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Abstract—This paper deals with microwave tomography for

brain stroke imaging using state-of-the-art numerical modeling 

and massively parallel computing. Iterative microwave 

tomographic imaging requires the solution of an inverse problem 

based on a minimization algorithm (e.g. gradient based) with 

successive solutions of a direct problem such as the accurate 

modeling of a whole-microwave measurement system. Moreover, 

a sufficiently high number of unknowns is required to accurately 

represent the solution. As the system will be used for detecting 

the brain stroke (ischemic or hemorrhagic) as well as for 

monitoring during the treatment, running times for the 

reconstructions should be reasonable. The method used is based 

on high-order finite elements, parallel preconditioners from the 

Domain Decomposition method and Domain Specific Language 

with open source FreeFEM++ solver.

Index Terms— High Performance Computing, Parallel 

computers, Finite element analysis, Microwave antenna arrays, 

Electromagnetic Diffraction, Microwave Imaging, Biomedical 

Imaging, Inverse Problems 

I. INTRODUCTION

Stroke, or cerebrovascular accident (CVA), is classically 

characterized as a neurological deficit attributed to an acute 

focal injury of the central nervous system (CNS) by a vascular 

cause, including cerebral infarction, intracerebral hemorrhage 

(ICH), and subarachnoid hemorrhage (SAH), and is a major 

cause of disability and death worldwide [1]. About 85% of 

strokes are ischemic due to cerebral infarction, caused by an 

interruption of the blood supply to some part of the brain, 15% 

are hemorrhagic (10% primary and 5% subarachnoid 
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hemorrhage) [2]. Differentiating between these different types 

of strokes is an essential part of the initial workup of the 

patients because the subsequent management and treatment of 

each patient is vastly different. Rapid and accurate diagnosis is 

crucial since the only drug currently approved by the FDA for 

treatment of acute ischemic stroke is intravenous tissue 

plasminogen activator (tPA) administered within 3 hours of 

stroke onset. Neuroimaging has to play a vital role in the 

workup of acute stroke by providing information essential to 

accurately triage patients, and expedite clinical decision-

making with regards to treatment. CT and MRI [3] are actually 

the "gold" standards but they are bulky diagnostic instruments 

and cannot be used in continuous brain monitoring. A non-

invasive and transportable/portable device would have clear 

clinical applications at the bedside in a Neurological Intensive 

Care Unit (NICU).  

Microwave tomography is a novel, early development stage 

imaging modality with a large number of potential attractive 

medical applications. A difference between the dielectric 

properties (complex permittivity) of normal and diseased brain 

tissues is a great potential for this imaging modality. Detecting 

and identifying strokes is challenging as it corresponds to a 

small opposite variation of the permittivity values of brain 

tissues of about +/- 10 % of the baseline tissue values for the 

two types of strokes (ischemic or hemorrhagic) [4]. The rapid 

data acquisition time is another attractive feature of 

microwave tomography but rapid tomographic reconstructions 

are mandatory for developing a novel imaging modality with a 

new paradigm: detecting, identifying and monitoring stroke 

continuously during treatments by exposing head tissues to 

low-level microwave incident field and capturing the scattered 

signal by an array of antennas. Iterative tomographic imaging 

requires the solution of an inverse problem based on a 

minimization algorithm. Reconstruction algorithms are 

computationally intensive with successive solutions of the

forward problem needing efficient numerical modeling and 

high-performance parallel computing. A majority of works in 

the literature has made use of geometrically simple phantoms 

or with only a limited amount of tissue-mimicking materials. 

The modeling must have to accurately take account of the high 

heterogeneity and complexity of head tissues (skin, fat, skull, 
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bone marrow, brain/white matter, brain/grey matter, 

cerebrospinal fluid, arteries, etc.) for normal cases and for 

different possible brain pathology cases (ischemic and 

hemorrhagic strokes, brain injuries, etc.). Another major point 

refers to the accurate modeling of the incident field from 

transmitting and receiving antennas. This interaction is very 

complex, as it must be seen as a coupling problem between the 

antennas and the head rather than a simple scattering problem. 

In addition, the electric field is measured by means of 

receiving antennas (sensors). Therefore, we do not have access 

directly to the electric field but only via antenna S parameters. 

The purpose of this work is to solve the inverse problem 

associated to a prototype developed by EMTensor GmbH 

(Vienna, Austria) [5] using state-of-the-art modeling, high-

performance and massively parallel computing. 

II. TOMOGRAPHIC SYSTEM 

The model of microwave imaging is based on BRain IMaging 

Generation1 (BRIMG1), a tomographic microwave system 

developed by EMTensor GmbH [5]. The system consists of a 

cylindrical metallic chamber composed of 5 rings of 32 

Transmitting/Receiving antennas (Fig. 1). The antennas are 

ceramic (εr = 59) loaded open-ended waveguides. The 

diameter of the chamber is 285 mm with a height of 280 mm. 

