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ABSTRACT 

 

 Particle motion, clustering and agglomeration play an important role in natural 
phenomena and industrial processes. In classical computational fluid dynamics (CFD), 
there are three major methods which can be used to predict the flow field and 
consequently the behavior of particles in flow-fields: 1) direct numerical simulation 
(DNS) which is very expensive and time consuming, 2) large eddy simulation (LES) 
which resolves the large scale but not the small scale fluctuations, and 3) Reynolds-
Averaged Navier-Stokes (RANS) which can only predict the mean flow. In order to make 
LES and RANS usable for studying the behavior of small suspended particles, we need to 
introduce small scale fluctuations to these models, since these small scales have a huge 
impact on the particle behavior. 
 The first part of this dissertation both extends and critically examines a new 
method for the generation of small scale fluctuations for use with RANS simulations. 
This method, called the stochastic vortex structure (SVS) method, uses a series of 
randomly positioned and oriented vortex tubes to induce the small-scale fluctuating flow. 
We first use SVS in isotropic homogenous turbulence and validate the predicted flow 
characteristics and collision and agglomeration of particles from the SVS model with full 
DNS computations. The calculation speed for the induced velocity from the vortex 
structures is improved by about two orders of magnitude using a combination of the fast 
multiple method and a local Taylor series expansion. Next we turn to the problem of 
extension of the SVS method to more general turbulent flows. We propose an inverse 
method by which the initial vortex orientation can be specified to generate a specific 
anisotropic Reynolds stress field. The proposed method is validated for turbulence 
measures and colliding particle transport in comparison to DNS for turbulent jet flow.  
 The second part of the dissertation uses DNS to examine in more detail two issues 
raised during developing the SVS model. The first issue concerns the effect of two-way 
coupling on the agglomeration of adhesive particles. The SVS model as developed to date 
does not account for the effect of particles on the flow-field (one-way coupling). We 
focused on examination of the local flow around agglomerates and the effect of 
agglomeration on modulation of the turbulence. The second issue examines the 
microphysics of turbulent agglomeration by examining breakup and collision of 
agglomerates in a shear flow. DNS results are reported both for one agglomerate in shear 
and for collision of two agglomerates, with a focus on the physics and role of the particle-
induced flow field on the particle dynamics.     
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CHAPTER 1: Motivation and Objective 

 1.1 Motivation 

Particle collision and agglomeration play an important role in a wide range of 

turbulent flows applications involving small particles or droplets. Droplet collision and 

merger is a key element to cloud formation and precipitation development (Devenish et 

al., 2012). Indeed, ice particle collision and subsequent contact electrification in clouds is 

believed to be responsible for cloud electrical charging, leading to lightning discharge 

(Helsdon et al., 2001; Saunders, 1994). Particle agglomeration is particularly important in 

aerosol flow problems, such as fly ash collection from combustion processes (Xu et al., 

2010), flame-synthesis of nanoparticles (Zhang et al., 2012), electrostatic precipitator 

operation (Dong et al., 2018), cyclone particle separators (Paiva et al., 2010), and snow 

crystal formation (Kajikawa et al., 2000). 

One challenge in simulating turbulent particle agglomeration is the difficulty in 

simulating the turbulent flow itself. The most accurate way approach to turbulence 

simulation is direct numerical simulation (DNS), in which all scales of the turbulent 

motion are directly solved using the Navier-Stokes equation. However, DNS is so 

computationally demanding that it is not possible in all but very simple flow domains at 

relatively low Reynolds numbers. It is therefore necessary to sacrifice some of accuracy 

to get a less expensive method for turbulence simulation. Large-eddy simulation (LES) 

achieves this simplification by directly computing only the large-scale motions and 

modeling the effect of smaller scale motions on the larger scales. LES has been found to 

provide accurate simulations for many flows, but it also is too computationally 

demanding for many practical flow fields, as well as for applications such as design and 
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flow control that require rapid flow-through times. The Reynolds-averaged Navier-Stokes 

(RANS) method is a traditional approach to turbulence simulation which solves the 

Reynolds-averaged Navier-Stokes equations only for the mean velocity field, and then 

also solves for certain additional variables that characterize the turbulent motion. When 

using RANS method to evolve particle flows, it is necessary to also implement some 

method to generate the subgrid-scale turbulent fluctuations that is consistent with the 

computed turbulence measures, since these subgrid-scale fluctuations have an important 

effect on the particle motion.  

A common approach to dealing with this problem is the stochastic Lagrangian 

method (SLM) (Thomson, 1987; Sawford, 1991; Pope and Chen, 1990), in which a set of 

stochastic differential equations are solved to generate a synthetic turbulence fluctuation 

field with the correct time scales of turbulent motion. Example simulations show that for 

non-interacting particles, SLM works well for prediction of dispersion of non-interacting 

particles (see Figure 1.1). For interacting particles in turbulent flows, however, SLM 

experiences difficulties. As shown in Figure 1.2(a), when two particles lie near each 

other, they must experience similar induced forces, so that these forces on the nearby 

particles will be correlated. By contrast, stochastic Lagrangian methods employ 

uncorrelated stochastic forcing at each particle. This lack of correlation isn’t particularly 

a problem for non-interacting particles since it doesn’t have a large impact on the overall 

dispersion of the particles, but it has a very significant impact on the relative motion of 

two nearby particles. As a consequence, the standard SLM approach cannot be used for 

particles that interact with each other. 
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Figure 1.1. Dispersion of fluid elements in a channel flow originating at a distance, 3002 
x  in the 

wall-normal direction, as predicted from DNS (solid line) and SLM (dotted line). (Reproduced from 
Mito and Hanratty, 2002). 

 
 

Figure 1.2. (a) Schematic showing two particles near each other close to a vortex tube. (b) Cross-section 
of a turbulent flow showing the normal vorticity component with particles superimposed. (Reproduced 

from Garcia, 2009) 

 In searching for a new method to generate subgrid-scale turbulence, two 

considerations should be kept in mind. The first consideration is that the presence of 

coherent eddies within turbulent flows has a major impact on the local concentration field 

of particles, particularly if the particles are heavier than the surrounding fluid and are 

therefore thrown out of the eddy core by the eddy centrifugal force. Eddy-induced 
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particle clustering leads to formation of regions of high particle concentration 

surrounding the turbulent eddies, which dramatically increases particle collision rate and 

(for adhesive particles) agglomerate sizes, as shown in Figure 1.2(b). This observation 

suggests use of a method for generating synthetic turbulence that either generates or is 

based on vortex tubes. The second consideration is that particle collision and adhesion 

processes occur on very small time scales, which makes the numerical simulation of 

colliding and adhesive particles numerically stiff. This is especially true in simulations 

using the soft-sphere discrete element method (DEM), which requires that the time scale 

during particle collision be resolved by the numerical method. As a result, the method for 

synthetic turbulence generation  needs to be fast.  

 A first step toward the use of a vortex structure model for turbulent particle 

transport was made by Ayyalasomayajula et al. (2008), who proposed a model in which 

the turbulent eddies were represented by a two-dimensional vortex array and a stochastic 

algorithm was used to vary the strength of each vortex in time. A schematic of the 2D 

vortex model is illustrated in Figure 1.3, where the black dots represent the vortex 

centers, L  is the separation distance between the vortices, and the arrows represent the 

directions of the circulations. While this approach is extremely simplistic, it nevertheless 

accurately reproduced the probability density function of the acceleration field in the 

turbulent flow.  
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Figure 1.3 Schematic of the 2D vortex model of Ayyalasomayajula et al. (2008). The black dots 

represent the vortex centers. (Reproduced from Ayyalasomayajula et al., 2008) 

  Sala and Marshall (2013) proposed a 3D vortex-based model which they called 

the stochastic vortex structure (SVS) method. In the SVS method, the turbulent vorticity 

field is approximated by a set of finite-length vortex structures which are randomly 

positioned and oriented in the flow field, as shown in Figure 1.4.  In this early version of 

the SVS method, the vortices were fixed in space and it was only used for isotropic 

homogenous turbulence. The original SVS method was also fairly slow, since it needed 

to predict the induced velocity from each vortex onto the nodal points of a grid covering 

the flow field at each time step of the computation. There is therefore a need to improve 

the speed of the SVS method and to expand the types of flow fields to which the method 

can be applied.  
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Figure 1.4. Illustration of the coherent vortex structures in an isotropic homogeneous turbulence. 
(Reproduced from Sala and Marshall, 2013) 

Aside from these issues, the SVS method has the inherent limitation that it does 

not account for the effect of particles on the turbulent flow. While flows with a high 

particle concentration can induce large-scale changes in turbulence, even flow fields with 

smaller concentration of adhesive particles can exhibit high local concentration near 

agglomerates, with associated important role of particle-induced flow. A number of 

researchers have studied the effect of individual particles on turbulence (Crowe, 2000;  

Eaton, 2009; Saber et al., 2015; Poelma and Ooms, 2006; Rao et al., 2012; Balachandar 

and Eaton, 2010); however, there is almost no research to date on the effect of particle 

agglomeration on turbulence modulation.  

The process of turbulent agglomeration is dominated by collision and adhesion 

of particles to each other, which occurs first with individual particles, then small 

agglomerates, followed by progressively larger agglomerates. If the turbulence conditions 

are held constant, the agglomerates will eventually grow large enough to start breaking 

up and an equilibrium state will be achieved. This process of agglomerate growth 
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approaching equilibrium is illustrated in Figure 1.5, which plots the average number of 

particles in an agglomerate versus time in a turbulent flow. Sonntag and Russell (1986) 

report that the agglomerate radius of gyration in this equilibrium state decreases as the 

shear rate increases. Lian et al. (1998), Kun et al. (1999), Schäfer et al. (2007), and Tong 

et al. (2016) have numerically studied the collision of two equal-sized agglomerates; 

however, in this work the agglomerates are assumed to be highly packed whereas the 

agglomerates formed in turbulent flows are loosely-structured fractal agglomerates. Very 

little research has been done to date on the collision of two loosely packed agglomerates, 

typical of turbulent agglomeration processes. Additional DNS research is required both 

for understanding the turbulent agglomeration process and the role of the particle-fluid 

two-way interaction on this process. 

 

Figure 1.5. Plot showing time variation of the average number of particles per agglomerate(
paggN ) over 

a long run time leading to a statistical equilibrium condition, for SVS with NV = 2048 (blue curve) and 
DNS (dashed curve). (Reproduced from Dizaji and Marshall, 2016). 

1.2. Objective and Scope 

The main objective of this dissertation is to advance the so-called stochastic vortex 

structure (SVS) method for generating synthetic turbulence using randomly positioned 
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vortex structures. The generated flow-field can be coupled to Reynolds-averaged Navier-

Stokes (RANS) models to compensate for the lack of small-scale fluctuations when 

computing particulate turbulent flows, which has an important impact on the collision 

and agglomeration of particles. Potential future application of the method for 

reconstructing the small scales in large eddy simulation (LES) is also possible, but was 

not examined specifically in the dissertation. In addition, two related studies were 

performed using the DNS approach to investigate specific physical problems related to 

particle agglomerates in turbulent flow that arose in the course of the research. 

  In the early version of the SVS method (Sala and Marshall, 2013), the vortex 

tubes were randomly positioned and oriented and their strength was varied in time. 

However, the position of the vortex structures in this early version was fixed and the SVS 

computations were quite slow. Additionally, while the method was effective for 

prediction of particle collision rate, it was not found to be successful for simulation of 

particle agglomeration. The only application of the early SVS method was to isotropic 

homogeneous turbulence, and it was not clear how it might be extended to more general 

flows. In the current work, the SVS method was extended in numerous ways. In the first 

study, vortices are no longer fixed and are instead allowed to move freely according to 

the surrounding flow field. In the early version of SVS, the effect of each vortex was 

calculated on each target grid point in order to calculate the fluctuating velocity. This 

slow algorithm is replaced in the current work by the fast multipole method, which 

calculates the effect of an entire group (box) of neighboring source vortices on a course 

grid and then uses a local Taylor series expansion to interpolate onto a fine grid covering 

the flow field. The synthetic turbulent field generated by SVS was validated in the 
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current work to accurately predict both particle collision as well as a variety of measures 

of agglomerate formation for adhesive particles. In a second study, a new inverse method 

was developed and validated by which vortex orientation can be adjusted in the SVS 

method to produce a desired Reynolds stress field for general anisotropic, 

inhomogeneous turbulent flows. The effectiveness of this new SVS method for particle 

transport in anisotropic turbulence was validated versus DNS for turbulent jet flow. 

 During development of the SVS method, a number of issues arose involving the 

physics of the turbulent agglomeration process, specifically concerning the role of the 

particle-induced flow field on agglomerate formation. These issues are relevant to the 

topic of the dissertation in order to understand the limitations of the SVS method, where 

we note that the SVS method developed to date inherently lacks the ability to account for 

the effect of particles on the fluid flow. A third study was conducted using DNS to 

understand the effect of two-way coupling on the agglomeration of particles and vice 

versa. A fourth study was conducted, again using DNS, to examine the microphysics of 

agglomerate breakup and collision in turbulent agglomerate formation, with specific 

focus on the structure and role of the particle-induced fluid flow. During these two DNS 

studies, it was observed that the size of the agglomerates approaches a steady state which 

is controlled by both the turbulent shear rate and the collision of agglomerates with other 

agglomerates. This observation led to the more detailed investigation in the fourth study, 

which conducted numerical experiments with both one single agglomerate in a shear flow 

and with collision of two agglomerates in a shear flow.   
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CHAPTER 2: LITERATURE REVIEW 

2.1. Turbulent Vortex Systems 

2.1.1. Vortex models 

 Turbulence is one of the most challenging unsolved chapters of fluid mechanics. 

There are lots of attempts to study turbulence from different points of view and 

approaches, encompassing a wide range of experimental, analytical and computational 

methods. In turbulence studies, it is common to divide the turbulence into three different 

scales - energy-containing scale, inertial range and dissipation range. Kolmogorov (1941) 

derived a formula for the energy spectrum of turbulence in the inertial subrange as 

     3532)(  kCkE           (2-1) 

This spectrum gives the distribution of energy E  among turbulent vortices as a function 

of wavenumber k (which scales inversely with eddy size) and shows that energy density 

is lower for the smaller vortices and energy is more concentrated in the larger scale 

vortices. A schematic representation of power spectrum and energy cascade is shown in 

Figure 2.1.  

 
Figure 2.1. (a) A schematic representation of a power spectrum of fluctuations of the total energy of solar 

wind fields (Reproduced from Goldstein (1995), (b) energy cascade which goes from larger 
to smaller eddies (Reproduced from Tryggeson, 2007) 
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 Turbulence is known to be induced by a set of coherent vortex structures, which 

result from instability modes of the basic flow (Fiedler, 1988). Figure 2.2 shows 

examples of intense vortical structures with tube- or worm-like shape in turbulent flows.  

 

Figure 2.2. Visualization of the intense vortical structures in a subvolume of isotropic 
turbulence (green) without (a) and with (b) a number of uniform velocity zones (blue, red, 
cyan and magenta depending of the flow direction as indicated by the arrows) (Reproduced from Elsinga 
2010)  

 Taylor (1938) argued that intensification of vorticity through vortex stretching 

and vorticity decay through viscous diffusion are the two important dynamical 

mechanisms which control the dissipation of energy in turbulence. By assuming that 

these two mechanisms are in balance, Burgers (1948) found an exact solution to the 

Navier-Stokes equations for a constant-density fluid. The exact solution of a 3-D vortex 

satisfying the Navier-Stokes equation given by Burgers is given in cylindrical polar 

coordinates ),,( zr   as  

 ,
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where 0  is the constant stretching rate and   is the vortex circulation. The vorticity 

is given by 

ze
r




















4
exp

4

2

           (2-3) 

A schematic diagram of the Burgers vortex and a plot of the circumferential velocity u  

is given in Figure 2.3. 

 

Figure 2.3: (left) Picture of Burgers’ vortex. (right) The variation of u  with r  (Reproduced from 

Tryggeson, 2007). 

2.1.2. Analytical methods for vortex modeling 

 One of the early theories for modeling the small-scale structures of turbulence 

was proposed by Townsend (1951), who used a random distribution of either vortex 

sheets or vortex tubes (Burger's vortices) to simulate anomaly and spatial inhomogeneity 

of turbulent motion and to generate a power spectrum. Townsend (1951) used an 

expression for vorticity field of the form 
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 )2/2exp(
2




 r


             (2-4) 

in which the vortex core length scale is c/2    and c  is the axial stretching rate. For 

a system of VN  Burgers vortices of length l  and strength  , the enstrophy is given by 
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              (2-5) 

The general expression (Lundgren, 1982; Pullin and Saffman, 1993) for power spectrum 

for a random superposition of straight, infinitely long, non-axisymmetric vortex tubes in 

polar coordinates ),( r  is 
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in which nJ is the Bessel function of the first kind of order n . By substituting the Burgers 

vorticity distribution (2-4) into the filter (2.6), the shell-summed energy spectrum 

(Saffman, 1997) is obtained as  
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            (2-7) 

This expression is derived based on the assumption that the energy generated by each 

vortex is additive, i.e., that each vortex induces velocity in a finite volume which is only 

influenced by that single vortex. While this assumption is common in vortex-based 

turbulence models, it is nevertheless rather suspect as nearby vortices in fact do interact 

with each other. Integrating over the wavenumber interval ),( maxmin kk gives the turbulent 

kinetic energy as 
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where ).(1E  is the exponential integral function. 

 Lundgren (1982) furthered development of vortex-based turbulence modeling by 

proposing a spiral vortex representation for turbulent vortices (unsteady stretched spiral 

vortices) as a replacement for the Burgers vortices used in Townsend's model. Each 

vortex in the Lundgren model has the form of a slender, axially strained spiral vortex 

solution of the Navier-Stokes equation. The tightening of the spiral turns by the 

differential rotation of the induced swirling velocity produces a cascade of velocity 

fluctuations to smaller scale. The spectrum of each vortex in this model satisfies the 

Kolmogorov energy spectrum, given by 

)](
3

2
exp[)( 235

akAkkE               (2-9) 

Pullin and Saffman(1993), inspired by Lundgren's work on spiral vortices, used their 

model to calculate vorticity and velocity-derivative moments for homogeneous isotropic 

turbulence. They also proposed a specific form of the relaxing spiral vortex which is 

modeled by a rolling-up vortex layer embedded in a background containing opposite 

signed vorticity and with zero total circulation at infinity. Using their model, they have 

derived expressions for moment of vorticity ( 4/32/
22

ˆ  p

pp R ), hyper-flatness 

( 4/32/
22

ˆ  p

pp RFF  ) and hyper-skewness ( 4/32/
1212

ˆ 
  p

pp RSS  ). 

 Hatakayema and Kambe (1997) analytically studied the statistical properties and 

scaling of a set of randomly distributed Burgers’ vortices. In homogeneous isotropic 

turbulence, the structure function pS  was shown to follow a power law in the inertial 

range as a function of distance s between the velocity measurement points as 
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 ),(                (2-10) 

where 
p  is the scaling exponent of the pth order structure function. They found that in 

the inertial range, the third-order structure function is negative and the scaling exponent 

is nearly unity in accordance with Kolmogorov’s four-fifths law. They also estimated 

scaling exponents up to th25 order and predicted the probability density function (p.d.f.) 

of vorticity strength.  

 Wilczek and Friedrich (2009) studied dynamical aspects of turbulence and the 

non-Gaussian nature of the vorticity probability density functions both analytically and 

numerically. They derived an equation for p.d.f. of the vorticity field and showed that it 

compared well to their direct numerical simulation data (Figure 2.4).  

 
Figure 2.4 Logarithmic plot of the vorticity p.d.f estimated directly from direct numerical simulation data 

and the reconstructed p.d.f. according to algebraic equation. (Reproduced from Wilczek and Friedrich, 
2009)  

They find two regions in the vorticity p.d.f. which reveals the non-Gaussian nature of the 

vorticity p.d.f. in a nonstationary flow field: 1) the inner region of the p.d.f. is quenched 

due to the dominant vorticity diffusion and 2) the outer region of the p.d.f. develops fat 
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tails due to stretching of the strong vortices. The temporal evolution of the vorticity field 

is visualized in Figure 2.5.  

 

 
Figure 2.5. (a) Temporal evolution of the vorticity p.d.f.s from a Gaussian initial condition. (b)Volume 
rendering of the absolute value of vorticity above a fixed threshold for different stages of the 
nonstationary simulation from top left to bottom right: initial condition, 0.11T, 0.38T, and 3.53T. 
(Reproduced from Wilczek and Friedrich, 2009)  

 Min et al . (1996) used both two-dimensional singular vortex and vortex blob 

methods and a three-dimensional vortex blob method to numerically calculate the 

velocity field in homogeneous turbulence. Probability density functions (p.d.f.s) of the 

velocity and the velocity difference fields were calculated. The p.d.f for velocity 

differences of a system of singular vortex elements was shown to be of Cauchy form in 

the case of small separation r , both in 2 and 3 dimensions. For non-singular vortex 

blobs using an intermediate 05.0r  value, tails deviate from the Cauchy distribution 

and approach an exponential distribution at large distances (Figure 2.6).  
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Figure 2.6. (a). Probability density functions. of the normalized velocity difference for 150 vortices and 
05.0r . (Reproduced from Min et al., 1996)  

Kivotides and Leonard (2003) performed numerical computations where homogeneous 

turbulence was generated by a set of finite-length vortex structures, and showed 

empirically this system generates an energy spectrum that satisfies the Kolmogorov 3/5
k  

scaling in the turbulence inertial range. Figure 2.7 presents the energy spectra at two 

different times 09.0t  and 14.0t , comparing the compute spectrum with the 

Kolmogorov spectrum. 

 

Figure 2.7 Energy spectra at two different time 09.0t and 14.0t  (Reproduced from Kivotides and 
Leonard, 2003)  
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2.1.3. Numerical simulation and experimental results for vortex modeling  

 While the notion that turbulence can be generated by a set of vortex structures 

has been discussed for a long time, completion of such a model requires certain scaling 

information to address issues such as:  

1) how vortices are distributed in the turbulent field 

2) sizes of vortices (length and core lengths) 

3) lifetime of the vortices 

Some of these issues were addressed using direct numerical simulation as well as 

experimental approaches.  

 Vincent and Meneguzzi (1991) used direct numerical simulation (DNS) to show 

that velocity derivatives are strongly non-Gaussian both in the inertial and the viscous 

subranges and that the flow is organized in very elongated vorticity tubes. Their 

visualizations of the vorticity flow-field (Figure 2.8(a))  show vortex tubes that are of the 

same order as the integral scale, with core radius on the order of a few dissipation scales. 

Figure 2.8(b) shows a cut through a typical vorticity tube and thickness of vortex is 

completely measurable from below Figure.  
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Figure 2.8(a) View of the vorticity field, represented by a vector of length proportional to the 
vorticity amplitude at each grid point. (b) Cut through a typical vorticity tube along a direction 

perpendicular to its axis (Reproduced from Vincent and Meneguzzi 1991)  

Vincent and Meneguzzi (1994) investigated the characteristics of homogeneous 

turbulence more deeply to find dynamics of vorticity tubes in a continuation of their 

previous study. They identified shear instability of thin vorticity sheets as the primary 

mechanism for vortex tube generation in three-dimensional turbulent flow. In order to 

estimate the lifetime of the vortex structures, they followed the motion in time of five 

vortices, identified as  A, B, C, D and E in Figure 2.9 at two different times separated by 

one eddy turnover time (~ 0/ vL  where L  is the integral scale and 0v is the root-mean-

square velocity). From analyzing A, B, C, D and E vortices in both Figures, they 

estimated the vortex structure lifetime as 5-10 times the turnover time. 
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Figure 2.9 (a) View of the vorticity field: vorticity vectors are reprcsented by arrows, here too small 
to be seen individually. Only vectors with modulus above a certain threshold are displayed. The tubes 
marked A, B, C, D, E are approximately parallel. (b) The same as (a) a little more than one turnover 

time later. Note the parallel motion of tubes A, B, C, D and the merging of the tubes D and E. 
(Reproduced from Vincent and Meneguzzi, 1994) 

 Jimenez et al. (1993) numerically simulated homogeneous, isotropic turbulent 

flow fields at high resolution, giving insight into the coherent vortex filaments and their 

associated scales. They have plotted the histogram of vorticity as shown in Figure 2.10. 

Small-scale turbulence 5.0)/(   is used to normalize the vorticity.  

 
Figure 2.10. One-dimensional histogram vorticity for 17035Re  . Open circles are from Ruetsch 

and Maxey (1991) at 62Re   (Reproduced from Jimenez et al., 1993) 
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 From visualization of the flow field, Jimenez et al. (1993) found that most of the volume 

in the flow is occupied by relatively ‘weak’ non-coherent vorticity, with strong coherent 

vortices filling only a small fraction of the space. Based on his finding, Jimenez et al. 

(1993) divided flow field into two parts: 

1) weak vortices   2.0 , referred to as background vortices  

2) intense vortices    , referred to as 'worms' . 

 
Jimenez et al. (1993) found that the structure of the weak and strong vortices are very 

different. Regions of weak vorticity do not have an apparent structure, whereas the strong 

vorticity tends to be organized in tubes or ribbons (or ‘worms’) as shown in Figure 2.11. 

 
Figure 2.11. Vortex lines for homogeneous isotropic turbulence, 168Re  .(a) weak vortices, (b) strong 

vortices (Reproduced from Jimenez et al., 1993) 

By means of an automatic tracking algorithm, Jimenez et al. (1993) determined scaling 

laws for the kinematic properties of the vortex 'worms'.  
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 Belin et al (1996) experimentally studied intense vortex filaments in fully-

developed turbulent shear flow between two counter-rotating disks. Helium gas at low 

temperature was used as the fluid between the disks. They found that at low Reynolds 

number, 700Re  , turbulence is dominated by a set of strong, coherent vortex 

structures of finite length and with tubular shape, surrounded by a sea of weak random 

(non-coherent) vortices.  

 The typical radius   of the vortex worms scale with the Kolmogorov length 

scale   according to  9.3 , the vortex length is proportional to the Lagrangian 

integral scale, and the vortex strength   is characterized by the vortex Reynolds number 

 /Re  , which varies in proportional to the square root of the Taylor microscale 

Reynolds number  /Re 0v , or 5.0ReRe   . These scaling relationships where 

derived theoretically by Jimenez et al. (1993) and Kambe and Hatakeyama (2000), and 

validated via direct numerical simulation and via experiments by Jimenez et al. (1993) 

and Belin et al. (1996), respectively. The probability density distributions (p.d.f.) of 

radius and strength for the strong vortices were found to have a log-normal form, as given 

in Figure 2.12 from Jimenez et al. (1993).  
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Figure 2.12. Probability density of (a) worm radius and (b) circulation at four different Reynolds 

numbers 17035Re  . (Reproduced from Jimenez et al., 1993) 

A similar log-normal probability distribution is observed in the p.d.f. of vortex size 

obtained in the experimental study of Belin et al. (1996) plotted in Figure 2.13, where we 

again find that the vortex core radius scales with the Kolomogrov length scale. Belin et 

al.'s experimental results demonstrate coherent vortex scaling that compares well with the 

direct numerical simulations of Jimenez et al. (1993).   

 
Figure 2.13. Size distribution of the worms, for different Reynolds number for 151Re   to 

718Re  shown as symbols (Belin et al., (1996)). full line is obtained from Jimenez et al.(1993). 

(Reproduced from Belin et al., 1996) 
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 Previous studies discussed above have provided information about turbulent 

coherent vortices such as shape, length, core radius and life time. This information can be 

used in a vortex-based model to generate synthetic turbulence to model subgrid-scale 

particle motion in a turbulent particulate flow. A first step toward the use of a vortex 

structure model for turbulent particle transport was made by Ayyalasomayajula et al. 

(2008), who proposed a model in which the turbulent eddies are represented by a two-

dimensional vortex array and a stochastic algorithm is used to vary the strength of each 

vortex in time. A schematic of the 2D vortex model is illustrated in Figure 2.14(a), where 

the black dots represent the vortex centers, L  is the separation distance between the 

vortices, and the arrows represent the directions of the circulations. While this approach 

is extremely simplistic, it nevertheless accurately reproduced the probability density 

function of the acceleration field in the turbulent flow. Sala and Marshall (2013) 

proposed a 3D vortex-based model which they called the stochastic vortex structure 

(SVS) method. In the SVS method, the turbulent vorticity field is approximated by a set 

of finite-length vortex structures which are randomly positioned and oriented in the flow 

field, as shown in Figure 2.14(b). SVS gives good results for particle clustering and 

collision (Sala and Marshall, 2013); however, this early version of the SVS method 

requires improvement in a number of aspects. Specifically, in the original version of the 

SVS method the vortices were fixed in space and it is only used for isotropic 

homogenous turbulence. The original SVS method was fairly slow, since it needed to 

predict the induced velocity from each vortex onto the nodal points of a grid covering the 

flow field at each time step of the computation. There is therefore a need to improve the 
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speed of the SVS method and to expand the types of flow fields to which the method can 

be applied.  

 
Figure 2.14 (a) Schematic of the 2D vortex model of Ayyalasomayajula et al. (2008). The black dots 
represent the vortex centers. (Reproduced from Ayyalasomayajula et al., 2008), (b) Illustration of the 

coherent vortex structures in an isotropic homogeneous turbulence. (Reproduced from Sala and Marshall, 
2013) 

2-2 Particle motion in turbulence 

2-2-1 Particle transport mechanisms  

 Particle transport in turbulent flows is a ubiquitous process in fluid dynamics, 

occurring in an immense number of applications, including droplet and particulate 

transport in the atmosphere, river and coastal sediment transport, dust transport in clean 

rooms and manufacturing processes, particulate coal and biofuel combustion, diesel 

exhaust transport, and a wide range of manufacturing processes. The particle response to 

the fluid is governed primarily by the Stokes number St, which is defined as the ratio of 

the time scale of the fluid motion ( F ) to the intrinsic response time scale of the particles 

( P ), such that 
L

Ud
St PP

F
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 .  Stokes number can be used as a measure of the type 
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of response of particles to changes in a fluid flow, and it is of particular importance in 

discussing the two mechanisms of particle response to turbulence discussed below. 

1) Particle dispersion occurs at all Stokes numbers, but it is the dominant mechanism 

when 0St , for which case particles are transported nearly as passive tracers in the flow 

field. Particle dispersion tends to make the particle concentration field homogeneous, as 

shown in Figure 2.15. 

