE DIVS = 3;
GCMUS DIVS = 3;
GC_FAT-DIVS = 2;
GC-SKIN_DIVS = 4;
(* control point for the number of axial divisions *)
    GC_AXIAL_DIVS = 10;
(* control point for temperature values in degrees C *)
TA = 35; (* initial assignment for j=1 to j max-1 values *)
    (* ta at j=1 held constant during program run at initial value*)
TV = 35; (* used for initial assignment at j max-2 to j = 1 values *)
    (* seed value at j_max-1 is caIculated by program *)
MESH_TEMP = 35;(* used to set initial tissue temperature throughout mesh*)
NORMALIZING_TEMP = 37;
h_1 = 6.09; (* units = Watt / meter squared / deg. C *)
h_c = 5.17; (*7.02;*)
```

```
T_0 = 0.0/normalizing_temp ; (* environmental temperature , deg. C *)
```

(* basal metabolic rate - CONIROL POINT FOR Q units = Watt / cu.m *)
core metab $=170.5$;
mus metab $=631.9$;
fat metab $=5.0$;
skiñmetab $=247.4$;
(* basal blood flow rate CONTROL POINT for W units $=\mathrm{kg} / \mathrm{sec} / \mathrm{cu} . \mathrm{m}$ N.B. - if ALH of these values are set to zero then GC DELTA MUST BE ASSIGNED A VALUE at the top of this section. $\bar{\xi}$)
core blood meters $=0.173$;
mus blood meters $=0.641$;
fat blood meters $=0.0$;
(* to $\bar{a} c c o u n \bar{f}$ for a zero blood flow at the $i=n$ value *) skin_blood_meters $=0.251$ * gc_skin_divs/(gc_skin_divs-1);
(* organ radius to finger ratio (R _i / R) *)
core ratio $=0.7057$;
muscle ratio $=0.7954$;
fat ratio $=0.8099$;
skin_ratio $=1.0$;
(* thermal conductivity units $=$ Watt $/ \mathrm{m} / \operatorname{deg} . C$ *)

```
core therm con =1.064;
mus therm \overline{con = 0.418;}
fat-therm-con =0.204;
skin}\mathrm{ therm con = 0.293;
bloō_therm_con = 0.45;
```

(* heat capacity units $=J / \mathrm{kg} / \operatorname{deg} . \mathrm{C} *$)
core heat_cap $=2102.0$;
mus heat_cap $=3136.0$;
fat heat-cap $=2520.0$;
skin heaE cap $=3780.0$;
blood_heat_cap $=3899.0$;
(* density units $=\mathrm{kg} / \mathrm{cu} . \mathrm{m} *$)
core density $=1401.0$;
mus_density $=1057.0$;
fat density $=900.0$;
skin density $=1057.0$;
blood_density $=1060.0$;
(* Radii of artery and vein - units $=$ meters *)
RA $A=1000 \mathrm{E}-6$;
$\mathrm{R}_{-}^{-} \mathrm{V}=1500 \mathrm{E}-6 ;$


```
J_MAX = GC_AXIAL DIVS + 1;
IMMAX = GC_CORE_DIVS + GC_MUS_DIVS + GC_FAT_DIVS + GC_SKIN_DIVS + 1;
M\XX_PTS = i_max * j_max -i_max;
(* values to be converted to extended precisions variables later *)
```

```
c_twO = 2.0;
    c_eight = 8.0;
    c_three = 3.0;
    c_one = 1.0;
```

TYPE
PTR TYPE = "TOM NODE;
TOM NODE = RECORD
INFO : EXTEENDED;
NEXT, BACK : PTR_TYPE;
END;
GRID = ARRAY [0..I_MAX, 1..J_MAX] OF extended;
BOUNDS = SET OF 1.-I MAX;
extended ARRAY $=$ ARRĀY [1. .MAX_PTS] OF extended;
J_ARRAY \equiv ARRAY [1. J MAX] OF extended;
I-ARRAY $=$ ARRAY [0.. I-MAX] OF extended;
A TYPE $=$ (A FIRST, A REG, A END, A EXIERNAL, A EXIERNAL_END) ;
R_TYPE $=$ (R-CENIR END, R CENTER REG, R EXIERNAL END,
R_EXTERNAL REG, R_INTERFACE REG, R INTERFACE END, R REG_END) ;
S TYPE $=$ (S REG_CENTER_INT, S_EXTERNAE, S_END, SEEND_EXIERNALT);
CO_ORD = RECORD
I LOC, J_LOC : INTEGER;
tom_temp : extended;
END;
L TYPE = ARRAY [1. .MAX_PTS] OF CO_ORD;
COEF FIELDS = RECORD
MINUS, STD, PLUS : extended;
END;
COEF ARRAY = ARRAY [1..I_MAX,1..J_MAX] OF COEF_FIELDS;
VALUES = RECORD
THERM CON, HEAT CAP, DENSITY,
METAB, METERS_BĀ_BLOOD :extended;
END;
ORGAN $=($ CCORE, MMUSCLE, FFAT, SSKIN, BBLOOD) ;
VAL ARRAY = ARRAY [ORGAN] OF VALUES;
STR_TYPE = STRING [20];
VAR
U PTR, U TRV, P, P1 : PTR TYPE;
$\overline{a v}$ step, half av step,t step, LCV_R, INTERVAL :real;
N ${ }^{\prime} M, A X I A L$ DIVS, ROW TIME, I, J,
CORE DIVS, MUSCLE DIVS, FAT DIVS,
SKIN_DIVS, SKIN SURFACE, D \bar{K}, test, lcv,
count, I_CORE_MUS, I MUS_FAT', I_FAT_SKIN, COEF_SUB : INTEGER;
DIAM, LEN, Hz , PHYS HzZ, RAD, PHYS_RAD,
PHYS LEN, U $\bar{a}, ~ U-V, \bar{H} \bar{a} v, H V A, H-A V P H Y S$,
DELIA, MAX DEITA, DELTA-sec, A_a, A_v,
BL ALPHA, $\bar{W} b$ normalizing val,
B i, CAPILIART LOSS, U_a phys, U_v_phys,
START M A, CAPIL SUM,
H r CORE, H r MUS, H r FAT, H r SKIN,
CORE MUS GAMMA, MUS FAT GAMMA, FAT SKIN GAMMA,
CORE-WIDTH, MUS WIDTH, FAT WIDTH, SKIN WIDTH,
CORE MUS BOUND, MUS FAT BOÜND,
FAT_SKIN_BOUND, SKIN SURFACE_BOUND, K_AVG,
one, two, three, eight, zero, u_a_div, u_v_div : extended;
I_INTERFACES, CORE_SET, MUS_SET, FAT_SET, SKIN_SET : BOUNDS;
RADIAL DIST ARRAY, H r ARRAY, W ARRAY, W TISSUE,
PHYS R i, PHYS H ' r ARRAY, W b nYml, Q ARFAY nrmi,
THERM CON ARRAㅍ, HEAT CAP ARRĀY, Q_ARर्RAY_PHYS,
DENSITY_ARRAY, ALPHA_FROP, B_i_i

```
\begin{tabular}{ll} 
A_NODE & \(:\) ATTYPE; \\
R NODE & : RTTYPE; \\
S_NODE & \(:\) S_TYPE;
\end{tabular}
```

Ba, Bv, Ma, Mv,

```TV, TA, TA bare, T V bar,\(t^{-}\)a_node, t_v_node, \(\overline{o l d} t\) _a_node, old_t_v_node \(: J_{-} A R R A Y\);
TEMP_GRID, HALF_GRID : GRID;
LOCATE : L_TYPE;
    f,f2,OUT_DATA : TEXT;
ORG_VALS : VAL_ARRAY;
RESP2,GRAPH_RESP : CHAR;
tom_flag,w_zero_flag : boolean;
FUNCTION GAMMA (I VAL: INTEGER; VAR H_r_ARRAY : I_ARRAY) : extended;
PROCEDURE PAUSE CRT;
PROCEDURE DERIVE CENTER TEMP (VAR DEGREES :GRID);
PROCEDURE DUMP HĀLF ARRAYYS;
PROCEDURE DUMP T AR\overline{RAY (STEP VAL : REAL; DEGREES : GRID);}
PROCEDURE CALCTA TV half (STEP : EXIENDED);
IMPLEMENTATION
(*================================ UTILITIES ===================================*)
FUNCTION GAMMA (I_VAL: INTEGER; VAR H_工_ARRAY : I_ARRAY) : extended;
    {......returns the GAMMA value for any I location in the mesh......}
BEGIN
    IF I VAL >= N THEN
            G\overline{AMMA := 0.0}
    ELSE
        IF I VAL = 1 THEN
            G\overline{AMMA := 1.0}
        ELSE
        GAMMA := H_r_ARRAY[I_VAL] / H_r_ARRAY[I_VAL + 1];
    END;
PROCEDURE PAUSE_CRT;
```

```
VAR
```

VAR
AGAIN : CHAR;
AGAIN : CHAR;
BEGIN
BEGIN
WRITE ('PRESS ANY KEY TO CONTINUE : ');
WRITE ('PRESS ANY KEY TO CONTINUE : ');
AGAIN := READKEY;
AGAIN := READKEY;
WRITEIN;
WRITEIN;
CLRSCR;
CLRSCR;
END;