The rings are 30 mm equally spaced, the first one being 

located at 40 mm from the top of the chamber. The chamber is 

filled with a matching liquid medium during measurements. 

The operating frequency of the system is 0.9 GHz to 1.8 GHz. 

The data acquisition cycle of the system is fully electronically 

controlled, allowing for a total data acquisition of about 30 s. 

The imaging chamber is in horizontal position, allowing easy 

positioning a human head within an imaging domain (Fig. 2). 

The head of the patient is introduced in the chamber as shown 

in Fig. 2. A special thin membrane is used for isolating the 

human head from the matching liquid and keeping the liquid 

within the chamber. A carbon loaded silicon rubber (CLSR) is 

also used for reducing reflection from boundary conditions 

(Fig. 3).  

       

Fig. 1. Left: General view of BRIMG1 (courtesy of EMTensor 

GmbH). Right: Computational domain. 

A switching matrix connected to a network analyzer selects 

the transmitting and receiving antennas. The system is 

potentially delivering a 160 × 160 matrix of S parameters. The 

measured S parameters due to the scattered field of an object 

under investigation are obtained by complex subtraction 

between two measurements with empty chamber and with the 

head, respectively. The raw data can be wirelessly transferred 

to a remote computing center. 

 

 

Fig. 2. BRIMG1: Human head measurement (courtesy of 

EMTensor GmbH) 

 

 

Fig. 3. BRIMG1: Side sketch (courtesy of EMTensor GmbH). 

 

The HPC machine will compute the tomographic images, 

which can be quickly transferred from the computing center to 

the hospital. 

III. FORWARD MODELING 

We consider the domain Ω ⊂ R
3

 for representing the whole-

chamber (Fig. 1) as an inhomogeneous dissipative 

nonmagnetic medium of complex permittivity ε(x) . For each 

transmitting antenna j = 1, . . . N at radial frequency ω, the 

wave equation for the electric field vector E
j
(x)  with an 

e
iωt

 time-dependence is 

 ∇× (∇× E
j
)− k 2E

j
= 0       in Ω  (1) 

with k
2
= k

2(x) =ω 2ε
r
(x)ε

0
µ
0

, where k(x) is the complex 

wavenumber of the inhomogeneous medium, ε0 and μ0

 

the 

permittivity and permeability of free space, respectively. 
The boundary conditions on the perfectly conducting parts Γc 

of the walls of the chamber are  

 E
j
×n = 0    on Γ

c  
where n is the unit outward normal to ∂Ω. 

The impedance boundary conditions on the aperture of 
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transmitting open-ended waveguide j and receiving waveguide 

i = 1,..., N, j ≠ i are 

(∇× E
j
)×n+ iβn× (E

j
×n) = g

j
       on Γ

j
 (2) 

(∇× E
j
)×n+ iβn× (E

j
×n) = 0       on Γ

i
,  i ≠ j   (3) 

where β is the propagation constant of the TE10 fundamental 

mode of the waveguide. In equation (2) we impose an incident 

wave corresponding to the excitation of the fundamental mode 

E
j

0

 of the j-th waveguide with 

g
j
= (∇× E

j

0 )×n+ iβn× (E
j

0
×n)  (4) 

 

On the other hand, equation (3) corresponds to a first order 

Silver–Müller absorbing boundary condition, approximating a 

transparent boundary condition on the aperture of the 

receiving waveguide antenna i = 1,..., N, i ≠ j. On the bottom 

of the chamber we impose a metallic boundary condition, 

whereas we impose an impedance boundary condition on the 

top of the chamber. As a result, the whole boundary value 

problem for each transmitting antenna t = 1, . . . , N is to find

E
j
 such that 

∇× (∇× E
j
)− k 2E

j
= 0       in Ω

E
j
×n = 0    on Γ

c

(∇× E
j
)×n+ iβn× (E

j
×n) = g

j
       on Γ

j

(∇× E
j
)×n+ iβn× (E

j
×n) = 0       on Γ

i
,  i ≠ j

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

(5) 

 

Now, let V = v ∈ H (curl,Ω),v×n = 0 on Γ
c{ } , where 

H (curl,Ω) = v ∈ L
2
(Ω)3,∇× v ∈ L

2
(Ω)3{ }  is the space of 

square integrable functions whose curl is also square 

integrable. For each transmitting antenna j = 1,..., N, the 

variational form of problem (5) is : find E
j
∈V  such that 

∇× E
j( ). ∇× v( )− k 2E

j
.v⎡

⎣
⎤
⎦Ω

∫
+ iβ E

j
×n( )

Γ
i1=1

N

∪
∫ . v×n( ) = g

jΓ
j

∫ .v       ∀v ∈V
 (6) 

IV. HIGH-ORDER EDGE FINITE ELEMENTS 

For using a finite element discretization of the variational 

problem, we introduce a tetrahedral mesh Th of the domain Ω 

and a finite dimensional subspace V
h
⊂ H (curl,Ω) . A 

simple conformal discretization for space H (curl,Ω)  is 

given by low order Nédélec edge finite elements of polynomial 

degree r = 1 [7]. 