 

Figure 2.15. 2D slice showing concentration field at 0St (stokes based on Stokes number based on 

the Kolmogorov time scale). (Reproduced from Garcia, 2009) 

2) Particle clustering occurs for intermediate values of the Stokes number ( 1St ) when 

the particles are more dense than the fluid. In this case, centrifugal force acts to throw the 

particles out of the vortex cores, such that they accumulate in the region between the 

eddies. Figure 2.16 shows an example of a concentration field exhibiting particle 

clustering for a turbulent particulate flow with 1St .  
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Figure 2.16. (a) 2D slice showing concentrated particle fields at 1St , (b) Vorticity snapshot with 

particles superimposed (Reproduced from Garcia, 2009) 

 Tang et. al (1992) has studied self-organization of particle dispersion in a plane 

wake. Besides Stokes number, this study examined the role of stretching and folding of 

particle streaklines, which are associated with vortex development and merging 

interactions, for characterizing particle dispersion mechanisms. The competition between 

the effects of Stokes number and the stretching and folding mechanism of the vortices led 

to particle distributions shown in Figure 2.17. As might be expected, these figures 

demonstrate that the particles remain in the vortex cores for very small Stokes numbers, 

collect in high-concentration sheets surrounding the vortex cores for intermediate values 

of the Stokes number, and are minimally effected by the flow field at large Stokes 

number values.  
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Figure 2.17. Instantaneous particle dispersion patterns from numerical simulation of the plane wake. (a) 
01.0St  (b) 0.1St  (c) 10St  (d) 100St  (e) Schematic stretching of particle streaklines near 

boundaries of vortices(f) Schematic folding of particle streaklines during vortex pairing. (Reproduced 
from Tang et al., 1992) 

 Reeks (2014) has studied the transport, mixing and agglomeration of particles in 

turbulent flow. He similarly found that turbulent flow can demix (segregate) the particles 

at intermediate values of the Stokes number when particles have a higher density than the 

surrounding fluid. Segregation reaches a maximum when 1St , at which particles 

segregate into regions of high strain rate in-between the regions of high vorticity. 

Segregation was observed for all of the Stokes number values examined by Reeks (2014), 

but for cases with higher Stokes numbers it takes longer to reach to the same level of 

segregation as observed for intermediate Stokes number values. Figure 2.18 shows the 

segregation pattern at 20t  (nondimensionalized by the integral time scale) for 3 values 

of the particle Stokes number - 05.0St , 5.0 ,5 .  
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Figure 2.18. Segregations as a function of particle Stokes number St  (a)-(c) based on positions 

of 410 particles after time 20t  in a non-isotropic random straining flow. (Reproduced from Reeks, 
2014) 

 The tendency of particles to cluster can be characterized by the radial 

distribution function (RDF), )(rg , defined by  

dr

dN

r
rg

2
04

1
)(


            (2-11) 

where the average number of particles per unit volume 0  is related to the particle 

volume fraction 
pC  by  pC60  , and )(rN  is the average number of neighboring 

particles whose centroids are located within a radial distance r from a given particle 

centroid. Direct numerical simulations of heavy particles suspended in a turbulent fluid 

performed by Sundaram and Collins (1997) report both the RDF and value of RDF at 

initial particle contact, which is plotted as a function of Stokes number in Figure 2.19(a). 

Figure 2.19(b) shows a clear peak in the RDF value for intermediate values of the Stokes 

number ( 1St ), indicating a greater tendency of the particles to form clusters at 

intermediate Stokes numbers. 
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Figure 2.19. Radial distribution functions (RDF) upto 5 for various Stokes numbers. The RDF 

for a randomly distributed particle system is plotted for comparison (Reproduced from Sundaram and 
Collins, 1997). 

 Fayed and Ragab (2013) studied particle collisions with suspended bubbles in 

homogeneous isotropic turbulence, which is of interest because the particles were heavier 

than the fluid and the bubbles were lighter than the fluid. The turbulent vortices thus drew 

the bubbles inward toward the vortex centers and expelled the particles from the vortices. 

Figure 2.20 shows the regions of high vorticity (red) and regions of high strain rate 

(blue). Particles accumulate in the high strain rate region between the vortex cores, while 

bubbles tend to concentrate in regions of high vorticity within the vortex cores.    
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Figure 2.20. A snapshot of particles-bubbles segregation, 924.0pSt , 96St , 256N . (a) Particles 

accumulation in high strain regions (b) Bubbles accumulation near high vorticity regions. (Reproduced 
from Fayed and Ragab, 2013)   

2-2-2 Collision models 

 Collision models for particles that are heavier than the fluid are typically divided 

into two limiting types depending on Stokes number: 

1) The zero-inertia collision model developed by Saffman and Turner (1956) in which 

particles follow the carrier flow path (shear (orthokinetic) collision mechanism), which is 

valid for low Stokes numbers; 

 2) The high-inertia collision model developed by Abrahamson (1975) in which particle 

velocities that are completely decorrelated from the carrier fluid velocities (accelerated-

independent collision mechanism), which is valid for high Stokes numbers. 

A more detailed classification of five different collision mechanisms is given in Table 

1.1., along with illustrations of typical collision events for each mechanism in Figure 

2.21.   
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Figure 2.21: Illustrations of different collision mechanisms (Reproduced from Marshall and Li, 2014) 

Table 1.1. Collision mechanisms's description and limitations Meyer and Deglon (2011) 

Mechanism Description Continues phase 

flow regime 

Scale and flow regime 

of dispersed phase 

Brownian motion 
(perikinetic) 

Particle collision due to random 
Brownian motion of particles 

Laminar Particles are small, less 
than 1 m  

Shear (orthkinetic) Particles follow streamlines and 
collide due to different positions 
within shear flow field 

Laminar and 
turbulent 

Various length scales; 
1St  

Differential 
sedimentation 

Particles of different sizes exhibit 
different settling velocities leading to 
collisions 

Laminar Various length scales; 
Various particle 
relaxation times  

Accelerative-
correlated 

Particles deviate from streamlines 
and collide. Particle and carrier fluid 
velocities are correlated or partly 
correlated 

Turbulent Intermediate particle 
sizes; Various particle 
relaxation times 

Accelerative-
independent 

Particles are thrown randomly from 
eddy to eddy and collide. Particle and 
carrier fluid velocities are 
uncorrelated  

Highly turbulent Particles are larger 
than viscous 
dissipation eddies; 

10St  

 

 In order to quantify the collision and make it more comparable, the collision 

kernel ( ) is defined. For a monodisperse system consisting of pN  particles in a volume 
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 , the collision rate per unit volume, cN , can be written in terms of the collision kernel 

as 

2

2
0n

N c              (2-12) 

provided that 1pN , where  pNn0  is the average particle number concentration 

in the volume. Saffman and Turner (1956) developed two formulations of the geometric 

collision kernel for zero-inertia particles based on the collision sphere and collision 

cylinder concepts: 

r

spherical
wR

22            (2-13) 

)(2
RgwR r

lcylindrica             (2-14) 

In these equations, rw is the radial component of the relative velocity w , namely, 

/Rwr w.R , in which R  is the separation vector and RR . Schematic diagrams 

illustrating the collision sphere and collision cylinder paradigms are presented in Figure 

2.22. It was argued by Wang et al. (1998) that the collision sphere formulation provides 

more accurate results for zero-inertia particles. 

 
Figure 2.22. Geometrical description of the two statistical formulations for particle collusions: (a) 

Projection of the collision sphere on the (x, y)-plane. (b) The concept of the collision cylinder.  
(Reproduced from Wang et al., 2000) 
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Other researchers have derived their own expressions for the collision kernel. Meyer and 

Deglon (2011) gave a full description of these models for various ranges of Stokes 

number. Choi et al. (2011) studied the collision of heavy particles in homogeneous 

turbulence using DNS in different Stokes number regimes (zero inertia and high inertia), 

obtaining the results for collision rates presented in Figure 2.23. The various models for 

finite Stokes number approach the Saffman-Turner model at very low Stokes number and 

the Abrahamson model for very large Stokes number, with a peak value of collision rate 

at some intermediate value of the Stokes number.  

 
Figure 2.23. Particle collision rate as a function of Stokes number in homogeneous turbulence, as given 

by various models. (Reproduced from Choi et al., 2011) 

2-3 Agglomeration  

 Particle agglomeration by fluid turbulence occurs in a large range of natural 

flow problems and industrial processes. Examples of natural processes include dispersion 

of atmospheric particulates, sediment transport and deposition in estuaries, removal of 

pollutants by sediment deposition in aquatic systems, particle transport from volcanic 

plumes, and agglomeration of ice crystals in the atmosphere during formation of snow 
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flakes. The number of industrial processes involving turbulent agglomeration is immense, 

a few examples being fine particle separation in gas cyclones, wastewater treatment, 

additive manufacturing processes, flame synthesis of nanoparticles, and ash capture from 

combustion furnaces. Many industrial products are produced from powders or by 

precipitation from reactive solutions, examples including 3D printing, ceramic materials, 

catalysts, and many pharmaceutical products. 

 

2-3-1 Fractal dimension  

 As particles collide with each other, there are two possibilities; 1) they will 

bounce off, or 2) they will stick together. There exists a large literature on how attraction 

and repulsion forces of different types act during particle collision to determine whether 

two colliding particles will stick together or separate. A complete discussion of different 

types of adhesion forces and related models combining these forces with elastic rebound 

and frictional forces during particle collisions is given by Marshall and Li (2014), and 

will not be repeated here.  Rather, the current section focuses on the characterization and 

dynamics of the agglomerates themselves - various measures that can be used to 

characterize agglomerates, how agglomerates interact with the surrounding fluid flow, 

and how they break up.   

 Each agglomerate is characterized by the number of particles N contained in the 

agglomerate and the radius of gyration gR , which is defined by 

2/1
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In this equation, x  denotes the position vector of the agglomerate centroid and ix is the 

centroid of the ith particle within the agglomerate. The fractal dimension 
fD  is defined 

as the exponent in the power law relationship 

,)/( fD

gf dRKN            (2-16) 

where 
fK  is a coefficient (called the fractal pre-factor). The value of 

fD  varies over the 

interval 31  fD  depending on the agglomerate formation mechanism. Figure 2.24 

shows typical images of agglomerates formed with monodisperse primary particles for 

different agglomerate formation processes. Diffusion-limited (DLCA) and ballistic 

cluster–cluster (BCCA) agglomerate formation have relatively loose structures with 

2fD , whereas diffusion-limited (DLA) and ballistic particle–cluster (BPCA) 

agglomerate formation exhibits more packed structure with 2fD . 

 

Figure 2.24 Agglomerates consisting of 1024 monodisperse primary particles made by (a) diffusion-
limited (DLCA) and (b) ballistic cluster–cluster (BCCA) agglomeration as well as by (c) diffusion-

limited (DLA) and (d) ballistic particle–cluster (BPCA) agglomeration. (Reproduced from Eggersdorfer, 
2012) 
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 Derksen (2013) studied agglomeration in turbulent flow by means of particle-

resolved, direct numerical simulations. The simulations show the continuous formation 

and breakage of agglomerates as a result of the turbulence and the attractive potential. 

The average size of the agglomerates is a pronounced function of the strengths of 

turbulence and interaction potential. They found values of fractal dimension (
fD ) in the 

range of 1.4 to 1.8. For turbulent agglomeration of latex particles in stirred tanks, 

Selomulya et al. (2001) report values of 
fD  between 1.7 and 2.1 and Waldner et al. 

(2005) report values of 
fD  between 1.8 and 2.6. Figure 2.25 shows an example of how to 

fit a line in order to find the fractal dimension. 

 

Figure 2.25. Number of particles in aggregates as a function of radius of gyration normalized by particle 
radius, yielding the fractal dimension and fractal pre-factor of simulated aggregates with different 

overlap parameter, 
ov

C . (Reproduced from Brasil et al. ,1999) 

Jiang and Logan(1991) and Kusters et al. (1997) found that the particle volume fraction 

of the agglomerate can be related to the fractal dimension by  
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  3
,0 /  fD

pigyri rR           (2-17) 

where 0  is a constant. If 3fD , an increase in agglomerate size results in 

a decrease in average particle volume fraction.  

2-3-2 Stress on agglomerates and erosion mechanisms   

 Gastaldi and Vanni (2011) studied the distribution of stresses in rigid fractal-like 

agglomerates in a uniform flow field. The particles within an agglomerate interact with 

the surrounding fluid flow, modifying the drag force on the agglomerate and the 

permeability of the agglomerate to the fluid. As shown in the example in Figure 2.26(a), 

the central part of an aggregate is screened from the permeation of the external fluid and 

consequently the drag forces on the inner monomers are small in comparison to those on 

the outermost particles. Figure 2.26(b) shows the intensities of the forces acting on the 

primary particles of a cluster-cluster (CC) aggregate with D = 1.9 and of two particle-

cluster (PC) aggregates with 
fD  = 1.9 and 2.3. External forces (i.e., the sum of drag and 

body force) increase from the center of the cluster to the outer regions and the most 

intense values are always found on some of the most external monomers.  



 

39 

 
Figure 2.26 (a) Velocity vectors near a small aggregate of 13 monomers in a reference frame moving 

with the aggregate. (b) Relative intensity of the external forces acting on the primary particles of settling 
aggregates: above: CC aggregate with D = 1.9; below: PC aggregates with D = 1.9 (left) and 2.3 (right). 

(Reproduced from Gastaldi and Vanni, 2011) 

 Stress on agglomerates due to hydrodynamic forces can eventually cause 

agglomerates to break up. Rwei et al. (1990, 1991) proposed the fragmentation number 

Fa  to characterize the agglomerate breakup mechanism. Fragmentation number is 

defined as the ratio of the viscous shear stress to the strength of the agglomerate, or  

T
Fa

 
            (2-18) 

where DD :2  is the magnitude of the rate of deformation tensor, 

2/])([ TvvD  , with v  being the flow velocity. The term T in (2-18) denotes the 

characteristic cohesive strength of the agglomerate. Rumpf (1962) considered the 

agglomerate as a collection of spherical particles of radius a  occupying a volume 

fraction   bonded to each other via cohesive forces, and obtained an expression for the 

agglomerate tensile strength as 
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9




            (2-19) 

where F represents the average binding force of a single bond and bn  is the average 

number of bonds per particle. Three main agglomerate breakup mechanisms are listed 

below (Babick 2016): 

1) Fragmentation (or rupture) of the agglomerate, which yields several fragments, the 

size of which being in the same order of magnitude. Fragmentation occurs at high stress.  

2) Erosion of the agglomerate surface, which results in a steady size reduction of the 

agglomerate size mode and the appearance of a fine size mode, which is related to the 

eroded primary particles or aggregates. Erosion is dominant for small stresses 

( 1001  Fa ) (Bałdyga et al., 2008). 

3) Shattering of the agglomerate, which means breakup into a large number of fragments 

considerably smaller than the original agglomerate. Shattering is the expected breakup 

mode at extremely high stresses ( 410Fa ) (Bałdyga et al., 2009). 

These mechanisms are illustrated in Figure 2.27, and experimental pictures of each 

mechanism are given in Figure 2.28.   
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Figure 2.27. Schematic representation of  agglomerate formation and break up. (Reproduced from 
Özcan-Taşkin et al., 2009) 

 

 
Figure. 2.28. Experimental pictures illustrating different agglomerate breakup mechanisms: (a) 

fragmentation (or rupture), (b) erosion, and (c) shattering. (Reproduced from Scurati et al., 2005) 

2-3-3 Permeability   

 The dynamic behavior of agglomerates significantly differs from spherical 

solid particles (Matsoukas and Friedlander, 1991; Friedlander, 2000). To analyze the 

motion of agglomerates, permeability ( ak ) is introduced which shows the impregnability 

( 0ak ) or pregnability ( 1ak ) of the agglomerate, indicating to what extent the 

agglomerate acts like a solid sphere. A schematic diagram of a porous agglomerate is 
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illustrated in Figure 2.29, where d is the agglomerate’s characteristic size, pd  is the size 

of the pore, sd  is the size of the primary particles, and   is the fluid collection 

efficiency. 

 

Figure. 2.29. Schematic of porous agglomerate (Reproduced from Vainshtein and Shapiro, 2005) 

The average agglomerate porosity φ  can be expressed via the volume of the 

primary particles as 
3











fD

sd

d
-1φ . The average size of a single pore for an 

agglomerate formed of uniform spheres is 
)1(5.1 




 sp dd . The viscous permeability 

(k) is defined as )]([ fdk
2

s  (Happel, 1958) and the molecular permeability ( K ) as 

 ),(2
ps KngdK  . The effective agglomerates permeability ak  is then given by 

  ),()(2
psa KngfdKkk             (2-20) 

The Brinkman parameter is defined as akd/2 (Shapiro et al., 2012) and the drag of an 

agglomerate moving with velocity U relative to the surrounding gas can be estimated by 

(Sutherland and Tan, 1970)     
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12)5.11(3  dUF
cont

drag           (2-21) 

The mobility diameter in the continuum regime is defined as 

3/)/(1 /)1( ff DD

f

cont

m
KN

d
d 

           (2-22) 

in which 
fk is the prefactor in the equation defining the fractal dimension 

( fD

gf dRKN )/( ). 

 Another way to model the porous floc was suggested by Torres et al. (1991) and 

Kusters et al. (1997). In their model it was assumed that the agglomerate consists of an 

impermeable core and a completely permeable shell, as shown in Figure 2.30. The outer 

collision radius, R , of the floc, which represents the distance within which another floc 

must approach for coagulation to occur, is given by 

4

2
R

2
2 d

D

D

f

f              (2-23) 

 
Figure. 2.30. Shell-core model for a particle agglomerate. (Reproduced from Kusters et al., 1997) 

Debye's shielding ratio ( ) is defined as 

ak

R
              (2-24) 
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For 20 , the ratio of hydrodynamic radius and outer collision radius can be 

approximated by (Jones, 1978) 

)tanh(
2

3

2

3
1

)tanh(1

32

1













R

RH           (2-25) 

and for values 20 , values of RRH /  are given in table 1.2. 
 

Table 1.2. Ratio of hydrodynamic radius to outer collision radius as a function of the 

Debye's shielding ratio. (Kusters et al. 1997) 

 
2-3-3 Force chains   

 Flow-fields induce forces on agglomerates, and since agglomerates are "fragile", 

they are unable to support certain types of incremental loading without plastic 

rearrangement of the particles (Cates et al., 1999). The force distributed in an 

agglomerate in such a way that some particles bear most of the induced force compared 

to other particles. A force chain consists of a set of particles within a "compressed" 

granular material that are held together and jammed into place by a network of mutual 

compressive forces (Peters et al., 2005). By plotting these force chains, one can identify 

how these compression forces are transmitted across an agglomerate. 

 One way to identify a force chain is to find the particles which are compressed 

more than the average compression of the agglomerate (Peters et al. (2005). Figure 2.31 

shows the pathway of force transmission in a small set of particles, and the force chain is 

https://en.wikipedia.org/wiki/Jamming_(physics)
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indicated by a gray line. The double-sided arrow through the particle center represents 

the direction of the most compressive principal stress. 

 

Figure. 2.31. Particles in an idealized portion of a force chain. (Reproduced from Peters et al., 2005). 

Between the force chains are regions of low stress, whose particles are shielded from the 

high-compression effects of the particles above by vaulting and arching. A set of 

interconnected force chains is known as a force network (Kondic et al., 2012). Figure 

2.32 shows the force chain network in a two-dimensional layer of granular materials 

under isotropic compression. 

 

https://en.wikipedia.org/wiki/Vault_(architecture)
https://en.wikipedia.org/wiki/Arch
https://en.wikipedia.org/wiki/Force_chain#cite_note-Kondic2012-2
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Figure. 2.32 (a) An example of a force-chain network in a 2D layer of granular materials under isotropic 
compression. Here bidisperse photoelastic disks are used. (b) The portion of panel (a) indicated by the 

red rectangle, showing several force chains of different lengths using different colors. (Reproduced from 
Zhang et al., 2014) 

2-4 Collision of agglomerates  

 Collision of agglomerates is a ubiquitous phenomenon which happens over a 

large range of scales. Collision of asteroids (Farinella et al., 1982, Ormel et al., 2007, 

2009) or collision of atomic nuclei (Keeley et al., 2007) are qualitatively similar 

phenomenon at two ends of the size spectrum. Agglomerate collision is a common 

occurrence in different operations in the food and drug manufacturing industry (Tong et 

al., 2016). Turbulent agglomeration can be divided into three different stages (Dizaji and 

Marshall 2016); 1) collision and agglomeration happens between two single particles 

which creates small agglomerates; 2) collision and agglomeration happens between small 

agglomerates to form larger agglomerates; and 3) large agglomerates collide with each 

other causing them to break into smaller agglomerates. Over sufficient time and under 

quasi-steady turbulent flow conditions, the adhesive particles will develop a state of 

statistical equilibrium in which the rate of agglomerate formation by collision will be 
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balanced by the rate of agglomerate breakup, such that the mean agglomerate size will 

achieve a critical value. Sonntag and Russell (1986) report that the agglomerate radius of 

gyration in this equilibrium state decreases as the shear rate increases ( m
SR
 ). Seyvet 

and Navard (2000) used silica agglomerates to show that detachment of fragments due to 

agglomerate collision can lead to agglomerate breakup at a much lower overall stress 

than the well-known erosion and rupture mechanisms that control breakup of a single 

agglomerate in a shear flow. Collision between two silica agglomerates flowing in 

opposite directions (shear rate is 15 
s ) and detachment of a fragment is shown in Figure 

2.33. 

 

 

Figure 2.33. Collision between two silica agglomerates (Reproduced from Seyvet and Navard, 2000) 
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2-4-1  Equivalent agglomerate models 

 In order to reduce the complexity of modeling agglomerates, an equivalent 

sphere model has often been used in the literature (Breuer and Almohammed, 2015). 

Three different ways that this equivalent sphere is sometimes defined are outlined below: 

a) Volume-equivalent sphere model (VSM) - In this classical model, it is assumed that an 

agglomerate can be replaced by a single spherical particles of diameter 
agd , whose 

volume is equal to the sum of the volume of all of the individual particles in the 

agglomerate. An illustration for a two-particle agglomerate is shown in Figure 2.34(a), 

where the equivalent particle diameter is 3 3
2

3
1 dddag  .  

b) Inertia-equivalent sphere model (ISM) - The radius of gyration is used to describe the 

size of an agglomerate and to show how the mass is distributed around the center of 

agglomerate (Figure 2.34(b)). For two agglomerating particles, the radius of gyration is 

given by
21 mm

I
R cm

g 
 in which cmI  is the moment of inertia about the center of mass 

and 1m  and 2m  are the mass of each particle, so that the equivalent diameter is 

gag Rd 3/20 . 

c) Closely packed sphere model (CSM) - This model assumed that an agglomerate is built 

up from spherical particles including an interstitial space between its primary particles as 

shown in Figure 2.34(c). The equivalent particle diameter is chosen as the smallest value 

that encloses the primary particles. 
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Figure 2.34. Procedures to model the structure of the agglomerate. (Reproduced from Breuer and 
Almohammed, 2015)   

 These equivalent sphere models are the basis of the population balance approach 

for modeling agglomerate formation. It is also used in the 'extended' hard sphere model, 

developed by Kosinski and Hoffmann (2010), which extended the hard-sphere model for 

binary particle collisions to formation of agglomerates of an arbitrary number of 

particles. Using this equivalent sphere implies a loss of some physics associated with the 

agglomerate collisions, since it admits only two possible scenarios following a collision 

of two agglomerates - the agglomerates can stick together or they can bounce. However, 

in reality the physics of agglomerate collision is much more complex than indicated by 
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these two scenarios. For example, one or both of the agglomerates can completely shatter, 

or the agglomerates can exchange particles with each other. 

2-4-2 Agglomerate behavior in different regimes  

 In order to better understand the physics of agglomerate collision, it is necessary 

to track the behavior of each particle within the agglomerate individually (e.g., using the 

discrete element method). The literature on this topic is divided into three categories 

below, based on a combination of numerical studies and a few experiment investigations.  

2-4-2-1  Behavior of a single agglomerate in shear flow 

 Using numerical simulation, Potanin (1993), Higashitani et al. (2001) and 

Zeidan et al. (2007) studied the deformation and breakup of a single agglomerate in a 

simple shear flow. Snapshots of the deformation and breakup of the particle-cluster 

aggregate composed of mono-dispersed particles are shown in Figure 2.35 for a case 

exhibiting breakup in the shear flow. 

 

Figure 2.35. Fragmentation of an agglomerate in simple shear flow. (Reproduced from Higashitani et al., 
2001) 
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Higashitani et al.(2001) found using DEM simulations that the average number of 

particles in broken fragments  i  can be written as a power law of the ratio of the fluid 

drag force on the particles to the adhesive force acting between particles, or 

 
872.0

79.2












adhesive

Drag

F

F
i          (2-26) 

This power-law dependence matches well with a similar expression obtained 

experimentally by Sonntag and Russel (1986).   

 Serra et al. (1997) experimentally showed that based on particle concentration 

and shear stress, different regimes have been observed for the behavior of a single 

aggregate in shear flow. a) For concentrations less than a critical value, the final diameter 

of the aggregate is independent of concentration and depends only on shear. b) For high 

concentration, the final diameter of aggregate depends on both shear stress and particle 

concentration. 

2-4-2-2 Collision of an agglomerate with a wall 

 Ning et al. (1997), Thornton et al. (1999), Thornton and Liu (2004), Kafui and 

Thornton (2000), Moreno et al. (2003), Moreno-Atanasio and Ghadiri (2006), Iimura et 

al. (2009a and 2009b), Tong et al.(2009), and Nguyen et al.(2014) have numerically 

studied the collision of an agglomerate with a wall (obstacle). In these studies, impact 

velocity, angle of impact and surface energy were identified as the most important factors 

influencing breakage of agglomerates. We note that many of these studies either had no 

surrounding fluid, or else the surrounding fluid exerted only a minor force on the 

particles, so that the collision process was controlled by particle inertia. A measure of 

breakup called the 'damage ratio' is defined as the proportion of the initial bonds that are 
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broken during an impact. As impact velocity and impact angle increases, the damage 

ratio increases and the agglomerates shatter into more pieces, as shown in Figure 2.36(a). 

However, Figure 2.36(b) shows that increase in adhesive surface energy causes a 

decrease in damage ratio, which means that the agglomerates tend to remain as a single 

agglomerate (or adhesive to each other). 

  

Figure 2.36.  Damage ratio as a function of (a) impact angle for different impact velocities (Reproduced 
from Tong et al. 2009)  (b) surface energy (Reproduced from Moreno-Atanasio and Ghadiri, 2006) 

 
2-4-2-3 Collision of two agglomerates 

 Lian et al. (1998), Schäfer et al. (2007), Seizinger and Kley (2013), Gunkelmann 

et al. (2016), Ihalainen et al. (2012), and Kun and Herrmann(1999) have numerically 

studied the collision of two agglomerates, focusing specifically on inertia-dominated 

impact of tightly-packed agglomerates, as is typical in applications in particulate drug 

delivery via dry particle inhalers and similar devices. Collision of two agglomerates has a 

different nature than the collision of an agglomerate and a wall. In agglomerate-wall 

collision, the wall is treated as a solid material and all impact energy transfers to the 

agglomerate. However, in agglomerate-agglomerate collision both the agglomerates can 



 

53 

deform and the impact energy is distributed between them. Fracture and fragmentation 

processes of agglomerates due to impact at low energies are illustrated in Figure 2.37. 

 

Figure 2.37. The final breaking scenarios of collisions of disks at different impact energies 0E . The 

values of the parameter   are 0.09, 0.2, 0.3, and 0.5 for (a), (b), (c), and (d), respectively. (Reproduced 

from Kun and Herrmann, 1999) 

 To characterize the collision events, a dimensionless parameter 
bE

E0  is 

introduced by Kun and Herrmann (1999) in which bE  is the particle binding energy and 

0E  is the total initial kinetic energy of the colliding bodies. Alternatively, one can define 

sEv0  in which sE  is the surface energy and 0v denotes the impact velocity of the 

particles. Using the ratio 0EERR   (the energy released by breaking RE  to the total 
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kinetic energy 0E ), two distinct final states of the impact process are identified: 1) 

damaged and 2) fragmented states, with a sharp transition in-between which is shown in 

Figure 2.38. 

 

Figure 2.38. The transition point (fragmentation threshold) between the damaged and fragmented states 

is identified with the position of the maximum of R  . (Reproduced from Kun and Herrmann, 1999) 

 Beitz et al. (2011) have experimentally studied the low-velocity collisions of 

centimeter-sized aggregates of compressed dust particles. They observed several 

mechanisms at different impact velocities v, including: a) bouncing ( 140  cmsv ), b) 

partial fragmentation ( 120  cmsv ), c) particle exchange ( 1190  cmsv ) and d) 

disruptive fragmentation ( 1190  cmsv ). Figure 2.39 shows these four mechanisms in 

collision of dust aggregates as a function of impact velocity.  
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Figure. 2.39. Strength of fragmentation   as a function of impact velocity. (Reproduced from Beitz et 

al., 2011) 

 It is noted that nearly all of the previous research on agglomerate collisions has 

been performed for inertia-dominated collisions of tightly-packed agglomerates. By 

contrast, turbulent agglomeration processes typically involve shear-dominated collisions 

of loosely-packed agglomerates (i.e., agglomerates typified by fractal dimensions 
fD  

significantly less than 3). Repeating the same experiments or computations with loose 

aggregates adds lots of more complexity both to design and conduct of the experiments or 

computations and to the results. Also, for shear-dominated collision processes, the fluid 

flow plays an important role in the collision process and it therefore cannot be neglected 

or consigned a minor role as has been done for inertia-dominated collision studies. In the 

literature to date, there is a lack of detailed studies of the behavior of two loose 

agglomerates during collisions, particularly under conditions of shear-dominated 

collisions. This is a much harder problem to deal with since both high agglomerate void 

fraction and strong shear forces change the physics of the problem entirely. Extracting 
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loosely-structured agglomerates typical of turbulent formation processes and making 

them to collide under controlled shearing conditions in a physical experiment is almost 

impossible, so detailed study in this problem will likely need to be pursued numerically.     
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Final Conclusion and Recommendations 

 Small-scale turbulent flow fluctuations have very important influence on the 

motion, collision and agglomeration of suspended particles. While these small-scale 

fluctuations can be modeled using direct numerical simulation (DNS), this method is 

limited to problems with relatively low Reynolds numbers and simple geometrical 

configurations. Other turbulence simulation methods for more practical problems, such as 

large eddy simulation (LES) or Reynolds-averaged Navier Stokes (RANS) simulations, 

do not predict the small-scale fluctuations. The stochastic vortex structure (SVS) method 

is an approach for generating synthetic turbulence which can be used directly as an 

independent research tool, or it can be coupled to RANS or LES computational results to 

compensate for the lack of small-scale fluctuations in modeling the turbulent motion of 

particulate fluids. Since SVS uses vortex tubes to generate turbulence, we are able to 

change the core radius, length, strength, orientation and number of vortices to adjust the 

results for given turbulent flows (as expressed, for instance, by the Reynolds stress tensor 

given by a RANS calculation). The early version of SVS (Sala and Marshall, 2013) was 

designed for isotropic, homogeneous turbulence, so that the vortex orientations were 

random and vortices were fixed in space. The SVS computations were also fairly slow, in 

some cases taking longer than the DNS computations used for validation. In the current 

research, the SVS method was extended and validated in a series of different steps listed 

as below: 

1) The algorithm was modified to allow the vortices the ability to move freely in the flow 

field, which is more realistic and allows prediction of time-varying fluctuations even at 

fixed points. 
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2) The velocity calculation algorithm is replaced by the fast multipole method, which 

calculates the effect of an entire group (box) of neighboring source vortices on a coarse 

grid and then uses a local Taylor series expansion to interpolate onto a fine grid covering 

the flow field. The new method has improved the velocity calculation speed by 

approximately two orders of magnitude.  

3) Flow field parameters, collision kernel and size and fractal dimension of agglomerates 

generated by SVS are successfully compared with DNS results.  

4) An inverse method is developed by which vortex initial orientation can be set to 

reproduce a prescribed Reynolds stress fields. With use of this inverse method, SVS was 

successfully used to generate predict turbulence measures and particle transport and 

collision measures for anisotropic turbulence in a turbulent free jet flow.   

