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Abstract

In recent years, upwind techniques have been successfully applied in hy-
drology to simulate two-dimensional free surface flows. Basin irrigation is
a surface irrigation system characterized by its potential to use water very
efficiently. In basin irrigation, the field is leveled to zero slope and flooded
from a point source. The quality of land leveling has been shown to influ-
ence irrigation performance drastically. Recently, two-dimensional numerical
models have been developed as tools to design and manage basin irrigation
systems. In this work, a finite volume based upwind scheme is used to build a
simulation model considering differences in bottom level. The discretization
is made on triangular unstructured grids and the source terms of the equa-
tions are given a special treatment. The model is applied to the simulation
of two field experiments.

1 Introduction

Many efforts have been recently devoted to the development of multidimen-
sional techniques for free surface flows. Among them, those oriented to the
resolution of unsteady shallow water flow, have been strongly influenced by
the upwind philosophy initially introduced in Gas Dynamics. These methods
are specially suited for advection dominated problems and their implemen-
tation is not straightforward when source terms are relevant.*

Numerical models of overland flow have been applied to a number of
practical problems of interest in Engineering, including overland hydrology,
open channel management and surface irrigation. In the domain of surface
irrigation, this type of numerical models are particularly interesting for the
simulation of basin irrigation. Basin irrigation (also known as level-basin ir-
rigation) consists on flooding a squarish, relatively large field, leveled to zero
average slope and fully surrounded by a dike to prevent runoff.!? The idea be-
hind basin irrigation is very simple, although its real world applications have
been limited by the difficulty to level the basin with the accuracy required
to flood the field quickly and uniformly. The main design and management
variables in basin irrigation are the irrigation discharge, the irrigation time,
the field geometry and the quality of land leveling (often represented by the
standard deviation of bottom level).



The first attempts to simulate basin irrigation used one-dimensional mod-
els.® The limitations of this approach stem form the marked two-dimensional
character of the flow, particularly in the presence of point inflows and irreg-
ular geometries. Two-dimensional models were applied to the simulation of
basin irrigation,'>!7 using explicit finite difference methods. A leapfrog finite
difference method was used to explore the relationship between the quality
of land leveling and irrigation performance.'>?° The comparison of simu-
lation results with experimental data revealed limitations in the numerical
models. In fact, the experiment reported by Zapata and Playan? represents
a difficult simulation case, in which the advance of water in a small experi-
mental basin is strongly dictated by differences in elevation. These authors
performed simulations using alternatively a flat bed and a bed with the ob-
served bottom level. The advance curve (flooded area vs. time) was best
reproduced when bottom level was supplied to the model. However, even in
this case, the model overestimated the advance rate. The predicted location
of the advancing front revealed the main trends observed in the field, but
lacked much of the experimental detail.

In this work, an upwind scheme is used to build a basin irrigation sim-
ulation model considering differences in bottom level. Model features are
discussed in the text and the model is applied to reproduce two field exper-
iments illustrating the relevance of land leveling on basin irrigation perfor-
mance.

2 Governing equations

The flow of overland water during surface irrigation is in general governed
by the continuity and momentum laws of fluid mechanics applied to a free
surface incompressible flow over a pervious bed. Given the different size of
the vertical and horizontal spatial scales involved in this kind of flow, the
shallow water approximation is usually adopted for the mathematical de-
scription. By doing so the problem is transformed, the free surface position
is no longer a boundary condition nor it is the bed permeability. Instead,
the water depth appears as one of the dependent variables and the infiltrated
water is taken into account as a source term of the depth averaged mass and



momentum equations. This mathematical model for the surface irrigation
problem, involving many simplifications of the real features, is among the
most complete hydrodynamic models in the literature, and other more sim-
plified forms are frequent.?

The equations will be solved by means of a finite volume technique based
on an upwind scheme initially designed for systems of conservation laws.
Therefore, we are interested in writing the 2D shallow overland flow equa-
tions in conservative form,'
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where U represents the vector of conserved variables. A is depth of water, hu
and hv are the unit discharges along the coordinate directions x, y respec-
tively with v and v the depth averaged velocities and ¢ is the acceleration
due to the gravity. F and G are the fluxes of the conserved variables across
the edges of a control volume. They consist of the convective fluxes together
with the hydrostatic pressure gradients.