In order to have a higher numerical accuracy with the same 

total number of unknowns, we consider a high order edge 

element discretization, choosing the high order extension of 

Nédélec elements presented in [8] and [9].  

We implemented edge elements of degrees 2 and 3 in 

FreeFem++, an open source domain specific language (DSL) 

specialized for solving boundary value problems by using 

variational discretizations (finite elements, discontinuous 

Galerkin, hybrid methods,...) [6].  High order elements can be 

used by loading the plugin Element Mixte3d and declaring the 

finite element space fespace using the keywords Edge13d, 

Edge23d, respectively (standard edge elements of degree 1 are 

already present in FreeFem++ and called Edge03d). 

V. DOMAIN DECOMPOSITION PRECONDITIONING 

The discretization of the problem presented in Section III 

using the high order edge finite elements described in Section 

IV produces a linear system  

 Au
j
= b

j  (7) 

for each transmitting antenna j. Direct solvers are not suited 

for such large linear systems arising from complex three 

dimensional models because of their high memory cost. On 

the other hand, matrices resulting from high order 

discretizations are ill conditioned as shown numerically in [8] 

for similar problems, and preconditioning becomes necessary 

when using iterative solvers. Parallel solvers for EM problems 

can be based, for example, on parallel FFTs [20] or non-

overlapping ([21] and references therein) or overlapping 

domain decomposition, which are considered in this paper). 

Domain decomposition preconditioners are naturally suited to 

parallel computing and make it possible to deal with smaller 

subproblems [13]. The domain decomposition preconditioner 

we employ is called Optimized Restricted Additive Schwarz 

(ORAS) 

 M
ORAS

−1
= R

s

T
A
s

−1
R
s

s=1

N
sub

∑  (8) 

where Nsub is the number of overlapping subdomains Ωs into 

which the domain Ω is decomposed (Fig. 4). Here, the 

matrices As are the local matrices of the subproblems with 

impedance boundary conditions (∇× E)×n+ iϖn× (E ×n)  as 

transmission conditions at the interfaces between subdomains. 

Please note OAS is still an overlapping Schwarz 

preconditioner, and only differs from ORAS by the absence of 

local partition of unity term Ds. This preconditioner is an 

extension of the restricted additive Schwarz method proposed 

by Cai and Sarkis [15], but with more efficient transmission 

conditions between subdomains than Dirichlet conditions [16].  

In order to describe the matrices Rs, Ds, let N be an ordered 

set of the unknowns of the whole domain and let 

N = N
ss=1

N
sub

∪  be its decomposition into the (non disjoint) 

ordered subsets corresponding to the different (overlapping) 

subdomains Ωs. The matrix Rs is the restriction matrix from Ω 

to the subdomain Ωs: it is a #Ns × #N Boolean matrix and its 

(i, j) entry is equal to 1 if the i-th unknown in Ns is the j-th one 

in N. Notice that R
s

T
 is then the extension matrix from the 

subdomain Ωs to Ω. The matrix Ds is a #Ns × #Ns diagonal 
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matrix that gives a discrete partition of unity, i.e. 

R
s

T
D
s
R
ss=1

N
sub∑ = I ; in particular the matrices D deal with the 

unknowns that belong to the overlap between subdomains. �The 

preconditioner without the partition of unity matrices Ds, 

M
ORAS

−1
= R

s

T
D
s
A
s

−1
R
ss=1

N
sub∑  which �is called Optimized 

Additive Schwarz (OAS), would be symmetric for symmetric 

problems, but in practice it gives a slower convergence with 

respect to M
ORAS

−1  
[10].These domain decomposition 

preconditioners are implemented in the HPDDM library [12], 

an open source high-performance unified framework for 

domain decomposition methods. HPDDM can be interfaced 

with various programming languages and open source finite 

element libraries such as FreeFem++, which we use in the 

simulations.  

 
Fig. 4. Computational domain divided into 128 subdomains. 