5) For both isotropic turbulence and turbulent shear flows, SVS has been successfully 

validated versus DNS predictions and available data to accurately and effectively 

calculate the dispersion and collision of suspended particles. 

 The SVS method has proven to be accurate and effective for simulating the 

effect of subgrid-scale turbulent fluctuations on interacting particles (i.e., particles that 

undergo collision or thermal/chemical interactions). While the current research has 

significantly advanced the SVS method, there remain a number of limitations and 

obstacles to its general usage. For instance, as pointed out in Paper #3 of this dissertation, 

the inverse procedure that was developed for the vortex orientation in anisotropic 

turbulence is subject to a limitation on the Reynolds stress tensor which is violated in 

some turbulent shear flows. Secondly, the fluctuations generated by the SVS method do 

not in general obey the no-slip condition on a surface, and the method therefore has 
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limited applicability for turbulent boundary layer flows. Thirdly, the SVS method 

developed to date includes only one-way coupling, and as such it does not account for the 

effect of the particles on the fluid flow. This is particularly important in development of 

particle agglomerates and clusters, where the particle concentration becomes locally 

large. Finally, our work with SVS to date has been in conjunction with a RANS 

computation that provides knowledge of the Reynolds stress tensor. As noted above, the 

LES technique experiences similar problems with lack of small scales for particle 

transport, but we have not examined how SVS might be extended to work in conjunction 

with LES.  

In part motivated by trying to understand the restrictions imposed by the 

limitations of the SVS method, two areas of independent research were conducted using 

the DNS method to study the role of turbulent agglomeration on the surrounding fluid 

flow. One of these studies examined the effect of two-way coupling on turbulent 

agglomeration of particles (in comparison to one-way coupling) and the attenuation of 

turbulence in the presence of agglomerates. We observed that the particles cause 

enhanced attenuation of the turbulent kinetic energy compared to computations with no 

particles. The rate of attenuation increased with increase in the particle size and mass 

loading. In a series of computations repeated both with adhesion and without adhesion, 

we observed little difference in the rate of particle attenuation, except for the largest size 

particles. Examination of the agglomeration process indicated that significant 

agglomeration occurred during the computations, but that this agglomeration did not 

appear to have a significant influence on the turbulence modulation.  
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Both DNS and SVS results show that average agglomerates sizes increase during 

turbulent agglomeration until an equilibrium condition is reached. This happens since 

shear and collision of agglomerates with each other act like erosion mechanisms, which 

resist the unconditional growth of agglomerates. A second DNS study was performed to 

explore the microphysics of turbulent agglomeration processes. In this study, the effect of 

fluid shear and of collision of agglomerates was investigated using DNS by placing 

loosely-packed agglomerates from a turbulent agglomeration process in a simple shear 

flow, and then using DNS with two-way coupling to compute the agglomerate evolution 

under shear. Of particular interest in these computations was the discovery of the flow 

field induced by a particle agglomerate in a shear flow, which was found to have the form 

of two tilted horseshoe vortices with opposite sign. Agglomerate collision was observed 

to work either to promote merger of two agglomerates or to enhance erosion and breakup 

of the agglomerates depending on the extent of collision and adhesion of the particles.    

These DNS studies improved our understanding of basic processes involving 

turbulent agglomeration and its two-way interaction with the surrounding fluid. We were 

particularly interested in these studies in the local fluid flow that forms as a response to 

the particle forces induced on the fluid by the agglomerate particles, and in how this local 

flow impacts the agglomerate dynamics. To what extent the SVS method can be further 

extended to deal with these type of two-way fluid-particle interactions on the scale of the 

agglomerates must wait for future research.  
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Abstract 

Modeling the response of interacting particles, droplets or bubbles to subgrid-scale 

fluctuations in turbulent flows is a long-standing challenge in multiphase flow 

simulations using the Reynolds-Averaged Navier-Stokes (RANS) approach. The problem 

also arises for large-eddy simulation (LES) for sufficiently small values of the 

Kolmogorov-scale particle Stokes number. This paper expands on a recently proposed 

stochastic vortex structure (SVS) method for modeling of turbulence fluctuations for 

colliding or otherwise interacting particles. An accelerated version of the SVS method 

was developed using the fast multipole expansion and local Taylor expansion approach, 

which reduces computation speed by two orders of magnitude compared to the original 

SVS method. Detailed comparisons are presented showing close agreement of the energy 

spectrum and probability density functions of various fields between the SVS 

computational model, direct numerical simulation (DNS) results, and various theoretical 

and experimental results found in the literature. Results of the SVS method for particle 

collision rate and related measures of particle interaction exhibit excellent agreement 

with DNS predictions for homogeneous turbulent flows. The SVS method was also used 

with adhesive particles to simulate formation of particle agglomerates with different 

values of the particle Stokes and adhesion numbers, and various measures of the 

agglomerate structure are compared to DNS results.     

3.1. Introduction 

 Particle collision and agglomeration play an important role in a wide range of 

turbulent flow applications involving small particles or droplets. Droplet collision is a 

key element to cloud formation and precipitation development (Devenish et al., 2012). 
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Particle agglomeration is particularly important in aerosol flow problems, such as fly ash 

collection from combustion processes (Xu et al., 2010), flame-synthesis of nanoparticles 

(Zhang et al., 2012), cyclone particle separators (Paiva et al., 2010), and snow crystal 

formation (Kajikawa et al., 2000), for which adhesive particles have Stokes numbers 

sufficiently close to unity that they display significant drift relative to the fluid 

trajectories. Agglomerate formation is preceded by particle collision, where the particle 

collision rate is controlled either by the fluctuating turbulent shear flow (for smaller size 

particles) or by particle inertia (for larger particles). The fluctuating turbulent shear stress 

also controls agglomerate breakup (Serra et al., 1997; Higashitani et al., 2001). Over long 

time, the distribution of particle agglomerate sizes is determined by a balance between 

influences increasing collision rate and influences enhancing agglomerate breakup.  

 A wide variety of turbulence models have been developed using the Reynolds-

averaged Navier-Stokes (RANS) approach, ranging from the popular two-equation 

models, such as k  and k , to full Reynolds stress models. RANS models yield 

numerical predictions for the mean turbulent velocity field as well as for certain averaged 

quantities associated with the Reynolds stress tensor. However, additional modeling is 

required for RANS simulations to account for the role of turbulent fluctuations on 

particle transport. A similar need for subgrid-scale modeling of turbulent fluctuations 

arises for large eddy simulations (LES) when the Kolmogorov-scale Stokes number is 

less than a critical value of about three (Jin et al., 2010). 

 While numerous effective methods are available to simulate the effect of subgrid-

scale fluctuations for transport of non-interacting particles (e.g., Wilson and Sawford, 

1996; Loth, 2007; Minier et al., 2014; Pope, 2011), turbulent subgrid-scale simulation for 
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interacting particles remains an unresolved modeling challenge. There are a number of 

reasons why subgrid-scale modeling for interacting particles poses difficulties. Firstly, 

the mechanics of interacting particles depends sensitively on the distance between the 

particles at small values of separation. Particles that are sufficiently close to each other 

experience highly correlated fluid velocities induced by the nearby turbulent eddies. 

Models which employ independent (uncorrelated) stochastic forcing at each particle 

consequently cannot be used for interacting particles. Secondly, particle collision and 

adhesion processes occur on very small times scales, which makes the numerical 

simulation of colliding and adhesive particles numerically stiff. This is particularly a 

problem for simulations using the soft-sphere discrete element method (DEM), which is 

usually necessary for dealing with particle agglomerates that form upon collision of 

adhesive particles. Consequently, small time steps must be taken for the particle transport 

and the subgrid-scale turbulent fluctuation modeling must be sufficiently fast for the 

computation to be manageable. Thirdly, the eddy structures of the turbulent flow play an 

important role both in dispersing particles and in inducing clustering in the region in-

between the eddies (Squires and Eaton, 1991; Bec et al., 2007; Grits et al., 2006; 

Falkovich and Pumir, 2004). Eddy-induced particle clustering leads to formation of 

regions of high particle concentration within the turbulence, which dramatically increases 

particle collision rate and agglomerate sizes (Sundaram and Collins, 1997; Zaichik et al., 

2006; Reade and Collins, 2000). Particle preferential concentration has particularly 

interesting consequences in bidisperse flows involving particles that are both heavier and 

lighter than the fluid, such as heavy particles and bubbles in a liquid (Fayed, 2013; Fayed 

and Ragab, 2013), for which case the heavy particles cluster in the high shear regions in-
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between the eddies and the light particles (bubbles) cluster within the turbulent eddies. As 

a consequence of the issues of computation time and preferential concentration, many of 

the synthetic turbulence approaches that have been developed for reconstruction of initial 

or inlet conditions in large-eddy simulations (Kraichnan, 1970; Smirnov et al., 2000; 

Tabor and Baba-Ahmadi, 2010; Lund et al., 1998) are not useful for subgrid-scale 

modeling of flows with interacting particles. 

Clustering of non-adhesive particles in turbulent flows is largely due to inertial 

particle drift across curved fluid streamlines associated with the presence of turbulent 

eddies (Squires and Eaton, 1991). A vortex structure representation of the turbulent flow 

consequently presents a natural approach for capturing this effect in the turbulence 

model. Of course, vortex-based structural models have long been discussed in the 

turbulence flow literature. Notable among these are Townsend’s (1951) model of 

homogeneous turbulence as a collection of Burger’s vortices and Lundgren’s (1982) 

spiral vortex model of turbulence. The scaling and structure of coherent vortices was 

examined by Jiménez et al. (1993) in homogeneous turbulence based on results of high-

resolution direct numerical simulations (DNS) and by Belin et al. (1996) in a turbulent 

shear flow using experiments with low-temperature helium gas. Both studies found that 

the vorticity field for low Reynolds number turbulence is dominated by a set of strong, 

coherent vortex structures of finite length and with tubular shape, surrounded by a sea of 

weak random (non-coherent) vorticity. The length and core radius of the coherent 

vortices were found to scale with the integral length scale and the Kolmogorov length 

scale, respectively, and the vortex strength was found to scale with the square root of the 

microscale Reynolds number. Analysis of the Townsend and Lundgren models was given 
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by Pullin and Saffman (1993) and Saffman (1997), who derive an expression for the 

energy spectrum and other measures for isotropic turbulence. Kivotides and Leonard 

(2003) report results of a computation in which homogeneous turbulence is represented 

by a set of finite-length vortex structures, and show that this system generates an energy 

spectrum that satisfies the Kolmogorov 3/5
k  scaling in the turbulence inertial range. The 

effect of vortex straining on the energy spectrum of a group of randomly advected 

vortices is discussed by Malik and Vassilicos (1996). Hatakeyama and Kambe (1997) 

demonstrate good agreement for structure functions of homogeneous turbulence between 

those generated by a group of random strained Burgers vortices and the classical 

Kolmogorov theory. Use of vortex models to generate accurate PDF curves for velocity 

increment, acceleration and vorticity is discussed by Min et al. (1996), Wilczek et al. 

(2008), and Wilczek and Friedrich (2009).    

A first step toward use of a vortex structure model for turbulent particle transport 

was made by Ayyalasomayajula et al. (2008), who proposed a model in which the 

turbulent eddies are represented by a two-dimensional vortex array and a stochastic 

algorithm is used to vary the strength of each vortex in time. Although extremely simple, 

this model was shown to yield reasonable results for particle acceleration statistics and 

clustering. A three-dimensional stochastic vortex structure (SVS) model was proposed by 

Sala and Marshall (2013), in which the turbulent vorticity field is approximated by a set 

of finite-length, fixed vortex structures which are randomly positioned and oriented in the 

flow field. Predictions of the SVS model for turbulence energy spectrum and particle 

collision rate were found to be in close agreement with DNS predictions. However, the 
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original SVS method was rather slow and only considered transport and collision of non-

adhesive particles.    

 The current paper extends the SVS model proposed by Sala and Marshall (2013) 

in two respects: (1) a variation of the fast multipole method FMM and local Taylor 

expansions are used to dramatically accelerate the SVS computations and (2) the 

performance of the SVS method is examined for prediction of turbulent agglomeration of 

adhesive particles. Successful simulation of turbulent agglomeration requires both that 

the particle collision model is accurately simulated by SVS, but also that the fluctuating 

turbulent shear stress responsible for agglomerate breakup and erosion is accurately 

predicted  We also report more extensive comparisons with DNS data, as well as detailed 

sensitivity testing of the SVS model results to various input parameters. The basic SVS 

model is described in Section 3.2. In Section 3.3, a fast multipole method is developed 

for computing the velocity field induced by the vortex structures, which is found to yield 

nearly two orders of magnitude increase in computational speed compared to direct 

velocity computation. Sections 3.4-3.6 present different types of validation and 

sensitivity tests for the SVS model.  Section 3.4 examines measures of the turbulent flow 

field. Section 3.5 examines prediction of collision rate for non-adhesive particles, and 

Section 3.6 examines use of SVS for prediction of turbulent agglomeration with adhesive 

particles. Conclusions are given in Section 3.7. 

3.2. Stochastic Vortex Structure Method 

 Particle collisions in turbulent flows depend primarily on the eddy Stokes number, 

which can be written as a function of eddy size   as  
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  dmu 3/St  ,     (3-1) 

where d and m are the particle diameter and mass, respectively, and  is the fluid 

viscosity. In the inertial range, the characteristic velocity u  of eddies of size   varies 

with turbulence dissipation rate per unit mass   as 3/1)(~  u  (Frisch, 1995). Since the 

dissipation rate is approximately independent of scale in the inertial range, the Stokes 

number varies with   approximately as 3/2~St  . Particles are largely transported by 

the fluid flow for eddies where 1St  and the particle inertia filters out the turbulence 

fluctuations for eddies where 1St  (Ayyalasomayajula et al., 2008; Marshall and Li, 

2014). In-between these extremes, there exists an eddy size   for which )1(OSt  , in 

which the particles are thrown out of the turbulent eddies and collect in high-

concentration sheets in the interstitial region between the eddies.  

 The stochastic vortex structure (SVS) model approximates the turbulent vorticity 

field by a collection of vortex structures placed and oriented randomly in the flow field. 

In the simplest version of the SVS model, the vortex structures all have the same finite 

length L, core radius  , and strength  , although a multiscale version of the SVS model 

has also been developed. The vortex length L is assumed in the current paper to be of the 

order of magnitude of the turbulence integral length scale /5.0 3
00 u , where 0u  is 

the turbulence root-mean-square velocity. Based on the well-established observation that 

strain rate in the inertial range scales as /0u  (Frisch, 1995), Kambe and Hatakeyama 

(2000) used a scaling analysis to derive an approximation for vortex core radius as 

 9.3 , where 2/1
0 )/15(  u  is the Taylor microscale, 4/13 )/(    is the 
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Kolmogorov length scale, and   is the kinematic viscosity. This estimate is in good 

agreement with experimental and numerical results (Jimenez et al., 1993; Belin et al., 

1996). The current paper uses a somewhat larger assumption  8  for vortex core 

radius in order to ensure sufficient number of grid points to adequately resolve the 

velocity gradient across the vortex cores. Each vortex structure has a lifetime VT  which is 

assumed to be proportional to the integral time scale, 3/qT  , where 2
05.1 uq   is the 

turbulent kinetic energy per unit mass. While the coherent vortices in a turbulent flow 

may in practice last significantly longer than T , the results of the model are not sensitive 

to value of VT . The initial age of the nth vortex structure, n0 , is specified as a random 

variable, where the ratio Vn T/0  has a uniform distribution between 0 and 1. If nt0  

denotes the time at which the vortex structure is initiated, then the current age of the 

vortex structure )(tn  is given by 

nnn tt 00   .      (3-2) 

When )(tn  exceeds the specified lifespan VT , the vortex structure is removed and a new 

vortex structure is introduced with random position and orientation in the flow.  

 The vortex structures induce a velocity field u which is computed using the 

accelerated method described in Section 3.3. Each of the VN  vortex structures are 

advected in time by moving the two endpoints of the vortex structure by solving 

 ),( ,
,

t
dt

d
in

in
xu

x
 ,     (3-3) 

where the index n identifies the vortex structure and i (=1,2) identifies the endpoint of the 

structure under consideration. After moving the end points, the vortex length is reset to L. 
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The centroid position nx  and unit tangent vector nλ  for each structure are then 

recomputed from the positions of the new endpoint locations.    

3.3. Accelerated Method for Velocity Calculation 

 The stochastic vortex structures constitute a kinematic representation of the 

turbulent flow, which is intended to generate a synthetic fluctuating velocity field that 

exhibits similar statistical properties to the actual turbulent flow. The dynamics of the 

turbulent flow is simulated by whatever RANS model is used to compute parameters 

such as turbulent kinetic energy and dissipation rate, and not via the SVS model. With 

this point in mind, it is recalled that a divergence-free vorticity field ω  can be generated 

from the vorticity *ω  associated with a set of finite-length vortex tubes as  

  *ωω ,     (3-4) 

where 

 *2 ω  .     (3-5) 

Substituting (4) into the Biot-Savart equation  

vd
s

t
t

V
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),(

4

1
),(

xωs
xu


,       (3-6) 

where xxs s , and using Green’s theorem, one can readily show that the   

term in (3.4) makes no contribution to the induced velocity field (see Appendix). 

 For computation of particle transport, it is more efficient to compute the fluid 

velocity on a Cartesian grid covering the computational domain, and then interpolate the 

velocity from the grid nodes onto the Lagrangian particles that move through the grid. 

This is particularly true when using a multiple time-scale algorithm for particle transfer 
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(Marshall, 2009), in which the fluid velocity is computed on a larger time step than that 

used for transport of either free or colliding particles. The computations in the current 

paper are performed using a 1283 Cartesian grid to cover a cubic, triply-periodic domain 

with side length 2 . 

 To accelerate the velocity computation, we utilize the combination of an 

optimized fast multipole method (FMM) for computing the velocity field induced by 

sufficiently distant vortex structures and a local Taylor expansion to reduce the number 

of points at which the Biot-Savart integral must be solved. The accelerated method is 

based on a partitioning of the computational domain into a tree family of boxes consisting 

of some number M  levels, each of which covers all grid points in the domain. The first 

level ( 1m ) consists of the entire grid, and has only one box. The second level ( 2m ) 

consists of 8 boxes, which are obtained by dividing the side length of each box in level 1 

by a factor of two, as illustrated in Figure 3.1. This division process is repeated for 

subsequent levels, with the number of boxes in each level m increasing as 18 m .  The 

boxes associated with the highest level are called the small boxes of the box family.  

 The velocity is evaluated at each point of the Cartesian grid by solving for the 

contribution to the Biot-Savart integral (3.6) from all vortex structures in the 

computational domain, as well as from neighboring domains necessary to enforce the 

periodic boundary condition. In order to perform the computation efficiently, we first 

associate with each grid point a specific smallest box of the tree family in which the grid 

point is contained, which is called the target box of the grid point. The velocity within 

each target box is determined by integrating the Biot-Savart integral over the vortex 

structures contained within some set of boxes (called source boxes) that can be at any 
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level of the box tree family, but where the set of source boxes is required to cover each 

vortex structure within the computational domain exactly once (i.e., the source boxes 

cannot overlap). Each target box interacts with each source box either directly or 

indirectly. In a direct interaction, the velocity induced by each vortex structure in the 

source box is evaluated individually on each grid point within the target box. In an 

indirect interaction, the induced velocity from all vortex structures within the source box 

is computed at the center of the target box at one time using a multipole expansion, and 

then the induced velocity is extrapolated onto the grid points within the target box by a 

local Taylor series expansion. Lists are compiled for each target box of source boxes with 

which the target box interacts directly and indirectly. The selection of source boxes and 

the box interaction lists were constructed using the optimized approach proposed by 

Marshall et al. (2000), which is based on an analytical error estimate for the multipole 

expansion derived by Salmon and Warren (1994). 
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Figure 3.1. Image representing two levels of the box family used to cover the computational grid. The 
first level consists of the entire grid, and the second level consists of the eight individual boxes numbered 

1-8 in the image. An example is shown where box 1 is a source box (blue online) and box 7 is a target 
box (red online), where the vector pointing from the centroid of box 1 to that of box 7 is indicated by an 
arrow and denoted by r. The individual vortex structures contained within box 1 are represented by short 

line segments within the box.  

3.3.1. Direct Velocity Computation – Interpolation from the Data Plane 

For a source box that interacts directly with a given target box, the velocity 

induced by each vortex structure in the source box is computed at each grid point in the 

target box. The velocity computation is done by first pre-computing the velocity induced 

by a vortex structure of unit strength on the data plane, which is defined as the positive r-

z plane relative to the axis of the vortex structure (Figure 3.2). This computation is 

performed once at the beginning of the computation and the results are stored.  
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Figure 3.2. Schematic diagram showing the interpolation procedure used for direct computation of the 
velocity induced by a vortex structure on a node of the grid cell.  Here L is the length of the vortex 

structure, and P identifies the inclined plane from which the induced azimuthal velocity v induced by the 
vortex is interpolated. 

The induced velocity on the data plane is determined by computing the induced 

velocity normal to the r-z plane of a coordinate system that is local to a vortex structure 

of unit strength, where the vortex center is located at the origin of the local coordinate 

system. The velocity at each point of the grid used to cover the data plane is determined 

using a Gaussian vortex blob method (Marshall and Grant, 1996), where the number of 

vortex blobs, bN , used to discretize the vortex structure is set equal to )/int( LN b  , 

and where the Gaussian radius of the blob is set equal to the vortex structure radius   

and β is a blob overlap coefficient. If the centroid of the ith vortex blob is denoted by ib , 

bNi ,...,1 , the associated vorticity field is given by 
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Here, the blob amplitude iΩ  is given by  

 bbi NL λΩ )/(  (3-8) 
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and bλ  is a unit vector tangent to the vortex structure axis. Substituting (3.7) into the 

Biot-Savart integral (3.6) yields the velocity field induced by the ith vortex blob at a target 

point x as  
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 (3-9) 

where P a z( , )  is the incomplete gamma function with limits 0)0,( aP  and 1),( aP .  

When 2/3a  and 2
xz   for some real variable x, a convenient expression for the 

incomplete gamma function in terms of the error function erf(x) can be written as 

(Abramowitz and Stegun, 1965) 

 P x x
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. (3-10) 

The velocity at any point x on the data plane is obtained by summing the velocity induced 

by all bN  vortex blobs, as given by (3.9). 

At subsequent times, the induced velocity from a vortex structure m at grid point 

x is obtained by interpolation from the data plane. This interpolation is performed by 

centering the data plane at the vortex structure centroid mx , and orienting the plane so 

that it passes through the target point x and is tangent to the vortex axis unit vector mλ , as 

illustrated in Figure 3.2. The grid cell in which lies the point x is obtained in the data 

plane by integer division and the velocity induced by the vortex structure is interpolated 

onto the target point and reoriented to lie in the global coordinate system, yielding a 

velocity contribution mu  on point x from vortex structure m. The periodic boundary 

condition is enforced by including velocity induced by vortex structures in one period on 
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each side of the computational domain, resulting in VN27  total vortex structures if the 

entire computation is performed directly. The total direct velocity at a point x from the 

dirN  vortex structures for all source boxes on the direct interaction list (including vortex 

structures in the side domains used to enforce periodic boundary conditions) is then given 

by 
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uxu
1

),(  (3-11) 

Since the sum (3.11) must be computed for every grid point within the Cartesian grid, it 

is very time consuming if the summation is performed over all vortex structures in the 

computational domain and the neighboring periods of the computational domain. For this 

reason, the direct interaction list is restricted to only a small number of source boxes with 

centroids located sufficiently close to the centroid of the target box.  

3.3.2. Indirect Velocity Computation – Multipole Expansion 

 For a source box   that interacts indirectly with the target box, the contribution of 

all vortex structures in box   are evaluated at any point x in the target box using the 

multipole expansion (Greengard and Rokhlin, 1987) 
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where ξxr   is the vector from the centroid zyx eeeξ  ,3,2,1    of box   to 

the point x. The box moment 
mnk,I   of box   is defined by 

 dvtzyx
knm

V

mnk ),)()()( ,3,2,1, ω(xI 



   . (3-13) 
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 The box moments are evaluated by first computing the moment mnkJ  of a single 

vortex structure of unit strength aligned in the x̂ -direction about the vortex centroid in a 

local coordinate system ( zyx ˆ,ˆ,ˆ ), which is given by 

   vdzyxJ
knm

V

mnk
  )ˆˆ(ˆˆˆˆ xx , (3-14) 

where λx)(̂  is the vorticity field associated with the vortex structure and λ  is a unit 

vector along the vortex axis. For a vortex structure of length L and core radius  , we find  

 LJ 000 , 0001010100  JJJ , 2/2
002020200 LJJJ  . (3-15) 

Since the values of mnkJ  are isotropic (the same for all directions), it is not necessary to 

translate between the local coordinate system used to compute (3.14) and the global 

Cartesian coordinate system. The moment 
mnk,I  of a box   is obtained by summing over 

the moments mnkJ  of all of the N  vortex structures in box  , which have vortex 

strengths i  and centroid locations ic , giving 
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Once the moments of all of the smallest size boxes are obtained using (3.16), the 

moments of higher-generation boxes are obtained from the translation formula 
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where i denotes one of the eight offspring boxes of parent box  .  



 

86 

3.3.3. Indirect Velocity Computation – Local Taylor Series Expansion 

 The derivative term in (3.12) depends on the location of the target point x. Since 

we compute the velocity at each point of a 3
N  Cartesian grid, there are typically a large 

number of target points within a given box. The local expansion method accelerates the 

process of computing the indirect component of the velocity field by evaluating the 

velocity induced by a source box   with centroid ξ  at the centroid bξ̂  of the target box 

b (defined as the smallest box containing the target point x), and then determining the 

velocity at each individual grid point x using a local Taylor series expansion of 

3/)( rrξxK    about the target box center bξ̂ , given by 
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Substituting (3.18) into (3.12) and truncating the summation after P terms gives the 

contribution of source box   to the velocity at grid point x as 
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3.4. Example Computations 

 A series of example computations were performed with 512 vortex structures on a 

1283 grid with B different levels of box division. The order p of terms in the multipole 
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and local expansions was allowed to vary from 0p  to a maximum of 2p  for all of 

the remaining computations. The order of the interaction is set for each source-target box 

combination as a function of the distance d between the box centers. The critical 

separation distance for each order is specified as a function of the box size b at the 

highest level B, such that we use order 
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where bd 00  , bd 11  , and bd 22  . If 0dd  , the source box is placed on the 

direct interaction list of the target box.  

 Results for computations with different values of B are shown in Table 3.1 for a 

case with critical distance coefficients 40  , 31  , and 22  . The table lists the 

computed value of turbulent kinetic energy (TKE) (a measure of accuracy), the CPU 

time, and the percentage of the total possible boxes placed on the direct list (averaged 

over all target points). The CPU time results are for single-processor calculations for ease 

of comparison. It is noted that some source boxes do not enclose any vortex structures, in 

which case the box is ignored and not placed on either the direct or indirect list. At the 

top of the table is data for a computation in which the velocity is computed using only the 

direct interaction. For 4B , the TKE error for computations using the accelerated 

method is less than 1.5% of the direct computation, while the CPU time is reduced to less 

than 3% of that for the direct computation.  

 The CPU time is reduced further for the case with 5B  to about 1.5% of the 

direct computation time, but at the same time the TKE error increases to about 16%. The 
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reason for this sudden increase in TKE error is that the box size b grows progressively 

smaller as B is increased, so that an increasingly large percentage of the computation is 

performed using the indirect approach. As discussed by Salmon and Warren (1994), the 

multipole expansion error increases in a nonlinear manner as the critical distance 

decreases. Based on the results in Table 3.1, we selected to perform the remainder of the 

computations in the paper with 4B  and  2,3,4,, 210  .  

 
Table 3.1. Comparison of CPU time, percentage of the computation performed directly (in 

terms of number of boxes of the smallest size), and flow measures such as turbulent kinetic energy 

and enstrophy for the direct computation and for indirect computations with four different levels 

of the boxing scheme used for the velocity acceleration method. The computations were performed 

with 512vN  vortex structures, with critical distance coefficients 40  , 31  , and 

22  .  

 
Smallest  

Box Level 
% direct 

boxes 
TKE Enstrophy CPU time (s) 

direct 100 1.528 51.449 1065.5 

2 100 1.528 51.449 1107.9 
3 36.6 1.522 51.434 460.7 
4 0.816 1.507 51.611 23.7 
5 0.0183 1.497 52.153 12.8 

 
3.4. Analysis of the SVS Synthetic Turbulence Field  

 The key parameters associated with the SVS method are the number of vortex 

structures VN  in the computational domain, the strength of each vortex structure  , the 

vortex length L, and the vortex core radius  . These parameters can be related to various 

measures of the turbulent flow field, such as the turbulent kinetic energy per unit mass E, 

the dissipation rate per unit mass  , and the enstrophy per unit volume  , defined by  
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where 
ijD  are the components of the rate of deformation tensor, u and ω  are the velocity 

and vorticity vectors, respectively, and V is the computational domain volume. For 

homogeneous, isotropic turbulence, the dissipation rate and the enstrophy are related by 

  2 . 

 The enstrophy can be estimated using the expression for a Burgers vortex 

(Burgers, 1948) in a field with axial stretching rate c , in which the vorticity field has the 

form of a Gaussian 

 )/exp( 22
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  (3-23) 

and the Gaussian radius is c/2   . For a system of VN  Burgers vortices of length   

and strength  , the enstrophy is given by 
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 A theoretical expression for the energy spectral density )(ke  in a system of VN  

Burgers vortices of length   and strength   is given by Saffman (1997) as 
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, (3-25) 

where k is the wavenumber magnitude. This expression is derived based on the 

assumption that the vortices do not interact with each other, so that the energy induced by 
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each vortex can be added together to obtain the total system energy. Integrating over the 

wavenumber interval ( maxmin ,kk ) gives the turbulent kinetic energy as  
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where )(1 E  is the exponential integral function.  

 A series of computations was performed in which the number of vortex structures 

in the computational domain was varied from 32 to 512, and the product 2VN  varies 

from 0-4000. The velocity field is computed using the accelerated method described in 

Section 3. The mean computed values of enstrophy   and turbulent kinetic energy E 

obtained from the definitions (3.22) are plotted as a function of 2VN  in Figure 3.3a. In 

both cases, the computational results collapse onto a single line, as predicted by (3.24) 

and (3.26). Since both enstrophy (and hence dissipation rate) and turbulent kinetic energy 

are proportional to the combination VNV /2 , the modeler is free to select VN  based on 

an alternative criterion and then to set   to obtain the desired turbulent kinetic energy.  