```
END;
```

PROCEDURE DERIVE_CENTER_TEMP (VAR DEGREES :GRID);

```
                establishes center temperatures at t [0,j]
    ***** N.B. this procedure REQUIRES A MINIMUM OF
    2 RADIAL DIVISIONS }
    VAR
        J, I : INTEGER;
    BEGIN
        FOR J := 1 TO M DO
        DEGREES [0,J] := DEGREES [2,J] + 1.5 *
                            (DEGREES [1,J] - DEGREES [2,J]);
END;
PROCEDURE DUMP_HALF_ARRAYS;
    {......prints t_a,t_v arrays.......}
    VAR
        J_val : INTEGER;
    BEGIN
        CLRSCR;
    WRITELN (F,'TIMESTEP = ', HALF_AV_STEP : 5:2,'
    **********************');
    WRITE (F,'TA');
    FOR J VAL }==1\mathrm{ TO M-1 DO
        WRITE (F,J_VAL:3,')',T_A_NODE[J_VAL] * NORMALIZING_TEMP:7:3);
    WRITELN (F);
    WRITELN(F);
    WRITE (F,'TV');
    for J VAL := 1 to m-1 do
        write (f,j_val:3,')',t_v_node[j_val] * NORMALIZING_TEMP:7:3);
    writeln(f);
    END;
PROCEDURE DUMP_T_ARRAY (STEP_VAL : REAL; DEGREES : GRID);
    {...prints two dimensional temperature matrix or half_step matrix..}
    VAR
        I,J : INTEGER;
    BEGIN
        WRITELN (F);
        WRITELN (F,'TEMPERATURE ARRAY AT TIMESTEP ', STEP_VAL:7:2, '(end/ext)':42);
        FOR I := N DOWNTO 1 DO
            BEGIN
                WRITE (F, 'I=',I); *)
                FOR J := 1 TO M DO
                    WRITE (F, DEGREES [I,J] * normalizing_temp:7:3);
            WRITTELN (F);
        END;
    WRITEIN (F);
    pause_crt;
    END;
```

PROCEDURE CALC_TA TV_half (STEP : EXTENDED);
\{....calculates ta_bar[j] and tv bar [j] in preparation for s_vector caIculation...

```
    VAR
        SUM1, SUM2, SUM3,W_VAL, HH aa_vv,
    T_v_plus, B_v_plus, a, b, TEMP, DELTA_VAR : extended;
    I,丁 Val - : INTEGER;
    firs̄t,secoud,third,answer : extended;
    BEGIN
        IF STEP = 0.0 THEN
                            DELTA_VAR := DELTA / 2
    ELSE
            DELTA_VAR := DELTA;
    FOR J VAL := 2 TO M-1 DO
        BEGIN
        (* CALCULATE T_A_BAR *)
            SUM1 := 0.0;
            FOR I := 0 TO N-1 DO
                BEGIN
                    W_VAL := W_TISSUE [I];
                    SUM1 := SUM1 + W_val * (SQR (RADIAL DIST ARRAY[I+1]) -
                        SQR (RADIAL DIST ARRAY[I]));
                    SUM2 := SUM2 + (TEMP GRID[I,J VAL-1丁 + TEMP_GRID [I,J_VAL]) *
                        (SQR (RADIAL DIST ARRAY[I+1])
                                    SQR (RADIAL_DIST_ARRAY[I]));
                    SUM3 := SUM3 + W VAL * (TEMP GRID [I, J VAL-1] +
                                    TEMP_GRID [I,J VAL]T * (SQR (RADIAL_DIST_ARRAY [I+1])
                END;
                (* FINAL FORMULAS *)
                (* T_A is the t a BAR value at the previous full time step
                    the same is Erue with regard to T_V and t_v_BAR *)
                T_a_bar [J_VAL] := t_a [j_val] + DELTA_VAR * (( -two * B_A [J_VAL-1]
```



```
                    + 0.5 * A_A *-U_A * SUM2- + H_A_V * T_V [J_VAL]);
                END; (* J-LOOP *)
(* CALCULATE T_V_BAR *)
    FOR J VAL := 2 TO M-1 DO
        BEGIN
            SUM1 := 0.0;
            FOR I := O TO N-1 DO
                BEGIN
                    W_VAL := W_TISSUE [I];
            SUM1 := SUM1 + W_val * (SQR (RADIAL_DIST_ARRAY[I+1]) -

SQR (RADIAL DIST ARRAY[I]));
 (SQR (RADIAL DIST ARRAY[I+1]) =
SQR (RADIAL DIST ARRAY[I]));

SUM3 \(:=\underset{\text { SUM3 }}{\text { TEMP GRID }}\) [I, J_VAL]) \({ }_{\star}\) (TEMP GRID \(\left[I, J_{-}\right.\)VAL+1] +
(SQR (RADIAL DIST ARRAY [I+1])
END; (* I-LOOP *)
```

T_v_bar[J_VAL] := t_v [j val] + DELTTA VAR * ((two * B V [J VAL-1]
- two * A V * SUMM1 - AV * UVV - HV A) * TVV[JVVA
(-twO* BV [JVNAL-1] + AVV* SUMI) * TVVNODE TJNVAL-1] + +

```

SUMB);

END; (*J_VAL*)
(* calculate t a node and t_v_node *)


SUMI := 0.0;
FOR \(J\) VAL \(:=\) M-1 TO M DO
FOR \(I^{-}:=1\) TO N DO
SUM1 := SUM1 + HALF GRID [I,J_VAL];
T_V_NODE \([\mathrm{M}-1]:=\) SUM1 \(/\left(\overline{2}^{\star} N\right)\);
for \(j\) val \(:=m-1\) downto 2 do
\[
t \text { _v_node }\left[j \_v a l-1\right]:=2 * \text { t_v_bar }\left[j \_v a l\right] \text { - t_v_node [j_val]; }
\]

END; (* calc_ta_tv_half *)

\section*{3. TISUE_SP.PAS}

Unit tisue_sp;
```

interface
PROCEDURE TISSUE;
implementation
uses var_sp, phys_sp, crt, dos, printer;

```
PROCEDUURE TISSUE;
    VAR
        ORIG_A_r_COEF, ORIG_A_z_COEF : COEF_ARRAY;
PROCEIURE AXIAL_DIR (I VAL, J VAL : INTEGER;
                VAR-J_MINUS_FORM, J_FORM, J_PLUS_FORM : extended);
            \(\{\ldots . . . .\). imports the \(I\) and \(J\) coordinates, identifies the type
                of node using enumerated data types and calculates three
                coefficients at the given I,J location to fill the
                ORIG A \(z\) COEF array used for the traversal in the
                RADIAL direction..
VAR
    HEAT_DEN_FRACT, A_SQRD, FRACT, W_U_A, temp_w_u_a : extended;
BEGIN
    (* establish node type *)
        IF \(J\) VAL \(=1\) THEN
            A NODE \(:=A\) FIRST; \(\quad\) \{pt. 0\}
        IF J VAL \(=\mathrm{M}\) THEN
            IF I VAL \(<>\) N THEN
A NODE \(:=\)
A_END \(\quad\{p t .4,6,7\}\)
            ELSE
                \{pt. 5\}
            A NODE := A EXTERNAL END;
        IF (J-VAL \(<>\mathrm{M})\) AND ( J VAI \(<>\) 1)
            1) THEN
            IFI_VAL <> N THEN
                    A-NODE \(:=A_{\text {_REG }} \quad\) \{pt. 1,3\}
                    ELSE
                    A_NODE :=A_EXTERNAL; \{pt. 2\}
        (* preliminary calculations *)
    A SQRD \(:=\) (BL ALPHA / ALPHA PROP [I VAL]) * SQR (LLAN/PHYS RAD) ;
    HEAT DEN FRACT \(:=\) (ORG VALSTBBLOOD].DENSITY * ORG VALS [BBLOOD]. HEAT CAP) /
    HEAI_DENA (DENSITY ARRAY[I_VAL] * HEXT_CAP_ARRAY[I_VALT);
    FRACT : \(=\) one \(/\left(A_{2} S Q R D * \operatorname{SQR}\left(\mathrm{H}_{-} \mathrm{z}\right)\right.\) )
    W_U_A := W_b_nml [I_VAL] + U_A_div + U_V_div;
    (* setting w, u_a, and u_v at extemal skin level to 0.0 *)
    temp_w_u_a \(:=0.0\);
    (* FINAL CALCULATIONS *)
    CASE A NODE OF
        A_FIRST : ;
        A_REG : BEGIN
                        J MINUS_FORM \(:=\) FRACT;
                        JFORM :=-one* (two * FRACT) - (HEAT_DEN_FRACT * (W_U_A / two));
                JPLUS_FORM \(:=\) FRACT;
                    END;
```

 A_EXITERNAL : BEGIN
 J MINUS FORM := FRACT;
 J_FORM := -twO * FRACT - (HEAT DEN_FRACT *
 (three * temp W U A) / eightT;
 J_PLUS_FORM := FFACT;
 END;
 A END : BEGIN
 J MINUS FORM := two * FRACT;
 S_FORM := -two * FRACT * (one + Hzz * B_i 1 [I VAL])
 - ((HEAT_DEN_FRACT F W_b_ñml [I_VAL]) / two);
 J_PLUS_FORM := 0.0;
 END;
 A_EXTERNAL_END : BEGIN
 J MINUS FORM := two * FRACT;
 J_FORM := -two * FRACT * (ane + H_Z * B i 1 [I_VAL]) -
 (three * HEAT DEN_FRACT * W_b_ñml [I_VAL] -/ eight);
 J PLUS_FORM := 0.0;
 ENTD;
 END: (*CASE*)
 END; (* axial_dir *)
PROCEDURE RAD_DIR (I_VAL, J VAL: INTEGER;
VAR I_MINUS_FORM, I_FORM, I_PLUS_FORM : extended);
\{...........imports the I and J coordinates, identifies the type of node using enumerated data types and calculates three coefficients at the given I, J location to fill the ORIG A r COEF array used for the traversal in the SECONDTRAVERSAL. .
VAR
ALPHA FORM, HEAT DEN FRACT,
FRACT, FORM, GAMM, HR_I, R_I, tent_form : extended;
BEGIN