VI. NUMERICAL RESULTS 

A. Comparison with Experimental Measurements 

The measured physical quantities are the S parameters of the 

scattering matrix, which are the complex reflection and 

transmission coefficients measured by the 160 receiving 

antennas when a signal is transmitted by one of the 160 

transmitting antennas. A set of measurements then consists in 

a complex matrix of size 160 × 160. In order to compute the 

numerical counterparts of these reflection and transmission 

coefficients, we use the following formula, which is 

appropriate in the case of open-ended waveguides 

 

S
ij
=

E
j
.E
i

0

Γ
i

∫

E
i

0
2

Γ
i

∫
,  i ≠ j

 

 (9) 

where Ej is the solution of the problem (5) when the j-th 

waveguide antenna transmits the signal, and E
i

0

 is the TE10 

fundamental mode of the i-th receiving waveguide ( E
j
 

denotes the complex conjugate of E
j
). The S

ij
with i ≠ j 

denote the transmission coefficients, and S
ii

 the reflection 

coefficients.  

For a comparison of the computed coefficients S
ij

with the 

measured ones, the imaging chamber is filled with a 

homogenous matching solution in order to reduce the return 

loss of the ceramic-loaded waveguide antennas and to match 

with the average brain tissues. The relative complex 

permittivity of the matching solution chosen for the 

experiments and numerical solution at frequency f = 1 GHz is 

εmatching = 44 − i20. The relative permittivity inside the 

ceramic-loaded waveguides is ε ceramics = 59, assuming a 

lossless ceramic material.  

 

 

 
Fig. 5. Normalized amplitude (top) and phase (bottom) 

between the computed and measured S-parameters. 

 

For this test case, the set of experimental data consists in S 

parameters from the 160 receiving antennas when each 

antenna from the second ring from the top is transmitting. 

Figure 4 shows the normalized magnitude (dB) and phase 

(degree) of the complex coefficients S
ij

corresponding to a 

transmitting antenna in the second ring from the top and to the 

31 receiving antennas in the middle ring (note that measured 

coefficients are available only for 17 receiving antennas). The 

computed coefficients are obtained by solving the direct 

problem with edge finite elements of polynomial degree r = 2. 

The normalization is done by dividing every transmission 

coefficient by the transmission coefficient corresponding to 

the receiving antenna directly opposite to the transmitting 

antenna, which is thus set to 1. Since we normalize with 

respect to the coefficient having the lowest expected 

magnitude, the magnitude of the transmission coefficients 

shown in Fig. 5 is larger than 0 dB. We can see that the 
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transmission coefficients computed from the simulation are in 

very good agreement with the measurements. 

B. High-Order Element Efficiency 

The goal of the following numerical experiments is to assess 

the efficiency of the high order finite elements described in 

Section IV compared to the classical lowest order edge 

elements in terms of accuracy and computing time, which are 

of great importance for such an application for brain imaging. 

For this test case, a non dissipative plastic-filled cylinder of 

diameter 6 cm and relative permittivity ε cyl = 3 is inserted in 

the imaging chamber with same background matching 

medium as defined in Section A. We consider the 32 antennas 

of the second ring as transmitting antennas at frequency f = 1 

GHz, and all the 160 antennas are receiving.  

 

 

 
Fig. 6. Cross-Section of the chamber showing the magnitude 

of the real part of the total field E in the chamber with the 

plastic tube. 

 

We evaluate the error on the reflection and transmission 

coefficients Sij with respect to the coefficients S
ij

ref  
computed 

from a reference solution. The error is calculated with the 

following formula 

 
err =

S
ij
− S

ij

ref
2

j ,i

∑

S
ij

ref
2

j ,i

∑

 (10) 

The reference solution is computed on a fine mesh of 

approximately 18 million tetrahedra using edge finite elements 

of degree r = 2, resulting in 114 million unknowns. The 

section in Fig. 6 shows the computational domain and the 

magnitude of the real part of the total field E over the cross-

section when one antenna of the second ring from the top is 

transmitting. We compare the computing time and the relative 

error (10) for different numbers of unknowns corresponding to 

several mesh sizes, for approximation degrees r = 1 (15 pts/λ) 

and 2 (10 pts/λ) (Table I). We report the results on Fig. 7 and 

8. All these simulations are carried out using 512 subdomains 

with one MPI process and two OpenMP threads per 

subdomain, for a total of 1024 cores on the Curie 

supercomputer (http://www-hpc.cea.fr/fr/complexe/tgcc-

curie.htm). 

 

Degree 1 iter t (s) Err Degree 2 iter t (s) Err 

# unknowns    # unknowns    
2,373,214 35 22 0.384 1,508,916 29 39 0.242 

8,513,191 46 53 0.184 5,181,678 34 62 0.099 

21,146,710 60 130 0.117 12,693,924 41 122 0.057 

42,538,268 70 268 0.083 26,896,130 47 236 0.036 

73,889,953 86 519 0.068 45,781,986 57 396 0.019 

Table I. Total number of unknowns, number of GMRES 

iterations (iter), computing time (t) in seconds, and relative 

error (Err) on computed Sij. 