 There is a slight variation in the computational values of turbulent kinetic energy 

and enstrophy depending on the randomly-selected positions and orientations of the 

vortex structures. In order to characterize the amount of variation caused by the random 

character of the SVS algorithm, the turbulent kinetic energy and enstrophy calculations 

were repeated 10 times and the root-mean-square value was calculated for different 

values of the number of vortex structures, vN , in the computational domain, with fixed 

value of 20002 VN . The standard deviation and mean values of these results were 

obtained, the ratio of which yields the relative standard deviation EE /  and  / . A 
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plot of the relative standard deviations is shown in Figure 3.3b as functions of VN . The 

standard deviations exhibit some variation with number of vortices for small values of 

VN , but for 64VN  they are nearly independent of number of vortices. The standard 

deviation for turbulent kinetic energy is about 4-5% of the mean value, whereas that for 

enstrophy is only about 1% of the mean value. We note that this deviation is not a 

resolution error; since enstrophy is computed from the velocity gradients it is 

significantly more sensitive to resolution errors than is the kinetic energy field. Rather, 

the observed fluctuations arise from the variation in position and orientation of the 

vortices between the different configurations examined. Since the vorticity field is largely 

confined to the region within and immediately surrounding the vortex structures, it is 

reasonable that the relative standard deviation for enstrophy should be small, provided 

that the vortex structures do not overlap. The higher value of the relative standard 

deviation for turbulent kinetic energy arises from the fact that the velocity field at any 

point in the flow is dependent not only on its position relative to the nearest vortex 

structure, but rather on all vortex structures in the flow field.  

 The power spectrum )(ke  was examined for a series of computations with 

2002 VN  and numbers of vortices of 512VN , 256, 128, 64, and 32, with values of 

  adjusted to give the specified product value. The spectrum lines fall on top of each 

other and cannot be distinguished, which confirms the prediction from (3.25) that the 

spectrum depends on VN  and   through the combination VNV /2 . In Figure 3.4, we 

compare the SVS computational spectrum for the case with 512VN  to Saffman's 

approximate prediction (3.25). The theoretical expression is found to be significantly 
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higher than the SVS computational values, particularly for higher values of k. This result 

is likely due to the fact that Saffman assumed all vortices to be non-interacting, and so he 

simply added the kinetic energy of each vortex (associated with its own self-induced 

velocity) to obtain the total kinetic energy. In the computations, the vortex structure 

orientation is random, so the induced velocity from one structure will counter that from 

other structures at sufficiently large distances, thus reducing the total kinetic energy. Also 

shown in Figure 3.4 is a line indicating 3/5
k  dependence, which fits the computational 

plot reasonably well within the low-wavenumber inertial range, similar to the 

observations of Kivotides and Leonard (2003). 

     
 (a) (b) 
 

Figure 3.3. Plots showing (a) the mean enstrophy   (solid line, on the right-hand axis) and the turbulent 

kinetic energy E (dashed line, on the left-hand axis) as functions of the product 2vN  and (b) the 

relative root-mean-square enstrophy  /  (solid line) and turbulent kinetic energy EE /  (dashed 

line) variation as functions of number of vortex structures (with 20002 vN ). Computations are for 

a case with 885.00  L  and 126.0 . The data in (a) are for 512vN  (squares), 256 

(circles), 128 (triangles), 64 (plus signs), and 32 (asterisks), with   adjusted accordingly. The lines are 
best fits to the data.   
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Figure 3.4. Power spectrum from an SVS computation with 2002 VN  and 512VN  (solid line, 

A), compared to a computational result from DNS (dashed-dotted line, B) and the theoretical result Eq. 

(3-25) from Saffman (1997) (dashed line, C). Also shown is a straight line indicating 3/5
k  dependence 

in the inertial range (short dashed line).  

The SVS predictions are compared in Figure 3.4 to the results of a pseudo-

spectral direct numerical simulation (DNS) computed on a 1283 grid, similar to that 

presented by Vincent and Meneguzzi (1991). The flow is initiated by a randomly 

perturbed velocity field with uniform probability distribution for wavenumbers spanning 

the interval 641  k . Dealiasing is performed by setting the coefficients of the highest 

1/3 wavenumber coefficients to zero using a spherical filter. A preliminary computation 

is run without forcing until time 10t  in order to allow the turbulence to develop a 

range of length scales characteristic of statistically stationary homogeneous isotropic 

turbulence. The computation is then restarted with non-zero forcing, where the transform 

of the forcing vector is assumed to be proportional to the fluid velocity transform, such 

that (Lundgren, 2003; Rosales & Meneveau, 2005) 
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where the coefficient C is adjusted at each time step so as to maintain approximately 

constant turbulent kinetic energy. The current computations are performed with 5critk , 

so that the forcing acts only on the large-scale eddies. Various parameter values 

characterizing the DNS computations are given in Table 3.2. The spectrum predicted by 

the DNS computations compares well with the SVS predictions for low values of 

wavenumber ( 20k ), but for high wavenumber the SVS spectrum decays much more 

quickly than does the DNS results. This rapid decay at high wavenumber is consistent 

with the fact that the vortex radius for these computations was specified to be eight times 

larger than the Kolmogorov length scale, so the SVS flow field has little energy at very 

small length scales.   

 
Table 3.2. Scaling variables charaterizing the fluid turbulence. 

 
 Turbulent kinetic energy, q   0.14  Taylor microscale,   0.27 
 Mean dissipation rate,    

 0.016  
Microscale Reynolds 
number, Re 

81 

 Kinematic viscosity,     0.001   Integral length, 0   0.89 

 Kolmogorov length,    0.016  Integral time, T   2.9 
 

 The velocity probability density function (PDF) in one coordinate direction (x-

direction), normalized by the root-mean-square value, was computed for a series of SVS 

computations with 39752 VN  and different number of vortex structures. Unlike the 

power spectrum, the velocity PDF exhibits significant variation with value of VN . This 

observation indicates that the velocity PDF varies with VN  and   independently, and not 
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only through the product 2VN . The PDF has a fat tail for low values of VN , typical of a 

superstatistical system (Beck, 2008), but the PDF functions for large values of VN  

(greater than about 500) approach an asymptotic curve that is nearly Gaussian. In Figure 

3.5a, a comparison is shown of the velocity PDF for the case with 512VN , a DNS 

simulation (symbols), and a best-fit Gaussian curve )5.0exp(8.0)( 2
vvp  , where 

rmsxx vvv ,/ . The DNS results are in close agreement with the Gaussian function, as 

expected (Voth et al., 1998). The SVS predictions fit well to the Gaussian function for 

3/ , rmsxx vv , but for higher values of xv  they exhibit higher values. This difference 

indicates that while still very rare, high velocity occurrences are more common for the 

SVS computations than for the DNS simulations.  

 The PDF of the x-component of the fluctuating fluid acceleration field is plotted 

in Figure 3.5b. Fluid acceleration is computed from the SVS or DNS velocity field for 

post-processing purposes using a centered difference approximation in space and a 

forward difference in time. We again find that the PDF plot is sensitive to the value of 

VN , but that it approaches an asymptotic curve for values of VN  greater than about 500. 

The SVS prediction for the case with 512VN  is compared to the DNS results in Figure 

3.5b. Also shown in this figure is the empirical expression for the PDF  

  })/1/{(exp8.1)( 2
221

2 3
ccacaap

c , (3-28)  

obtained experimentally by La Porta et al. (2001). In this expression, rmsxx aaa ,/ , and 

the coefficients are given by a best fit to La Porta et al.'s experimental data as 539.01 c , 

588.12 c , and 508.03 c . The SVS prediction for acceleration PDF with 512VN  is 
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found to agree closely with both the DNS prediction and with the experimental 

correlation (3.28), and in all cases the acceleration PDF exhibits non-Gaussian statistics 

characterized by fat tails, typical of a highly intermittent signal. Mordant et al. (2004) 

associates the acceleration intermittency in turbulent flows with the presence of coherent 

vortex structures, so agreement between the SVS and DNS simulations for the 

acceleration PDF is another indication that the coherent vortices are correctly modeled in 

the SVS representation. 

 The PDF of the vorticity component x  is plotted in Figure 3.6 from SVS results 

with 2048vN  vortex structures in the computational domain. The vorticity is 

determined by first computing the synthetic turbulence velocity field, as discussed in 

Section 3.3, and then numerically differentiating using a centered finite-difference 

method to obtain vorticity from uω  . The PDF for vorticity is sensitive to the 

number of vortex structures used for the SVS computations, and because the vorticity is 

evaluated using a velocity gradient it required a somewhat larger number of vortices to 

reach the asymptotic state for large vortex numbers than did the velocity or acceleration 

PDFs. The SVS vorticity PDF is shown in Figure 3.6 to be in excellent agreement with 

the vorticity PDF obtained from the DNS predictions.  
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 (a) (b) 

Figure 3.5. Plots showing the PDF of the x-component of (a) velocity and (b) acceleration. (a) 

Comparison of PDF for SVS computation with 512vN  (solid line), DNS (symbols), and a best-fit 

Gaussian curve (dashed line). (b) Comparison of PDF for SVS computation with 512vN  (solid 

line), DNS (symbols), and the experimental correlation (3-28) of La Porta et al. (2001) (dashed line).  

 
 

Figure 3.6. Plot comparing the PDF of the x-component of vorticity from SVS simulations (solid line), 

with 3502 VN  and 2048vN , and DNS results (symbols).  
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 3.5. Validation of SVS Predictions for Particle Collision Rate 

 The SVS predictions for particle interactions were validated by comparison to 

DNS results with use of a soft-sphere discrete-element method (DEM) simulation for a 

set of 
pN  colliding non-adhesive particles of diameter d and mass m. The computations 

solve the momentum and angular momentum equations for the particle velocity and 

rotation rate, given by  

 
AF

dt

d
m FF

v
 , 

AF
dt

d
I MM

Ω
 , (3-29) 

subject to forces and torques induced by the fluid flow ( FF  and FM ) and by the particle 

collision and adhesion ( AF  and AM ). Here, I is the moment of inertia, and v and  are 

the particle velocity and rotation rate, respectively. The dominant fluid force is the 

particle drag force, but we also accounted for secondary forces including the Saffman and 

Magnus lift forces and the added mass and pressure gradient force on the particles. 

Particle Reynolds numbers were small, allowing use of the Stokes drag law and low 

Reynolds number lift laws (Saffman, 1965, 1968; Rubinow and Keller, 1961). Collisions 

were detected when the distance between two particles is less than the particle diameter. 

Collision forces between the particles include the normal elastic and dissipative forces, 

sliding resistance, and twisting resistance. Particle normal collision was computed for 

non-adhesive particles using the nonlinear Hertz (1882) theory for normal elastic force, 

the Tsuji et al. (1992) model for normal dissipative force, and the Cundall and Strack 

(1979) model for sliding resistance. The fluid velocity was interpolated from a 1283 fluid 

grid onto the Lagrangian particle locations with cubic accuracy using the M4’ variation 

of the B-spline interpolation method, which was originally developed by Monaghan 



 

99 

(1985a) and is commonly used in spherical particle hydrodynamics (Monaghan, 1985b) 

and for regridding in vortex methods (Cottet and Koumoutsakos, 2000). The multiple-

time step algorithm of Marshall (2009) was used with three different time step levels, 

corresponding to the fluid, particle and collision time scales, arranged from largest to 

smallest. The reported computations used a fluid time step of 01.0t  for a duration of 

10,000 time steps. The DNS runs were initiated using a preliminary computation without 

particles with 5000 time steps to establish a statistically-steady turbulent flow. 

Simulations were performed on a cubic grid with 2  side length and 46,656 particles.  

 A listing of integral flow measures for the different cases examined in this 

comparison is given in Table 3.3. The number of vortices was varied from 32VN  to 

2048 in the SVS runs SVS-1a through SVS-1g in order to examine the effect of number 

of vortices on the collision results, and in each case the value of vortex circulation was 

adjusted to maintain nearly constant turbulent kinetic energy. The computations were 

performed for values of the integral-scale Stokes number St0 of 0.07, 0.34, and 1.7, where 

St0 is defined by (3.1) with 0uu   and 0  . The corresponding values of the 

Kolmogorov-scale Stokes number StK for these three cases are 0.81, 3.94, and 19.9, 

respectively. A filtered DNS computation (DNS-F) was also performed in which the 

coefficients of the highest 67% of the wavenumbers ( 3.21k ) was set to zero, which 

yields an energy spectrum very close to the SVS spectrum. The filtered DNS run is used 

as a method to determine the influence of small-scale fluctuations on the particle 

collisions. Beside kinetic energy, integral measures listed in Table 3.3 include enstrophy 

 , a vorticity magnitude measure 95 , and a stretching rate measure S. The vorticity 
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magnitude measure 95  is defined as the value of vorticity magnitude for which 95% of 

the grid points have a lower vorticity magnitude. The stretching measure S is defined as 

the average over the flow field of the maximum value of the logarithmic stretching rate 

 /1
 . Here,   is the stretch of a material line segment along the principal direction 

of the rate of deformation tensor D associated with the largest eigenvalue 1  of D. Since 

D is symmetric, the eigenvalues of D can be efficiently computed using the Smith 

algorithm (Smith, 1961). The enstrophy for the filtered DNS run (DNS-F1) is about twice 

the value for the associated SVS run (SVS-1), and the enstrophy for the unfiltered DNS 

run (DNS-1) is about 20% higher than that for the filtered DNS run due to the 

contribution of the small vortices filtered out in the DNS-F1 run. In accordance with the 

result (3.24), the enstrophy remains nearly constant in the SVS runs (SVS-1a through 

SVS-1g) as the number of vortices is changed with 2VN  held constant. The vorticity 

magnitude parameter 95  is about 40% larger and the stretching measure S is about 15% 

larger for the DNS run compared to the SVS-1a run.  
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Table 3.3. List of parameter values and resulting particle collision kernel 11  for runs 

validating SVS prediction of turbulent particle collision rate. The runs indicated by DNS-F are a 

filtered version of the DNS runs with the Fourier coefficients set to zero for the highest 67% of the 

wavenumbers.    

 
Run Number of 

Vortices, 

VN  

Stokes 
Number, 

St0 

Turbulent 
Kinetic 

Energy, E 

Enstrophy, 

  
Vorticity 
Strength 

Parameter,

95  

Stretching 
Measure, 

S 

Collision Kernel, 

11 ( 410 ) 

DNS-1 NA 0.34 0.122 9.80 5.29 1.49 3.92 
DNS-F1 NA 0.34 0.122 8.13 4.83 1.47 3.82 
SVS-1a 2048 0.34 0.111 4.06 3.66 1.29 3.27 
SVS-1b 1024 0.34 0.113 4.09 3.89 1.27 3.40 
SVS-1c 512 0.34 0.117 4.04 3.63 1.20 3.40 
SVS-1d 256 0.34 0.113 4.05 2.89 1.09 3.39 
SVS-1e 128 0.34 0.108 4.04 1.94 0.97 3.37 
SVS-1f 64 0.34 0.112 4.03 1.37 0.82 3.21 
SVS-1g 32 0.34 0.122 4.04 1.12 0.69 2.90 
DNS-2 NA 0.07 0.122 9.80 5.29 1.49 0.709 

DNS-F2 NA 0.07 0.122 8.13 4.83 1.47 0.680 
SVS-2a 2048 0.07 0.115 4.06 3.66 1.29 0.714 
SVS-2b 1024 0.07 0.113 4.10 3.89 1.27 0.705 
SVS-2c 512 0.07 0.117 4.04 3.63 1.20 0.670 
DNS-3 NA 1.7 0.122 9.80 5.29 1.49 61.5 

DNS-F3 NA 1.7 0.122 8.13 4.83 1.47 61.0 
SVS-3a 2048 1.7 0.115 4.06 3.66 1.29 60.5 
SVS-3b 1024 1.7 0.113 4.10 3.89 1.27 60.5 
SVS-3c 512 1.7 0.117 4.04 3.63 1.20 60.5 

 
 The total number of collisions was found to increase almost linearly with time, 

and the slope of this line was used to compute the collision rate per unit volume Cn . 

From this value, the collision kernel 11  was computed using the definition 

 2
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1
nnC  , (3-30) 

 

where VNn p /  is the number of particles per unit volume. The predicted value of 11  

for each case was computed from (3.30) using the specified value of n and the computed 

value of Cn  based on a linear fit to the total number of collisions, and the resulting values 
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of collision kernel are listed in Table 3.3. A comparison of the collision kernels between 

the full DNS, the filtered DNS, and the SVS method was conducted for integral-scale 

Stokes numbers of St0 = 0.07, 0.34, and 1.7, where the Stokes number is changed by 

modification of the particle diameter. As predicted by collision theory (Saffman and 

Turner, 1956; Abrahamson, 1975), the collision kernel increases with particle diameter 

(indicated by increasing Stokes number), with DNS predictions of 11 5108.5  , 

41026.3   and 31045.6   for St0 = 0.07, 0.34, and 1.7, respectively. The filtered DNS 

predictions for collision kernel are within about 4% of the full DNS predictions for each 

case, indicating that the small scales of the turbulent motion have little effect on the 

collision coefficient. The collision kernel for the SVS model with 2048 vortices was 

about 16% lower than the full DNS prediction for the St0 = 0.34 case, and the SVS model 

predictions for 11  were within 0.8% and 5.7% of the full DNS predictions for the St0 = 

0.07 and 1.7 cases, respectively. The effect of number of vortex structures on the SVS 

predictions was examined by repeating the run for St0 = 0.34 with 32, 64, 128, 256, 512, 

1024 and 2048 vortices, while at the same time adjusting the vortex strength to keep the 

kinetic energy approximately constant.  

 The tendency of particles to cluster can be characterized by the radial distribution 

function (RDF), )(rg , defined by  

 
dr

dN

r
rg

2
04

1
)(


 , (3-31) 

where the average number of particles per unit volume 0  is related to the particle 

volume fraction pC  by  /60 pC , and )(rN  is the average number of neighboring 
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particles whose centroids are located within a radial distance r from a given particle 

centroid. The value of )(rg  is estimated by counting for each particle the number of 

neighboring particles that fall into a set 400 spherical bins, each of width 00015.0r , 

surrounding the given particle. The number of particles in each bin is averaged over all 

particles in the computational domain and over 1000 time steps near the end of the 

computations in order to smooth the distribution. Figure 3.7 shows a comparison of the 

RDF for both a DNS computation (DNS-1) and SVS with VN 2048 vortex structures 

(SVS-1a) at an integral Stokes number St0 = 0.34, which are observed to exhibit close 

agreement. 

 

Figure 3.7. Comparison of the radial distribution function as a function of radius at St0 = 0.34 for a SVS 

computation (SVS-1a) with 2048vN  vortex structures (A, blue line) and a DNS computation (DNS-

1) (B, red line).  

 As noted by Zaichik et al. (2006), the collision kernel is proportional to the 

product of the radial distribution function )(rg  (RDF) and the relative radial velocity 

rw  (RRV) evaluated at collision ( prr 2 ). Each of these quantities was separately 
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computed for cases with different Stokes number to examine the individual quantities that 

make up the collision kernel. A set of plots is given in Figure 3.8 showing RDF and RRV 

at collision as a function of the Kolmogorov-scale Stokes number StK for both DNS 

results and SVS results with 2048VN  vortices. Our predictions are compared to the 

DNS results for RDF and RRV of Fayed and Ragab (2013) for 77Re   and of Wang et 

al. (2000) for 75Re  , and to the DNS results for RDF of Sundaram and Collins (1997) 

for 54Re  . The RDF value for 9.19KSt  is nearly the same in the SVS and DNS 

predictions, and so the two symbols for DNS and SVS results are almost coincident in 

Figure 3.8a. The RDF exhibits a very thin peak near the collision point for small Stokes 

number, which contributes to the high data variability in Figure 3.8a. Both the DNS and 

SVS predictions in Figure 3.8 are in reasonable agreement with each other and with 

literature values.   

 

    
 (a) (b) 

Figure 3.8. Plot showing (a) radial distribution function (RDF) and (b) relative radial velocity (RRV) at 
collision as functions of the Kolmogorov Stokes number StK. Plots show DNS data of Wang et al. (2000) 
at 75Re   (circles, red line), DNS data of Sundaram and Collins (1997) for 54Re   (squares, blue 



 

105 

line), DNS data of Fayed and Ragab (2013) for 77Re   (deltas, green line), and our DNS predictions 

(filled diamonds) and SVS predictions (open diamonds) for 81Re  . 

3.6. Validation of SVS Predictions for Turbulent Particle Agglomeration 

 Computations to examine turbulent agglomeration were conducted with a similar 

DEM algorithm as described in the previous section, but with modification of the 

collision force and torque models to account for adhesion effects. In particular, the 

normal elastic and adhesive van der Waals force was computed using the model of 

Johnson, Kendall and Roberts (1971) (i.e., the JKR model). Adhesion introduces a strong 

rolling resistance torque, for which we used the model of Dominik and Tielens (1995), 

along with experimental results of Ding et al. (2008) to set the critical angle for onset of 

particle rolling. The effect of adhesion on the sliding resistance was modeled using an 

expression derived by Thornton (1991). We also included a crowding correction term for 

the particle drag force developed by Di Felice (1994). A comprehensive summary of the 

computational method for both adhesive and non-adhesive particles is given by Marshall 

(2009). The reported computations used a fluid time step of 005.0t  for a duration of 

20,000 time steps, with a total of 46,656 particles. As discussed in the previous section, 

the DNS runs were initiated using a preliminary computation without particles with 5000 

time steps to establish a statistically-steady turbulent flow.  

 A particle agglomerate constitutes a set of particles which are bonded to each 

other, either directly or via other intermediate particles of the agglomerate, via soft (e.g., 

van der Waals) bonds. A set of particles bonded via hard bonds (e.g., sintered particles) is 

referred to as an aggregate, and is outside the scope of this paper. Agglomerate 

development in the turbulent flow field is characterized in the current paper using two 
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dimensionless parameters – the Stokes number St and the adhesion parameter Ad. The 

adhesion parameter Ad is a ratio of adhesive force to particle inertia, defined by the ratio  

 
pp ru

2
Ad



 


 , (3-32) 

where the adhesive surface energy density γ is equal to half the work required to separate 

two surfaces that are adhesively bound per unit surface area. Both the Stokes number in 

(3.1) and adhesion parameter were defined using the characteristic length scale 0  and 

velocity scale 0u  of the turbulence integral scale for the fluid length and velocity scales 

  and u , which is indicated by a subscript ‘0’.  

 Plots showing SVS predictions for the total number of particles contained in an 

agglomerate, totN , and the average number of particles per agglomerate, 
paggN , as 

functions of time are given for a case with St0 = 0.34 and Ad0 = 11 in Figure 3.9 for 

different values of the number of vortex structures, VN , ranging from 128 to 2048. The 

vortex strength is adjusted to maintain a constant turbulent kinetic energy in each case. 

While the collision kernel listed in Table 3.3 approaches a nearly constant value for VN  

of about 128 and greater, the agglomeration measures shown in Figure 3.9 continue to 

exhibit significant dependence on vortex number up to about 512VN . The DNS 

predictions, indicated by the heavy dashed line in Figures 3.9a and b, are found to be in 

excellent agreement with the limiting value of the SVS predictions for large VN .  

 The run shown in Figure 3.9 was extended to a time of 250t  to examine the 

continued agreement between SVS and DNS as the equilibrium condition is reached. The 

average number of particles per agglomerate is plotted versus time for this extended run 
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in Figure 3.10, showing that the SVS run (with 2048VN ) and DNS continue to exhibit 

reasonable agreement at long time. The value of the average number of particles per 

agglomerate fluctuates in time when this statistical equilibrium state is reached due to 

breakup and recollision of large agglomerates.  

 

 

 

 

       
 (a) (b) 

Figure 3.9. Effect of number of vortex structures on turbulent agglomeration for SVS runs with St0 = 
0.34 and Ad0 = 11, where all runs have the same value of turbulent kinetic energy. The plots show (a) the 

total number of particles contained in agglomerates totN  and (b) the average number of particles per 

agglomerate paggN  as functions of time. Plots are given for different numbers of vortex structures, with 

128vN  (black line), 256 (green line), 512 (red line), and 2048 (blue line). The DNS results are 

indicated using a dashed line. 
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Figure 3.10. Plot showing average number of particles per agglomerate over a long run time leading to a 

statistical equilibrium condition, for SVS with 2048VN  (blue curve) and DNS (dashed curve). 

    The effect of Stokes number is shown in Figure 3.11, which compares SVS 

predictions with 2048VN  vortex structures and DNS predictions for values of the 

Stokes number of St0 = 0.1, 0.2 and 0.34, in all cases with Ad0 = 11. The different Stokes 

numbers are produced by changing the particle diameter, with all other parameters held 

constant. Plots are given both for the average number of particles per agglomerate, 
paggN , 

and for the total number of agglomerates, 
aggN , as functions of time. The value of 

paggN  

decreases rapidly with decrease in St0, going from 130paggN  at 100t  for St0 = 0.34 

to 10paggN  for St0 = 0.1. The peak value of the number of agglomerates is shown in 

Figure 3.11b to be nearly the same for the three cases, but the peak occurs at a later time 

as the Stokes number decreases. The observed differences in agglomeration measures 

with change in St0 are primarily due to decreasing collision rate as the Stokes number 

decreases, which is consistent with theoretical predictions for collision rate at both small 

and large Stokes numbers (Saffman and Turner, 1956; Abrahamson, 1975). Good 

agreement is observed between the SVS and DNS predictions.   
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 The effect of adhesion parameter is examined in Figure 3.12, which compares 

SVS predictions with 2048VN  vortex structures and DNS predictions for values of the 

adhesion parameter of Ad0 = 5.5, 11, 28 and 110, in all cases with St0 = 0.34. The 

different adhesion parameter values are produced by changing the adhesion surface 

energy density  , with all other parameters held constant. As expected, the average 

number of particles per agglomerate decreases in Figure 3.12a with decrease in Ad0. The 

total number of agglomerates in Figure 3.12b is found to peak at nearly the same time for 

the different values of Ad0, but to then decrease rapidly after the peak value for high 

values of Ad0, indicating that agglomerates are colliding to form larger agglomerates. For 

Ad0 = 5.5, the number of agglomerates decreases slowly after the peak since colliding 

agglomerates might not adhere to each other or might breakup again into smaller 

agglomerates. Again, good agreement is observed between the SVS and DNS predictions.         

 
 (a)                                                             (b) 

Figure 3.11. Effect of Stokes number on (a) number of particles per agglomerate ( paggN ) and (b) 

number of agglomerates (
aggN ) for DNS computations (solid lines) and SVS computations (dashed 

lines) with 2048VN  vortex structures. Computations are for St0 = 0.1 (A, blue), 0.2 (B, green) and 

0.34 (C, red), with Ad0 = 11. 
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 (a) (b) 

Figure 3.12. Effect of adhesion parameter on (a) number of particles per agglomerate (
paggN ) and (b) 

number of agglomerates (
aggN ) for DNS (solid lines) and SVS computations (dashed lines) with 

2048VN  vortex structures.  Computations are for Ad0 = 5.5 (A, black), 11 (B, green), 28 (C, red), 

and 110 (D, blue), with St0 = 0.34. The C and D lines in (b) are nearly coincident, so only the D line is 
shown.  

 The agglomerate number distribution indicates the percentage of agglomerating 

particles contained in agglomerates consisting of n particles. The agglomerate number 

distribution is sorted into logarithmic bins of base 2, where the value of bin size indicates 

the nominal number of particles in agglomerates within the bin. A plot showing the 

agglomerate number distribution for a case with St0 = 0.34 and Ad0 = 11 is shown in 

Figure 3.13. SVS predictions with 2048VN  vortex structures are observed to yield a 

number distribution that is reasonably close to that obtained using DNS. 
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Figure 3.13. Plot showing the percentage of particles, 

BP , contained in agglomerates with different 

numbers of particles. The number of particles in the agglomerate are grouped logarithmically into bins, 
with average number of particles for the given bin indicated by 

BN . The plot compares DNS results 

(blue bars) with SVS results (red bars) for a case with 2048VN  vortex structures.   

 Each agglomerate is characterized by the number of particles N contained in the 

agglomerate and the radius of gyration 
gR , which is defined by 
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In this equation, x  denotes the position vector of the agglomerate centroid and ix  is the 

centroid of the ith particle within the agglomerate. It is well known that particle 

agglomerates admit a power law relating N and 
gR  given by (Adachi and Ooi, 1990; Liu 

et al., 1990; Jiang and Logan, 1991) 

  Dg dRKN / , (3-34) 

where K is a coefficient (called the fractal pre-factor) and the exponent D is called the 

fractal dimension of the agglomerate. The value of D varies over the interval 31  D  
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depending on the agglomeration formation mechanism (Brasil et al., 2001). For instance, 

Eggersdorfer et al. (2011) cites typical values of 5.2D  for diffusion-limited 

agglomeration, 0.3D  for ballistic particle-cluster agglomeration, and 8.1D  for 

diffusion-limited cluster-cluster agglomeration. For turbulent agglomeration of latex 

particles in stirred tanks, Selomulya et al. (2001) report values of D between 1.7 and 2.1 

and Waldner et al. (2005) report values of D between 1.8 and 2.6. A log-log plot of N 

versus dRg /  for both DNS results and SVS predictions with 2048VN  is shown in 

Figure 3.14. The DNS and SVS predictions are in excellent agreement, and both are 

found to exhibit a best-fit line with slope 3.2D . As discussed above, this value of 

fractal dimension of the particle agglomerates is in good agreement with values noted in 

previous experimental literature for turbulent agglomeration. 

 

 
  

Figure 3.14. Plot showing the number of particles in an agglomerate N versus the ratio of the gyration 

radius to the primitive particle diameter, dRg / , with both DNS data (triangles, blue) and SVS data 

with 2048VN  (crosses, red). The solid line is a best-fit to the data with a slope of D 2.3. 
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3.7. Conclusions 

 An accelerated form of the stochastic vortex structure (SVS) method for subgrid-

scale turbulence modeling for interacting particles was developed using the method of 

multipole expansions. It was shown that with only five box levels, the accelerated method 

can reduce the velocity computation time by two orders of magnitude, with error in the 

total turbulent kinetic energy (TKE) prediction of less than 2%. The effect of the 

stochastic nature of the SVS algorithm on prediction of mean quantities was examined, 

and it was found that the ratio of the standard deviation to the mean value obtained from 

repeated runs with different vortex positions and orientations was about 5% for TKE and 

1% for enstrophy. Characteristics of the SVS synthetic turbulence predictions were 

examined against results of direct numerical simulation (DNS) and various theoretical 

and experimental results from the literature. The predicted energy spectrum was 

compared against both DNS results and approximate theoretical results from Saffman 

(1997), and shown to be in reasonable agreement with both for moderate and small 

values of wavenumber (less than about 20), but (as expected) to give too low values for 

higher wavenumbers. The predicted velocity, acceleration and vorticity probability 

density functions (PDFs) were found to be sensitive to the number of vortex structures 

used, but to approach the DNS predictions for large number of vortex structures. SVS 

predictions for other integral measures, such as the 95  measure of the maximum 

vorticity magnitude and the average stretching rate measure, also exhibit good agreement 

with DNS.  

 Though the validation of the statistical properties of SVS-generated fields is 

encouraging, the ultimate arbiter of the robustness of this model is whether or not it 
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achieves the ultimate modeling objectives. To this end, simulations with colliding, non-

adhesive particles were performed comparing the SVS predictions for radial distribution 

function, relative radial velocity, and collision kernel to DNS results. Computations were 

performed for an integral scale Stokes number range of 0.07 – 1.7, yielding good 

agreement between SVS and DNS predictions. The simulations indicate that the SVS 

results for collision rate are not very sensitive to the number of vortex structures as long 

as this number is sufficiently large. DNS and SVS simulations were also performed for 

collision and agglomeration of adhesive particles over a range of Stokes number and 

adhesion parameter values. Agglomeration measures examined include total number of 

particles captured in agglomerates, number of agglomerates, average number of particles 

per agglomerate, number distribution of agglomerates, and agglomerate fractal 

dimension. Values of these agglomeration measures were found to approach values close 

to those of the DNS predictions for sufficiently high numbers of vortex structures.  