```
```

(* establish node type *)

```
(* establish node type *)
IF (J VAL = M) THEN
    BEGIN
        R NODE := R REG ENI; ; {pt. 4}
        IF (I VAL IN I INTEPFACESS) THEN
            R NODE := R-INTERFACE_END; {pt. 7}
        IF (I VAL = 1) THEN
            RNODE := R CENIR_END; {pt. 6}
        IF I-VAL = N THEN
        {pt. 5}
        END
    EISE
    BEGIN
                IF I VAL = 1 THEN
                R NODE := R CENTER_REG; {pt. 1}
                IF I VAL = N MHEN
                        R NODE := R EXIEERNAL REG; (IN N) THEN {pt. 2}
                        R_NODE := R_INTERFACE_REG; (pt. 3)
        END;
    (* preliminary calculations *)
        ALPHA FORM : = ALPHA PROP [I VAL] / BL ALPFHA ;
        HEAT_DEN_FRACT : : [ORG_VALSTBBLOOD].DENSITY *
                        ORG VALS [BBLOOD] .HEAT CAP) /
                            (DENSITY_ARRAY[I_VAL] * HEAT_CAP_ARRAY[I_VAL]);
        (* H_R ARRAY AT THE 1 LOCATION MUST USE THE VALUE AT H_R_ARRAY [2] *)
        IF I VAL = 1 THEN
        BEGIN
            FRACT := two / SQR(H_R_ARRAY [2]);
```

```
        GAMM := GAMMA (2, H R ARRAY);
        HRI := HR_ARRAY T2T;
    END
EUSE
    FRACT := two / SQR (H_R ARRAY[I VAL]);
    GAMM := GAMMA (I VAL, H R ARRAY);
    HRII:= H_R_ARRAY [ÍINAIT;
END;
FORM := W_b_nrml[I_VAL] + U_a_div + U_v_div;
(* setting w, u_a, and u_v at external skin level to 0.0 *)
temp_form := 0.0;
R_I := RADIAL_DIST_ARRAY [I_VAL];
(* final calculations *)
CASE R NODE OF
    R CENTER REG : BEGIN
                            I_MINUS_FORM := 0.0;
                            I_FORM := -one * ALPHA FORM * FRACT - (HEAT_DEN_FRACT
                                    * FORM / tw\overline{O})
            I PLUS_FORM := ALPHA_FORM * FRACT;
    R_INIERFACE_REG': BEGIN
                                    I_MINUS_FORM := ALPHA FORM * (one / ((1 + GAMM) * H_R_I))
```



```
                                    I_FORM :=-one * ALPHA FORM * Toñe /HMR IT **
                                    - (HEAT DEN FRACT'* (FORM / twO));
                                    I_PLUS FORM := ALPHA FORM * (SQR (GAMM) /
                                    _(H_R_I * (one + GAMM))) * (two / H_R_I + one / R_I);
    R_EXIERNAL_REG : BEGIN
                                    I_MINUS_FORM := ALPHA FORM * FRACT - (HEAT_DEN_FRACT
                                    I_FORM := -one * temp FORM FORM * (FRACT + (one + (two /HRRI))
                                    * B I) - (HEAT DEN FRACT * (three * temp_FORM/eight));
                I PLUS_FORM := 0.0;
                END;
    R_REG_END : BEGIN
                            I MINUS_FORM := ALPHA FORM * (ane /H_R I) *
                                    (one / HR I - one / (two
            I_FORM := -one * ALPHA FORM * FRACT - (HEAT_DEN_FRACT *
                                    W_b_nmlul [I VAL] / twol;
            I_PLUS_FORM:= ALPHA FORM * one / H_R_I * (one/H_R_I +
            END;
        R_CENIR_END : BEGIN
            IMMNUS_FORM := 0.0;
            I_FORM F=-one * AIPHA FORM * FRACT - (HEAT_DEN_FRACT *
                        W b naml [I VALJ / two);
            I_PLUS_FORM := ALPHA_FORM * FRACT;
    END;
R_INIERFACE END : BEGIN
    I_MINUS_FORM := ALPHAA FORM * (one / ((one + GAMM) * HRI)) *
                                    (t\overline{WO}* GAMM / HRI - one /RI);
    I_FORM := -one * ALPHA FORM * (one 7 H-RI) * 
                            ((two * GAMM / HRI I) - (one--GMMM) /RI)
                                    - (HEAT_DEN_FRACT- * W_b_nrml [I_VAL] 7 two);
    I_PLUS_FORM := ALPHA_FORM * (SQR (GAMM)/
    END;
    R_EXTERNNAL_END; BEGIN
    I_MINUS_FORM := ALPHA FORM * (twO / SQR(HRRI)) -
                            (HEAT DEN FRACT * W_b_n#mI [I VAL] / eight);
                        I_FORM := - One * ALPHA_FORM * (FRACT +- (one + Ewo / H_R_I)
```

```
                            * B_i) - (three * HEAT DEN_FRACT *
                            W_b_nml [I_VAL] / eight);
                            I PLUS_FORM:= 0.0;
                                    END;
        END;
    END; (* rad_dir *)
PROCEDOURE S_VECTOR (I_VAL, J_VAL : INTEGER; VAR S_VECT : GRID);
    (.......calculates s_vector coefficient in preparation for
                                    mesh traversal ..............................}
VAR
    A, W FORMULA, T_FORMULA,
    HEAT_DEN FRACT, AIPFA FORM, A_SQRD,
    H R, NODE VAL : exteñded;
    temp_u_v :extended;
    BEGIN
        (* estblish node type *)
        IF (J VAL = M) AND (I VAL = N) THEN
        S NODE := S END EXTERNNL
        EISE
            IF (J VAL = M) THEN
                S NODE : = S END
            ELSE
                IF (I VAL = N) THEN
                    S MODE := S_EXTERNAL
                    EUSE
                    S_NODE := S_REG_CENIER_INT;
        (* S_VECIOR CALCULATIONS - PRELIMINARY FORMULAS *)
        A SQRD := (BL_ALPHA / ALPHA PROP [I VAL]) * SQR (LEN/PHYS_RAD);
        ALPHA FORM := ALPHA PROP [ITVAL] / EL ALPHA;
        HEAT_DEN_FRACT := [ORG_VALSTBBLOOD].DENSITY *
                            (DENSITY_ARRAY[I_VAL] * HEAT_CAP_ARRAY[I_VAL]);
    H_r := H_R_ARRAY [I_VAL];
if s_node = s_extemal then
    beg
        tempuvv:= 0.0;
        w formalla := 0.0;
    en\overline{0}
    else
        W_FORMULA := W_b_nrml [I_VAL] + U_A_div;
        IF J VAL =M THBN
            NODE_VAL := T_A_NODE[J_VAL -1]
        EISE
            NODE_VAL := T_A_NODE [J_VAL];
        T_FORMULA := NODE_VAL - (TEMP_GRID [I_VAL-1, J_VAL] / eight);
            (* S_VECTOR CALCULATIONS - FINAL FORMULAS *)
        CASE S NODE OF
            S_REG_CENTER_INT !
                            HEAT DEN FRACT * (Q ARRAY nmml [I VAL]
            S EXIERNNAL W_FO
                                    S_VECT [I VAL,J VAL] :=
                                    HEAT DEN FRACT * (Q ARRAY nrml [I VAL] +
                            W_FORMULA * TFFORNULA +temP UT V * TTV NODE [J VAL] -
                                TTEMP_GRID [I VAL-1, J_VALJ 7 eightT) + ALPHA FORM *
                                (one + two/ H_R) * B_I * T_O;
```

S_END
: S_VECT [I VAL, J VAL] :=
HEAT DEN FRACT * (Q ARRAY nrml [I VAL] +

S_END_EXTERRNAL :
S VECT [I VAL, J VAL] := HEAT DEN FRACT * (Q ARRAY nnml [I VAL] + W 5 nrmi [I VAL] T FORMULA) \mp ALPMA FORM * (ane \ddagger two/HR) *BI*TO

END (* CASE *)
END; (* s_vector *)

PROCEDURE ESTABLISH_COEF_ARRAYS;
\{......creates arrays of axial and radial coefficients using arrays of records \qquad
VAR
I, J : INTEGER;
BEGIN
(* establish arrays of coefficients in the radial direction n.b. -- each I value references a record containing three coefficients found in arrays imat, i_mat2,
ORIG A z. ORIG_A_z. *)
FOR $i \quad:=n$ downto 1 do FOR $j:=m$ downto 2 do RAD_DIR (I, J, ORIG_A r COEF [I, J].MINUS, ORIG_A_r_COEF [I, J].STD, ORIG_A_r_COEF [I, J] .PLUS);

FOR I := n downTO 1 DO FOR $J:=m$ downto 2 do AXIAL DIR (I, j, ORIG A z COEF [I, J].MINUS, ORIG_A_z_COEF[I,J丁.STD, ORIG_z_COEF[I,J].PLUS);

END; (* establish_coef_arrays *)

PROCEDURE TRAVERSE;

VAR
INDEX, X,start, prev_total, total : INIEGER;
S PIR, S TRV,
CPPR, CTRV,
B-PIR, B TRV,
CI PIR, CI TRV,
AI PIR, AI TRV,
BI PTR, BI^{-}TRV,
GTPTR, $\mathrm{CJ}^{T} \mathrm{TRV}$,
AJ PTR, AJ TRV,
BJ PIR, $\mathrm{BJ}^{-T R V,}$
D_FTR, D_TRV, NEWNODE :PTR_TYPE;
S V COEF : GRID;
DOMP, DTMP3 : CHAR;

PROCEDURE UPDATE_TISSUE_1 (VAR TISSUE : GRID);

VAR
I_CONNT : INTEGER;
BEGIN
FOR I COUNT := 1 TO N DO
TISSUE [I_COUNT,1] $:=30 /$ NORMALIZING_TEMP:
END;
PROCEDOUE THOMAS_ALG(SYS_SIZE :INIEGER);