 

 

Fig. 7. Comparison between degrees r=1 and r=2 on empty, 

total and scattered fields (amplitude and phase). 

 

 
Fig. 8. Computation time (seconds) and relative error on 

computed Sij using elements of degree r=1 and r=2 for 

different mesh sizes and number of unknowns in millions. 

 

As we can see, the higher order approximation (r = 2) allows a 

given accuracy with much fewer unknowns and much less 

computation time than the lowest order approximation (r=1). 

For example, at a given accuracy err of E ≈ 0.1, the finite 

element discretization of degree r=1 requires 21 million 

unknowns and a computing time of 130 seconds, while the 

high order finite element discretization (r=2) only needs 5 

million unknowns, with a corresponding computing time of 62 
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seconds. It turns out we obtain the same accuracy with 10 

points per wavelength with degree r=2 than with 20 points per 

wavelength with degree r =1. Moreover, note that greater 

accuracy could be achieved by using high-order geometric 

tetrahedral elements to reduce the geometric approximation 

error of the circular boundary of the chamber. However, we 

can deduce from Table I that the geometric approximation 

error is largely dominated by the finite element approximation 

error, as the error on the computed Sij is significantly smaller 

using degree 2 edge elements compared to degree 1 edge 

elements, for a fixed number of degrees of freedom, even 

though meshes for degree 2 are coarser (leading to larger 

geometric approximation errors). We also report here 

additional information for a representative run, as it can be 

useful to the community. For the test case corresponding to 27 

million unknowns using degree 2 edge elements, the average 

and maximum subdomain size is 124 300 and 162 410 degrees 

of freedom respectively. The total memory consumption for 

this run is approximately 2 Tbytes. In order to give an idea of 

the parallel performance of the algorithm, the problem was 

solved using 512 cores. The computing time using 512 cores 

(256 subdomains, 2 threads per subdomain) was 366 seconds 

compared to 236 seconds using 1024 cores (512 subdomains, 

2 threads per subdomain), yielding a speedup of 1.55. 

VII. INVERSE PROBLEM 

A. Mathematical Formulation 

The inverse problem that we consider consists in finding the 

unknown complex dielectric permittivity ε(x)  in Ω, such that 

the solutions E
j
(x) , j = 1,...,N of problem (4) lead to 

corresponding scattering parameters S (14) that coincide with 

the measured scattering parameters S
ij

meas
, for i, j = 1, . . . , N.  

Let κ = k 2  be the unknown complex parameter of the inverse 

problem, and let us denote by 
 
E
j
(κ )  the solution of the 

direct problem (5) with the complex dielectric permittivity ε. 

The corresponding scattering parameters will be denoted by 

S
ij
(κ )  for i, j = 1, . . . , N. 

The misfit of the parameter κ to the data can be defined with 

the following cost functional 

 

J (κ ) =
1

2
S
ij
(κ )− S

ij

meas
2

i=1

N

∑
j=1

N

∑

       =
1

2

E
j
(κ ).E

i

0

Γ
i

∫

E
i

0
2

Γ
i

∫
− S

ij

meas

2

i=1

N

∑
j=1

N

∑
 (11) 

 In a classical way, solving the inverse problem consists in 

minimizing the functional J with respect to the parameter κ . 

Computing the differential of J in a given arbitrary direction 

δκ  yields 

DJ (κ ,δκ ) = Re (S
ij
(κ )− S

ij

meas )
δE

j
(κ ).E

i

0

Γ
i

∫

E
i

0
2

Γ
i

∫

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 

i=1

N

∑
j=1

N

∑
 

(12) 

for δκ ∈C  and where δE
j
(κ )  is the solution of the 

following linearized problem 

 

∇× ∇×δE
j( )−κδE j = δκE j     in Ω

δE
j
×n = 0        on Γ

c

∇×δE
j( )×n+ iβn× δE

j
×n( ) = 0    on Γ

i
,i =1,...,N

⎧

⎨

⎪
⎪

⎩

⎪
⎪

(13) 

 

We now use the adjoint approach in order to simplify the 

expression of DJ. This will allow us to compute the gradient 

efficiently after discretization, with a number of computations 

independent of the size of the parameter space.