 The paper suggests that the stochastic vortex structure method provides a rapid, 

reliable approach for modeling subgrid-scale turbulence fluctuations for flows with 

interacting particles. The SVS method is consistent with the large-scale energy spectrum 

and the various probability density function curves that describe homogeneous 

turbulence, as well as with a wide range of integral measures of the turbulent flow. The 

speed-up in velocity field computation introduced in the current version of the SVS 

method makes this approach highly efficient compared to other synthetic turbulence 

approaches. Because the SVS method deals directly with the vortical structures that 

dominate the large-scale motion of the turbulence, it allows accurate prediction of 
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phenomena, such as particle clustering, that are dependent on the structural form of the 

turbulent eddies.  

 We note that the current validation study was conducted for a relatively low 

Reynolds number flow for which the integral-scale Stokes number was close to unity. For 

high Reynolds number turbulence, there exists a large range of scales between the 

integral scale and Kolmogorov scale. A study using the wavelet-based coherent vortex 

simulation approach by Nejadmalayeri et al. (2013) found that the number of energy-

containing structures at a fixed kinetic energy level increases linearly with Reynolds 

number in homogeneous turbulence. While the SVS method has not yet been tested for 

high Reynolds numbers for purposes such as prediction of particle collision rate, we 

speculate that it may not be necessary to cover the entire range of these length scales with 

the synthetic turbulent flow. Rather, it might be sufficient to introduce SVS structures 

only for a length scale   for which the eddy Stokes number St  is closest to unity. Eddy 

structures much larger than this scale   will simply advect the particles with minimal 

relative motion between the particles, and the fluctuations associated with eddies much 

smaller than   will be filtered out by the particle inertia. However, we also recall that 

several experimental and computational studies have observed that intense vortex 

structures are less prominent for high Reynolds number turbulence (with 

)1000(Re O ) than is the case at low Reynolds numbers (Belin et al., 1996; Ishihara et 

al., 2009). The potential effectiveness of vortex-based methods such as SVS at high 

turbulent Reynolds numbers will therefore need to be carefully assessed in future work.        
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Appendix 

Substituting (3.4) into the Biot-Savart equation (3.6) gives the induced velocity at a point 

x as  
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Making use of the identity )/1()/1(/ 3
sss s  and the vector identity 

0  , Green's theorem can be used to write the integral in the second term on the 

right-hand side of (3.A.1) as 
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where S is the bounding surface of V. At large distances Lx , the gradient field    

has the form of a dipole that decays with distance r as )/1( 3
rO . Consequently, the 

surface integral in (3.A.2) approaches zero as S , leading to the conclusion that the 

velocity field is entirely induced by the non-gradient part *ω  of the vorticity field. 
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Abstract 

In recent work we have proposed a new synthetic turbulence method based on stochastic 

vortex structures, and we have demonstrated that this method can accurately predict 

particle transport, collision and agglomeration in homogeneous, isotropic turbulence in 

comparison to direct numerical simulation results. The current paper extends the 

stochastic vortex structure (SVS) method to non-homogeneous, anisotropic turbulence. 

The key element of this extension is a new inversion procedure, by which the vortex 

initial orientation can be set so as to generate a prescribed Reynolds stress field. After 

validating this inversion procedure for simple problems, we apply the SVS method to the 

problem of interacting particle transport by a turbulent planar jet. Measures of the 

turbulent flow and of particle dispersion, clustering and collision obtained by the new 

SVS simulations are shown to compare well with direct numerical simulation results. The 

influence of different numerical parameters, such as number of vortices and vortex 

lifetime, on the accuracy of the SVS predictions is also examined. 
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4.1. Introduction 

 Computational modeling of the motion of interacting particles, droplets or 

bubbles subject to subgrid-scale fluctuations in turbulent flows is a long-standing 

challenge in multiphase flow simulations. The Reynolds-averaged Navier-Stokes 

(RANS) approach remains the most common method for engineering solution of practical 

turbulent flows, providing both manageable computation times and reasonably accurate 

prediction of key flow features, such as boundary layer separation. However, when used 

in conjunction with Lagrangian simulation of particulate fluids, it is necessary to augment 

the RANS equations with some model to account for the effect of the turbulent 

fluctuations when computing the particle trajectories. This problem also arises when 

using the large eddy simulation (LES) approach with sufficiently small values of the 

Kolmogorov-scale particle Stokes number [1]. A number of effective methods exist for 

dealing with this problem for non-interacting particles (see [2] for a review), but subgrid-

scale modeling for transport of interacting particles in turbulent flows remains an 

unresolved challenge. Particle interaction is essential in a wide range of turbulent flow 

problems occurring in nature, such as turbulence effects on collision of rain droplets or 

snow flakes, contact electrification of dust particles in sand storms, and agglomeration of 

particles in volcanic plumes or of pollution particulates in the atmosphere. Particle 

interaction also plays an important role in many industrial particulate flow problems, 

such as pharmaceutical manufacturing, paint production, wastewater treatment, additive 

manufacturing processes, 3D printing, flame synthesis of nanoparticles, and fly ash 

capture from combustion furnaces. 
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 The challenges associated with subgrid-scale modeling for turbulent transport of 

interacting particles arise from three considerations. First, it is critical for simulation of 

particle interaction to accurately model small values of the particle separation distance. 

However, small separation distances imply that the nearby particles are experiencing 

forcing from the same set of nearby turbulent eddies, so that the fluid fluctuation velocity 

at the particle positions is highly correlated. As a consequence, any model in which each 

particle experiences uncorrelated forcing will not be appropriate for simulation of 

interacting particles. Second, particle collision and adhesion processes occur over time 

scales that are very small, typically much smaller than those associated with the fluid 

flow. The numerical calculation consequently becomes numerically stiff when particle 

interactions are included, particularly when using methods such as the soft-sphere 

discrete-element method (DEM). Synthetic turbulence models commonly used to 

approximate the subgrid-scale turbulent fluctuations must therefore be highly efficient in 

order to be manageable with small time steps. Third, turbulent eddy structures are known 

to expel particles with higher density than the surrounding fluid, leading to formation of 

particle clusters in the region in-between the eddies that can have local particle 

concentrations an order of magnitude or more above the average concentration [3-7]. 

This phenomenon leads to the so-called preferential concentration effect, which can 

dramatically increase particle collision rate, agglomeration and other interactions in these 

high-concentration regions [8-9].    

Since particle clustering in turbulent flows occurs due to interaction of particles 

with coherent eddies, it is natural to utilize a vortex structural approach in modeling the 

effect of turbulent fluctuations on interacting particles. Vortex structural models have 
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long been used in turbulence flow modeling, dating back to Townsend’s [10] model of 

homogeneous turbulence as a collection of Burger’s vortices and Lundgren’s [11] spiral 

vortex model, as well as extensions of these models by Pullin and Saffman [12] and 

Saffman [13]. The scaling and structure of coherent vortices was studied numerically for 

homogeneous turbulence by Jiménez et al. [14] and experimentally for turbulent shear 

flows by Belin et al. [15], among others. Both studies found that the turbulent vorticity 

field is dominated by a set of strong, coherent vortex structures of finite length and with 

tubular shape, surrounded by a sea of weak random (non-coherent) vorticity. The length 

and core radius of the coherent vortices were found to scale with the Lagrangian integral 

length scale and the Kolmogorov length scale, respectively, and the vortex strength was 

found to scale with the square root of the microscale Reynolds number.  Theoretical 

proof of these scaling observations was provided by Kambe and Hatakeyama [16].  

Kivotides and Leonard [17] report a computational study in which homogeneous 

turbulence is represented by a set of finite-length vortex structures, and show that this 

system generates an energy spectrum that satisfies the Kolmogorov 3/5
k  scaling in the 

turbulence inertial range. The effectiveness of vortex structural models for prediction of 

turbulence structure functions and various velocity and vorticity probability density 

functions was discussed by Refs. [18-22]. Extensions of the vortex filament method were 

successfully utilized for simulation of a number of turbulent shear flows, including 

mixing layers [23], co-flowing jets [24], and boundary layers [25].    

 Ayyalasomayajula et al. [26] proposed a vortex structural model for transport of 

particles in homogeneous isotropic turbulence using a two-dimensional array of 

uniformly spaced vortices, where a stochastic algorithm is used to determine the vortex 
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strength. Somewhat surprisingly, given the highly simplified nature of this model, the 

predicted particle acceleration statistics and clustering was similar to direct numerical 

simulation (DNS) results. Sala and Marshall [27] proposed a three-dimensional stochastic 

vortex structure (SVS) model, again for homogeneous isotropic turbulence, where the 

turbulent eddies are represented by a set of finite-length vortex structures which are 

randomly positioned and oriented in the flow field. The vortex length and core radius 

were assumed to be proportional to the turbulence integral and Kolmogorov length 

scales, respectively. Unlike the vortex filament method, the SVS method does not use the 

vortex structures to evolve the turbulent flow field; instead, the vortex structures are used 

only to approximate a subgrid-scale synthetic turbulence to use for particle evolution in a 

flow with a given Reynolds stress distribution. An accelerated version of the SVS method 

was developed by Dizaji and Marshall [28] using both the fast multipole method and a 

local Taylor series expansion which speeds up the computations by up to two orders of 

magnitude with negligible difference in flow field or particle interaction statistics. The 

SVS model was shown to yield predictions for turbulence energy spectrum, velocity and 

acceleration PDF, and particle collision rate that are in close agreement with DNS 

predictions. Dizaji and Marshall [28] also verified that the SVS model is highly effective 

at accurately predicting various measures characterizing agglomerate formation for 

adhesive particles in turbulent flows.  

 One criticism of the SVS model is that, to date, all applications of this model have 

been for isotropic, homogeneous turbulence. The objective of the current paper is to 

extend the SVS model to non-homogeneous, anisotropic turbulent flows and to validate 

this extended model by comparison to direct numerical simulation (DNS) results. 
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Extension of the SVS model for anisotropic turbulence is described in Section 4.2.1, with 

particular focus on a proposed inversion algorithm by which the orientation of the SVS 

vortex structures can be adjusted to yield a prescribed Reynolds stress field. This vortex 

structure initialization method is examined and validated in Section 4.2.2 for both 

homogeneous and inhomogeneous anisotropic flow fields.   Computational methods used 

for particle transport and for direct numerical simulation (DNS) for validation of the SVS 

model are described in Section 4.3. Validation of the SVS model with comparison to 

DNS results for particulate turbulent planar jet flow are reported in Section 4.4. 

Conclusions are given in Section 4.5. 

 

4.2. Stochastic Vortex Structure Method for Anisotropic Turbulence 

4.2.1. Anisotropic SVS Method 

 The stochastic vortex structure (SVS) model approximates the turbulent vorticity 

field by a collection of vortex structures placed in the flow field. In its simplest version, 

the vortex structures in the SVS model all have the same finite length L, core radius  , 

and strength  . The vortex length L is of the order of magnitude of the turbulence 

Lagrangian integral length scale /5.0 3
00 u , where 0u  is the turbulence root-mean-

square velocity and ε is the turbulence dissipation rate per unit mass. The core radius   

of the coherent vortices was estimated numerically by Jimenez et al. [14], experimentally 

by Belin et al. [15], and theoretically by Kambe and Hatakeyama [16] to be 3-4 times the 

Kolmogorov length scale, 4/13 )/(   , where ν is the fluid kinematic viscosity. In the 

current work we use somewhat larger vortex structures with core radius of 8  so as to 
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ensure sufficient number of grid points to resolve the velocity variation across the vortex 

cores; however, SVS computations were repeated with core radius  4  and the results 

were found to be almost identical to those with larger core radius. Each vortex structure 

has a lifetime VT  which is proportional to the integral time scale, 3/qT  , where 

2
05.1 uq   is the turbulent kinetic energy per unit mass, although we note that the model 

results are not sensitive to choice of vortex lifetime.  

4.2.1.1. Vortex structure initialization 

 The Reynolds stress tensor R has components in the global Cartesian coordinate 

system given by jiij uuR  , where a prime denotes the fluctuating velocity component 

and an overbar denotes a time average. In the SVS simulation, the anisotropy of the 

turbulent fluctuations is produced via preferential orientation of the vortex structures. It is 

necessary to develop a method for specifying the probability distribution of the vortex 

structure orientation so as to be consistent with the given Reynolds stress tensor, which is 

a type of inverse problem. Turbulence anisotropy is related both to differences in value of 

the three normal components of Reynolds stress and to the off-diagonal Reynolds stress 

components. We employ a four-step approach for setting the vortex orientation in 

accordance with a given Reynolds stress tensor, as described below. Prior to 

implementing this procedure, we compute a set of 642M  evenly-spaced test points on 

the surface of a unit sphere by dividing the faces of an icosahedron a prescribed number 

of times and projecting the vertices to the unit sphere.   

 In the first step, the Reynolds stress tensor is interpolated from the grid covering 

the flow field onto the centroid position of a vortex structure. In the second step, we 
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rotate the coordinate system to a frame in which the Reynolds stress tensor at the vortex 

centroid is diagonal. This is achieved by computing the set of three eigenvalues )(k  and 

associated normalized eigenvectors )(kx  of the Reynolds stress tensor. We define a 

principal direction coordinate system as a coordinate frame whose base vectors are the 

three eigenvectors of R. The components of the Reynolds tensor in the principal direction 

coordinate system, denoted by *
ijR , are given by 
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ijR . (4-1) 

 In the third step, the vortex structure orientation is set in this principal direction 

coordinate system. The inverse procedure by which this is achieved is based on the 

observation that a vortex structure oriented in the x-direction, say, would induce a 

velocity field in which 011 R  and 3322 RR  . We define vortex orientation weighting 

coefficients 1c , 2c  and 3c , normalized by 1321  ccc , such that    

 )1(
32  cc , )2(

31  cc , )3(
21  cc . (4-2) 

Solving the system (2) for the three orientation weighting coefficients gives 
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The orientation of a vortex structure is specified at the initial time step by randomly 

selecting one of the M test points on the unit sphere, obtained using the procedure 

described at the beginning of this section. The coordinates of the selected test point in 

principal direction coordinates is denoted by ),,( *
3

*
2

*
1  . Using the weighting 

coefficients obtained in (4.3), the vortex structure orientation  is set in principal 

direction coordinates as 

 



*
11*

1

 c
, 




*
22*

2

 c
, 




*
33*

3

 c
, (4-4) 

where 2/12*
33

2*
22

2*
11 ])()()[(  ccc  . In isotropic turbulence the three orientation 

weighting coefficients are equal, so that (4.4) results in random vortex orientation with 

uniform distribution. 

 The fourth step of the vortex structure initialization process is to rotate the 

structure back into the global coordinate system used for the computation. We recall that 

the components of the rotation tensor A from the global Cartesian coordinates to a 

principal direction coordinate system form an orthonormal 33  matrix whose three 

columns are the components of the three eigenvectors )(kx . The components of the vortex 

structure orientation vector  in the global coordinate frame can therefore be written in 

terms of the components in (4) as 

 jiji A
*  . (4-5) 

 4.2.1.2. Velocity calculation 

  The vortex structures induce a velocity field u, which is computed on the flow 

grid using the fast multipole acceleration method described by Dizaji and Marshall [28]. 
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The accelerated velocity computation method first partitions the computational domain 

into a tree-structure composed of uniform-size boxes, where at every level of the tree 

structure each box from the previous level is divided into eight ‘offspring’ boxes by 

dividing the side lengths in half in each direction. For each of the smallest ‘target’ boxes 

in the tree structure, a list of other ‘source’ boxes with which it interacts ‘directly’ and 

‘indirectly’ is developed based on the analytical error estimate for the multipole 

expansion by Salmon and Warren [29]. For source boxes on the direct interaction list, we 

compute the induced velocity from each vortex structure in the source box on each grid 

cell node in the target box by interpolation from a planar section, where the induced 

velocity from a unit strength vortex structure on the plane is pre-computed at the start of 

the simulation. For source boxes on the indirect interaction list, the induced velocity from 

all sources in the box is computed at the centroid of the target box using multipole 

expansion [30-31]. The contribution of this induced velocity at the individual grid cell 

nodes within the target box is then determined using a local Taylor series expansion. 

Induced velocity from vortex structures from one period of the computational domain in 

each direction are also induced in the computation. This accelerated method was shown 

by Dizaji and Marshall [28] to produce very accurate results with computation times that 

are nearly two orders of magnitude less than the direct computation method using only 

four levels of the box structure.      

4.2.1.3. Vortex time evolution 

 Each of the VN  vortex structures are advected in time by moving the two 

endpoints of the vortex structure by solving 
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 ),( ,
,

t
dt

d
in

in
xu

x
 , (4-6) 

where the index n identifies the vortex structure and i (=1,2) identifies the endpoint of the 

structure under consideration. After moving the end points, the vortex length is reset to L. 

The centroid position nx  and unit tangent vector nλ  for each structure are then 

recomputed from the positions of the new endpoint locations.    

 The initial age of the nth vortex structure, n0 , is specified as a random variable, 

where the ratio Vn T/0  has a uniform distribution between 0 and 1. If nt0  denotes the 

time at which the vortex structure is initiated, then the current age of the vortex structure 

)(tn  is given by 

nnn tt 00   .  (4-7) 

When )(tn  exceeds the specified lifespan VT , the vortex structure is removed and a new 

vortex structure is introduced with random position nx  and orientation given by the same 

four-part procedure as used to initialize the vortex structure orientation.   

 

4.2.2. Reynolds Stress Consistency Test  

4.2.2.1. Limitations of inversion method 

 The inverse method for initialization of the SVS vortex structures described in 

Section 4.2.1 is validated in this section for different test computations in which the 

vortex structures are initialized using a prescribed Reynolds stress field, and then the 

Reynolds stress is evaluated from the computed SVS velocity field and compared to the 

prescribed field. In conducting this validation, it is important to bear in mind that the 
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inversion procedure described in Section 4.2.1 is subject to limitations, which can be 

ultimately associated with the fact that we are attempting to generate a turbulence field 

using only the induced velocity from tubular vortex structures. Mathematically, these 

restrictions require that the three coefficients 1c , 2c  and 3c  defined in (4.3a-c) must all be 

positive. This in turn introduces the following three restrictions on the values of the 

eigenvalues )(k : 

 0)1()3()2(   , (4-8a) 

 0)2()3()1(   , (4-8b) 

 0)3()2()1(   . (4-8c) 

 If we now consider the special case of a two-dimensional turbulent mean flow, 

such as a plane jet or channel flow, the Reynolds stress tensor 
ijR  has the form  
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Rij . (4-9) 

Solving for the eigenvalues of the Reynolds stress tensor gives 
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R . (4-10c) 

Using 33R  for normalization, Reynolds stress ratios can be defined as 

 
33

11
11

R

R
r  , 

33

22
22

R

R
r  , 

33

12
12

R

R
r  , (4-11) 



 

138 

which are all positive by definition. From the solutions (4.10), we find that the limitation 

(4.8b) is always satisfied and the limitations (4.8a) and (4.8c) become, respectively, 

 012211  rr , (4-12a) 

   04)(1
2/12

12
2

2211  rrr . (4-12b) 

Specific limitations for several special cases, as computed from (4.12), are listed in Table 

4.1. 

 
Table 4.1. Special cases for limiting values of the Reynolds stress ratios for two-

dimensional turbulent mean flow. 

 
Special 

Case 

Prescribed Values Limitation 

A 122 r  012 r  211 r  
B 

1122 rr   012 r  2/111 r  
C 111 r  122 r  2/112 r  

 

4.2.2.2. Validation for homogeneous turbulence 

 The inversion method described in Section 4.2.1 was validated first for the case of 

homogeneous turbulence, in which the Reynolds stress is uniform in space. The Reynolds 

stress tensor is assumed to be anisotropic, so that the diagonal components are not equal 

to each other and the diagonal component 12R  in (4.9) does not vanish. While it is 

unlikely that an anisotropic Reynolds stress would actually develop in a homogeneous 

turbulent flow, this is still a useful special case in which to examine performance of the 

inverse procedure before going to fully inhomogeneous, anisotropic turbulence in the 

next sub-section. The tests were performed using a rectangular domain with side lengths 

4xL  and 2 zy LL  on a computational grid with 128, 64 and 64 points in the x-, y- 
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and z- directions, respectively. The computations assumed triply periodic boundary 

conditions, which were enforced by including one period of the SVS vortex structures in 

each direction, including the diagonal directions, in the velocity computation as vorticity 

sources. The computed Reynolds stresses were averaged over all computational points 

and over 10 different runs with different random vortex positions.  

 A listing of different prescribed Reynolds stress values used for the validation 

tests for homogeneous turbulence are given in Table 4.2. Results are plotted in Figure 4.1 

both for cases with 012 R  (Figure 4.1a, for cases H.1-H.3) and for cases with 012 R  

(Figure 4.1b, for cases H.4-H.6). In each case, we plot the ratio qRij /  for each non-zero 

Reynolds stress component, with the predicted components on the y-axis and the 

prescribed components on the x-axis. The turbulent kinetic energy q was computed 

separately from the prescribed and predicted diagonal components of the Reynolds stress 

as  

  3322112

1
RRRq  . (4-13) 

The predicted Reynolds stresses shown in Figure 4.1 are in good agreement with the 

prescribed values for all cases examined, demonstrating success of the inversion 

procedure described in Section 4.2.1 for homogeneous turbulence.  
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Table 4.2. Listing of specified Reynolds stress values used in for validation of the inversion 

method for homogeneous turbulence, shown in Figure 4.1. 

 
Case 

11R  22R  33R  12R  q Symbol in 

Fig. 4.1 

H.1 0.0603 0.0403 0.0353 0 0.06795 Open 
H.2 0.0553 0.0453 0.0353 0 0.06795 Gray 
H.3 0.0653 0.0403 0.0303 0 0.06795 Black 
H.4 0.0603 0.0403 0.0353 0.010 0.06795 Open 
H.5 0.0553 0.0453 0.0353 0.015 0.06795 Gray 
H.6 0.0653 0.0403 0.0303 0.005 0.06795 Black 

 
 

           
   (a) (b) 

Figure 4.1. Plots showing the prescribed Reynolds stresses (x-axis) and the predicted Reynolds stresses 

(y-axis) for SVS simulation of homogeneous turbulence, with jiij uuR   normalized by the square of 

the root-mean-square velocity 0u . Plots are for cases (a) with 012 R  (cases H.1-H.3) and (b) with 

012 R  (cases H.4-H.6), where the prescribed Reynolds stress values are listed in Table 4.2. Values of 

dimensionless Reynolds stress are plotted with 2
011 / uR  denoted by squares , 2

022 / uR  denoted by 

gradients , 2
033 / uR  denoted by deltas , and 2

012 / uR  denoted by circles . The open, gray (shaded) 

and black-filled symbols correspond to the cases indicated in Table 4.2. 

4.2.2.3. Validation for inhomogeneous turbulence 

 In actuality, anisotropic turbulence tends to form under non-homogeneous 

turbulent flow conditions. In this section, we examine the performance of the SVS 
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concept and of the inversion procedure described in Section 4.2.1 for two examples of 

inhomogeneous turbulent flows. In both cases the mean flow is two-dimensional, so that 

the Reynolds stress has the form (4.9), and the flow is assumed to be periodic only in the 

x- and y-directions. The tests were performed using a rectangular domain with side 

lengths 4xL  and 2 zy LL  on a computational grid with 128, 64 and 64 points in the 

x-, y- and z- directions, respectively. The predicted Reynolds stress values were averaged 

over the x-y plane for each z value, as well as over 20 repeated runs with different vortex 

positions. 

 The first test was for a case with isotropic prescribed Reynolds stress 

( 332211 RRR  , 012 R ) which varies as a top-hat distribution in y, as shown by the 

solid black line in Figure 4.2a. Comparison of the predicted Reynolds stresses with the 

prescribed distribution illustrate the nonlocal characteristics of the SVS method. The 

normal components of the predicted Reynolds stresses, plotted using the three color lines 

in Figure 4.2a, appear similar to a diffused (or filtered) form of the original profile. All 

three normal components are close to equal for the predicted Reynolds stress, and the 

predicted off-normal (shear) component ( 12R ) is close to zero.   
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      (a) (b) 

Figure 4.2. Plots showing the distributions of prescribed Reynolds stresses (black lines) and the predicted 

Reynolds stresses (colored lines), normalized by the square of the root-mean-square velocity 0u , for (a) 

a top-hat Reynolds stress distribution with prescribed Reynolds stress components 332211 RRR   and 

012 R , and (b) a Reynolds stress field typical of an idealized planar jet with prescribed Reynolds 

stresses 332211 RRR   and 012 R . The predicted Reynolds stress is plotted for 11R  (red line), 22R  

(green line), 33R  (blue line) and 12R  (orange line), and the prescribed Reynolds stresses are denoted 

using a solid black line for the diagonal components and a dashed black line for 12R . 

 The second test was for a case similar to an idealized turbulent planar jet, with 

332211 RRR   and 012 R , as shown by the solid and dashed black curves in Figure 

4.2b for the normal and shear Reynolds stresses, respectively. For simplicity, the normal 

stresses were prescribed as a quadratic function of y and the 12R  component was 

prescribed as one period of a sine wave. The predicted Reynolds stresses are in very good 

agreement to the prescribed values, although there is observed to be a slight flattening of 

the peak normal Reynolds stresses in the predicted values as compared to the prescribed 

values. 

 

 



 

143 

4.3. Computational Methods for Used for Validation Test 

 Validation tests of the SVS method for transport of interacting particles in 

anisotropic, inhomogeneous turbulence are reported in Section 4.4 for turbulent planar jet 

flow. The current section briefly describes the computational methods used for direct 

numerical simulation of the fluid flow and for simulating interacting particle transport in 

the validation computations. 

4.3.1. Computational Method for Direct Numerical Simulations 

 Direct numerical simulations (DNS) of turbulent planar jet flow were used to 

validate the SVS predictions. The DNS computations were performed using a fractional-

step method [32-34], with time advancement performed using a third-order Runga-Kutta 

method for convective terms and the 2nd order Crank-Nicholson method for viscous 

terms. Algorithms for all spatial derivatives except the convective terms are 

approximated using second-order centered finite differences (three point stencil) on a 

non-staggered grid. The discretized equations for the kth Runge-Kutta step are given by 
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where u and p are the fluid velocity and pressure and the coefficients k , k , and k  are 

given by  Rai and Moin [32]. Continuity is enforced by a projection method leading to 

equation (4.14c) for the pseudo-pressure, denoted by  .  In the multigrid solution of this 

equation, the five-point stencil produced by successive application of the gradient 

operation followed by the divergence operation was employed, rather than a numerical 

approximation to the Laplacian. The Crank-Nicholson method was used to solve the 

Helmholtz problem, given in (4.14b). A tenth-order approximation was used for the 

convective terms, requiring an 11-point stencil. To control non-linear instabilities, at the 

end of each time step the velocity components were filtered using a tenth-order filter 

(again using an 11-point stencil) [35-36]. After filtering to obtain filteredu , the velocity u  

was replaced by (1 ) filtered
q q u + u  , with q = 0.05. The mean flow was initialized in the 

x-direction with cross-directional variation in the z-direction.  A very weak initial 

turbulence was introduced using a synthetic turbulence generator, similar to Smirnov et 

al. [37], with initial turbulent kinetic energy of 10-5. The turbulent flow was assumed to 

be periodic in the x- and y-directions, and a symmetry boundary condition was imposed 

in the z-direction. A layer of five ghost points in each direction surrounded the 

computational domain, so that no adjustment of the differentiation schemes was needed 

near the domain boundaries.   

4.3.2. Discrete Element Method for Particle Transport 

Particle transport and collisions were computed in both the DNS and SVS 

computations using a soft-sphere discrete-element method (DEM) for a set of pN  

colliding non-adhesive particles of finite diameter d and mass m. The computations 
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evolve the particle velocity v and rotation rate  by solution of the momentum and 

angular momentum equations for individual particles, given by 

 
AF

dt

d
m FF

v
 , 

AF
dt

d
I MM

Ω
 , (4-15) 

where 6/3
dm p  and 2)10/1( mdI   are the particle mass and moment of inertia. 

The momentum and angular momentum equations include fluid-induced forces and 

torques on the particle ( FF  and FM ) and forces and torques resulting from particle 

collision ( AF  and AM ). The computations employ a multiple-time-step algorithm to 

accurately resolve numerical stiffness problems introduced by the different time scales 

associated with the fluid flow, particle transport, and particle collisions. The time steps, 

including the fluid time step )/( ULOt  , the particle time step )/( UdOt p  , and the 

collision time step ))/(( 5/122
UEdOt ppc  , satisfy

cp ttt  , where L and U are 

characteristic length and velocity scales of the fluid flow. Here, 
p  and 

pE  are the 

particle density and elastic modulus.  

 The fluid velocity u was interpolated from the Cartesian grid onto the particle 

locations with cubic accuracy using the 4M   method of Monaghan [38]. The dominant 

fluid-induced force is the drag force, given by the Stokes drag law for low particle 

Reynolds numbers as  

 )(3 uvF  dd .  (4-16) 

Particle rotation relative to the fluid gives rise to a torque acting on the particles 

 )
2

1
(3 ωΩM  dF 

                       
(4-17) 
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where  is the local fluid vorticity vector. Additional fluid-induced forces included in the 

computation include both the Saffman and Magnus lift forces [39-40], added mass force, 

and pressure gradient force, as discussed by Maxey and Riley [41].  

The collision forces and torques include the normal Hertzian elastic force nneF , 

the normal dissipative force nndF , the force and torque resulting from resistance to 

sliding ( SsF t  and )( SsaF tn , respectively), and a torque ntM  associated with 

resistance to twisting, where a denotes the particle radius. The unit normal vector n is 

defined by ijij xxxxn  /)( , where ix  and 
jx  are the centroids of particles i and j, 

and the unit vector St  indicates the direction of relative motion of the particle surfaces at 

the contact point projected onto the contact plane. The Hertzian expression [42] for 

elastic normal force of two colliding particles is  

2/3
Nne KF  , (4-18) 

where the particle overlap jijiN aa xx   is written in terms of the radii ia  and 

ja  of particles i and j. The nonlinear spring coefficient K can be expressed as 

REK )3/4( , where the equivalent radius R and elastic modulus E are defined by 

 
ji aaR

111
 , 

j

j

i

i

EEE

22 111  



 . (4-19) 

Here, iE  and 
jE  are the Young’s moduli and i  and 

j  are the Poisson’s moduli of the 

two particles. The normal damping force ndF  is approximated by  

 nv  RNndF  , (4-20) 
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where 
jiR vvv   is the relative particle velocity, iv  and 

jv  are the particle centroid 

velocities, and the normal damping coefficient N  can be related to the restitution 

coefficient e using an expression due to Tsuji et al. [43]. The current computations are 

performed with a fixed, small value of restitution coefficient ( 10.0e ), which is 

consistent with the observation that particle collisions occur in this problem with small 

values of the Stokes number, LUdSt p  18/2 .  

 A spring-dashpot-slider model is used to approximate the sliding resistance [44]. 