H is the source term containing the effects of infiltration, weight of fluid
and bed roughness on the mass and momentum conservation. Sp,, Sp, are
the bed slopes expressed in terms of the bottom depth b in the form



Sow = —o—)  Spy = —— (2.3)

Ste, Spy are the friction terms in the z, y directions. For the friction term,
the Manning equation® has been used expressing the energy grade line in
terms of the Manning roughness coefficient n as

g — n2uv/u? + v2 S, — n?vvu? + v? 54
fo= T T (2.4)

The volume of water lost by infiltration is modelled with the infiltration
rate ¢ which can be computed using the empirical Kostiakov-Lewis equation,

i =kat" "+ fo (2.5)

where 7 is the time that every point of the field remains wet (opportunity
time) expressed in minutes, k£ and fy are coefficients determined by experi-
mental measures and a is an exponent specified by the experiment too. The
time integrated form of equation (2.5) provides the expression for z, the in-
filtrated depth of water in every point of the field.

D, Dy, account for the momentum transfer associated with seepage out-

flow in the z, y directions.!’ According to Akanbi and Katopodes,? the fol-
lowing approximations are used

1
Dl:r = 511,2, Dly = -l (26)



3 Numerical model

A cell centered finite volume method is formulated for equation (2.1) over a
triangular or quadrilateral control volume where the dependent variables of
the system are represented as piecewise constants. The basic method will be
first described for the pure conservation law, that is, without source terms.
These will be next incorporated and the required modifications indicated.
The homogeneous version of equation (2.1) is first written

%—$+v-(F,G):o (3.1)

then the integral form for a fixed area S'is
0
—/UdS+/V-(F,G)dS:0 (3.2)
ot Js S

and, applying the divergence theorem to the second integral, we obtain
2/Ud5+7§(1? G)-ndC =0 (3.3)
ot Js c B '

where C'is the boundary of the area S, and n is the outward unitary normal
vector. Given a computational mesh defined by the cells (volumes) of area
Si, where i is the index associated with the centroid of the cell (see Fig. 1)
in which the cellwise constant values of U are stored, equation (3.3) can be
represented in every cell by

du,
SZisi+ 72 (F,G)-ndC =0 (3.4)



Figure 1: Discretization domain.

The contour integral is next approached via a mid-point rule, i.e., a nu-
merical flux is defined at the mid-point of each edge, giving

# (F.G)-ndC = S (F.Q); - mdC (3.5)

k=1

where k represents the index of the edges of the cell (see Fig. 1), NE is the
total number of edges in the cell (NE = 3 for triangles, NE = 4 for quadri-
laterals). The vector ny is the unit outward normal, dCY is the length of the
side, and (F, G)j is the numerical flux tensor.

The evaluation of the numerical flux in equation (3.5) is based on the
Riemann problem defined by the conditions on the left and right sides of the
cell edges, as in first order MUSCL scheme.'® An important feature of the
1D Roe’s approximate Riemann solver for non-linear systems of equations
is exploited here. This is the definition of the approximated flux jacobian,
AH%,H’ constructed at the edges of the cells. Once this matrix has been

defined, the numerical flux across the interface ¢ + % between states ¢ on the
left (L) and ¢ + 1 on the right (R) of a cell in a 1D domain is

F:

i+ [Fz‘+1 +F; — |Ai+%| (Ui — Uz)}

(NI
DO =
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Frp+Fy— [Apy| (Up — Uy (3.6)

The 2D numerical upwind flux in equation (3.5) is obtained by applying
the expression (3.6) in a 1D form to each edge k of the computational cell.
The 1D philosophy is followed along the normal direction to the cell walls,
making use of the normal numerical fluxes, so that

(F,G); np =5 [(F,G)p i + (F,G) - i — [Ap[(Up — Up)|  (3.7)

DO | =

Here, R and L denote right and left states respectively at the k edge,
(ARL) represents the approximate Jacobian of the normal flux at that edge.
Note that subscript k£ will be omitted for the sake of clarity and the following
discussion is referred to cell side k.