```
VAR
    I,ii,jj,z : INTEGER;
    P PTR, P TRV,
    QI PTR, ठI TRV,
    BKQ1, BK O1 TRV,
    BKP, BK_p_TRV, NEWNODE : PTR_TYPE;
PROCEDURE CAL_CPRIME_DPRIME;
    VAR
    I : INTEGER;
    FORMI : EXTENDED;
BEGIN
        NEW (NEWNODE);
        NEWNODE^. INFÓ := B PIR^.INFO / A PIR^.INFO;
        NEWNODE^.NEXT := NIL;
        NEWNODE^.BACK := NIL;
        P PTR := NEWNODE;
        P-TRV := P PTR;
        BK P := NIL;
    NEW (NENNODE);
    NENNODE^. INFO := D PIR^.TNFO / A_PTR^.INFO;
    NEWNODE^.NEXT := NILL;
    NEWNODE^.BACKK := NIL;
    Q1 PTR := NEWNODE;
    Q1-TRV := Q1 पTR;
    BKO1 := NIL;
    A TRV := A PTR^^.NEXT;
    CTRV := C-PTR^NEXT;
    B-IRV := B-PIR .NEXT;
    D TRV := D PTRA.NEXT;
    FOR I := 2`TO SYS_SIZE DO
        BEGIN
            FORMD := A TRV^.INFO - C_TRV^.INFO * P_TRV^.INFO;
            NEW (NEWNODE);
            NEWNODE^..INFO':= B TRV^.INFO / FORMI;
            NEWMODE^.NEXT := NIL;
            NEWNODEA. BACK := D TRV;
            P TRV'.NEXT := NEWNODE;
            P TRV := P TRV'.NEXT;
            NEW (NEWNODE);
            NEWNODEN.}\mathrm{ .NEXT := NIL;
            NEWNODE^.INFO := (D TRV^.INFO - C_TRV^.INFO * Q1_TRVN.INFO) / FORMI;
            NEWNODE^.BACK := Q1 TRV;
            Q1 TRV'.NEXT := NEWNODE;
            Q1TRV := Q1 TRV .NEXT;
            A TRV :=A TVV, NEXT;
            C-TRV := C'TRV'.NEXI;
            B-TRV:= B TRV .NEXT;
            D_TRV:= D_TRV .NEXT;
            END;
    BK P := P TRV;
    BK_Q1 := \1_TRV;
END;
PROCEDURE CALC_VALS;
    VAR
        I : INTEGER;
```

```
    BEGIN
        NEWW (NEWNODE);
        NEWNODE.
    NENNODE^.NEXTT := NII;
    U PTR := NEWNODE;
    BK O1 TRV := BK Q1^.BACK;
    UTRV:= UPIR;
    BK_P_TRV : = BK_P^.BACK;
    (* U IS BEING FIILED VIA FIRST NODE INSERTION *)
    FOR I := SYS_SIZE-1 DOWNTO 1 DO
    BEGIN
        NEW (NEWNODE);
        NEWNODE^.INFO := BK Q1_TRV^.INFO - BK_P_TRVN.INFO * U_TRV'.INFO;
        NEWNODE^.NEXT := U PIR;
        U PIR := NEWNODE;
        BK Q1 TRV := BK Q1 TRV^.BACK;
        BKP TRV := BK F TRV^.BACK;
            u Erv}:= u_ptr; ;
        END;
END;
BEGIN (* THOMAS ALG *)
    MARK (p);
    NEW (U PTR);
    U PIRA.#NFO := 0.0;
    UPIR^.NEXT := NIL;
    NEW (Q1 PTR);
    Q1_PIR -INFO := 0.0;
    Q1 PTR^.NEXT := NIL;
    NEW (P-PTR);
    P_PTRA:INFO:= 0.0;
    P PTR .NEXT := NIL;
    UTRV := UPIR;
    QI TRV := \I PTR;
    P IRV := P PIR;
    FOR I :=2 TO SYS_SIZE DO
        BEGIN
        NEW (NEWNODE) ;
        NEWNODE^. INFO := 0.0;
        NEWNODE^.NEXTT := NIL;
        U TRV^.NEXT := NEWNODE;
        U'TRV := U TRV'.NEXT;
        NEW (NEWNOODE);
        NEWNODE^. INFO := 0.0;
        NEWNODE^.NEXTT := NIL;
        Q1 TRV .NEXT := NEWNODE;
        Q1-TRV := Q1 TRV^.NEXT;
        NEW (NEWNODE);
        NEWNODE . INFO := 0.0;
        NEWNODE*.NEXTT := NIL;
        P TRV'.NEXT := NEWNODE;
```



```
    END;
CAL CPRIME DPRIME;
CALC_VALS;
END;
PROCESUURE SECOND_TRAVERSE_AXIAL;
\{...traverses the mesh in the axial direction moving necessary coefficients from record storage structure into extended precision arrays for access by Thomas' Algorithm.........)
VAR
I, J, j find : INTEGER;
I_MIN_TEMP, I_MAX_TEMP,HALF_DELTA : extended;
```

INDEX : INTEGER;
BEGIN

MARK (P1) ;	
S PTR	: $=$ NIL;
CPIR	: = NIL;
A-PIR	: $=$ NIL;
B PIR	$:=$ NIL
CI PTR	R $:=\mathrm{NII}$
	R := NIL
BI PTR	R $:=$ NIL

half delta $:=$ delta/2;
TOTAL : = 0 ;
PREV TOTAL $:=1$;
FOR $\bar{i}:=1$ to n do BEGIN
$X:=0$;
FOR $j:=2$ to m do BEGIN $X:=X+1 ;$
(* load coefficient arrays *)
S_VECTOR (I, J, S_V_COEF);
NEW (NEWMODE) ;
NEWNODEA. TNFO $:=\operatorname{S} V \operatorname{COEF}[I, J]$ * HALF_DELTA; (* $S[X]$ *) NEWNODE^. NEXT : = NIIL;
IF S PTR = NIL THEN
BEGIN
S PTR : = NEWNODE;
S_TRV := S_PTR;
ENE
BEGIN
S_TRV .NEXT := NEWNODE;
S^{-}TRV $:=S_{-T R V}$.NEXT;
END;
NEW (NEWNODE);
NEWNODE^. TNFO $:=-1$ * ORIG_A_z_COEF [I,J].MINUS * HAIF_DELTA; (*C[X]*) NEWNODE^.NEXT $:=$ NIL; IF C PTR = NIL THEN

BEGIN
C PIR : = NEWNODE;
C-TRV := C_PTR;
ETSE
BEGIN
C TRV卦.NEXT : = NEWNODE;

NEW (NEWNODE)
NEWNODEA. INFO : = -1 * ORIG_A_z_COEF [I,J].STD * HALF_DELTA + 1; (*A [X]*)
NEWNODE^.NEXT := NIL;
IF A PTR = NIL THEN
BEGIN
A PIR : $=$ NEWNODE;
${ }_{\text {AT }}{ }^{-}$TRV $:=$A_PTR; $^{-1}$
EUSE
BEGIN
A TRV . NEXT $:=$ NEWNODE;
A_TRV :=A_TRV . NEXT;
END;
NEW (NEWNODE) ;
NEWNODE'. INFO' := -1 * ORIG_A_z_COEF [I, J]. PLUS * HALF_DELTA; (* B[X] *)