In this model, the sliding force sF  is first absorbed by the spring and dashpot until its 

magnitude reaches a critical value nfcrit FF  . The friction coefficient 
f  is selected 

to have a value of 0.3, which is in approximately the middle of the range of typical values 

for dry surfaces discussed by Johnson [45]. If crits FF  , then the colliding particle 

surfaces slip relative to each other and the friction coefficient is given by the Amonton 

expression  

 crits FF  . (4-21) 

For the subcritical case crits FF  , the sliding resistance due to the spring and dashpot for 

particle i is given by 

 
SSTS

t

t

STs dkF tvtv    ))((
0

,   (4-22) 

where the slip velocity )(tSv  is defined by 

 nΩnΩnnvvv  jjiiRRS aa)(  (4-23) 
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and the slip direction is SSS vvt / . The time integral in the first term in (4.22) gives 

the tangential elastic displacement of the material before slipping occurs, where 0t  is the 

time of initial particle impact. The expression for the tangential stiffness coefficient Tk  

derived by Mindlin [46] can be expressed as 

 NT RGk 8 , (4-24) 

where 
j

j

i

i

GG
G

 



 221  is the equivalent shear modulus and )1(2/ iii EG   and  

)1(2/ jjj EG   are the shear moduli of the two particles. We follow Tsuji et al. [43] 

in assuming that the tangential dissipation coefficient is of the same order as the normal 

viscous damping coefficient, and thus set NT   .  

 Twisting occurs when the two colliding particles have different rotation rate in the 

direction n. The relative twisting rate T  is defined by 

 nΩΩ  )( jiT
, (4-25) 

The twisting resistance force is given by  

 
TQT

t

t

Qt dkM    )(
0

 , (4-26)  

where the time integral represents the angular displacement prior to torsional sliding. 

Expressions for the torsional stiffness and viscous friction coefficient are similarly given 

by [47] 2/Rkk NTQ  and 2/RNTQ   . The particles begin to spin relative to each 

other when the torque exceeds a critical value, given by  

 RFM Ncritcritt 
3

2
,   . (4-27) 
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When crittt MM , , the torsional resistance is given by  

 TTcrittt MM  /, . (4-28) 

4.4. Validation Test of SVS for Turbulent Planar Jet Flow 

4.4.1. Direct Numerical Simulation 

 Direct numerical simulations were conducted for a particulate turbulent planar 

jet flow with one-way coupling between the fluid and particles, and the results were 

compared to SVS simulations of the same problem. The computational domain was 

discretized using a Cartesian grid over the intervals 2/2  Hx , 3/3  Hy  and 

2/2  Hz , where  H is the plane jet inlet slot width. Use of a uniform grid with 

(
zyx NNN ,, ) = (129, 193, 129) points for DNS led to grid increments that were nearly the 

same in all directions. The initial jet Reynolds number is given by 3200/Re 0  HUH , 

where 0U  is the nominal jet velocity and   is the kinematic viscosity. The initial mean 

velocity profile )(zU  was chosen to be of the hyperbolic tangent form 
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, (4-29) 

where 0  is the initial momentum thickness and the centerline of the jet corresponds to 

0y . For the current computations, we select 35/ 0 H , for which value da Silva and 

Pereira [48] show that the most unstable Kelvin-Helmholtz instability wavelength is 

HKH 87.0 , which is less than one-quarter the grid domain length in the streamwise 

direction. The DNS simulations were performed using a fixed time step of 

0/005.0 UHt  , which was selected to yield a CFL number less than 0.1. In the 
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following, length, velocity and time are nondimensionalized by H, 0U  and 0/UH , 

respectively.   

 Results for time variation of the turbulent kinetic energy q, the dissipation rate per 

unit mass  , and enstrophy per unit volume   for the jet flow are shown in Figure 4.3, 

defined by 

 dv
V

E
Vave

uu  2

1
, dvDD

V
ijij

Vave


 2

, dv
V

Vave

ωω  2

1
, (4-30)  

where 
ijD  are the components of the rate of deformation tensor, u and ω  are the velocity 

and vorticity vectors, respectively, and aveV  is the averaging volume. Since we want these 

measures to be independent of the size of the computational domain, we performed the 

averaging only over the region 11  y  initially occupied by the jet. The turbulent 

kinetic energy initially increases as the turbulence develops in the jet, up to about a time 

of 5.10t , at which the peak value of q is observed. It then gradually decreases for times 

greater than about 10 as the turbulence within the jet decays.  The time variation of 

dissipation rate and enstrophy also exhibit an increase at the beginning of the 

computation, a peak and then a gradual decrease, although the peak value for enstrophy 

and dissipation rate occurs a little later than for kinetic energy (close to 12t ).  

       
 (a)                             (b)                               (c)                            (d) 
 

Figure 4.3. Plots showing time variation of the (a) turbulent kinetic energy q, (b) dissipation rate  , (c) 

enstrophy  , and (d) integral time scale 0T  from the DNS computation. 
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  Contours of velocity magnitude at a series of times during the jet development 

are shown for both the DNS computation and the comparison SVS computation over a 

series of times in Figure 4.4. These contours illustrate the development of instability and 

turbulence at the beginning of the run ( 10t ), followed by decay of both the mean jet 

velocity and the turbulence within the jet at later times ( 15t ). The turbulence decay is 

accompanied by outward spreading of the turbulent velocity field and decrease in 

velocity magnitude values within the central region of the jet. The jet decay is often 

characterized in the similarity theory by two time-varying parameters – the centerline 

velocity CU  and the distance 2/1  from the centerline at which the mean velocity equals 

one-half the centerline value. The former of these parameters characterizes the jet 

strength and the latter characterizes the jet width. It is recalled that in their experiments 

with a spatially-varying planar jet, Gutmark and Wygnanski [49] observed that 2/1  and 

2/1 CU  both vary approximately linearly with distance. This observation suggests that by 

replacing the downstream coordinate of the spatially-varying jet in Gutmark and 

Wygnanski's experiments with the product tU 0 , where 0U  is the initial centerline 

velocity, a linear variation for 2/1  and 2/1 CU  with time might be observed for the current 

problem of a temporally-varying jet. Figure 4.5 plots time variation of both 2/1  and 

2/1 CU , exhibiting nearly linear variation in time in both cases.   
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Figure 4.4. Time series of contour plots of the velocity magnitude illustrate the flow field for DNS (top 
row) at t = 0, 5, 10, 15, 20, and 25 and SVS Case S (bottom row) at t = 10, 15 and 20. 

 
 

Figure 4.5. Plot of the DNS predictions for the inverse square of the centerline velocity 2
CU  (deltas) and 

jet width measure 2/1  (circles) as functions of time. The solid lines are best-fit lines. The observation of 

linear variation of these parameters agrees with experimental observations of Gutmark and Wygnanski 
[49]. 
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Figure 4.6. Comparison of our DNS results for the planar jet flow (black line) with results of other 

investigators for (a) mean velocity, (b) Reynolds stress 11R , (c) Reynolds stress 22R , and (d) Reynolds 

stress 33R . The comparison data includes experimental results from Gutmark and Wygnanski [49] (blue 

deltas) and Ramaprian and Chandrasekhara [50] (solid diamonds) and computational results from da 
Silva and Pereira [48] (red circles), Stanley et al. [51] (orange squares), and Thomas and Prakash [52] 

(green gradients). 

 A comparison of the mean velocity and normal Reynolds stresses from our DNS 

computations with results from previous experimental and numerical studies is given in 

Figure 4.6. The values are non-dimensionalized using )(tUC  and )(2/1 t  to write them be 

in similarity form, and we have confirmed that the results are nearly independent of time 

during the similarity regime of the computation ( 2010  t ). The mean velocity curve 

from our DNS results is very close to the mean velocity in the comparison studies. The 

(a) (b) 

(c) (d) 
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normal Reynolds stress results are also reasonably close to the values in the comparison 

studies, although the Reynolds stresses exhibit more scatter among the different studies 

than do the mean flow results.  

4.4.2. Comparison of DNS Flow Field to SVS Results 

 The grid used for the SVS computations had (
zyx NNN ,, ) = (128, 128, 128) 

points. It is a requirement of the accelerated method used for the SVS method that the 

number of points on each side be a multiple of two. The SVS simulations were conducted 

using the DNS Reynolds stress results over the interval 2010  t  for which the 

similarity solution was found to be valid in the DNS results. Before this time period the 

DNS results show that the turbulence is still developing, and after this time period the 

turbulence exhibits rapid dissipation. The Reynolds stress predictions from DNS were 

written in dimensionless similarity form (as shown in Figure 4.6) and averaged over the 

computational time period 2010  t , in order to smooth out temporal fluctuations. 

These averaged Reynolds stresses in similarity form were then read into the SVS 

simulations, along with the DNS predictions for  )(tUC  and )(2/1 t  shown in Figure 4.5, 

and used to generate time-varying prescribed Reynolds stress profiles for use during the 

SVS computation. The SVS computation was initialized with a prescribed number VN  

vortices positioned randomly in the SVS domain. The vortex strength and orientation was 

set using the prescribed Reynolds stress field at 10t , obtained from the DNS results as 

described above, using the inversion method described in Section 4.2.1. A plot showing 

the initial strength distribution and initial orientation of the SVS vortices is given in 

Figure 4.7. While the vortices were located throughout the computational domain, the 
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vortices with significant strength were located primarily within the interval 11  y . 

All initial vortices were randomly assigned an initial ‘age’, which advanced with time 

during the computation. When a vortex age exceeded the prescribed vortex lifespan VT , 

the vortex was removed and a new vortex was introduced at a random location within the 

computational domain. The strength and orientation of the new vortex were again set 

using the procedure described in Section 4.2.1 using the prescribed Reynolds stress field 

for the time that the vortex is introduced. Consequently, as the turbulence decays in time 

during the SVS computation, the strength of the newly initiated SVS vortices generally 

decreases at a given position in the flow field. A series of SVS computations with 

different values of VN  and VT were performed, as listed in Table 4.3. The ‘standard’ SVS 

computation (Case S) was selected as one with 1024VN  and VT  equal to the integral 

time scale 0T  at 10t . 

      
 (a) (b) 

Figure. 4.7. (a) Scatter plot showing SVS vortex locations, with size of the scatter symbol proportional to 
the vortex strength. (b) Vector plot showing vortex orientation vector in the x-y plane, colored to identify 

vortex strength.  

 

 



 

156 

Table 4.3. Computational parameters used for the SVS simulations. 

 
Case Number of 

vortices, VN  

Vortex life time,  

0/TTV  

S 1024 1 
NV.1 256 1 
NV.2 512 1 
NV.3 2048 1 
NV.4 4096 1 
T.1 1024 0.25 
T.2 1024 0.5 
T.3 1024 1.5 
T.4 1024 2 

 

 A comparison of the time variation of the velocity magnitude contours for the 

SVS generated flow field at t = 10, 15 and 20 is given in Figure 4.4 immediately below 

the DNS plot at the same time (and using the same color scale). We do not expect exact 

agreement since the SVS vortex structures are randomly distributed in space, but it is 

noted that the velocity magnitudes and general tendencies of the SVS generated flow 

field is similar to the DNS flow. In both cases the simulated jet turbulence gradually 

spreads in the y-direction and decays over this time interval. As would be expected from 

the uniform vortex size used in the SVS formulation, we observe that the DNS flow field 

results in Figure 4.4 exhibit more small-scale structures than do the SVS flow fields.  

 A plot showing the time variation of the jet centerline velocity cU  and the jet 

width measure 2/1  is given in Figure 4.8. The value of cU  decreases during the time 

interval and the value of 2/1  increases, as expected for decaying turbulence. The SVS 

predictions for cU  and 2/1  are observed to be significantly noisier than the DNS 

predictions. This noise in the SVS predictions is associated with the ‘death’ of some 
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vortices and the ‘birth’ of new vortices at random positions in the flow field. The SVS 

predictions for cU  fluctuate closely about the DNS results. The SVS predictions for 2/1  

are also close to the DNS predictions in the beginning part of the computation ( 14t ), 

but by the end of the computation the predicted jet width measure for SVS is about 10% 

lower than that for DNS. Similar fluctuations in the SVS predictions are shown in Figure 

4.9a, in which we compare the time variation of the turbulent kinetic energy for the DNS 

and SVS computations. The SVS result is again observed to fluctuate around the 

smoother DNS prediction, with a root-mean-square value that decreases when the value 

of the vortex lifetime VT  is reduced. The power spectrum is plotted in Figure 4.9b at time 

15t  for both the DNS and SVS computations. Both computations exhibit a 3/5
k  

Kolmogorov spectrum in the inertial range, with DNS and SVS spectra in close 

agreement. At high wavenumber, the SVS spectrum reduces much faster than the DNS 

spectrum as a consequence that SVS contains only vortices with length and velocity 

scaled to the integral scale eddies. 

 A comparison of the time-averaged Reynolds stresses, nondimensionalized using 

the similarity variables, is given for DNS and SVS in Figure 4.10. The DNS values of cU  

and 2/1 are used to write the Reynolds stresses and lateral distance in similarity form for 

both computations. The three normal Reynolds stress values are very close for the DNS 

and SVS predictions. The SVS prediction for the dimensionless Reynolds shear stress 

2
12 / cUR  exhibits lower peak values than for the DNS predictions, but otherwise has the 

same form. 
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Figure. 4.8. Predicted values of centerline velocity )(tU c  (red, lower curves) and jet width measure 

)(2/1 t  (blue, upper curves) as functions of time for DNS (dashed lines) and SVS case S (solid lines).  

      
                                      (a)                                                               (b) 

Figure. 4.9. Comparison of (a) the prescribed turbulent kinetic energy q and (b) the power spectrum from 
direct numerical simulation (dashed line) and the predicted value using the SVS method (solid line) for 

case S in Table 4.3. 
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Figure. 4.10. Comparison of the DNS results (dashed line) and the similarity solution with case S (solid 

line) for dimensionless Reynolds stresses 
ijR , plotted using similarity scaling and averaged over the 

time period (10,20). Plots are for (i,j) values of (a) (1,1), (b) (2,2), (c) (3,3) and (d) (1,2). 

4.4.3. Comparison of DNS Particle Transport to SVS Results  

An initial DNS flow computation was conducted out to a time of 10t  with no 

particles in order to allow the turbulence to develop and to achieve a self-similar state. 

The DNS computation was then restarted with particles present and continued out to a 

time 20t . A total of 000,32pN  particles of diameter 04.0d  and density ratio 

1/  pf   were used. The particles were initially placed randomly within the region 

(c) (d) 

(a) (b) 
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11  y  covering the jet. The particle Stokes number based on the jet width scaling, 

HSt , is given by 

 28.0)/(Re
18

1

18
St 20

2

 Hd
H

Ud
H

p

H 


.  (4-31) 

Particle initial positions were identical for both the DNS and SVS simulations.  

 The particle concentration profile in y was computed by dividing the flow field 

into bins, and then adding the volume of particles contained in each bin. For particles that 

straddle the boundary between bins, the particle volume is divided along the bin 

boundary and only that portion of the volume lying in each bin is included in the sum. 

The concentration field for SVS and DNS is identical at the initial time 10t , and has a 

top-hat form as shown in Figure 4.11a. During the time period of the flow computation 

2010  t  the concentration field spreads outward into the lateral regions around the jet 

due to forcing by the jet turbulence. The resulting concentration field for both DNS and 

SVS computations at time 20t  is plotted in Figure 4.10b, exhibiting excellent 

agreement between the two methods. This comparison demonstrates that the SVS method 

accurately simulates dispersion of the particle field.  

 

 



 

161 

    
                                      (a)                                                  (b) 
 

Figure. 4.11. Particle positions (a) at the start of the particle runs at 10t  and (b) at the end of the run 

at 20t  for DNS (red) and SVS case S (blue). (The particle positions at 10t  are the same for DNS 
and SVS.) 

 Another way to examine particle dispersion is to calculate the root-mean-square 

particle position rmsy , defined by 

 



pN

n

parn

p

rms y
N

y
1

2
,

1
, (4-32) 

where 
parny ,  denotes the y-position of particle n. A comparison of rmsy  as a function of 

time for  DNS and for a variety of SVS computations with different parameter values is 

plotted in Figure 4.12. Figure 4.12a shows the effect of number of vortices VN  on the 

lateral particle dispersion in cases with 0TTV  . As the number of vortices decreases the 

strength of each vortex is increased so as to hold the turbulent kinetic energy fixed. As 

can be seen, cases with smaller number of vortices (e.g., VN =256) exhibit slower lateral 

dispersion, resulting in lower values of rmsy  at the given time than the DNS predictions. 

At higher number of vortices, the predictions of the various SVS computations appear to 
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converge to a value of rmsy  that is close to the DNS prediction up to a time of about 

17t , after which the SVS predictions are somewhat less than that for DNS. Figure 

4.12b shows the effect of vortex lifetime on lateral particle dispersion. Increase in vortex 

lifetime is found to increase the rate of particle dispersion from the center of the jet, up to 

a lifetime value of about 05.1 TTV  , above which the particle dispersion rate remains 

close to the DNS prediction. This increase in dispersion rate occurs because longer 

residence of strong vortices near the jet center allows them longer time to repel particles 

via centrifugal force. We also note that the turbulent kinetic energy in the SVS 

computation increases (above the DNS prediction) as the vortex lifetime is increased 

significantly above the integral time scale 0T , which also increases the lateral dispersion 

rate.  

         
                                         (a)                                                             (b) 
 

Figure 4.12. Time variation of the root-mean-square particle position in the lateral y-direction for DNS 
(dashed line) and for SVS with (a) different number of vortices and (b) different vortex lifetime. Plot (a) 
is for Cases NV.1 (pink), NV.2 (orange), S (red), NV.3 (green) and NV.4 (blue). Plot (b) is for Cases T.1 

(pink), T.2 (orange), S (red), T.3 (green), and T.4 (blue). 
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 The total number of particle collisions is plotted as a function of time in Figure 

4.13 for DNS and for a variety of SVS computations with different values of VN  and VT . 

Figure 4.13a shows that the number of collisions in SVS computations is lower than for 

DNS for small numbers of vortices, but that the collision number increases to close to the 

DNS results as the number of vortices increases. Variation of vortex lifetime is seen in 

Figure 4.13b to have little effect on the number of particle collisions, which we believe to 

be a consequence of two opposing influences. As discussed previously, increasing the 

vortex lifetime tends to disperse the particles more rapidly in y-direction, consequently 

decreasing particle concentration and leading to lower numbers of collisions. On the 

other hand, increasing the vortex lifetime also introduces a lag that increases the turbulent 

kinetic energy slightly in a decaying turbulent flow, resulting in an increase in number of 

particle collisions. These two phenomena counteract each other, so that little change in 

collision number with vortex lifetime is observed in Figure 4.13b.     

 

      
                                      (a)                                                          (b) 
 

Fig 4.13. Time variation of the number of collision for DNS (dashed line) and for SVS with (a) different 
number of vortices and (b) different vortex lifetime. Plot (a) is for Cases NV.1 (pink), NV.2 (orange), S 
(red), NV.3 (green) and NV.4 (blue). Plot (b) is for Cases T.1 (pink), T.2 (orange), S (red), T.3 (green), 

and T.4 (blue).  
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 The tendency of particles to cluster can be characterized by the radial distribution 

function (RDF), )(rg , which is defined by  

 
dr

dN

r
rg

2
04

1
)(


 , (4-33) 

where the average number of particles per unit volume 0  is related to the particle 

volume fraction 
pC  by  /60 pC , and )(rN  is obtained by computing the average 

number of neighboring particles  whose centroids are located within a radial distance r 

from a given particle centroid. In order to smooth the RDF values, we have averaged the 

predicted RDF for both DNS and SVS over the time interval 1614  t , which was 

selected because this time interval is in the middle of the computational interval 

( 2010  t ). It is sufficiently small that the turbulence kinetic energy does not change by 

a large amount, and yet it is also sufficiently large that noticeable smoothing of the data is 

observed. The radial distribution function is plotted in Figure 4.14 for both DNS and SVS 

computations, and found to compare well. The RDF peak in the SVS computations is a 

little higher than the DNS result, which might be a consequence of the observation that 

DNS was observed to disperse particles a little more rapidly  in the lateral y-direction, 

and so the resulting concentration is slightly lower, but the effect is small.  
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Figure 4.14. Comparison between our DNS results (dashed line) and SVS case S (solid line) for the 
radial distribution function (RDF) a function of distance r. The data are averaged over the time interval 

from t = 14 to 16. 

 4.5. Conclusions 

 The paper presents a novel inverse method by which the orientation and strength 

of a set of finite-length vortices can be set to reproduce a prescribed anisotropic Reynolds 

stress field. This inverse method was incorporated into the stochastic vortex structure 

(SVS) algorithm to generate a time-varying synthetic turbulence field for transport of 

interacting particles in anisotropic, non-homogeneous turbulent flows. The proposed SVS 

method is well suited for simulation of interacting particles, since the statistics of the 

generated synthetic turbulence are both structurally and temporally consistent with the 

original turbulence and it can be computed rapidly with use of the fast multipole 

accelerated method [28]. It has been previously demonstrated [27, 28] for homogeneous, 

isotropic turbulence that the SVS method accurately reproduces the turbulence energy 

spectrum, the probability density function of the acceleration, velocity and vorticity 

fields, the collision rate of advected particles, and a variety of agglomeration measures 

(fractal dimension, size distribution, etc.) for adhesive particles. The current paper 
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extends the SVS approach to make it a viable method for arbitrary turbulent flows, and 

not only for homogeneous turbulence.   

 The effectiveness of the proposed inverse method was demonstrated in a series of 

computational experiments. We first examined the accuracy of the inverse method for an 

anisotropic, but homogenous, turbulent field with different prescribed values of the 

Reynolds stresses. Next, we examined the performance of the inversion procedure for 

setting the initial vortex orientation and strength in two different nonhomogeneous 

turbulent shear flows. Prescribed and predicted Reynolds stresses were compared for the 

above cases and show good agreement. Finally, the SVS predictions for flow and particle 

transport in a planar turbulent jet flow were compared with direct numerical simulation 

(DNS) results. The SVS computations used the Reynolds stress profiles computed from 

DNS together with our inverse procedure to specify the initial orientation and strength of 

the stochastic vortices, both at the start of the computation and when new vortices were 

introduced during the computation. The Reynolds stress profiles of both DNS and SVS 

computations were normalized in similarity form and averaged over the duration of the 

SVS computation, and found to compare well. Measures of particle dispersion, clustering 

and collision during the SVS and DNS computations were also found to be in good 

agreement. The effect on the SVS predictions of variation of the number and lifetime of 

vortices was also investigated, as these are two important numerical parameters that must 

be specified in the SVS computations. Computations with small numbers of vortices 

yield too low collision rate and weak dispersion, but the results approach the DNS 

predictions as the number of vortices is increased. The particle dispersion predictions 

were poor when the vortex lifetime was significantly below the turbulence integral time 
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scale, but values near the integral time scale up to about twice the integral scale yielded 

acceptable results. The number of particle collisions was not sensitive to the vortex 

lifetime.  

 With the extension to anisotropic, nonhomogeneous turbulence described in the 

current paper, the stochastic vortex structure method offers an accurate, viable method for 

simulation of the subgrid fluctuation effects on interacting particles in a large range of 

turbulent flows. However, we should note that the method in its current form does have a 

number of restrictions which arise from the fact that all turbulence fluctuations are 

generated by a set of tubular vortices in the SVS formulation. Consequently, the method 

is not well suited for simulating the near-wall region of wall bounded turbulent flows and 

would not be able to satisfy the no-slip condition on the wall, although the method might 

be expected to perform well in the boundary layer wake region. Secondly, the SVS 

method has to date only been used for problems with one-way coupling between the fluid 

and the particles. It is possible that Stokesian dynamics methods, or related methods 

based on Oseenlet solutions [53-56], could be used to account for two-way coupling (e.g., 

within agglomerates) within the framework of the SVS method, but this has not yet been 

attempted. As mentioned in Section 4.2.2.1, the method also has some limitations for the 

inversion procedure used to set the initial vortex orientation, which stem from restrictions 

on the amount of anisotropy that one can achieve using only vortex tubes to generate the 

fluctuating turbulence field. In the current formulations the SVS method is designed to be 

used together with a RANS simulation, for which only the mean flow and averaged 

measures of turbulent kinetic energy, etc., are known. A similar problem of accounting 

for effect of sub-grid scales on particle transport exists for large-eddy simulations, but in 
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this case it is not clear whether injection of stochastic subgrid-scale vortices or other 

methods, such as the approximate deconvolution method of Shotorban and Mashajek 

[57], would be the most suitable approach. 
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Abstract 

A study is reported that examines computations of turbulent particle agglomeration with 

one-way and two-way phase coupling for cases with small overall particle concentration. 

The fluid flow was computed using a direct numerical computation using the point-force 

approximation for particle-induced body force, and a soft-sphere, adhesive discrete-

element method was used to simulate the particulate transport and agglomerate 

formation. Computations were performed with different values of the Stokes number and 

the adhesion parameter. A variety of measures were used to examine both the effect of 

particle agglomeration on the fluid turbulence and the structure and flow field within the 

particle agglomerates. It was found that agglomeration has little influence on the 

attenuation of turbulence by the particles, at least in the range of Stokes numbers 

examined in the paper. Computations with two-way coupling generated agglomerates that 

were larger and contained more particles than those for one-way coupling. The 

agglomerate structure for both one-way and two-way coupling cases had a fractal 

structure with a similar value of the fractal dimension. As the agglomerate size increased, 

the fluid motion inside the agglomerates was found to become increasingly correlated to 

the agglomerate velocity, acting to decrease the relative velocity and shear stress of the 

inner particles within the agglomerate.  

 

Keywords: particle agglomeration; collisions; turbulence modulation; fractal structure; 
turbulent agglomeration    
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5.1. Introduction 

 Particle agglomeration by fluid turbulence occurs in a large range of natural flow 

problems and industrial processes. Examples of natural processes include dispersion of 

atmospheric particulates, sediment transport and deposition in estuaries, removal of 

pollutants by sediment deposition in aquatic systems, particle transport from volcanic 

plumes, and agglomeration of ice crystals in the atmosphere during formation of 

snowflakes. The number of industrial processes involving turbulent agglomeration is 

immense, a few examples being fine particle separation in gas cyclones, wastewater 

treatment, additive manufacturing processes, flame synthesis of nanoparticles, and ash 

capture from combustion furnaces. Many industrial products are produced from powders 

or by precipitation from reactive solutions, examples including 3D printing, ceramic 

materials, catalysts, and many pharmaceutical products.  

 Numerous experimental studies have shown that the number of particles in an 

agglomerate tends to vary as a power-law function of the agglomerate size (e.g., as 

represented by the gyration radius), where the exponent of this power law (known as the 

fractal dimensional of the agglomerate group) is typically less than the dimension of the 

three-dimensional space in which the agglomerate is contained [1-3]. As a consequence, 

the average void fraction of the agglomerate increases as the number of particles within 

the agglomerate increases [4]. The value of the fractal dimension depends on the process 

by which the agglomerate was formed as well as the stage of the formation process. 

Typical values range from about 1.5 - 3.0 [5]. The effective mechanical properties of the 

agglomerate, such as the shear and elastic moduli, depend on the fractal dimension [6-8]. 
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The fractal structure of the agglomerate also influences the density of force chains, which 

affects the shear stress necessary to induce agglomerate breakup and erosion [9-13]. 

 Much of the theoretical and computational literature on turbulent agglomeration 

deals with the beginning stage of agglomeration, in which agglomerates are growing in 

size by collision of particles and of smaller agglomerates [14-19]. This literature uses 

several important approximations, including the approximation that two colliding 

particles will stick together, the approximation that an agglomerate can be represented by 

an equivalent spherical particle, and the approximation that the fluid turbulence is 

unaffected by the particle agglomeration process (one-way coupling). The particle 

collisions are typically assumed to be controlled by shear stress at the Kolmogorov scale, 

and various stochastic theories are used to model the particle collision rate, some of 

which (but not all) additionally assume small Stokes numbers. An experimental test of 

some of these stochastic collision rate theories was presented by Duru et al. [20] for 

aerosol droplets in oscillating grid turbulence. The experimental values were observed to 

be between 50-100% larger than the theoretical predictions of Chun and Koch [17], and 

in typical experiments the mean droplet size increased by about 3% during the 

experiment. A direct numerical simulation of the early stages of particle agglomeration 

was given by Reade and Collins [21], which again uses the equivalent sphere 

approximation and examines how the size distribution of the equivalent spheres varies 

with Stokes number.     

 There is an extensive literature examining the effect of particles on fluid 

turbulence. Reviews were given by Crowe [22], Eaton [23], Saber et al. [24], Poelma and 

Ooms [25], Rao et al. [26] and Balachandar and Eaton [27]. While most work has 
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focused on turbulence modulation by relatively dilute particulate suspensions, Nasr and 

Ahmadi [28] demonstrated the importance of including particle collisions in modeling 

particle effects on fluid turbulence. However, there is almost no research to date on the 

effect of particle agglomeration on turbulent flows. While one might proceed by 

employing the equivalent sphere approximation for the particle agglomerates and using 

existing literature for turbulence modulation from suspensions of individual particles, 

such an approach would neglect a number of fundamental physical aspects of particle 

agglomeration. Due to the fractal structure of turbulent agglomeration, the particle 

volume fraction within agglomerates varies strongly as a function of agglomerate size, 

which in turn has a strong influence on the effective particle mass and the properties 

controlling agglomerate deformation and breakup [6, 7, 8, 10, 11, 29] which would not be 

accurately represented by a set of equivalent spheres with uniform properties. Particle 

agglomerates are porous to various degrees, and depending on the agglomerate size and 

structure the flow through an agglomerate can have a significant effect on agglomerate 

response to turbulent fluctuations and to collisions with other agglomerates [30, 31]. 

Particle agglomerates are typically not spherical, but can be elongated or even have a 

convoluted structure with various branches. Finally, the bonds holding particles into an 

agglomerate can break, either due to fluid forces and due to collisions with other 

agglomerates, which might cause a gradual erosion of particles from the agglomerate or a 

sudden rupture of the agglomerate into some number of offspring agglomerates [12, 13, 

32].       

 The current paper presents a computational study of turbulent agglomeration that 

resolves the individual agglomerate particles and their interactions with surrounding 
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particles. Since we do not invoke the approximation of treating the agglomerates as 

equivalent spheres, as used in previous research, important phenomena such as 

agglomerate permeability [30] and breakup [13] were included in the simulations without 

the need to introduce additional phenomenological models. A particular objective of the 

current paper is to examine the significance of two-way coupling on the turbulent 

agglomeration process, which was done by comparing results of computations performed 

with two-way coupling to those of computations conducted with one-way coupling, and 

by examining the flow field around the agglomerate structures that give rise to 

differences between the one-way and two-way coupling results. The computations were 

performed using a soft-sphere discrete element method (DEM) for adhesive particles 

subject to van der Waals adhesion [33], and the fluid flow computations were performed 

using a pseudo-spectral method to simulate forced turbulence in a triply-periodic domain. 

The two-way coupling effect of particle forces on the fluid flow was accounted for using 

an effective body force in the fluid flow simulations, similar to the approach used for 

simulation of sedimenting particle agglomerates by Bosse et al. [34]. The various 

computational methods used to simulate particle and fluid transport are summarized in 

Section 5.2, followed by results and discussion in Section 5.3. Section 5.3.1 examines the 

effect of turbulent agglomeration on modulation of the turbulence by the particulate 

phase. Section 5.3.2 examines various measures of agglomerate structure for cases with 

and without two-way coupling. Conclusions are given in Section 5.4.  