The (Agz) matrix must satisfy the following conditions:

Ay depends only on the Ug and U, states,

(Fr—Fp) = ArL (Ugp —Uyp),

e A has real and distinct eigenvalues and a complete set of eigenvec-
tors,

e App=A(Up)=A (U if Up =Ty
where

0(F,G) 9F  0G



As suggested by Roe's the matrix Ag; has the same shape as A but
is evaluated at an average state given by the quantities u = (@, ) and ¢
which must be calculated according to the matrix properties. The approxi-
mate Jacobian matrix is not directly used in the actual method. Instead, the
difference in the vector U across a grid edge is decomposed on the matrix
eigenvectors basis as

3
ouU = UR — UL = Z Oé?{lLégL (39)
m=1
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so that the matrix is replaced by its eigenvalues in the product |Arz| (Ug —Uyp).
From the eigenvalues of A, those of Ag; have the form

—_

a = u-n+c
> = u-n
@@ = a-n-¢ (3.11)
where u - n = un, + vn,, and the eigenvectors are
1 0 1
e'=| a+én, | ,&=| —¢-n, | ,&€=|a—-¢-n (3.12)
U+ C-ny C- Ny V—C-ny



They are all in terms of average velocities and celerity. Enforcing the
second condition of the matrix Ay, the following expressions for u, v and ¢
can be obtained

- \/hRUR—F\/hLUL - \/hR’UR—i-\/hLUL s _

u = 5 v = s
\/h,R—i-\/hL \/hR—F\/hL

o

g (hg + hy) (3.13)

It has to be stressed at this point that in case of an advancing front over
dry bed the average velocities are calculated in the form

- ’LLR+UL - ’UR—|—UL
U=——, V=
2 2

(3.14)

because the velocity values at the right or left cell are zero. However the av-
erage value for the celerity is calculated always in the same form, otherwise
the balance between the flux and the bed slope is not achieved in steady flow
leading to numerical errors (see subsection 3.1).

Once the average quantities have been constructed, expression (3.7) pro-
vides the numerical flux normal to each edge of the computational cells.

(F,G), -n, = (F,G)p n;,+ (F,G); ‘n;, — Z % lah el (3.15)

1
2
We can now substitute it into (3.5), so that (3.4) can be written as

dU; 1 & \
v k=1
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which is an ordinary differential equation and can be integrated by standard
methods such as a forward Euler time integration procedure.

n+1 n At RS * !
Ut =ur - = > (F,G); - n,dCy (3.17)
b \k=1 i

The stability criterion adopted has followed the common used in explicit
finite volumes? with a little modification. Instead of using the distance be-
tween the center of the cell and the center of its neighbour cells d;;, the
quantity S;/P; is used for stability in case small depths appear and the cri-
terion is the following

Si
2P, (\/u2 + 02 + c) _

]

ot < min (3.18)

where S; is the area of the cell 7+ and P; the perimeter of the same cell.

The source terms need a special treatment that will be described in the
next section. First, it should be noted that the source term vector can be
decomposed in three different parts that will be treated separately in next
section

H=H'+H +H (3.19)

corresponding to
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0 0 —i
H'=| ghSo, | , H*=| —ghS;: | , H = | Dy (3.20)
ghS[)y _gthy Dly

The first term H'! accounts for the bed slopes and is the only one contain-
ing spatial derivatives. For this reason the discretization procedure will follow
the flux term discretization as close as possible as suggested by Bermiidez
et al.? The second term H? accounts for the friction and the third one H?
contains all the infiltration parameters.

3.1 Source terms: bed slope

An upwind approach has been adopted to model the bottom variations in
order to ensure the best balance with the flux terms at least in steady cases.
This procedure was studied in detail by Bermidez and Vazquez-Cendén.?
The flux discretization can be used in the same way for the bottom slope
because both contemplate the same spatial derivative. The development of
the upwind discretization for H' follows

With the inclusion of this source term, equation (3.1) is converted into

%—[j +V-(F,G)=H' (3.21)

and further transformed into
0 !
—/ Uds+f (F,G) - ndC = / H'dS (3.22)
ot Js c s

For the discrete representation, and following the philosophy of the nu-
merical flux function, a numerical source H}* has to be defined as an approach

11



of the surface integral over the cell of the source term H'.

H!* = / H'dS (3.23)
S.

3

This numerical source will contain the contribution to node 7 from all the
edges surrounding the cell.