 Introducing the solution F
j
(κ ) of the following adjoint 

problem 

 

∇× ∇× F
j( )−κFj = 0    in Ω

F
j
×n = 0        on Γ

c

∇× F
j( )×n+ iβn× Fj ×n( ) =

S
ij
(κ )− S

ij

meas( )
E
i

0
2

Γ
i

∫
E
i

0     on Γ
i
,i =1,...,N

 (14)  

we get after some integration by parts (not detailed here) 

 
δκE

j
.F

jΩ
∫ = (S

ij
(κ )− S

ij

meas )
E
i

0.δE
jΓ

i

∫

E
i

0
2

Γ
i

∫

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 

i=1

N

∑

 (15)

 

Finally, the differential of J can be computed as 

 
DJ (κ ,δκ ) = Re δκE

j
.F

jΩ
∫⎡⎣

⎤
⎦

j=1

N

∑
 (16)

 

We can then compute the gradient to use in a gradient-based 

local optimization algorithm. The numerical results presented 

in Section B are obtained using a limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. Note that 

every evaluation of J requires the solution of the state problem 

(5) while the computation of the gradient requires the solution 

of (5) as well as the solution of the adjoint problem (14). 

Moreover, the state and adjoint problems use the same 

operator. Therefore, the computation of the gradient only 

needs the assembly of one matrix and its associated domain 

decomposition preconditioner.  

Numerical results for the reconstruction of a hemorrhagic 

stroke from synthetic data are presented in the next section. 

The cost functional J considered in the numerical results is 

slightly different from (11), as we add a normalization term 

for each pair (i,j) as well as a Tikhonov regularization term 

[17] 

 

J (κ ) =
1

2

S
ij
(κ )

S
ij

empty
−

S
ij

meas

S
ij

meas,empty
+
α

2
i=1

N

∑
j=1

N

∑ ∇κ
2

Ω
∫  (17) 
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where S
ij

empty
 (resp. S

ij

meas,empty
) refers to the computed 

coefficients (resp. measured) with empty chamber, only filled 

with the homogeneous matching solution as described in the 

previous section, with no object. In this way, the contribution 

of each (i,j) pair in the cost functional is normalized and does 

not depend on the amplitude of the coefficient, which can vary 

greatly between (i,j) pairs as shown in Fig. 5. Moreover, 

normalizing both sides by the incident field S-parameters 

helps eliminate multiplicative systematic errors, such as phase 

shifts [22]. The Tikhonov regularization term aims at reducing 

the effects of noise in the data. For now, the regularization 

parameter α is chosen empirically so as to obtain a visually 

good compromise between reducing the effects of noise and 

keeping the reconstructed image pertinent. All calculations 

carried out in this section can be accommodated in a 

straightforward manner to the definition (17) of the cost 

functional. Finally, we can exhibit an additional level of 

parallelism by performing the reconstruction cross-section by 

cross-section. For the actual imaging system, one cross-section 

corresponds to one of the five rings of 32 antennas, and we 

can define and solve an inverse problem independently for 

each of the five rings in parallel. We impose absorbing 

boundary conditions on the artificial boundaries of the 

truncated computational domain. Thus, we are able to define 

five independent smaller inverse problems by reducing the 

computational complexity in terms of degrees of freedom and 

the number of relevant transmitters that must be simulated for 

each problem. Each of the five inverse problems takes into 

account 32 transmitters and (at most) 96 receivers. The 

reconstructed images obtained in this way are essentially 

identical to the images obtained by solving the full inverse 

problem, but performed faster. 

VIII. NUMERICAL RESULTS 

Results in this paper were obtained on Curie supercomputer 

(http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm), a system 

composed of 5,040 nodes composed of two eight-core Intel 

Sandy Bridge processors clocked at 2.7 GHz. The interconnect 

is an InfiniBand QDR full fat tree and the MPI 

implementation used was BullxMPI version 1.2.8.4. Intel 

compilers and Math Kernel Library in their version 16.0.2.181 

were used for all binaries and shared libraries, and as the 

linear algebra backend for dense computations. One-level 

preconditioners such as (8) assembled by HPDDM require the 

use of a sparse direct solver. HPDDM is interfaced with 

various direct solvers, such as PARDISO [18] from Intel MKL 

or MUMPS [19]. All numerical experiments reported in this 

paper were performed with MUMPS. The GMRES algorithm 

is stopped once the unpreconditioned relative residual is lower 

than 10-8. The linear systems with multiple right-hand sides 

(one per transmitter) are solved using a pseudo-block method, 

where multiple operations are fused in order to achieve higher 

arithmetic intensity. In the inverse problem, during successive 

iterations of the minimization algorithm, the GMRES solution 

for each transmitter is initialized with the solution for this 

transmitter at the previous iteration. Moreover, block methods 

and Krylov subspace recycling techniques have been recently 

implemented in HPDDM. They are not used in the results 

presented in this paper, but incorporating these techniques in 

the inversion algorithm in order to speed up computations is 

an ongoing work. In this section, we first develop a very 

accurate virtual model of a human head. Second, we solve the 

inverse problem with corrupted synthetic data generated using 

the virtual brain model simulating a hemorrhagic stroke. 

 

1) Virtual Head Model 

We want to assess the feasibility of the microwave imaging 

technique presented in this paper for stroke detection and 

monitoring through a numerical example in a realistic 

configuration.  