5.2. Computational Methods 

 The computations of particle agglomeration were performed using an adhesive 

discrete element method (DEM) to model particle transport and collisions. Homogeneous 
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turbulence was simulated using a forced pseudo-spectral direct numerical simulation 

(DNS) method on a triply-periodic domain. Each of these methods has been described in 

detail elsewhere, but the key points and appropriate references are summarized below. 

5.2.1. Discrete Element Method (DEM) for Particle Transport 

The discrete-element method (DEM) of Marshall [33] was used to transport 

adhesive particles in the turbulent flow. The computational method uses a multiple time 

step algorithm, in which the fluid time step )/( 0uOt  , the particle time step 

)/( 0udOt p  , and the collision time step ))/(( 5/1
0

22
uEdOt ppc   satisfy 

cp ttt  . Here d is the particle diameter, 
p is the particle density, and 

pE  is the 

particle elastic modulus. The method follows the motion of individual particles in the 

three-dimensional fluid flow by solution of the particle momentum and angular 

momentum equations   

 
AF

dt

d
m FF

v
 , 

AF
dt

d
I MM

Ω
 , (5-5) 

subject to forces and torques induced by the fluid flow ( FF  and FM ) and by the particle 

collision and adhesion ( AF  and AM ). Here, m is the particle mass, I is the moment of 

inertia, and v and  are the particle velocity and rotation rate, respectively. The dominant 

fluid force is the drag force, which is given by the Stokes drag law modified to account 

for the effect of local particle crowding as 

 fdFd )(3 vu   , (5-6)    

 



 

181 

where u is the fluid velocity evaluated at the particle centroid. The friction factor f was 

given empirically by Di Felice [35] for particle Reynolds numbers /Re dp vu   in 

the range 0.01 to 104 as a function of the local particle volume fraction   as  

   1)1(f , 





  2)]ln(Re5.1[

2

1
exp65.07.3 p . (5-7) 

This expression approaches the Wen and Yu [36] expression for low particle Reynolds 

number. The associated viscous fluid torque arises from a difference in rotation rate of 

the particle and the local fluid element, and was given by [37] as 

 )
2

1
(3 ωΩM  dF  , (5-8) 

where ω  is the fluid vorticity vector at the particle centroid. Other fluid forces of lesser 

importance accounted for in the computation include the Saffman and Magnus lift terms 

[38-39], which together with drag make up the fluid force FF . 

The total collision and adhesion force and torque fields on particle i with radius ir  

are given by 

 SsnA FF tnF  ,     nnttnM tRrSsA MMrF  )()( , (5-9) 

where ijij xxxxn  /)(  is the unit normal vector oriented along the line connecting 

the centers of the two colliding particles, i and j. The normal component of the collision 

and adhesion force nF  is further divided into an elastic-adhesion part neF  and a 

dissipative part ndF . The sliding resistance is composed of a force with magnitude sF  

acting in a direction St , corresponding to the direction of relative motion of the particle 

surfaces at the contact point projected onto the contact plane (the plane orthogonal to n), 
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as well as a related torque in the Stn  direction. The rolling resistance, which arises due 

to the effects of particle adhesion, exerts a torque of magnitude rM  on the particle in the 

nt R  direction, where Rt  is the direction of the “rolling” velocity. The twisting 

resistance torque tM  is oriented along the unit normal direction n. While all of these 

various collision-adhesion forces and torques were included in the current computations, 

the dynamics of small adhesive particles are dominated by the normal elastic-adhesive 

force and the rolling resistance torque.  

 The adhesive force between the two particles depends on the surface energy 

potential γ, where the work required to separate two spheres colliding over a contact 

region of radius )(ta  is given by 22 a  in the absence of further elastic deformation. 

Particle normal elastic rebound force and adhesion force were simulated by employing 

the soft-sphere collision model of Johnson et al. [40], hereinafter referred to as the JKR 

model, which can be written in terms of the contact region radius )(ta  and the normal 

particle overlap jijiN rr xx   as [41] 
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The critical overlap δc, the critical normal force Fc, and the equilibrium contact region 

radius oa  are given by [40] 
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As two particles move away from each other following collision, they remain in contact 

until the point where cn FF   and cN    due to the necking of the material in the 

contact region. Beyond this state any further separation leads the two particles to break 

apart.  

The effect of the fluid squeeze-film within the contact region is to limit the 

minimum approach distance between the particles (i.e., the contact region gap size) and 

to reduce the particle restitution coefficient. Experimental studies of particle collisions at 

different Stokes numbers [42] indicate that the coefficient of restitution is essentially zero 

when the Stokes number is less than about 10 due to dissipation in the squeeze-film. 

Since our Stokes numbers are well below this value, we set the dissipative part of the 

normal collision force ndF  such that the restitution coefficient vanishes using the model 

of Tsuji et al. [43].  

 The second major effect of particle adhesion is to introduce a torque that resists 

particle rolling. For uniform-size spherical particles, the “rolling velocity” Lv  of particle 

i is given by [44] 

 nΩΩv  )( jiL R  . (5-12) 

A linear expression for the rolling resistance torque rM  was postulated as 

 Rr kM  , (5-13) 

where 
RL

t

t

d tv   ))((
0

  is the rolling displacement in the direction LLR vvt / . 

Rolling involves an upward motion of the particle surfaces within one part of the contact 

region and a downward motion in the other part of the contact region. The presence of an 
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adhesion force between the two contacting surfaces introduces a torque resisting rolling 

of the particles. An expression for the rolling resistance due to van der Waals adhesion 

was derived by Dominik and Tielens [45], which yields the coefficient Rk  as 

 2/3
0 )/(4 aaFk CR  .   (5-14) 

Dominik and Tielens [45] further argue that the critical resistance occurs when the rolling 

displacement   achieves a critical value, corresponding to a critical rolling angle 

Rcritcrit /  . For crit  , the rolling displacement    in (5-13) is replaced by crit . 

The expressions used for twisting and sliding resistances are given by Marshall [33].   

 

5.2.2. Direct Numerical Simulation (DNS) of Homogeneous Turbulence 

The DNS computations of isotropic, homogeneous turbulence used for validation 

were performed using a triply-periodic pseudo-spectral method with second-order 

Adams-Bashforth time stepping and exact integration of the viscous term [46]. In this 

approach, the spectral Navier-Stokes equations are evolved in time after having been 

projected onto a divergence-free space using the operator ijjiij kkkP  2/  according to 

the expression 

          



   )2exp(
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)exp(
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tktkttk
nnnn  FFPuu , (5-15)  

where an overbar denotes Fourier transform in three space dimensions, a superscript 

indicates the time step,   is the kinematic viscosity, and k is the wavenumber vector with 

magnitude k. The force vector F on the right-hand side has Fourier transform given by 
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PF ffωuF  , (5-16) 

where Ff  is the small wavenumber forcing term required to maintain the turbulence with 

approximately constant kinetic energy and Pf  is the particle-induced body force due to 

relative motion between the particles and the fluid. The velocity field was made 

divergence-free at each time step by taking its Fourier transform and using the spectral 

form of the continuity equation, given by 

 0uk . (5-17) 

 The forcing vector was assumed to be proportional to the fluid velocity [47-48], 

such that 
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crit

F
kk

kkC





for       0

for  u
f , (5-18) 

where the coefficient C was set equal to lowEC /0045.0  and uu  
 critkk

lowE
2

1
 is the 

kinetic energy in all modes with wavenumber amplitude critkk  . The current 

computations were performed with 5critk , so that the forcing acts only on the large-

scale eddies. 

The particle body force Pf  was computed by associating a regularized delta 

function )( nh Xx   with each Lagrangian particle, where nX  denotes the particle 

centroid location of particle n. The value of the body force Pf  was evaluated at each grid 

node i of the Cartesian grid using 
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 , (5-19) 

where 
nF ,F  denotes the fluid force on the nth particle. The regularized delta function used 

for the current problem distributes the particle force uniformly over a stencil consisting of 

the grid cell containing the particle and one grid cell on each side. This choice of delta 

function is conservative in both the force and torque for any value of nX .  

 The turbulence kinetic energy q and dissipation rate   were obtained from the 

power spectrum, )(ke , as 

                        
max

0
)(

k

dkkeq ,            max

0

2 )(2
k

dkkekv . (5-20) 

Various dimensionless measures describing the turbulence in the validation computations 

are listed in Table 5.1, including the root-mean-square velocity magnitude 0u , the 

average turbulence kinetic energy q, the integral length scale /5.0 3
00 u , the Taylor 

microscale 0
2/1)/15( u  , and the Kolmogorov length scale 4/13 )/(   . The 

corresponding microscale Reynolds number is 99/Re 0   u .  

Table 5.1. Dimensionless simulation parameters and physical parameters of the fluid 

turbulence. 

  Simulation Parameters   Turbulence Parameters  

 Time step   0.002  Turbulent kinetic energy, q   0.122 
 Cycles   15000   Mean dissipation rate,     0.015  
 Grid   3128    Kinematic viscosity,     0.001  
   Integral length, 0   0.771 
   Taylor microscale,   0.285 
   Kolmogorov length,    0.016 
   Integral velocity, 0u   0.285 
   Integral time, T  2.71 
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5.2.3. Dimensionless Parameters 

 One of the most important dimensionless parameters is the Stokes number, which 

is defined as the ratio of the particle time scale dmp  3/  to a characteristic fluid 

time scale, where m is the particle mass. For turbulent flow, different Stokes numbers can 

be defined using different fluid time scales. Two common choices are the Kolmogorov-

scale Stokes number KSt  and the integral-scale Stokes number 0St , defined by 

  /St pK  ,  /St 0 p . (5-21) 

The Kolmogorov time scale   is defined in terms of the kinematic viscosity and 

turbulence dissipation rate as 2/1)/(    and the integral time scale is given by 

00 / u  . The Stokes number determines the particle response to changes in the fluid 

flow, such that in cases with small Stokes numbers particles nearly follow fluid 

streamlines and in cases with large Stokes numbers the fluid has only a small influence 

on the particle motion. 

 The tendency for colliding particles to adhere to each other can be characterized 

by the adhesion parameter Ad, defined in terms of the adhesive surface energy density   

as [49] 

 
dUp

2

2
Ad




 . (5-22) 

In this equation, U is a characteristic velocity scale of the fluid, which might be set equal 

to the root-mean-square turbulent fluctuation velocity 0u  to obtain the integral-scale 

adhesion parameter 0Ad  or to the Kolmogorov velocity 4/1)( u  to obtain the 

Kolmogorov-scale adhesion parameter KAd . The adhesive energy density   can be 
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related to the Hamaker coefficient A for the particle material operating in the given fluid 

medium by 

  
224

 A
 , (5-23) 

where   is the gap thickness within the contact area.   

 The elastic rebound force on the particle is characterized using an elasticity 

parameter El, defined by 

 
2

El
U

E

p
 , (5-24) 

where E is the effective elastic modulus, which together with the effective particle radius 

R is defined by  
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where iE , i , and ir  are the elastic modulus, Poisson ratio, and radius of particle i, 

respectively. Both the elasticity parameter El and the adhesion parameter Ad are 

important in determining the radius of the contact region upon particle collision. In (5-

23), the fluid velocity scale U may again be modeled using either the integral scale (root-

mean-square) velocity 0u  or the Kolmogorov-scale velocity u . 

5.3. Results and Discussion 

 The computations were initialized by positioning 46,656 particles on a uniform 

array across the computational domain. A preliminary computation was conducted with 

no particles to allow the turbulence to develop a range of length scales characteristic of 

statistically stationary homogeneous isotropic turbulence. The computation was then 
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restarted with particles using the three-level multiple time-step DEM algorithm of 

Marshall [33], with a fluid time step of 005.0fdt , 10 particle time steps per fluid time 

step, and 40 collision time steps per particle time step. A listing of the parameter values 

for the different runs with particles is given in Table 5.2, where the different runs are 

referred to in the following as case 1-12. 

Table 5.2. List of computational cases examined. For each case computations were 

performed with and without two-way coupling. Variables listed include ratio of particle radius to 

integral length scale, average particle volume concentration  , mass loading Z, Kolmogorov and 

integral scale Stokes number, and Kolmogorov and integral scale adhesion parameter.   

Case 
0/ pr    Z StK St0 AdK Ad0 

1 0.0129 0.000788 0.00789 0.860 0.082 260 12.3 

2 0.0259 0.0063 0.0634 3.44 0.328 260 12.3 

3 0.0389 0.0213 0.218 7.74 0.738 260 12.3 

4 0.0516 0.0504 0.531 13.8 1.31 260 12.3 

5 0.0129 0.000788 0.00789 0.860 0.082 0 0 

6 0.0259 0.0063 0.0634 3.44 0.328 0 0 

7 0.0389 0.0213 0.218 7.74 0.738 0 0 

8 0.0516 0.0504 0.531 13.8 1.31 0 0 

9 0.0259 0.0063 0.0634 3.44 0.328 130 6.16 

10 0.0259 0.0063 0.0634 3.44 0.328 520 24.6 

11 0.0259 0.0063 0.0634 3.44 0.328 1041 49.3 

12 0.0259 0.0063 0.0634 3.44 0.328 2081 98.5 

 
5.3.1. Effect of Particle Agglomeration on Turbulence 

 The turbulent kinetic energy q and turbulent dissipation rate   are plotted as 

functions of time for cases with both one-way and two-way coupling in Figure 5.1 for 

case 2. For the one-way coupling computations, both q and   fluctuate in time with root-
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mean-square values of 4.6% and 7.5% of their mean values, respectively. The 

computations with two-way coupling result in values of turbulent kinetic energy that 

exhibit fluctuations with a similar root-mean-square value up to about t  87, after which 

the kinetic energy decreases sharply. The turbulent dissipation for the two-way coupling 

computation is observed to decrease to about 20% below the average value for the one-

way coupling simulation up to a time of about 60t , after which the dissipation rate in 

the two-way coupling computation decreases steadily. We note that the dissipation rate 

measure   reported here is due to fluid gradients, and it does not include the dissipation 

caused by the particle drag force on the fluid.  

      
(a) (b)      

Figure 5.1. Time variation of (a) turbulent kinetic energy q and (b) turbulence dissipation rate  , with 
results from computations with one-way coupling (dashed line, deltas) and two-way coupling (solid line, 

circles). 

 A plot of the power spectrum at three different times is presented in Figure 5.2a, 

showing a gradual decrease in the spectrum with time for the case with two-way 

coupling. The power spectrum is nearly constant in time for the one-way coupling case. 

The 3/5
k  scaling of the power spectrum in the inertial range is indicated by a dashed 
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line. A comparison of the power spectra for cases with different Stokes numbers is given 

in Figure 5.2b. The change in Stokes number in this figure was produced by changing the 

particle radius, with all other parameters held fixed. Two computations were conducted 

with each value of particle radius, one with adhesive particles (Ad0 = 12.3, cases 1-4) and 

one with no adhesion (Ad0 = 0, cases 5-8). The power spectra were plotted in Figure 5.2b 

at time 5.87t , near the end of the runs and just before the turbulent kinetic energy 

decreases sharply. The power spectra curves for the case with lowest Stokes number (StK 

= 0.86) are almost identical to the initial power spectrum, showing almost no change with 

the addition of the particles.  

 

 
 (a) (b) 

Figure 5.2. (a) Power spectrum for computation with two-way coupling for case 2 at three different 
times: t = 0 (black line), 50 (blue line) and 87.5 (red line). (b) Power spectrum for computations with 

Kolmogorov-scale Stokes numbers 86.0
K

St  (black), 3.44 (blue), 7.74 (red), and 13.8 (green) at 

5.87t  both with adhesion (Ad0 = 12.3, cases 1-4)(solid lines) and without adhesion (Ad0 = 0, cases 
5-8)(dashed lines).  

 The cases with higher Stokes number exhibit progressively lower power spectra 

curves as the particle size is increased. It is noted that several different regimes 

characterizing turbulence modulation by particles have been noted in the literature. For 
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very small particles with Kolmogorov-scale Stokes number StK <<1, the particles are 

found to enhance the fluid inertia and hence increase the turbulent kinetic energy [50, 

51].  For particles with larger Stokes number (StK >>1) but with diameter d  less than 

about 10% of the integral length scale 0 , the particles reduce the turbulent kinetic 

energy. This reduction is generally associated with the preferential concentration of 

particles in regions of low fluid vorticity [52-55]. Druzhinin [51] reported the transition 

between these two regimes to occur at StK 8.0 . Finally, sufficiently large particles are 

again observed to enhance turbulent kinetic energy due to shedding of vortex structures 

in the particle wakes. Gore and Crowe [56] and Crowe [22] propose that this third regime 

corresponds to particles with diameter d satisfying 1.0/ 0 d , but various other criteria 

have been suggested by other researchers. As seen from Tables 5.1 and 5.2, the current 

computations are clearly in this middle regime of turbulence modulation, and the 

observed enhanced attenuation of turbulent kinetic energy with increase in particle size 

and mass loading is consistent with the previous literature cited above for this regime.  

 The cases with the three smallest values of Stokes number in Figure 5.2b exhibit 

almost no difference in the power spectra between computations with and without 

adhesion. The case with largest Stokes number exhibits a reduction in the power 

spectrum for the case with adhesion compared to that with no adhesion. The fact that the 

power spectra shown in Figure 5.2b are so similar for the cases with and without 

adhesion, even though the curves exhibit significant decrease due to the presence of 

particles compared to the power spectrum for the one-way coupling computation, 

provides strong evidence that particle agglomeration has little influence on turbulence 

attenuation, at least for sufficiently small particles. This observation is consistent with the 
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conclusion of Druzhinin [51] that the attenuation of turbulence by particles in this regime 

is primarily a consequence of the particle inertia, which depends only on net particle 

mass and is independent of agglomeration of the particles.  

 The size of the agglomerates that develop during the turbulent flow simulation 

depends upon the value of the adhesion parameter. As indicated in Table 5.2, the value of 

the adhesion parameter was varied in our computations over a factor of about 16. For 

significantly smaller values of adhesion parameter than those examined, there is only a 

small amount of particle adhesion during the computational run time and the 

agglomerates are relatively small, with only 2-5 or so particles. For much larger values of 

adhesion parameter than those examined, the agglomerates grow to very large sizes 

during the computations, in some cases with all particles forming a single agglomerate. 

Our desire in this paper was to examine agglomerates that were sufficiently large (i.e., 

several hundred particles) so that measures such as fractal dimension are sensible, but 

also agglomerates whose maximum size was of the order of magnitude of the integral 

length scale of the turbulence. Figure 5.3a shows the average number of particles per 

agglomerate, 
paggN , at time t = 87.5  as a function of adhesion parameter. The 

agglomerate size can be estimated by the radius of gyration, 
gyrR , defined for an 

agglomerate i by 
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where ix  denotes the centroid position of agglomerate i and 
jx  is the centroid position 

of the jth particle within the agglomerate. The average value of the radius of gyration 
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tends to be dominated by the smallest, but more numerous, agglomerates. Instead, we 

define a particle-weighted radius of gyration, gryR , by  

 igryi

N

iagg

gyr RN
N

R
agg

,
1

1 


 ,  (5-27) 

where iN  is the number of particles in agglomerate i and 
aggN  is the total number of 

agglomerates. A plot of pgry rR / , where 
pr  is the radius of a single particle, at time t = 

87.5  is presented in Figure 5.3b as a function of adhesion parameter for both 

computations with one-way and two-way coupling.  

     
 (a) (b) 

 

Figure 5.3. Plots showing (a) the number of particles per agglomerate 
pagg

N  and (b) the dimensionless 

particle-weighted average radius of gyration, 
pgyr

rR / , as a function of integral-scale adhesion parameter, 

Ad0, for computations with two-way coupling (solid lines, circles) and one-way coupling (dashed lines, 
deltas) at time 5.87t . Computations are for cases 2 and 9-12. 

5.3.2. Structure of Particle Agglomerates 

 This section examines the detailed structure of the particle agglomerates, as 

predicted using both one-way and two-way coupling simulations. This study was 
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performed starting from a state in which no particles were touching, and hence there were 

no agglomerates, and ending at a time of 5.87t . By this end time the agglomerates had 

developed into large structures, but they had not yet achieved an equilibrium condition 

where agglomerate breakup balances agglomerate formation by collision. This end time 

was selected because shortly after this time in the two-way coupling simulations, the 

turbulent kinetic energy decreases sharply, leading eventually to a state where the small-

scale turbulence completely vanishes. On the other hand, at 5.87t  the turbulent kinetic 

energy is still reasonably close to its initial value, as shown in Figure 5.1a.  

 Agglomerates are defined as groups of particles that are in contact with each 

other, either directly or via contacts with other particles. The agglomerates were 

identified at each time step of the computation and a variety of measures were employed 

to examine their characteristics.  The total number of agglomerates 
aggN  is plotted as a 

function of time for case 2 in Figure 5.4a for computations with both one-way and two-

way coupling of the particle and fluid phases. Shortly after the start of the computation, 

individual particles collide and attach to each other to form small agglomerates. A 

maximum in the number of agglomerates is reached at 15t , equal to approximately 

7400 agglomerates. The number of agglomerates then decreases as these small 

agglomerates collide and adhere to each other to form larger agglomerates. The number 

of particles iN  in each agglomerate was counted and averaged over all agglomerates to 

obtain the average number of particles per agglomerate, which is plotted as a function of 

time in Figure 5.4b. The dimensionless particle-weighted radius of gyration, pgyr rR / , is 

plotted as a function time in Figure 5.4c. 
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                              (a)                                                      (b) 

 
                                                                    (c) 

Figure 5.4. Time variation of (a) the total number of agglomerates (
agg

N ) and (b) the average number of 

particles per agglomerate (
pagg

N ) and (c) the dimensionless particle-weighted radius of gyration of 

agglomerates (
pgyr

rR / ) with results from computations with one-way coupling (dashed lines) and two-

way coupling (solid lines) for case 2. 

 In all three of the plots in Figure 5.4, the one-way and two-way coupling results 

are quite close to each other for times near the beginning of the calculation. At 20t  we 

notice that the radius of gyration in Figure 5.4c for the two-way coupling run increases 

above that for the one-way coupling run. The number of particles per agglomerate in 

Figure 5.4b similarly is greater for the two-way coupling run than it is for the case with 

one-way coupling; however, the differences between the one-way and two-way coupling 

runs appear later than for the radius of gyration. Since the agglomerates for two-way 
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coupling are both larger and have more particles than for one-way coupling, it follows 

that the number of agglomerates shown in Figure 5.4a for the two-way coupling 

computation is less than that for one-way coupling, although again we see that this 

difference appears significantly later than in the plot of the radius of gyration. 

 As noted by a number of previous authors [1-3], the number of particles iN  in 

agglomerate i can be expressed as a power-law function of the agglomerate size, such 

that  

 fd

pigyri rRKN )/( , , (5-28) 

where K is a coefficient (called the fractal pre-factor) and the exponent 
fd  is called the 

fractal dimension of the set of agglomerates. The value of 
fd  varies over the interval 

31  fd  depending on the agglomeration formation mechanism [5]. For instance, 

Eggersdorfer et al. [57] cited typical values of 5.2fd  for diffusion-limited 

agglomeration, 0.3fd  for ballistic particle-cluster agglomeration, and 8.1fd  for 

diffusion-limited cluster-cluster agglomeration. For turbulent agglomeration of latex 

particles in stirred tanks, Selomulya et al. [58] reported values of 
fd  between 1.7 and 2.1 

and Waldner et al. [59] reported values of 
fd  between 1.8 and 2.6. A log-log plot of N 

versus 
pgyr rR /  is shown in Figure 5.5a at time 5.87t  for both one-way and two-way 

coupling computations. It was found that for both methods fractal dimension values are 

close, with 064.2fd  for one-way coupling and 118.2fd  for two-way coupling. This 

value of fractal dimension for the particle agglomerates is in good agreement with values 

noted above obtained in previous experimental literature for turbulent agglomeration.  
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 The fractal dimension was calculated at different time intervals during the 

computations. The calculated fractal dimension is plotted as a function of time and is 

shown in Figure 5.5b. The fractal dimension for one-way and two-way coupling 

computations is quite close; however, the result for two-way coupling is a little higher 

near the end of the computation (for 70t ). A larger value of fractal dimension for two-

way coupling implies that the agglomerates were more densely packed in comparison to 

the one-way coupling results.      

 

   
                                     (a)                                                                (b) 

Figure 5.5. (a) Plot showing power-law fit given in Eq. (28) between the number of particles in an 

agglomerate N , versus the ratio of the gyration radius to the primitive particle radius, 
pgyr

rR / . Slope of 

lines on the log-log plot are equal to the fractal dimension 
f

d  at 5.87t , and results are given for both 

one-way coupling (blue crosses) and two-way coupling (red circles). (b) Plot showing time variation of 
the fractal dimension, comparing results with one-way coupling (dashed line, deltas) and two-way 

coupling (solid line, circles) for case 2.  

 Figure 5.6a shows the distribution of agglomerate sizes at 5.87t . The number 

of particles in the agglomerate is divided into a set of logarithmic bins of base 2, such that 

the width of each bin is twice the width of the previous bin. The x-axis plots the median 

number of particles in the bin and the y-axis plots the number of agglomerates falling into 
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that bin, where both axes are logarithmic. A similar plot is shown in Figure 5.6b, with the 

difference that the agglomerate size is characterized by bins of the ratio 
pgyr rR /  of 

agglomerate gyration radius to individual particle radius. Because the values of this ratio 

have a narrower size variation than the number of particles in the agglomerate, the bins 

used in Figure 5.6b are linear, with a constant width. The plots in Figure 5.6 demonstrate 

that the two-way coupling computation generates larger agglomerates with more particles 

than does the one-way coupling computation.  

  
(a)                                                                  (b) 

Figure 5.6. Distribution plots showing number of agglomerates 
agg

N  as a function of (a) number of 

particles in the agglomerate averaged over a set of logarithmic bins, 
B

N , and (b) dimensionless radius of 

gyration, 
pgyr

rR / , averaged over a set of linear bins. Results are from computations with one-way 

coupling (A, blue bars) and two-way coupling (B, red bars) at t = 87.5  for case 2.  

 The particle volume fraction i  is computed for each agglomerate by dividing the 

volume of all particles associated with the agglomerate, 3)3/4( pip rNV  , by the 

effective volume 
effV  occupied by the agglomerate. The agglomerate effective volume is 

estimated by 3
,)3/4( ieffeff RV  , where the effective radius of the agglomerate 

effR  is 
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related to the radius of gyration as effgyr RR 5/2 . This latter expression is based on the 

expression for radius of gyration of a solid sphere of uniform density. The particle 

volume fraction of the agglomerate can be related to the fractal dimension by [2, 30]  

 3
,0 )/(  fd

pigyri rR , (5-29)    

where 0  is a constant. If 3fd , an increase in agglomerate size results in a decrease in 

average particle volume fraction [4]. A log-log plot of the averaged agglomerate volume 

fraction versus the dimensionless radius of gyration (
pgyr rR / ) is given in Figure 5.7a at 

time 5.87t . The observed decrease in volume fraction as the agglomerate size increases 

is substantial. The two-way and one-way coupling results for volume fraction are fairly 

close for the smaller agglomerates, but for the larger agglomerates the two-way coupling 

simulations yield somewhat larger particle volume fraction than do the simulations with 

one-way coupling. This result is consistent with our previous observation that the fractal 

dimension for two-way coupling simulations is slightly larger than for one-way coupling. 

Figure 5.7b shows a log-log plot of volume fraction   versus 
pgyr rR /  at time 5.87t  for 

both one-way and two-way coupling computations. The slopes of the best-fit lines to the 

data were obtained as 9351.0  and 8818.0  for one-way and two-way coupling, 

respectively. These values almost exactly agree with the exponent 3fd  given in (5.29) 

using the previously cited values of fractal dimension 
fd .  
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(a)                                                                  (b) 

Figure 5.7. (a) Distribution plot showing the particle volume fraction as a function of the dimensionless 

radius of gyration, 
pgyr

rR / , on a log-linear plot for both one-way coupling (blue bars) and two-way 

coupling (red bars). (b) Plot showing the power-law fit given in Eq. (29), where the slope of lines on the 

log-log plot are equal to the fractal dimension 3
f

d . The data is for case 2 at 5.87t , for one-way 

coupling (blue crosses) and two-way coupling (red circles). 

 In order to better clarify the physical differences between the one-way and two-

way coupling computational results, we define 
parV  and relV  as the average magnitudes 

of the particle velocity v and the particle slip velocity uvv slip
, respectively. The 

magnitudes of the particle velocity and the particle slip velocity were computed for all 

particles, and then averaged over all particles contained within agglomerates (omitting 

values for single particles that are not in an agglomerate). Time variation of both 
parV  and 

relV  is plotted in Figure 5.8a for case 2. The average particle velocity magnitude 
parV  

fluctuates for both the one-way and two-way coupling computations within the interval 

0.35-0.45, which is slightly greater than the root-mean-square turbulence fluctuation 

velocity 0.2850 u  listed in Table 5.1. The average particle slip velocity relV  similarly 

remains approximately constant in time for the one-way coupling run. For the two-way 
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coupling case, by contrast, the value of relV  is observed to gradually decrease in time, 

with a value at the end of the run that is nearly half of the initial value. The decrease in 

particle slip velocity with time for the two-way coupling computation is an indication that 

the fluid velocity within the agglomerate is becoming correlated with the particle 

velocity, resulting in a reduction of the relative velocity between the two phases within 

the larger agglomerates. Another measure of this phenomenon is represented by the 

agglomerate penetration parameter P, which is defined as  

 
p

rel

V

V
P  . (5-30) 

The time variation of P is plotted in Figure 5.8b, showing approximately constant value 

for one-way coupling and a steady reduction in time for the two-way coupling 

computation. Both the higher volume fraction of agglomerates with two-way coupling 

and the correlation between the fluid and particle velocity fields makes it increasingly 

difficult for the fluid to penetrate into the agglomerates of the two-way coupling run as 

the agglomerate size increases.  
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                                      (a)                                                                (b) 
 

Figure 5.8. Time variation of (a) the average particle velocity magnitude 
par

V  (upper curves) and the 

average particle slip velocity magnitude 
rel

V  (lower curves) and (b) the agglomerate flow penetration 

parameter P for computations with one-way (dashed lines, deltas) and two-way (solid lines, circles) 
coupling for case 2. 

 To further examine the spatial variation of various fields within the agglomerate, 

we introduce a second-moment measure )(Fi of a given field )(xF  for each 

agglomerate i as    
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where ix  is the centroid of agglomerate i  and 
jF  is the value of the function )(xF  

evaluated at the centroid 
jx  of the jth particle within the agglomerate. The second-

moment measure is shown in Figures 5.9a and 5.9b for two different fields      the relative 

velocity magnitude slipv  and a strain rate measure DD :2S , where D is the fluid 

rate of deformation tensor. For each of these two fields, the average value of the moment 
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)(Fi  is plotted as a function of number of particles in the agglomerate using the same 

logarithmic bins as used in Figure 5.6a, where the averaging is performed for all 

agglomerates in each bin. A value of the second moment )(F  equal to unity indicates 

that the function )(xF  is uniform (or statistically randomly varying) across the 

agglomerate, whereas a value of )(Fi  that is less (greater) than unity implies that 

particles with higher (lower) values of )(xF  are found near the center of the agglomerate 

compared to particles on the outer parts of the agglomerate. Obviously, for the smallest 

bin representing agglomerates with only two particles, all second moments are equal to 

unity by definition.   