At every cell-edge k the source term is discretized in an upwind manner
taking as departure point the property () used in the flux discretization

3
U= > ap.eh (3.24)
m=1
and
~ 3 ~ ~ ~
|ARL|0U = > |ag, |op,eh = Mg |Ar|Mz6U (3.25)
m=1

Here My, is a matrix whose columns are the eigenvectors eg, of the
approximated jacobian Apy. This matrix transforms the approximated ja-
cobian into a diagonal matrix Ag; with the eigenvalues ag;, in the diagonal.

The source term is also decomposed into the eigenvector’s basis in each
edge k conforming the cell so that

3
HY' =M (I |AJA )M HL = Y g e, (3.26)
m=1
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represents the part of the discrete source term at edge k of cell 7 associated
to inward normal velocity.

The average value H} is computed with

0
Hy = | gh(br —br)n, (3.27)

gh(br — bL)ny

where again n, and n, are the components of the normal vector to edge k
and h consists of the average obtained from the depth values stored in the
left and right cell that share the same edge in each computational cell

= % (h + h1) (3.28)

Finally, the numerical scheme for this part is formulated as

NE

Ut = U - % (Z ((F,G); - mpdCy — Hi)) (3.29)

k=1

3.2 Source terms: friction

Due to the small initial values (zero at initial conditions) for the variables h,
u, and v and the high value of the Manning coefficient required to take into
account the effects of the vegetation in the field, the friction terms become
dominant and the numerical solution is affected. The main consequence is
in the form of numerical stability restrictions different from the well known
CFL conditions. This is further complicated by the advance of the front over
dry bed. To avoid this problem, one first attempt was made to discretize
the friction term in an upwind manner even though it does not show a gra-
dient form. This option did not prove useful. Back to the pointwise option,

13



two possibilities to avoid this problem were studied; the first is to ignore the
friction terms when the depth of water is smaller than a threshold, while
another approach is to treat the source terms in a semi-implicit form. The
latter option is the one adopted in our case

In the approximation presented here, the friction terms are calculated in
the following way

Sfx = _(1 - 9)(ghsf:v)n - g(gh”s’fx)n-'_l (3'30)
Sty = —(1 = 0)(ghSyy)" — 0(ghSs,)"" (3.31)

where n indicates the time level in which we know the values of the variables
and n + 1 is the next time level where we update the variables. 6 is a param-
eter that accounts for the implicitness of the treatment of the source terms
in the equation and can take any value in the interval [0,1]. We have chosen
0 = 0.4 for the first numerical test.

Equation (3.16) now is converted into

up =0 3 (3 (.0 madch 1)) A ()] G)

3.3 Source terms: infiltration

The infiltration parameters included in the source terms: ¢ infiltration rate,
Dy, Dy the momentum transfer due to seepage outflow are evaluated point-
wise and explicitly at time level n and they do not need any special treatment.

Finally, equation (3.16) is converted into

14



urtt —yr _ 2t (g:; ((F,G); - npdC, - H,ﬁ))n + At (HZ)T + At (H?’)j
(3.33)

and the complete system of equations is solved.

3.4 Advance, recession and infiltration

In order to avoid the numerical problems associated to extremely small val-
ues of water depth at the front, a procedure has been introduced so that
all flow depths smaller than a certain user-defined threshold are ignored. In
our case 10 ®m, is the minimum flow depth considered as part of the ad-
vancing front and which allows infiltration to start. If the depth is greater
than the threshold, irrigation will begin at the next time step at this cell. In
practical terms, every time the depth of flow is updated for a cell, the pro-
gram checks whether it is smaller than this threshold. In that case it is reset
to zero and this criterion is applied for both the advance and recession fronts.

Two definitions of the average velocities have been described depending
on the initial conditions over which the front advances. The averages given
by (3.19) are the basic ones used in wet bed case. If the flow propagates over
a dry bed the modification suggested in (3.20) is enough in general.

3.5 Boundary conditions

The boundaries of the two-dimensional domain in which a numerical solution
of the overland flow problem is sought are the different parts of the external
contour line of the field. Asin any other boundary problem in computational
fluid dynamics, there is first a question concerning the number of physical
boundary conditions required at every boundary point. To help, the theory
of characteristics in 2D tells us that, depending on both the value of the
normal velocity through the boundary

15



u-n=un, + vn, (3.34)

and the local Froude number Fr = u-n/e, the possibilities are

e Supercritical inflow: u-n < —c¢ = all the variables must be imposed.
e Subcritical inflow: —¢ < u-n < 0 = two variables must be imposed.

e Supercritical outflow: u-n > ¢ = none of the variables must be im-
posed.

e Subcritical outflow: 0 < u-n < ¢ = one variable must be imposed.