```
    NLENNODE^.NESXT := NIL;
    IF B PIR = NIL THEN
    BEGIN
        B PTR := NEWNODE;
        B_TRV := B_PTR;
    END
ELSE
    BEGIN
        BTTRV .NEXTT := NEWNODE;
        B-TRV := B_TRV .NEXT;
    END;
    NEW (NEWNODE);
    NLENNODEN.MNFO':= ORIG_A_I_COEF [I,J].MINUS * HALF_DELTTA; (* CI[X]*)
    NEENNODE^.NEXT := NIL;
    IF CI PIR = NIL THEN
    BEGIN
        CI PTR := NEWNODE;
        CI_TRV := CI_PTR;
    EN
ELSE
    BEGIN
        CI TRV^.NEXT := NEWNODE;
        CI_TRV := CI_TRV^.NEXT;
    END;
    NEW (NEWNODE);
    NEWNODE^.INFO := ORIG_A_x_COEF [I,J].STD * HALF_DELTA + 1; (* AI[X]*)
    NEWNODE^.NEXT := NIL;
    IF AI PTR = NIL THEN
    BEGIN
        AI PTR := NEWNODE;
        AI_TRV := AI_PIR;
    END
    BEGIN
        AI TRV^.NEXT := NEWNODE;
        AI_TRV := AI_TRV .NEXT;
    END;
    NEW (NEWNODE);
    NEWNODE^.INFO := ORIG_A_r_COEF [I,J].PLUS * HALF_DELTA; (* BI[X] *)
    NEWNODE^.NEXT }:=~\textrm{NIL}
    IF BI PTR = NIL THEN
    BEGIN
        BI PIR := NEWNODE;
        BI_TKV := BI_PTR;
    END
ETSE
    BEGIN
        BI TRV .NEXTT := NEWNODE;
        BI_TRV := BI_TRV'.NEK_;
    END;
(* calculate constant term *)
NEW (NEWNODE);
NEWNODE^.NEXT':= NIL;
IF D PTR = NIL THEN
    BEGIN
        D_PTR := NEWNODE;
        D_IRV := D_PIR;
    ELSNE
    BEGIN
        D TRV^.NEXT := NEWNODE;
        D_TRV := D_TRV年.NEXT;
    END;
IF I = 1 THEN
        D_TRV . INFO := AI TRV^.INFO * HALF GRID [I,J] +
                BI_TRV'.INFO * half_grid {I+1,J] + S_TRV`.INFO
```

```
    EHSE
    IF I = N THEN
        D_TRV .TNFO := CI_TRV . INFO * HALF GRID [I-1,J] +
                        AI_TRV^.DNFO* HALF_GRID [I,J] + S_TRV'.INFO
    ELSE
        D_TRV'.TNFO :=CI TRVN. INFO * half grid [i-1,j] +
                AI TRV INFO *THALF GRID [I,J] + bi_TRVN. INFO
            * half_grid [i+1,j丁 + S_TRV.INFO;
    (* adjust d[x] for j = 2 position *)
    IF J = 2 THEN
    D_TRV .INFO := D_TRV'.INFO - C_TRV .INFO * HALF_GRID [I, 1];
(* save I,J locations to facilitate placing of new
            temperatures in proper locations *)
    TOTAL := TOTAL + 1;
    LOCATE [TOTAL].I LOC := I;
    LOCATE [TOTAL].J_LOC:= J;
    END; (* J_LOOP *)
    THOMAS_ALG (X);
    (* move temperatures generated by THOMAS_ALG to
    linear array locations *)
    UTTRV := U_PTR;
    FOR INDEX := PREV_TOTAL TO TOTAL DO
        BEGIN
            LOCATE [INDEX].TOM TEMP := U_TRV'.INFO;
            UTTRV := U_TRV .NEXT;
        END;
    RELEASE (P);
    REIEASE (PI);
    PREV TOTAL := PREV_TOTAL + X;
    END; T* I_LOOP *)
(* move temperatures generated by THOMAS_ALG to
            proper mesh locations *)
    FOR INDEX :=1 TO TOTAL DO
    HALF_GRID [IOCATE[INDEX].I_LOC,IOCATE[INDEX].J_LOC] := locate [INDEX].tom_temp;
    DERIVE_CENTER_TEMP (HALF_GRID);
END;
PROCEDURE FIRST_TRAVERSE_RADIAL;
    {...traverses the mesh in the radial direction moving necessary
                        coefficients from record storage structure into extended
                        precision arrays for access by Thomas' Algorithm ............)
VAR
    I,J,J_FIND : INTEGER;
    J MAX TENP, HALF DELTTA : extended;
    ti,tj-: integer;
    INDEX : INTEGER;
BEGIN
    S PTR := NIL;
    CPTR := NIL;
    A_PTR := NIL;
    B-PTR := NIL;
    CJPTR := NIL;
    AJ-PIR := NIL;
    BJPIR := NIL;
    D_PTR := NIL;
```

MARK (P1) ;
HALF DELTA $:=$ DELTATA / 2 ;
PREVTOTAL : $=1$;
TOTAL : $=0$;
FOR J:= 2 TO m DO
BEGIN

```
X := 0;
FOR I := I to n DO
BEGIN
    X := X + 1;
```

 (* load coefficient arrays *)
 S VECTOR (I, J, S_V_COEF);
 NEW (NEWNODE);
 NENNODE^ \(\operatorname{INFO}:=S V \operatorname{VOEF}[I, J]\) * HALF_DELTA; (* S[X] *)
 NEMAODEA. NEXT \(:=\) NIL;
 IF S PIR = NIL THEN
BEGIN
SPTR : = NEWNODE;
S-TRV := S_PTR;
ELSE
BEGIN
S TRV . NEXT $:=$ NEWNODE;
STRV := S_TRV .NEXT;
END;
NEW (NENNODE);
NEVNODEA. INFO $:=-1$ * ORIG_A_r_COEF $[I, J]$.MMNUS * HALF_DELTA; (* $C[X]$)
NEWNODE^.NEXT $:=$ NIL;
IF C PTR = NIL THEN
BEGIN
C PTR : $=$ NEWNODE;
CTRV := C_PTR;
END
ELSE
BEGIN
CTRV ${ }^{\wedge}$ NEXT $:=$ NEWNODE;
$C_{\text {TRV }}:=$ C_TRV $^{\prime}$.NEXT;
END;
NEW (NEWNODE) ;
NEWNODE^. TNFO : $=-1$ * ORIG_A_r_COEF [$I, J]$.STD * HALF_DELTA + 1 ; (* A $[X]$ *)
NEWNODE^. NEXT $:=$ NIL;
IF A PTR = NIL THEN
BEGIN
A PTR := NEWNODE;
A_TRV := A_PTR;
ENSE
BEGIN
A TRV ${ }^{\wedge}$.NEXT $:=$ NEWNODE;
A-TRV : = A TRV'. NEXT;
END;
NEW (NEWNODE);
NEWNODE ${ }^{\wedge}$.INFO' $:=-1$ * ORIG_A_r_COEF [I, J].PLUS * HAIF_DELTA; (* B[X]*)
NEWNODE^. NEXT : $=$ NIL;
IF B PIR $=$ NIL THEN
BEGIN
B_PTR := NEWNODE;
B_TRV := B_PIR;
END
ETSE
BEGIN
B TRV . NEXT $:=$ NEWNODE;
B-TRV := B_TRV'.NEXT;
END;

```
    NEW (NEWNODE);
    NEWNODE*.INFO := ORIGA z COEF [I,J].MINUS * HALF_DELTA; (* C[J]*)
    NEWNODE^.NEXT := NIL;
    IF CJ_PIR = NIL THEN
    BEGIN
        GJ PTR := NEWNNODE;
        C丁TTRV := GJ_PIR;
    END
EISE
    BEGIN
        GJ TRV^.NEXT := NEWNODE;
        GJITRV := G_TRVN.NEXT;
    END;
    NEW (NEWNODE);
    NEWNODE*}\cdot\mathrm{ INFO := ORIG_A_z_COEF [I,J].STD * HALF_DFLTA + 1; (* AJ [X]*)
    NEWNODE^.NEXT := NIL;
    IF AJ_PTR = NIL THEN
    BEGIN
        AJ PIR := NEWNODE;
        AJ_TRV := AJ_PTR;
    END
ELSE
    BEGIN
        AJ TRV^.NEXT := NEWNODE;
        AN_TRV := AJ_TTRV'.NEXT;
    END;
    NEW (NEWNODE);
    NEWNODE^. INFO := ORIG_A_z_COEF [I,J].PLUS * HALF_DELTA; (* BJ[X]*)
    NEWNODE^.NEXT := NIL;
    IF EJ PTR = NIL THEN
    BEGIN
        BJ PTR := NEWNODE;
        BJ_TRV := BJ_PTR;
    END
ELSE
    BEGIN
        BJ_TRV^.NEXT := NEWNODE;
        BJ_TRV := BJ_TRV^.NEXT;
    END;
    (*calculate constant term *)
NEW (NEWNODE);
newrode^.info := 0.0;
NEWNODE^.NEXT := NIL;
IF D PIR = NIL THEN
    BEGIN
        D PTR := NEWNODE;
        D_TRV := D_PTR;
    END
ELSE
    BEGIN
        D TRV^.NEXTT := NEWNODE;
        D_TRV := D_TRV^.NEXT;
    END;
    IF J = M TheN
        D_TRV .INFO := GJ TRV^. INFO * HALF GRID [I,J-1] +
                        AJ TRV .INFO * HALF_GRID [I,J] +
                        S_TRV . INFO
    EMSE
        D_TRV^.INFO := CJ_TRV^.INFO * HALF_GRID [I,J-1] +
```