We use synthetic data corresponding to an accurate numerical 

model of a human head with a simulated hemorrhagic stroke 

as input for the inverse problem. The numerical model of the 

virtual head comes from CT and MRI scans and consists of a 

complex permittivity map of 362 × 434 × 362 data points with 

a spatial resolution of 500 µm. In the simulation, the head is 

immersed in the imaging chamber as shown in Fig. 9. 

 

 
Fig. 9. Imaginary part of the relative complex permittivity of 

the virtual head model immersed in the imaging chamber with 

a simulated ellipsoid-shaped hemorrhagic stroke. 

 

2) Reconstructions of a Hemorrhagic Stroke 

In order to simulate the evolution of a hemorrhagic stroke, we 

use a synthetic ellipsoid-shaped stroke whose size (principal 

axes) increases over time, from 3.9 cm × 2.3 cm × 2.3 cm 

(small stroke) to 7.7 cm × 4.6 cm × 4.6 cm (large stroke). For 

this test case, the relative complex permittivity of the ellipsoid 

is assumed to be inhomogeneous where the relative complex 

permittivity at each quadrature point of the mesh is taken as 

the mean value between the original healthy brain permittivity 

values (baseline values) and the permittivity of blood (ε
r

blood
= 

68 − i44) at f = 1 GHz. The imaging chamber is filled with the 

matching solution ε
r

matching
= 44 – i20. In a real experiment, a 

special membrane fitting the shape of the head is used in order 

to isolate the head from the matching medium (Fig. 3). We do 

not take this membrane into account in this synthetic test case. 

The synthetic data are obtained by solving the direct problem 

using a mesh composed of 17.6 million tetrahedra 

(corresponding to approximately 20 points per wavelength) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

8 

and consist in the computed transmission and reflection 

coefficients S
ij

. We subsequently add noise to the real and 

imaginary parts of the coefficients S
ij  using a kind of 

multiplicative White Gaussian Noise. We apply independently 

Gaussian noise to the real and imaginary parts of each S
ij

coefficient as 

 S
ij

corrupted
= S

ij
(1+ p(G

ij

Re
+ jG

ij

Im ))  (18) 

where G
ij

Re and G
ij

Im
are independent and identically 

distributed random variables drawn from the standard normal 

distribution N (0,1). In this experiment, we corrupt the data 

with 10% noise, i.e. p=0.1. 

The corrupted data S
ij

corrupted
 are then used as input for the 

inverse problem. Furthermore, we do not assume any priori 

knowledge on the input data, and we set the initial guess for 

the inverse problem as the homogeneous matching solution 

everywhere inside the chamber. We use a piecewise linear 

approximation of the unknown parameter κ, defined on the 

same mesh used to solve the state and adjoint problems. For 

the purpose of parallel computations, the partitioning 

introduced by the domain decomposition method is also used 

to compute and store locally in each subdomain every entity 

involved in the inverse problem, such as the parameter κ and 

the gradient. 

In the following, we only show reconstructed images 

corresponding to a cross-section where the stroke is located 

due to space limitations, although we are able to reconstruct 

the permittivity of the head in the whole chamber.  

 

 

Fig. 10. Transverse cross-section of the virtual brain during 

the evolution of a simulated hemorrhagic stroke: real part of 

the relative complex permittivity. Left: virtual brain model. 

Right: reconstructed permittivity. From top to bottom: healthy 

brain, brain with small stroke, brain with large stroke. 

 

The evolution of the stroke can be visually monitored from the 

real and imaginary parts of the reconstructed complex 

permittivity. Nevertheless, the threshold to firmly conclude 

must only be determined from clinical studies on a large 

number of patients. One important point is to discriminate a 

hemorrhagic from an ischemic stroke. For this study case, the 

reconstructed values show an increase of the complex 

permittivity allowing the assumption of a hemorrhagic stroke 

versus an ischemic one. 

 

 
Fig. 11. Transverse cross-section of the virtual brain during 

the evolution of a simulated hemorrhagic stroke: imaginary 

part of the relative permittivity. Left: virtual brain model. 

Right: reconstructed permittivity. From top to bottom: healthy 

brain, brain with small stroke, brain with large stroke. 

 

Figs. 10 and 11 show the real and imaginary parts of the 

reconstructed relative permittivity, respectively, for the three 

evolution steps of the hemorrhagic stroke, from a healthy 

brain, a brain with a small and large stroke. Increasing the size 

of the ellipsoid simulates the evolution of the stroke. Each 

reconstruction corresponds to the solution of an inverse 

problem in the truncated domain containing only the first two 

rings of antennas from the top. The transmitting antennas are 

on the first ring and receiving antennas on first and second 

rings. Therefore the scattering matrix contains only 64×32 S
ij  
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coefficients. Each reconstruction starts from an initial guess 

consisting of the homogeneous matching solution. The 

solution is obtained at about 30 iteration steps when reaching 

the convergence criterion of 10
-2

 for the value of the cost 

functional using the L-BFGS algorithm. Subsequent iterations 

do not decrease the cost functional nor improve the 

reconstructed image, due to the level of noise and Tikhonov 

regularization. 