A second question is related to the procedure used to obtain numerical
boundary conditions.? In the work presented here, the idea of using a Rie-
mann solver to calculate the flux at the face of a cell has also been used
at the boundaries. The variables are stored at the centre of each cell and
the boundary conditions are also imposed there. The value of the variables
not prescribed are calculated from a usual finite volume balance. For this
purpose, the fluxes across the edges lying on the boundary are estimated by
means of a ’ghost’ cell outside. Usually, the ghost cell just duplicates the
boundary cell. When the boundary is a solid wall, the ghost cell is a mirror
cell in which the depth of water has the same value that the boundary cell
and the velocities are the same with opposite sign. Specific values of the in-
put boundary conditions in each case are detailed in the applications section.
In all the examples presented, the fields are closed almost everywhere. At
the points of outflow, a free flow condition is assumed and this is modelled
by means of a supercritical type boundary condition.

4 Applications

4.1 First field experiment

The experiment performed by Zapata and Playdn?® was numerically simu-
lated. A small quadrilateral basin, 27m long by 27m wide, with an area of

16



729m? was constructed and irrigated from the southwest corner. The infil-
tration parameters estimated in the experiment were:

k = 0.0147m/min®
a = 0.2563
fo = 0.0m/min

A value of 0.4 was estimated for the Manning coefficient. The field was
irrigated with a constant discharge of Qp = 0.0093m?/s during 90 minutes.
In the field experiment, observations were made of the advance and recession
front.

The inflow condition has been implemented imposing the unit discharge
at the center of the inflow cell in the form of the x and y components at 45

By G

= "=

(4.1)

where g, is the specific discharge (m?/sm) corresponding to QP. The water
depth at the inflow point is determined by choosing the maximum value be-
tween

h=1.05 (q—’%> ' (4.2)

and the water depth calculated from the mass conservation equation to avoid
a supercritical inlet.

The first goal was to reproduce the advance of the water front over a
flat bottom level. Figure 2 presents maps of flow depth (left) and infiltrated
depth (right) at a time of 20 min. The inflow point is located at coor-
dinates (0,0). As expected, the flow shows radial symmetry. These results
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Figure 2: Maps of simulated overland (left) and infiltrated depth (right) for
the first field experiment with a flat bottom configuration at time 20 min.

are coincident with the simulation output presented by Zapata and Playan.?’

Four different calculations have been carried out using two quadrilateral
meshes with Az = Ay = 0.75m (G¢), and Az = Ay = 0.5m (GF), respec-
tively. The bottom level is one of the variables to be stored at the center
of the cells. Zapata and Playan?® presented regular meshes reproducing the
experimental bottom level (Bg) with different node spacings. Among them,
those with nodal spacings of 0.75 m and 0.50 m were used in this work for G
and G, respectively. Two options were possible in order to incorporate these
data to the method described in the previous sections, which is essentially a
cell-centered finite volume technique. One option consisted on locating the
computational cell so that its vertices were coincident with elevation data.
In this option, referred to as B4, elevation data from the four vertices were
averaged and stored at the cell center. The second option was to make the
cell center coincident with a bottom level datum. The resulting mesh, re-
ferred to as By, was larger than the one obtained with the first option.

Figure 3 shows, on the left, the bottom levels in a contour line plot where
dark shades of grey indicate higher zones and light shades of grey indicate
lower zones. On the right, the bottom surface is represented. Both figures
correspond to the G mesh with B; bottom representation. All the figures
showing graphically the results of this test case will be based on this mesh
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and bottom level representation, except when otherwise stated. At the end
of this subsection two tables will summarize the numerical results obtained
in all configurations.

b(m)

0 0.020.04 0.06 0.08 0.1 0.120.14

Figure 3: Contour line (left) and three dimensional (right) maps of bottom
level for the first field experiment with a Gz mesh and a B, bottom config-
uration.