```
AJ TRV*.INFO * HALF GRID [I,J] +
```



```
(* save I,J locations to facilitate placing of new
    temperatures in proper locations *)
    TOTAL := TOTAL + 1;
    LOCATE [TOTAL].I LOC := I;
    LOCATE [TOTAL].J_LOC := J;
```

END;
THOMAS_ALG (X);
(* move temperatures generated by THOMAS_ALG to
linear array locations *)
U TRV := U PTR;
FOR INDEX : $=$ PREV_TOTAL TO TOTAL DO
BEGIN
LOCATE [INDEX]. TOM TEMP := U_TRV ${ }^{\wedge}$.INFO;
UTRV := UTRV .NEXT;
END;
RETLEASE $\langle\mathrm{P}$) ;
REIEASE(PI);
PREV_TOTAL := PREV_TOTAL + X;
END;
(* move temperatures generated by THOMAS ALG to proper mesh locations *)
FOR INDEX $:=1$ TO TOTAL DO
HAIF_GRID [LOCATE [INDEX] .I_LOC,LOCATE [INDEX] .J_LOC] := locate [INDEX].tom_temp;
DERIVE_CENIER_TEMP (HAIF_GRID);

END;

PROCEIURE FILE_OUT (STEP:REAL; VAR TISSUE:GRID; T_A_TEMP, T_V_TEMP : J_ARRAY);
VAR
INDEX : INTEGER;
ROW, COL : integer;
AVG : J_ARRAY;
BEGIN
(* SENDS OUIFUT AT IDENTIFIED TIME INTERVAL TO FILE TEMP OUT.DAT DATA IS PRINIED AS FORMATIED REALS IN A 7:3 FIEID USING A CCMMA AS THE DELIMLTER *)

IF T STEP $=0.0 \mathrm{THEN}$
BEGTN
WRITELN (OUT DATA, 'ORIGINAL PROGRAM')
WRITELN (OUT DATA, 'ALL VALUES ARE AT THE EXTERNAL LAYER');
WRITE (OUT DNTA, 'STEP':10,'J2':6, 'J6':12);
WRITELN (OOT_DATA,'END11':13, 'KMUS-6':10, 'WMUS-6':8,'TA6':5,'TV6':8);
END;
WRITE' (OUT DATA, T STEP: 10:2,', ');
WRITE (OUTDATA, HALFGRID[N, 2]* NORNALIZING TEMP:7:3, ',');
WRITE (OUR DATA, HALFFGRID (N, 6] \#NORMALIZING PEMP: 7:3; , i);
WRITE (OUT DATA, HALF GRID[N,M] *NORMALIZING TEMP:7:3,', ');
WRITE (OUIT DATA, W ARFAY[6]:7:3,',', W ARRAY[6]:7:3,',');
WRITETN (OOT DATA, TA A NODE [6] * NOŔMÁLIZING_TEMP:7:3, , ,
-T_V_NODE [6] *NORNALIZING_TEMP:7:3);

```
*)
    (* necessary M and N values for use by GRAPH program *)
    IF T STEP = 0.0 THEN
        BSGIN
            WRITEINN (OUT DATA, M, ' =M');
            WRITETN (OUT_DATA,N, ' =N');
        ENO;
    WRITENN (OUT DATA, STEP:5:2);
    WRITENN (OUTTDATA,'T A');
    FOR INDEX :=-1 TO M-I DO
        BEGIN
        WRITE (OUT DATA, T A TEMP [INDEX]* NORMALIZING_TEMP:7:3);
        IF INDEX <> M-1 THEN
            WRITE (OUT_DATA, ',');
        END;
    WRITELNN (OUT DATA);
    WRIIETNN (OUT DATA, 'TVV');
    FOR INDEX :=-1 TO M-1 DO
        BEGIN
            WRITE (OUN DATA, T V TEMP [INDEX]* NORMALIZING_TEMP:7:3);
            IF INDEX <S M-1 THEN
            WRITE (OUT DATA,' ,');
        END;
    WRITELNN (OUT_DATA);
    WRITELN (OUT DATA, 'TISSUE TEMPERATURES');
    FOR ROW := NDOWNIO I DO
        BEGIN
            FOR COL :=1 TO M DO
            BEGIN
                WRITE (OUT DATA, TISSUE[ROW,COL] * NORMALIZING_TEMP : 7:3);
                IF COL <> M THEN
                    WRITE (OUT_DATA, ', ');
            END;
    WRITELN (OUT DAIA);
    END;
    WRITIEIN (ONT DATA, 'EXITRAPOLATED CENTER LINE TENPERATURES');
    FOR COL := 1 TO M DO
    WRITE (OUT DATA, TISSUE[0,COL]* NORMALIZING TEMP:7:3);
    WRITETN (OUT DATA);
    WRITETN (OUT_DATA);
    END;
BEGIN (*TRAVERSE *)
    (* initialize step counters *)
T STEP := 0.0;
AV STEP := 0.0;
HaIf_AV_STEP := 0.0;
(* prompt for memory dump options *)
CLRSCR;
    WRITEELN (F, 'INITIAL VALUES ');
    WRITEELN (F);
    DUMP HALF ARRAYS;
    DUMP_T_ARTAY (T_STEP, TENP_GRID);
(* INITIALIZAE GRID *)
HALF GRID := TEMP GRID;
HALFFAV STEPP : = HALF AV STEP + 0.5;
FIIE_ON (T_STEP, HANF_GRID, T_A NODE, T_V NODE);
```

```
        CALC_TA_TV_HALF (T_STEP);
        REPEAT
            RETEASE (HEAPORG);
        T_STEP := T_STEP + 0.5;
        CALC_TA_TV HALF (T_STEP) ;
        FIRST_TRAVERSE RADIAL;
        RELEASE (HEAPORG) ;
        IF T STEP = 0.5 THIEN
            BEGIN
                DUMP HALF ARRAYS;
                DUMP_T_ARKAY (T_STEP, HALF_GRID);
            END;
        T_STEP := T_STEP + 0.5;
        SECOND TRAVERSE AXIAL;
        REX_EASE (HEAPORG);
        TEMP GRID := HALF GRID;
        HALFFAV STEP := HALF AV STEP + 1;
        AV STEP- : AV STEP +- 1;
        T \overline{a}}:= T_a ba\vec{r}
        TV}:=T\textrm{TV}\mathrm{ bar;
        old t v ñode := t v node;
        old_t_a_node := t_a_node;
        (* print time step counter *)
        CIRSCR;
        GOTOXY (40,12);
        WRITEMN (trunc(t_step));
        IF (T STEP/INIERVAL = TRUNC(T_STEP / interval) * 1.0) THEN
            BEGIN
                CLRSCR;
                DUMP HALF ARRAYS;
                DIMP T ARRAY (T STEP, HALF GRID)
                FILE_OUT (T_STEP, HALF_GRID,T_A_NODE, T_V_NODE);
                end;
(* DUMP DATA FOR GRAPHICS TEST PROGRAM *)
    IF T STEP = 1000 THEN
    file_out (t step, half grid, t_a_node, t_v_node); *)
(*RETURN TISSUE TEMP AT J=1 TO 30
    IF T STEP = 100 THEN
        UPDATE TISSUE_1 (HAIF_GRID);
*)
    UNTIL LCV_R = T_STEP;
END; (* TRAVERSE *)
BEGIN (* TISSUE *)
    ESTABLISH_COEF_ARRAYS;
    TRAVERSE;
END; (*TISSUE*)
end,
```


4. PHYS_SP.PAS

\{ anatomical input modure \}

UNIT PHYS_SP;