The distribution of the relative error on the real and imaginary 

parts of the reconstructed complex permittivity for the small 

stroke case is shown in Fig. 12. We compute the relative error 

using (19) for each pixel (n,m) of the reconstructed relative 

complex permittivity. This error can be positive or negative. 

 err
relative

(m,n) =
ε
r

reconstructed (m,n)−ε
r

exact (m,n)

ε
r

exact (m,n)
 (19) 

We note that lowest errors are located outside the brain and in 

the stroke. This can be expected as the inversion algorithm 

performs better for homogeneous media such as the matching 

liquid but also for the stroke, as the complex permittivity value 

of the stroke is calculated as the mean value between the 

healthy tissues and the blood. This process tends to average 

the values, which is more favorable for the inversion 

algorithm. But, even if the brain is highly heterogeneous, the 

stroke can be detected and monitored with the proposed 

algorithm. 

 

 
Fig. 12. Small stroke: Distribution of the relative error on the 

real (left) and imaginary (right) parts of the reconstructed 

complex permittivity. From top to bottom: healthy brain, brain 

with small stroke, brain with large stroke. 

 

Relative Error Real part Imaginary Part 

Healthy Brain 8.95% 20.74% 

With Small Stroke 8.92% 20.72% 

With Large Stroke 8.53% 18.92% 

Table III. Average error on the reconstructed values (real and 

imaginary parts of the complex permittivity). 

 

We now calculate the L
2
 norm of the error of the reconstructed 

images in such manner as (10). Results are shown in Table III. 

The L
2
 norm is interesting as it gives a global quantitative 

criterion for estimating the performance of the reconstructed 

values. The L
2
 norm confirms the results shown in Fig.12 for 

the small stroke. The error on the real part of the complex 

relative permittivity is lower than on the imaginary part. It is 

of the order of 10% for the real part whereas it is about 20% 

for the imaginary part. 

It turns out that reconstructed images differ very slightly when 

using different discretization orders and mesh sizes in the 

inverse problem. In our case, elements of degree r=1 with 10 

pts/λ are sufficient for detecting the stroke. It is generally 

assumed that the most accurate forward model provides the 

best result combined with a given inverse algorithm. In this 

paper, we have shown it is not straightforward in this 

particular case, with such a regularization technique. 

Reconstructed images for each test case shown in Figs. 10 and 

11 are obtained with a total computing time of less than 2 

minutes (94 seconds for the large stroke case) using 4096 

cores of Curie. 

 

 
Fig.13. Strong scaling experiment: total time for the large 

stroke case for solving the inverse problem versus number of 

MPI processes. 

 

Fig.13 shows the results of a strong scaling experiment for the 

large stroke case, consisting in solving the inverse problem 

corresponding to the top ring with an increasing number of 

MPI processes. We report the total computing time needed to 

obtain the reconstructed image. These preliminary results are 

very encouraging as we are already able to achieve a 

satisfactory reconstruction time in the perspective of using 

such an imaging technique for monitoring. This allows 

clinicians to obtain almost instantaneous images 24/7 or on 

demand. Although the reconstructed images do not feature the 
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complex heterogeneities of the brain, which is in accordance 

with what we expect from microwave imaging methods, they 

allow the characterization of the stroke and its monitoring. 

IX. CONCLUSION 

The idea behind this work comes from the paradigm to 

develop a (portable/transportable) microwave imaging system 

whose raw data are wirelessly transferred to a HPC. The HPC 

machine will then compute the 3D image of the patient's brain. 

Once reconstructed, the image is quickly transmitted from the 

computing center to the hospital for stroke detection 

(including ischemic/hemorrhagic discrimination) and 

monitoring during treatment. We have developed a tool that 

reconstructs a tomographic microwave image of the brain in 

94 seconds on 4096 computing cores. This computational time 

corresponds to clinician acceptance for rapid diagnosis or 

medical monitoring at the hospital. These images were 

obtained from corrupted synthetic data from a very accurate 

model of the complex permittivity of the brain. To our 

knowledge, this is the first time that such a realistic study 

(operational acquisition device, highly accurate three-

dimensional synthetic data, 10% noise) shows the feasibility 

of microwave imaging. This study has been possible by the 

use of massively parallel computers and facilitated by 

HPDDM and FreeFem++ tools that we developed. The next 

step will be the validation of these results on clinical data. 
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