Figure 4 presents a comparison of the observed (left) and model simu-
lated (right) locations of the advance front at times of 20 (top) and 40 min
(bottom). The simulations predict most of the features of the observed ad-
vancing front, including the channeling of the front in the depressed area
running from West to East at approximately y = 5m. The previous simu-
lations presented by Zapata and Playan?® did not reproduce this channeling
in such a detail and therefore provided simulations where the radial advance
pattern was more evident. The model reported in this work therefore presents
a significant advantage over the previous efforts to simulate this case in what
refers to the location of the advancing front.

It is interesting to note how some features of the advancing front become
apparent in the simulation at different times than in the field observations.
This is the case of the tongue observed at 20 min for x between 15 and 21m
and for y between 0 and 3m. This feature is not present at the 20 min simu-
lation, and starts to develop at time 40 min. Such disagreements should not
be automatically regarded as proofs of the model inability to reproduce the

19



real world. In our opinion, these differences are more related to the difficulty
associated to measuring the bottom level accurately and to representing it
in the model.

T=20min

T=40min T=40min

Figure 4: Location of the advancing front at times 20 (top) and 40 min
(bottom) as observed (left) and simulated with the proposed model (right)
for the first field experiment.

The effect of the bottom level is very relevant in this experiment. Com-
parisons of the observed and simulated advance with the bottom configura-
tion (Figure 4) indicate how the flooding of the experimental field is clearly
dictated by the bottom level. This is particularly true in the experimental
conditions since the inflow discharge and roughness coefficient resulted low
in comparison with the differences in bottom level observed in the field.
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Figure 5: Contour maps of simulated overland flow depth at a time of 20 min
for the first field experiment. The subfigures present the G (left) and G¢
grids (right); and the B, (lower) and By, (higher) bottom level configurations.

The effect of the two grids and the two bottom configurations is presented
in Figure 5, where contour maps of simulated overland flow depth are dis-
played for the four combinations of these two factors. The coarse grid (right)
produces a significant loss of detail in the numerical simulation. At the same
time, advance is faster for G than for Gr. The observation of this figure
suggested that the fine grid resulted more appropriate for the simulation of
this particular case. As for the bottom level configuration, the use of By
results in a somewhat faster advance at the studied time. The averaging
of the bottom levels produces a smoothing effect on the resulting elevation
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data. This can explain the faster advance.

In order to clarify the differences between grids and bottom configura-
tions, Table 1 is provided. In this table it can be observed how the combina-
tion of Gr and By, presents the best results for both advance and recession,
and was adopted as the most accurate numerical solution.

Simulated
. GF GC
Time | Observed B, B, B, B,
(min) | (flooded %) | (looded %) | (flooded %) | (flooded %) | (flooded %)
20 19 25 30 24 26
40 39 41 02 45 47
60 64 61 70 29 72
80 84 81 93 94 96
400 68 66 75 75 76
600 40 o1 62 60 o8
800 26 38 48 45 44

Table 1: Observed and simulated flooded percent areas at different times
for the first field experiment . Simulations are presented combining the two
grids (G and G¢) and the two bottom level configurations (B and By).

Figure 6 presents the advance (left) and recession (right) curves corre-
sponding to the field observations and to the numerical simulations (with
Gr and Br). In both cases, the observed and simulated data show an ac-
ceptable agreement. The comparison of these results with those of previous
models confirms the improvement of the predictive capability of the advance
and recession processes derived from the introduction of the proposed model.

Finally, Table 2 presents the time evolution of the mass conservation er-
ror for the different combinations of grids and bottom level configurations.
The figures indicate that there is little difference between the four considered
cases, with slightly lower errors for the fine grid. The bottom level configura-
tion does not have a significant effect on the simulation error. The terminal
value of the mass conservation error is in the order of 1.2%.
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Figure 6: Advance (left) and recession (right) curves corresponding to the
field observations and to the numerical simulations with G and By, for the
first field experiment.

. . Gp Ge
Time (min) B, B, B, B,
(error %) | (error %) | (error %) | (error %)
20 1.4 1.4 1.7 1.6
40 1.3 1.3 1.5 1.5
60 1.3 1.3 1.5 1.5
80 1.2 1.2 1.4 1.4
400 1.2 1.2 14 1.3
600 1.2 1.2 1.3 1.3
800 1.2 1.2 1.3 1.3

Table 2: Time evolution of the mass conservation error for the different
combinations of grids and bottom level configurations in the first field exper-
iment.
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4.2 Second field experiment

A second experiment was performed for the purpose of testing the proposed
model. For this purpose, additional data were collected on the irrigation
event of basin number 2 cited in Zapata et al.?2! A detailed bottom level
survey was performed, and a non-structured grid was used with 440 trian-
gular cells. Due to the irregular field shape, a triangular numerical grid was
chosen. The bottom level of the individual cells was obtained averaging the
experimental data recorded at the triangle vertices and stored at the center.