```
INTERFACE
    USES var sp;
    PROCEDURE ANATOMICAL INPUT (VAR DIA, LEN : extended);
    PROCEDURE NLM_DIVISIONS (VAR CORE SUBDIV, MUSCLE SUBDIV,
                            FAT SUBDIV, SKIN_SUBDIV, N, M : INTEGER);
    PROCEDURE WIDTH CALCULATIONS (VAR H CORE, H MUS, H FAT, H SKIN,
                    CORE MUS GAMMA, MUS FAT'GAMMA,
                        FAT SKIN GAMMA : extended;
                    DIA, LEN : REAL;
                CORE DIV, MUS DIV, FAT_DIV,
                    SKINDIV : INTEGER);
    PROCEDURE EST_INTERFACES (VAR BOUND SET : BOUNDS;
        VAR CORE MUS ENDRY, MUS FAT ENDRY,
                        FAT SKIN ENDRY', SKIN SURFACE:' INTEGER;
        CORE SUBDIV, MUS SURDIV, FAT_SUBDIV,
                    SKIN SUBDIV ` INTEGER);
    PROCEDURE CREATE_ARRAYS (VAR H ARRAY,DISTANCE ARRAY : I ARRAY;
        CORE MUS BOUND,MUS FAT BOUND, FAT SKNN BOTND:INTEGER;
        H_r_CORE, H_r_MUS, H_r_FAT, H_r_SKIN ` REAL);
IMPLEMENTATION
    USES
        CRT, DOS, PRINTER ;
(*============================== ANATOMICAL PROCEDURES
                            ======================*)
```

PROCEDURE ANATOMICAL_INPUT (VAR DIA, LEN : extended);
\{........provides for keyboard input of length and diameter in cm. exports length and diameter in meters\}

VAR
RESPONSE : CHAR;
BEGIN
dia := GC DIA;
len := GC_LEN;
\{
CLRSCR;
WRITE' ('ENTER THE DIAMETER (cm) : ');
READLN (DIA);
WRITEIN;
WRITE ('ENTER THE LENGTH (cm) : ');
READLN (LIEN);
REPEAT
CTRSCR;
WRITEEN ('EXIT / VERIFY SCREEN');
WRITEIN;
WRITEIN ('1) DIAMETER $=$ ':20, DIA : 15:7, ' cm ');
WRITEIN ('2) LENGTH $=$ ':20, LEN : $15: 7$, ' cm ');
WRITEIN;
WRITELN ('ENTER THE NUMBER OF THE ITEM TO BE CHANGED');
WRITE ('-…-.- ENTER V TO VERIFY AND CONTINUE --------> ');
READIN (RESPONSE);
IF (RESPONSE = '1') OR (RESPONSE = '2') THEN
BEGIN
WRITELN;
CASE RESPCNSE OF
'1' : Begin
WRITE ('ENTER THE NEW DIAMETER (cm) : ');
READLN (DIA);
WRITELN:
END;
'2' : BEGIN

```
                    KRITE ('ENIER THE NEW LENGIH (am) : ');
                    READLN (LENN);
                    WRITELN;
                    END;
                END; (* CASE *)
                END;
    UNTIL ((RESPONSE = 'V') OR (RESPONSE = 'v'));
}
    (* CONVERSION TO METERS *)
    LEN := LEN / 100;
    DIAM := DIAM / 100;
    RAD := DIA/2;
    PHYS_RAD := RAD;
END; (* ANATCMICAL INPOT *)
PROCEDURE NUM DIVISICNS (VAR CORE SUBDIV, MUSCLE SUBDIV,
                                    FAT_SUBDIV, SKIN_SUBDIV, N, M : TNTEGER);
    {...........provides for user entry for the number
        of divisions in each organ.
VAR
    RESPONSE : CHAR;
BEGIN
    axial_divs := GC_AXIAL_DIVS;
    m := \overline{axial divs }\mp1;
    core sutuliv := GC CORE DIVS;
    muscle subdiv := ЄC MUS DIVS;
    fat subdiv := GC FAT DIVS;
    skin_subdiv := GC_SKIN DIVS;
    n :=-core_subdiv \mp muscle_subdiv + fat_subdiv + skin_subxiv + 1;
    N := 9999;
    REPEAT
        CLRSCR;
        WRITETN;
        WRIIELNN ('MAXIMLM AXIAL DIVISIONS = ', J_MAX-1);
        WRITETNN;
        WRITE ('ENTER THE NUMBER OF AXIAL DIVISIONS DESIRED : ');
        READIN (AXIAL DIVS);
        WRITEMN;
        IF (AXIAL_DIVS > J_MAX-1) OR (AXIAL_DIVS <=0) THEN
            BEGIN
                WRITELN ('AXIAL DIVISIONS EXCEFWD PROGRAM PARAMEIERS');
                WRITEELN ('AXIAL INPUT SEQUENCES WIL工 BEGIN AGAIN');
                PAUSE_CRT;
            ENDD;
        IF (AXIAL_DIVS >=1) AND (AXIAL DIVS <= J_MAX-1) THEN
            BEGIN
                CIRSCR;
                WRITENN;
                WRITEELN'('VERIFY / EDIT SCREIRN');
                WRITETN;
                WRITEMN (1 AXIAL DIVISIONS = ', AXIAL DIVS);
                M := AXIAL DIVS + 1;
                WRITEKN:
                WRITETN'(' M= ',M);
                WRITEMN:
                WRITETN ('ENIER V TO VERIFY AND CONTINUE OR');
                WRIITE (', PRESS E TO CHANGE AXIAL DIVISIONS DATA ');
                READIN (RESPCNSE);
                WRITELEN;
                CIRSCR;
            END;
            UNIIL ((RESPONSE = 'V') OR (RESPONSE = 'V'));
    RESPONSE := ' ';
```

```
WHILE N > I_MAX DO
    BEGIN
        WRITEEIN ('ENTER THE NUMBER OF SUBDIVISIONS FOR THE FOLLOWING LAYERS -');
        WRITELN ('( MAXIMUM TOTAL SUBDIVISIONS = ':50, I_MAX-1, ' )');
        WRITEIN;
        WRITE ('CORE : ': 25);
        READLN (CORE_SUBDIV);
        WRITENN;
        WRITE ('MUSCLE : ' : 25);
        READLN (MUSCLE_SUBDIV);
        WRITEIN;
        WRITE ('EAT : ' :25);
        READLN (FAT SUBDIV);
        WRITELN;
        WRITE ('SKIN : ':25);
        READLN (SKIN_SUBDTV);
        WRITEEN
        REPEAT
        CLRSCR;
        WRITEIN;
        WRITEIN ('VERIFY / EDIT SCRRENN');
        WRITELN;
        WRITELN ('SUBDIVISION VALUES ENTERED ');
        WRITEIN;
        WRITETN ('1) CORE : ':40, CORE SUBDIV);
        WRITEIN ('2) MUSCLE : ':40, MUSCTE SUBDIV);
        WRITEIN ('3) FAT : ':40, FAT SUBDIV);
        WRITELN ('4) SKIN : ':40, SKIN_SUBDIV);
        WRITEIN;
        WRITEIN ('ENTER THE NUMBER OF THE LAYER TO BE CHANGED');
        WRITE ('----.-- ENTER V TO VERIFY AND CONITNUE ---.-------> ');
        READLN (RESPONSE);
        WRITELN:
        IF (RESPCNSE >= '1') AND (RESPONSE <='4') THEN
            BEGIN
                WRITEIN;
                WRITE ('ENIER THE NEW VALUE FOR THE ');
                CASE RESPONSE OF
                    '1' : BEGIN
                        WRITE ('CORE : ');
                                    READLN (CORE_SUBDIV);
                                    END;
                '2' : BEGIN
                    WRITE ('MUSCLE : ');
                            READLN (MUSCTE_SUBDIV);
                                    END;
                                    '3' : BEGIN
                                    WRITE ('FAT : ');
                            READLN (FAT_SUBDIV);
                    END;
                    '4' : BEGIN
                    WRITE ('SKIN : ');
                            READLN (SKIN_SUBDIV);
                                    END;
                END; (* CASE *)
                WRITELN;
            END; (* IF *)
        UNTIL ((RESPONSE = 'V') OR (RESPCNSE = 'V'));
        N := CORE SUBDIV + MUSCLE_SUBDIV + FAT_SUBDIV + SKIN_SUBDIV + 1;
        IF N > I_MAX-1 THEN
            BEGIN
            WRITETN ('DIVISION TOTAL EXCEEEDS PROGRAM PARAMETERR');
                    WRITEIN ('MAXIMLM TOTAL DIVISIONS CANNOT EXCEEED ', I_MAX-1);
                    WRIIELN:
                    WRITEIN ('DATA ENIRY SEQUENCE WILL START AGATN');
                    PAUSE_CRT;
            END;
    END; (* WHILE *)
(* ESTABLISH H_z AND NORMALIZE *)
PHYS_H_z := LEN / AXIAL_DIVS;
```