The basin was almost rectangular with an area of 5, 792m?2. The infiltra-
tion parameters estimated in the experiment were:

k = 0.0030m/min®
a = 0.5336
fo = 0.0m/min

A value of 0.2 was estimated for the Manning coefficient. Irrigation water
entered the basin through two inflow points located at the Northwest (NW)
and Northeast (NE) basin corners. Both inflows started at the onset of the
irrigation event. Discharge at the NW was almost constant at 0.093m?/s,
lasting for 85min. The inflow hydrograph through the NE corner was bell-
shaped, with a peak discharge of 0.027m3/s at a time of 41min, and lasting
for 137man. The inflow condition was implemented imposing the unit dis-
charge variables at the center of the inflow cell situated at the northwest
and northeast corners of the irrigated field and the depth was calculated as
described in the above subsection. In the field experiment, observations were
made of the time of advance at selected points.

Figure 7 shows the bottom level of the analyzed basin presented as a
contour line map (left) and as a three-dimensional map (right). Figure 8
presents maps of overland flow depth (left) and bottom level plus overland
flow depth (right). Maps are provided for times of 15 (top), 45 (middle)
and 90min (bottom). The figures present the advancing fronts derived from
the two inflow points. The configuration of the advancing fronts is dictated
by the bottom level. This is particularly true for the advance from the NE
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inflow, whose discharge is lower.

Figure 7: Contour line (left) and three dimensional (right) maps of bottom
level for the second field experiment.

The areas covered by water at the NW and NE areas at times 15 and
45min reflect the differences in discharge among both inflows. At time 90min
the discharge from the NE inflow is very low, and the area covered by water
is actually smaller than it was at time 45min. In fact, the area covered at
45min appears now divided in two, with the appearance of a recession line
at x = 125m, due to a local high spot. At this time the flooded area west of
this recession line has collided with the advancing front derived from the NW
inflow. This second field experiment shows the capability of the numerical
model to deal with the successive flooding and unflooding of the computa-
tional cells. A comparison (for a given time) of the left and right subfigures
reveals how the somehow erratic behavior of the flow depth becomes smooth
when the bottom level is added and the free water surface level is mapped
(right subfig.), providing satisfactory simulations to the field experiment.

In the last figure (Fig. 9) the observed and simulated time of advance
to some points located along the experimental fields are compared. A 1:1
slope line is included in the plot for comparison purposes. The data set for
this figure includes points flooded by both inflow points. The scatter plot
surrounds the diagonal line, indicating that advance was not systematically
over- or underestimated by the proposed model.
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Figure 8: Contour line maps of overland flow depth (left) and bottom level
plus overland flow depth (right) at simulation times of 15 (top), 45 (middle)
and 90min (bottom) for the second field experiment.
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Figure 9: Simulated vs. observed time of advance to some points in the
second field experiment. Solid line represents 1:1

5 Conclusions

A finite volume based upwind scheme has been presented and applied to the
numerical simulation of overland flows for irrigation purposes. The proce-
dure is independent of the structured or unstructured character of the mesh.
The flow problem is characterized by a thin water layer and the movement
is governed by the advection terms as well as by the source terms in the
equations. The numerical treatment of both has been emphasized in the
work presented. Strong bottom variations and high values of the roughness
coefficient made necessary the application of more careful treatment of the
corresponding terms in the equations to avoid numerical instabilities in the
solution.

Two cases of interest in Agricultural Engineering have been chosen to
evaluate the performance of the numerical technique, both based on field
experiments. The simulation of the first field experiment has improved pre-
vious results, providing a more realistic representation of the hydrodynamics
of basin irrigation, particularly in what refers to the location of the advanc-
ing front. This experiment has been applied to the identification of the grid
fineness requirements and to the determination of proper handling proce-
dures for the bottom level. In this particular case, a fine, non-averaged grid
proved to yield the best results. The second field experiment has been used
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to illustrate the application of the model to the use of inflow hydrographs
and to the simulation of colliding fronts.
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