```
    H_Z :=PHYS_H_Z / LEN;
    END; (* numdivisions *)
PROCEDURE WIDTH_CALCULATIONS (VAR H CORE, H MUS, H_FAT, H_SKIN, CORE_MUS_GAMMA,
                        MUS FAT GAMMA,
                    FATT SKIN GAMMA : extended;
                    DIA, LEN : REAL; CORE_DIV, MUS_DIV, FAT_DIV,
                    SKIN_DIV : INTEGER);
        {......imports the location of organ boundaries, length, diameter
        calculates width of each organ
        exports organ width, H- values, and gamma values.............}
BEGIN (* width_calculations *)
    (* establish sample boundary *)
        core mus bound := core ratio;
        mus Fat bound := muscle` ratio;
        fat-ski\overline{n}}\mathrm{ bound := fat_rätio ;
        skin_surface bound :=- skin_ratio ;
    (* DETERMINE LAYER WIDTHS *)
    CORE WIDTH := CORE MUS BOUND ;
    MUS WIDTH := (MUS FAT EOUND - CORE MUS BOTND) ;
    FAT WIDIH := (FAT SKIN BOUND - MUS FAT BOIND) ;
    SKIN_WIDIH := (SKIN_SURFACE_BOUND = FAT_SKIN_BOUND);
    (* DETERMINE H- VALUES *)
    H CORE := (CORE WIDTH / (CORE DIV + 0.5));
    HMUSS := (MUS WIDTH / MUS DIV);
    H-FAT := (FATWIDIH / FATDIV);
    H_SKIN := (SKIN_WIDIH / SKIN_DIV) ;
(* DETERMINE GAMMA VALUES *)
CORE MUS GAMMA := H CORE / H MUS;
MUS FAT GAMMA := H MUS / H FAT ;
FAT_SKIN_GAMMA := H_FAT / H_SKIN;
END; (* width_calculations *)
PROCEDURE EST_INIERFACES (VAR BOUND SET : BOUNDS;
                            VAR CORE MUS BNDRY, MUS FAT BNDRY,
                            FAT SKIN ENDRY, SKIN SUNFACE: INIEGER;
                            CORE SUBDIV, MUS SUBDIV, FAT SUBDIV,
                            SKIN_SUBDIV = INTEGER);
                            {......establishes a SET of I values representing the location of
                        organ interfaces
                        .}
BEGIN
    CORE MUS BNDRY := CORE SUBDIV + 1;
    MUS FAT ENDRY := MUS SUBDIV + CORE MUS BNDRY;
    FAT SKINN ENDRY := MUS FAT ENDRY + FAT SUBDIV;
    SKIN SURFACE := FAT SKIN ENDRY + SKINTSUBDIV;
    BOUND_SET := [CORE MUS_BNDRY, MUS FAT_BNDRY,'FAT_SKIN BNDRY];
END;
PROCEDURE CREATE_ARRAYS (VAR H ARRAY,DISTANCE ARRAY : I ARRAY; CORE MUS BOIND, MUS FAT BOUND, FAT SKIN BOUND: INTEGHRR; H_r_CORE, H r_MUS, H_r_FAT, H_r_SKIN : REAL) ;
\{.......creates a set of I values for each organ and establishes
a series of arrays containing \(R i\) and \(H \quad r\) values indexed to the I locations
```

```
    VAR
    INDEX : INTEGER;
    H_TOTAL : REAL;
    BEGIN (* create arrays *)
    CORE SET := [1.. (CORE MUS BOUND)];
    MUS SET := [CORE MUS BOUND + 1..MUS FAT BOUND];
    FATSSET : = [MUS FAT EOUND + 1..FAT SKIN_BOUND];
    SKIN SET := [FAT SKIN BOUND + 1,.N];
    FOR MNDEX := 1 TO N DO
        BEGIN
            IF INDEX IN CORE SET THEN
                    H ARRAY [INDEX] := H r CORE;
            IF INDEX IN MUS SET THEN
                H ARRAY [INDEX] := H r_MUS;
            IF INDEX IN FAT SET THEN
                    H ARRAY[INDEX] := H r FAT;
            IF INDEX IN SKIN SET THEN
                H_ARRAY [INDEXJ := H_r_SKIN;
        END;
    H ARRAY[0] := 0.0;
    DISTANCE ARRAY [0] := 0.0;
    H_ARRAY[1] := H_ARRAY[2]/2;
    (* establish R_i and physical_r_i arrays *)
    FOR INDEX := I TO N DO
            PHYS_H_I_ARRAY [INDEX] := H_ARRAY[INDEX] * PHYS_RAD;
    DISTANCE ARRAY [1] := H ARRAY[1];
    PHYS R i [1] := PHYS_H_\overline{r_ARRAY [1];}
phys_r i TOT := 0;
    FOR INDEX := 2 TO N DO
        BEGIN
            DISTANCE ARRAY[INDEX] := DISTANCE ARRAY[INDEX-1] + H ARRAY[INDEX] ;
            PHYS_R_i- [INDEX] := DISTANCE_ARRAY[INDEX] * PHYS_RAD;
        END;
        H TOTAL := 0.0;
        FOR INDEX := 1 TO N DO
            H_TOTAL := H_TOTAL + H_ARRAY[INDEX];
    END; (*-create_arrays *)
```

END.

APPENDIX D - DISTRIBUTION LIST

2 Copies to:
Defense Technical Information Center
ATTN: DTIC-DDA
Alexandria, VA 22304-6145
Office of the Assistant Secretary of Defense (Hith Affairs)
ATTN: Medical Readiness
Washington, DC 20301-1200
Commander
U.S. Army Medical Research and Development Command

ATTN: SGRD-PLC
Fort Detrick
Frederick, MD 21702-5012
Commander
U.S. Army Medical Research and Development Command

ATTN: SGRD-PLE
Fort Detrick
Frederick, MD 21702-5012
Commandant
Army Medical Department Center and School
ATTN: HSMC-FR, Bldg. 2840
Fort Sam Houston, TX 78236
1 Copy to:
Joint Chiefs of Staff
Medical Plans and Operations Division
Deputy Director for Medical Readiness
ATTN: RAD Smyth
Pentagon, Washington, DC 20310
HQDA
Office of the Surgeon General
Preventive Medicine Consultant
ATTN: SGPS-PSP
5109 Leesburg Pike
Falls Church, VA 22041-3258
HQDA

Assistant Secretary of the Army for Research, Development and Acquisition ATTN: SARD-TM
Pentagon, Washington, DC 20310
HQDA
Office of the Surgeon General
ATTN: DASG-ZA
5109 Leesburg Pike
Falls Church, VA 22041-3258
HQDA
Office of the Surgeon General
ATTN: DASG-DB
5109 Leesburg Pike
Falls Church, VA 22041-3258
HQDA
Office of the Surgeon General
Assistant Surgeon General
ATTN: DASG-RDZ/Executive Assistant
Room 3E368, The Pentagon
Washington, DC 20310-2300
HQDA
Office of the Surgeon General
ATTN: DASG-MS
5109 Leesburg Pike
Falls Church, VA 22041-3258
Uniformed Services University of the Health Sciences
Dean, School of Medicine
4301 Jones Bridge Road
Bethesda, MD 20814-4799
Uniformed Services University of the Health Sciences
ATTN: Department of Military and Emergency Medicine 4301 Jones Bridge Road
Bethesda, MD 20814-4799
CommandantArmy Medical Department Center \& School
ATTN: Chief Librarian Stimson Library
Bldg 2840, Room 106
Fort Sam Houston, TX 78234-6100
Commandant
Army Medical Department Center \& School
ATTN: Director of Combat Development
Fort Sam Houston, TX 78234-6100
Commander
U.S. Army Aeromedical Research Laboratory
ATTN: SGRD-UAX-SI
Fort Rucker, AL 36362-5292
Commander
U.S. Army Medical Research Institute of Chemical Defense
ATTN: SGRD-UVZ
Aberdeen Proving Ground, MD 21010-5425
Commander
U.S. Army Medical Materiel Development Activity
ATTN: SGRD-UMZ
Fort Detrick
Frederick, MD 21702-5009
Commander
U.S. Army Institute of Surgical Research
ATTN: SGRD-USZ
Fort Sam Houston, TX 78234-5012
Commander
U.S. Army Medical Research Institute of Infectious Diseases
ATTN: SGRD-UIZ-A
Fort Detrick
Frederick, MD 21702-5011
Director
Walter Reed Army Institute of Research
ATTN: SGRD-UWZ-C (Director for Research Management)Washington, DC 20307-5100
Commander
U.S. Army Natick Research, Development \& Engineering Center ATTN: SATNC-Z
Natick, MA 01760-5000
Commander
U.S. Army Natick Research, Development \& Engineering Center ATTN: SATNC-T
Natick, MA 01760-5002
Commander
U.S. Army Natick Research, Development \& Engineering Center
ATTN: SATNC-MIL
Natick, MA 01760-5040

Commander

U.S. Army Research Institute for Behavioral Sciences 5001 Eisenhower Avenue
Alexandria, VA 22333-5600
Commander
U.S. Army Training and Doctrine Command
Office of the Surgeon
ATTN: ATMD
Fort Monroe, VA 23651-5000
Commander
U.S. Army Environmental Hygiene Agency
Aberdeen Proving Ground, MD 21010-5422
Director, Biological Sciences Division
Office of Naval Research - Code 141
800 N. Quincy Street
Arlington, VA 22217
Commanding Officer
Naval Medical Research \& Development Command NNMC/Bldg 1
Bethesda, MD 20889-5044
Commanding Officer
U.S. Navy Clothing \& Textile Research Facility
P.O. Box 59
Natick, MA 01760-0001
Commanding OfficerNavy Environmental Health Center
2510 Walmer Avenue
Norfolk, VA 23513-2617
Commanding Officer
Naval Aerospace Medical Institute (Code 32)
Naval Air Station
Pensacola, FL 32508-5600
Commanding Officer
Naval Medical Research Institute
Bethesda, MD 20889
Commanding Officer
Naval Health Research Center
P.O. Box 85122
San Diego, CA 92138-9174
Commander
Armstrong Medical Research Laboratory
Wright-Patterson Air Force Base, OH 45433
Strughold Aeromedical Library
Document Services Section
2511 Kennedy Circle
Brooks AFB, TX. 78235-5122
CommanderUS Air Force School of Aerospace MedicineBrooks Air Force Base, TX 78235-5000
Director
Human Research \& EngineeringUS Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5001