 The second moment of the relative velocity magnitude is shown in Figure 5.9a. 

The second moment is observed to be larger than unity for both one-way and two-way 

coupling computations, particularly within the middle range of agglomerate size spanning 

from 6 to 1500 particles. The second moment for the one-way coupling computation 

tends to be higher in the lower end of this range, for agglomerates with between about 6 

to 40 particles, and the values for the two-way coupling computation tend to be higher for 

the upper part of this range, for agglomerates with between 700 to 1500 particles. Several 

mechanisms play a role in increasing the second moment of the relative velocity above 

unity. A mechanism that is present for both one-way and two-way coupling computations 

is the rotational inertia of the particles, which leads to a particle velocity magnitude that 

increases linearly with distance from the agglomerate centroid. Consequently, the value 

of relV  is higher for the outermost particles, which are a farther distance away from the 

agglomerate center than the innermost particles, hence causing the second moment to 
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increase above unity. A similar linear velocity variation with distance from the centroid 

exists for shearing or elongational deformation of the agglomerates. For the computation 

with two-way coupling, the fluid within the inner region of the agglomerate is influenced 

by the particle-induced body force and becomes correlated to the particle velocity, such 

that the fluid within the agglomerate moves with the inner particles. This effect will tend 

to decrease relV  for the inner particles (and increase the second moment) in the two-way 

coupling computation, but it occurs primarily for larger agglomerates.   

 The second moment of the straining rate measure DD :2S  is shown in 

Figure 5.9b. The value of this measure is nearly equal to unity for the one-way coupling 

computation since the straining measure depends only on the fluid flow, and hence can be 

treated as a random variable. The second moment of the straining measure is also close to 

unity for small agglomerates with two-way coupling. As the number of particles per 

agglomerate increases (to a value greater than about 100), the straining rate measure 

gradually increases above unity, indicating that the straining rate experienced by the 

particles is higher for particles near the outer edges of the agglomerate than for particles 

near the center. The outermost particles can act almost like a screen for the larger 

agglomerates with two-way coupling, preventing the inner particles from being exposed 

to high strain rate. This observation is consistent with the results of studies, such as 

Binder et al. [60] or Fellay et al. [61], that use direct simulation techniques such as 

lattice-Boltzmann or Stokesian dynamics to compute simple flow fields or rotational 

motion for single agglomerate structures. For larger-size agglomerates that are nearly 

spherical in shape, our findings are also approximately consistent with the shell-core 

model for agglomerate structure proposed by Kusters et al. [30], in which each 
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agglomerate is idealized as a two-layer sphere, where the outer ‘shell’ layer is porous and 

the inner ‘core’ layer is impermeable.    

 

    
 (a) (b) 
 

Figure 5.9. Second-order moment plots for (a) relative velocity magnitude 
rel

V , and (b) shear measure 

DD :2S , shown for results of computations with one-way coupling (blue bars) and two-way 

coupling (red bars) for case 2 at 5.87t . The number of particles in the agglomerate are grouped 

logarithmically into bins, with average number of particles for the given bin indicated by 
B

N  . 

There is, of course, some inaccuracy in the second moment measure discussed 

above, since the agglomerates are not particularly spherical in shape, but instead appear 

to have a wide variety of jagged and/or elongated shapes. To make the relative velocity 

and strain rate measures more understandable, we have visualized the relative velocity 

and strain rate measures for some sample agglomerates from the two-way coupling 

computation in Figures 5.10a and 5.10b. These figures visually confirm that outer regions 

of the agglomerates experience higher values of the relative velocity and shear measures 

compared to points in the inner region of the agglomerates, even for non-spherical 

agglomerates.  
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(a) 

 

 
(b) 

 

Figure 5.10. Scatter plots of the five largest agglomerates with colors indicating (a) the relative velocity 
magnitude and (b) the shear stress measure S for the two-way coupling run for case 2 at 100t . 

5.4. Conclusions 

 A series of computations were performed to examine the differences between 

computations of turbulent particle agglomeration with one-way and with two-way phase 

coupling. The computations examined cases with Kolmogorov-scale Stokes numbers 

varying from about 0.8 to about 14. In agreement with previous literature examining 

turbulence modulation by particles in this range of Stokes numbers, we observe that the 
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particles cause enhanced attenuation of the turbulent kinetic energy compared to 

computations with no particles. The rate of attenuation increased with increase in the 

particle size and mass loading. In a series of computations repeated both with adhesion 

and without adhesion, we observe little difference in the rate of particle attenuation, 

except for the largest size particles. Examination of the agglomeration process indicates 

that significant agglomeration occurred during the computations, but without any 

significant influence on the turbulence modulation. This observation reinforces the notion 

expressed in previous literature [51] that the turbulence attenuation in this Stokes number 

regime is dominated by particle inertia.  

 Examination of agglomerate structure during the turbulent agglomeration 

process indicated that agglomerates formed with two-way coupling were larger and 

contained more particles than those generated under one-way coupling computations, 

even though at the time of comparison the turbulent kinetic energy for the two cases was 

about the same. Agglomerates formed with both one-way and two-way coupling 

computations had about the same fractal dimension 
fd , which compared well with 

values cited in previous experimental literature for turbulent agglomeration. The volume 

concentration of particles in each agglomerate was computed and found to vary as a 

power function with exponent equal to 
fd3 , in agreement with previous literature on 

agglomerate fractal structure [2].  While the magnitude of the particle velocity is similar 

for agglomerates computed with one-way and two-way coupling, the relative velocity 

between the particle and the fluid is much lower for the two-way coupling computations, 

particularly once larger-size agglomerates start to form. Several different measures 

indicated that the fluid flow generated in agglomerates acts to shield the inner-most 
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particles, so that the highest shear stresses and relative velocity occurs for the outer 

particles in agglomerate. The motion of fluid inside the large agglomerates was found to 

be highly correlated to the agglomerate motion.  
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Abstract 

A computational study was performed of both a single agglomerate and the collision of 

two agglomerates in a simple shear flow. The agglomerates were extracted from a direct 

numerical computation of a turbulent agglomeration process, and had the loosely-packed 

fractal structure typical of agglomerate structures formed in turbulent agglomeration 

processes. The computation was performed using a discrete-element method for adhesive 

particles with two-way coupling between the particles and the surrounding fluid flow. In 

addition to understanding and characterizing the particle dynamics, the study focused on 

illuminating the fluid flow field induced by the agglomerate in the presence of a 

background shear and the effect of collisions on this particle-induced flow. Perhaps the 

most interesting result of the current work was the observation that the flow field induced 

by a particle agglomeration rotating in a simple shear background flow has the form of 

two tilted vortex rings with opposite sign circulation. These rings are surrounded by a sea 

of stretched vorticity from the background shear flow. The agglomerate rotates in the 

shear flow, but at a slower rate than the ambient fluid elements. In the computations with 

two colliding agglomerates, we observed cases resulting in agglomerate merger, 

bouncing and fragmentation. However, the bouncing cases were all observed to also 

result in an exchange of particles between the two colliding agglomerates, so that they 

were influenced both by elastic rebound of the agglomerate structures as well as by 

tearing away of particulate matter between the agglomerates. Overall, the problems of 

agglomerate-flow interaction and of the collision of two agglomerates in a shear flow are 

considerably richer in physical phenomena and more complex than can be described by 
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the common, but simplistic, approximation that represents each agglomerate by an 

'equivalent sphere'.    

6.1. Introduction 

 Collision of particle agglomerates with each other and with container walls or 

other obstacles in turbulent flow fields is important during both the agglomerate 

formation and breakup processes. The significance of agglomerate collisions has been 

studied for important industrial processes such as drug particle dispersion in dry particle 

inhalers (Tong et al., 2013, 2016; Yang et al., 2014), cyclone operation (Tong et al., 

2010), and particle filtration (Iimura et al., 2009a,b).  Similar agglomerate-agglomerate 

collision processes occur in astrophysics during formation of protoplanatary disks (Ormel 

et al, 2007, 2009) and in the dynamics of planetary rings (Schäfer et al., 2007).  

 The development of particle agglomerates in turbulent flows occurs through a 

series of processes in which individual particles collide and adhere to form small 

agglomerates, and these small agglomerates then collide and adhere to each other to form 

larger agglomerates, and so forth (Dizaji and Marshall, 2016). As the agglomerates 

increase in size, the agglomerates begin to lose particles by processes such as erosion of 

small groups of particles from an agglomerate surface or rupture of the agglomerate into 

smaller pieces in response to the fluctuating turbulent shear flow (Serra et al., 1997; 

Higashitani et al., 2001), eventually balancing the agglomerate formation processes to 

achieve a quasi-equilibrium state (provided that the turbulence itself is in an equilibrium 

state). As discussed by Sayvet and Navard (2000), a dominant agglomerate breakup 

process for turbulent flows at lower shear stress values is simply fragmentation of 

agglomerates during collisions with other agglomerates. The question of whether two 
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colliding agglomerates will merge together, bounce off of each other, or split apart into a 

large number of fragments is thus one of central importance for a wide range of 

processes. All three of these outcomes were observed under different conditions in a 

microgravity experiment of particle agglomerates in a vibrated box by Brisset et al. 

(2016) for different values of the collision velocity and in a normal gravity experiment by 

Ihalainen et al. (2012) in which agglomerates were impacted onto a flat surface.   

 An important simplification that is often made in modeling turbulent 

agglomeration is to replace a particle agglomerate by single 'effective particle', often 

selected as a sphere with the same mass as the agglomerate. This assumption is integral to 

the traditional population balance models for agglomerate formation (Smoluchowski. 

1917; Lu and Wang, 2006; Reinhold and Briesen, 2012), and it plays an important part in 

many analytical statistical models for the early stages of agglomerate formation in 

turbulence (Brunk et al., 1998; Chun and Koch, 2005; Koch and Pope, 2002; Wang et al., 

1998). This equivalent sphere assumption is also used in the 'extended hard-sphere' DEM 

method, which seeks to use the hard-sphere approach for binary collisions to study 

formation of particle agglomerates (Kosinski and Hoffmann, 2010; Balakin et al., 2011). 

All such applications of this equivalent sphere approximation must impose some external 

criterion for whether or not an agglomerate will stick or bounce upon collision. While an 

equivalent sphere might have the same particle mass as an actual agglomerate, its 

mechanical properties and behavior would be dramatically different. As we note above, 

and will discuss in more detail later in the paper, agglomerate collisions are often much 

more complicated than a simple stick or bounce decision, with agglomerates exchanging 
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particles with each other or ejecting multiple fragments as a result of the collision. Such 

behavior generally is not captured with the equivalent sphere approximation.   

 There is a fairly large literature on use of the discrete element method (DEM) for 

examining collision of tightly-packed agglomerates with a wall (Kafui and Thornton, 

2000; Lian et al., 1998; Moreno et al., 2003; Moreno-Atanasio et al., 2006; Thornton et 

al., 1999; Ning et al., 1997; Thornton and Liu, 2004), with each other (Kun and 

Herrmann, 1999; Schäfer et al., 2007; Seizinger and Kley, 2013; Tong et al., 2009), or 

with some other obstacle, such as a cylinder or sphere in the flow field (Iimura et al., 

2009a,b; Yang et al., 2014). Experimental studies of compressed particle aggregates with 

each other (Beitz et al., 2011) and with a wall (Samimi et al., 2004) have also been 

reported. Much of this work is motivated by the problem of deagglomeration of particles 

in dry powder inhalers (Tong et al., 2013, 2016; Yang et al., 2014), used to break-up 

agglomerates and deliver small drug particles to the lungs, where they are absorbed. In 

this application, the particles are initially compressed into tightly-packed aggregates at 

the time of manufacture, which then need to be broken up to release the small drug 

particles at time of use. Alternatively, ice particles can form tightly-packed aggregates in 

planetary rings (Schäfer et al., 2007), and the dynamics of their collision plays a central 

role in understanding the ring dynamics.  

 A useful definition of agglomerate strength is given by given by Moreno-Atanasio 

and Ghadiri (2006), based on the work of Rumph (1962), as “the force that is required to 

break all contacts simultaneously on a prescribed failure plane”. This force depends both 

on the strength of the individual contacts and the number of contacts in the failure plane. 

The number of contacts in any given cross-sectional plane increases with the agglomerate 
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fractal dimension, with higher values for tightly-packed agglomerates with fractal 

dimension close to 3fd  and lower values for the loosely-connected agglomerates more 

typically formed in turbulent flocculation processes, with fractal dimension closer to 

2~fd . For instance, in experiments with turbulent agglomeration of latex particles in 

stirred tanks, Selomulya et al. (2001) reported 
fd  between 1.7 - 2.1 and Waldner et al. 

(2005) reported 
fd  between 1.8 - 2.6. The above definition of agglomerate strength is 

based on the idea of pulling an agglomerate apart in tension, whereas the agglomerate 

response to collision is more dependent on its behavior under compression. In 

compressive deformation, agglomerates with lower values of particle concentration are 

more susceptible to buckling of force chains due to having fewer surrounding particles 

(Marangoni and Narine, 2001). The sensitivity of agglomerate collisions to particle 

concentration c  (or void fraction c1 ) was noted in DEM simulations by 

Gunkelmann et al. (2016), who in a study of head-on collision of two agglomerates in a 

vacuum and found that agglomerates with higher porosities are more fragile during 

collision and have higher tendency to fragment. These conclusions are also supported by 

the simulations of Nguyen et al. (2014) of the collision of a loose agglomerate of fine 

particles with a larger spherical particle, who found a higher tendency of the loose 

agglomerate to fragment compared to simulations with highly packed agglomerates.  

 The current paper examines the collision of two particle agglomerates in a shear 

flow under conditions typical of agglomerate collision in turbulent flows. The 

agglomerate collision is computed using a CFD-DEM approach based on the soft-sphere 

method with two-way coupling. Loosely-structured agglomerates are first generated from 
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a direct numerical simulation of turbulent agglomeration (Dijazi and Marshall, 2016), and 

from which agglomerates are extracted and placed in a shear flow. We first examine 

agglomerate evolution and breakup in shear with no collision, and then examine the 

effect of two-agglomerate collision on agglomerate merger, bouncing, and fragmentation. 

The paper differs from previous work in its focus on agglomerate collision in shear flows, 

in its use of loosely-structured agglomerates typical of turbulent flocculation processes, 

and in its focus on fluid effects on the agglomerate collision.    

6.2. Computational Method 

 The computational method used in the paper proceeds in two parts. The first part 

is concerned with the initial formation of agglomerates in a turbulent flow, and the 

approach used for these computations have been described in detail in a previous paper 

(Dizaji and Marshall, 2016). The second part conducts a detailed examination of the 

collision process which occurs when two of the agglomerates are extracted and placed in 

a plane shear flow, which is intended to represent a very small section of the overall 

turbulent flow. The agglomerate collision is computed using a soft-sphere DEM method 

for the particles and a high-order finite-difference method for the fluid. A summary of 

each of these methods is given below. 

6.2.1. Discrete element method 

 The computations of particle agglomerate collision are performed using a soft-

sphere adhesive discrete element method (DEM) to model particle transport and 

collisions (Marshall, 2009). The computational method uses a multiple time step 

algorithm, in which the fluid time step )/( 0uOt  , the particle time step 

)/( 0udOt p  , and the collision time step ))/(( 5/1
0

22
uEdOt ppc   satisfy 
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cp ttt  . Here d is the particle diameter, 
p  is the particle density, and 

pE  is the 

particle elastic modulus. The method follows the motion of individual particles in the 

three-dimensional fluid flow by solution of the particle momentum and angular 

momentum equations  

 
AF

dt

d
m FF

v
 , 

AF
dt

d
I MM

Ω
 , (6-1) 

subject to forces and torques induced by the fluid flow ( FF , FM ) and by the particle 

collision and adhesion ( AF , AM ). In this equation, m is the particle mass, I is the moment 

of inertia, and v and  are the particle velocity and rotation rate, respectively. The 

dominant fluid force is the drag force, which is given by the Stokes drag law modified to 

account for the effect of local particle crowding  

 fdFd )(3 vu   , (6-2)    

where the friction factor CI CCf   is written as the product of an inertial correction term 

IC  and a particle crowding correction term CC . An expression for the inertial correction 

was given by Schiller and Naumann (1933) as  

 687.0Re15.01 pIC  ,  (6-3) 

where  /Re sfp dv  is the particle Reynolds number and uv sv  is the magnitude 

of the particle slip velocity relative to the fluid. This expression is valid to within 5% of 

comparison experimental data for particle Reynolds number up to about 800. An 

expression for the crowding correction factor was determined empirically by Di Felice 

(1994) for particle Reynolds numbers in the range 0.01 to 104 as a function of the void 

fraction   as  
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   1
CC , 






  2)]ln(Re5.1[

2

1
exp65.07.3 p . (6-4) 

This expression approaches the Wen and Yu (1966) expression for low particle Reynolds 

number. A viscous fluid torque arises from a difference in rotation rate of the particle and 

the local fluid element (Crowe et al., 2012), and is given by  

 )
2

1
(3 ωΩM  dF  , (6-5) 

where ω  is the fluid vorticity vector. While the drag is the primary fluid force acting on 

the particle, we also include in the computations several secondary forces such as the 

added mass force and the Saffman and Magnus lift forces (Saffman, 1965; Rubinow and 

Keller, 1961).   

The collision and adhesion force and torque fields on particle i with radius ir  are 

given by 

 SsnA FF tnF  , )()( nttnM  RrSsA MrF , (6-6) 

where ijij xxxxn  /)(  is the unit normal vector oriented along the line connecting 

the centers of the two colliding particles, i and j. The normal component of the collision 

and adhesion force nF  is further divided into an elastic-adhesion part neF  and a 

dissipative part ndF . The sliding resistance is composed of a force with magnitude sF  

acting in a direction St , corresponding to the direction of relative motion of the particle 

surfaces at the contact point projected onto the contact plane (the plane orthogonal to n), 

as well as a related torque in the Stn  direction. The rolling resistance, which arises due 

to the effects of particle adhesion, exerts a torque of magnitude rM  on the particle in the 
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nt R  direction, where Rt  is the direction of the “rolling” velocity. While all of these 

various collision-adhesion forces and torques are included in the current computations, 

the dynamics of small adhesive particles are dominated by the normal elastic-adhesive 

force and the rolling resistance torque.  

 The effective elastic modulus E and the effective radius R are defined by 

 
j

j

i

i

EEE

22 111  



 , 

ji rrR

111
 , (6-7)  

where iE , i , and ir  are the elastic modulus, Poisson ratio, and radius of particle i, 

respectively. The adhesive force between the two particles depends on the surface energy 

potential γ, where the work required to separate two spheres colliding over a contact 

region of radius )(ta  is given by 22 a  in the absence of further elastic deformation. 

Particle normal elastic rebound force and adhesion force are simulated by employing the 

soft-sphere collision model of Johnson, Kendell and Roberts (1971), hereinafter referred 

to as the JKR model, which can be written in terms of the contact region radius )(ta  and 

the normal particle overlap jijiN rr xx   as (Chokshi et al. 1993) 
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The critical overlap δc, the critical normal force Fc, and the equilibrium contact region 

radius oa  are given by (Johnson et al. 1971) 
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As two particles move away from each other following collision, they remain in contact 

until the point where cn FF   and cN    due to the necking of the material in the 

contact region. Beyond this state any further separation leads the two particles to break 

apart.  

The effect of the fluid squeeze-film within the contact region is to limit the 

minimum approach distance between the particles (i.e., the contact region gap size) and 

to reduce the particle restitution coefficient. Experimental studies of particle collisions at 

different Stokes numbers (e.g., Joseph et al., 2001) indicate that the coefficient of 

restitution is essentially zero when the Stokes number is less than about 10 due to 

dissipation in the squeeze-film. We use the model of Tsuji et al. (1992) for the dissipative 

part of the normal collision force ndF  and set the damping parameter such that the 

restitution coefficient vanishes.  

 The second major effect of particle adhesion is to introduce a torque that resists 

particle rolling. For uniform-size spherical particles, the “rolling velocity” Lv  of particle 

i is given by (Bagi and Kuhn 2004) 

 nΩΩv  )( jiL R  . (6-10) 

A linear expression for the rolling resistance torque rM  is postulated as 

 Rr kM  , (6-11) 

where 
RL

t

t

d tv   ))((
0

  is the rolling displacement in the direction LLR vvt / . 

Rolling involves an upward motion of the particle surfaces within one part of the contact 

region and a downward motion in the other part of the contact region. The presence of an 
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adhesion force between the two contacting surfaces introduces a torque resisting rolling 

of the particles. An expression for the rolling resistance due to van der Waals adhesion 

was derived by Dominik and Tielens (1995), which yields the coefficient Rk  as 

 2/3
0 )/(4 aaFk cR  .   (6-12) 

Dominik and Tielens (1995) further argue that the critical resistance occurs when the 

rolling displacement   achieves a critical value, corresponding to a critical rolling angle 

Rcritcrit /  . For crit  , the rolling displacement    in (6-11) is replaced by crit . 

Data for critical rolling angle with particles having diameter of approximately 10 m 

were reported by Ding et al. (2008), who found critical rolling angles crit  of between 

0.02 and 0.06 radians.  

 A simplified expression for the effect of van der Waals adhesion on tangential 

sliding resistance was proposed by Thornton (1991). In this model, the sliding resistance 

force sF  is given by a spring-like expression of the form (Cleary et al., 1998) 

 
S

t

t

STs dkF tv   ))((
0

  (6-13) 

when sF  is less than a critical value critF . In (6-13), the sliding velocity )(tSv  is the 

relative tangential surface velocity of the particles at the contact point projection. The 

tangential stiffness coefficient Tk  is derived by Mindlin (1949) and can be written in 

terms of the contact region radius )(ta  as 

 )(8 taGkT  . (6-14) 

The critical sliding force is approximated using the expression  
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 cnefcrit FFF 2  , (6-15) 

where cF  is the critical force for pull-off given in given in (6-9) and 
f  is the friction 

coefficient. The expression (6-15) was shown Thornton (1991) to provide results in 

reasonable agreement to experiments. For crits FF  , the sliding resistance is given by 

the Amonton expression crits FF  .  

6.2.2. Agglomerate formation 

 The agglomerates are formed using a turbulent agglomeration process with two-

way coupling, similar to that described by Dizaji and Marshall (2016). The computations 

employed a pseudo-spectral method for forced turbulence on a triply-periodic domain 

measuring 3)2(  , with 128 grid points in each direction. The turbulence is initiated with 

random perturbations and allowed to develop with no particles until it approached a 

quasi-steady state corresponding to microscale Reynolds number 99/Re 0   u . 

Particles are then added to the computation, with 46,656 particles spread randomly over 

the flow field with diameter 04.0d  and particle-to-fluid density ratio 10/ fp  . 

Over time as the particles are advected by the flow, small agglomerates first form and 

then collide with each other to form progressively larger agglomerates.  

 The computation was stopped once the agglomerates achieved a broad range of 

sizes. One common way to measure the size of an agglomerate is the radius of gyration 

gR , which for an agglomerate with N  particles is defined by 

 
2/1
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xx i

N
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gR . (6-16) 
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In this equation, x  denotes the position vector of the agglomerate centroid and ix  is the 

centroid of the ith particle within the agglomerate. Particle agglomerates admit a power 

law relating N and 
gR  given by (Adachi and Ooi, 1990) 

   fd

pg rRKN / , (6-17) 

where K is a coefficient (called the fractal pre-factor), 
pr  is the individual particle radius, 

and the exponent 
fd  is the fractal dimension of the agglomerate. The value of 

fd  for 

particle agglomerates varies over the interval 31  fd  depending on the agglomeration 

formation mechanism (Brasil et al., 2001); however, typical values for turbulent particle 

agglomeration processes are between about 1.7 - 2.8 (Selomulya et al., 2001; Waldner et 

al.). A log-log plot of N versus 
pg rR /  for the current turbulent flow simulation is given 

in Figure 6.1. The best-fit line to DNS data has slope 12.2fd , which is consistent with 

the range of fractal dimension observed in the experimental turbulent particle 

agglomeration studies listed above. 

 
Figure 6.1. Plot of the number of particles in an agglomerate N versus the ratio of the radius and gyration 

of the agglomerate 
gR  and the individual particle radius 

pr . The slope of the plot indicates the 

dimension 12.2fd  of the power law in Eq. (17). 
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6.2.3. Shear flow simulation    

 The agglomerates extracted from the turbulent agglomeration calculation 

described in Section 6.2.2 are immersed in a linear shear flow, where the initial 

configuration appears as shown in Figure 6.2a for cases with a single agglomerate in the 

shear flow and as shown in Figure 6.2b for cases with agglomerate collision.  

 

Figure 6.2. Schematic diagram of the initial conditions for the problems of (a) a single agglomerate in a 

shear flow and (b) two-agglomerate collision in a shear flow. Circles indicate the radius of gyration 
gR , 

and the offset distance aD  is indicated in (b) in both positive and negative directions. 

 Over time, the shear flow is modified by the presence of the particles, as 

described below. The fluid flow is assumed to be incompressible and is governed by the 

continuity and momentum equations of the form   

 0 u , (6-18a)  

 p

f

p
t

Fuuu
u



 21

)( 


.  (6-18b) 

In this equation, u, p and pF  are the fluid velocity, the pressure and the particle-induced 

body force per unit mass, respectively. The void fraction c1  was not included in (6-
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17) since our computations indicate that local void fraction remains above 90% even 

within the agglomerates for current computations due to the loose structuring of 

agglomerates typical of turbulent flow.   

 Both the particle-induced body force and the particle concentration field (a post-

processing variable) were computed using the conservative particle blob method 

described by Marshall and Sala (2013). In this method, the particle body force field 

),( tp xF  is written as the sum of some number N particle ‘blobs’, centered at positions 

nx , as   

 ),(),(
1

nnwn

N

n

p Rft xxAxF 


. (6-19) 

The Gaussian weighting function wf  is a function of position and the characteristic blob 

‘radius’ nR  as  

 ]/exp[
3

2
),( 22

3 nn

n

nnw R
R

Rf xxxx 


.  (6-20) 

The blob amplitude, nA , is given by  
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where 
jg  is the location of the centroid of grid cell j, and nx  is the centroid of particle n, 

cellG  is the grid cell volume, and 
nf ,F  is the fluid-induced force acting on particle n 

(which imposes an equal and opposite force nf ,F  back on the fluid). The force nf ,F  is 

given by the sum of the drag force in (6-2) plus minor forces such as lift, added mass 

force, and pressure gradient force. Each particle distributes part of its force to a set Q of 
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surrounding grid cells, and the sum in the denominator of (6-21) is evaluated over all grid 

cells in this set Q. With the choice (6-21) for blob amplitude, the discrete-to-continuum 

conversion operation is discretely conservative. This method can be applied to other 

quantities, such as the particle concentration, simply by replacing the particle force with 

the particle volume.  

 The computations were performed using a fractional-step method (Rai and Moin, 

1991; Verzicco and Orlandi, 1996; Uhlmann, 2005), with time advancement performed 

using a third-order Runga-Kutta method for convective terms and the 2nd order Crank-

Nicholson method for viscous terms. Algorithms for all spatial derivatives except the 

convective terms are approximated using second-order centered finite differences (three 

point stencil) on a non-staggered grid. The discretized equations for the kth Runge-Kutta 

step are given by 
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where k , k , and k  are coefficients given by Rai and Moin (1991). Continuity is 

enforced by a projection method leading to equation (6-22c) for the pseudo-pressure, 

denoted by  . In the multigrid solution of this equation, the five-point stencil produced 
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by successive application of the gradient operation followed by the divergence operation 

was employed, rather than the finite-difference approximation to the Laplacian. The 

Crank-Nicholson method was used to solve the Helmholtz problem, given in (6-22b). A 

tenth-order approximation was used for the convective terms, requiring an 11-point 

stencil. To control non-linear instabilities, at the end of each time step the velocity 

components were filtered using a tenth-order filter (again using an 11-point stencil)(Lele, 

1992; Steijl, 2001). After filtering to obtain filteredu , the velocity u  was replaced by 

(1 ) filtered
q q u + u  , with q = 0.05. 

 The flow was initialized in the x-direction with linear variation in the y-direction. 

The upper wall at y = 2 was maintained at a velocity u = 1 and the lower wall at y = -2 

was maintained at a velocity of u = -1, giving a dimensionless shear rate of 5.0S . The 

no-slip boundary condition was applied at both the top and bottom wall in the y-direction, 

and the flow was assumed to be periodic in the x- and z-directions. A layer of five ghost 

points in each direction surrounded the computational domain, so that no adjustment of 

the differentiation schemes was needed near the domain boundaries. The velocity on the 

ghost points was set at the upper and lower edges of the grid by linearly extrapolating the 

velocity from the point on the wall and the first point off of the wall. The velocity on the 

ghost points at the horizontal edges of the grid were set so as to enforce periodicity. The 

fluid flow calculations were carried out on a Cartesian grid with equal spacing in each 

direction. The computations were performed on a 1283 grid covering the interval (-2,2) in 

each coordinate direction. The time step was held fixed at 005.0t . The dimensionless 

fluid kinematic viscosity was set to 0003.0  for all computations.  
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 6.3. Agglomerate Motion and Breakup in Shear Flow  

 In this section we examine the dynamics of a single particle agglomerate exposed 

to shear flow, with particular focus on examination of the particle-induced flow field 

associated with rotation of the agglomerate in the shear flow and on the conditions for 

agglomerate breakup. This section helps to set the stage for the study of agglomerate 

collision in shear flow in the next section. The problem of agglomerate dynamics in a 

shear flow has been previously examined by a number of authors. A series of 

experiments on this problem were reported by Sonntag and Russel (1986), who found 

that the average radius of gyration of the agglomerates could be expressed as a power law 

function of the shear rate as 06.13  SRg . Since the average number of particles in the 

agglomerate N was related to radius of gyration by a power law expression of the form 

(6-16), with 48.2fd  in their experiments, their expression for agglomerate size in the 

shear flow could alternatively be expressed as 878.0 SN .  

 A number of DEM simulations of agglomerate dynamics in a shear flow have 

been reported (Potanin, 1993; Higashitani et al., 2001; Fanelli et al., 2006; Becker et al., 

2009) based on the so-called free-draining approximation, which assumes that the 

particles do not influence the fluid flow (one-way coupling). Potanin (1993) and Becker 

et al. (2009) further assumed that particles did not influence fluid forces on each other 

(even under close packing in the agglomerate), whereas Higashitani et al. (2001) and 

Fanelli et al. (2006) assumed that fluid drag forces act only on particle surfaces on the 

outside of the agglomerate (i.e., that fluid does not penetrate into the agglomerate). 

Higashitani et al. (2001) observed that the average number of particles in broken 
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agglomerate fragments, N, varies with the adhesion parameter as 872.0AdN , where Ad 

represents a ratio of adhesive to hydrodynamic force. Since Ad is inversely proportional 

to shear rate, this observation is consistent with the scaling found experimentally by 

Sonntag and Russel (1986). Becker et al. (2009) compared the DEM simulations using 

the free-draining approximation to a full finite-element simulation of the flow field and 

found that the free-draining approximation breaks down as the agglomerate size 

increases. This observation is consistent with that made in a recent DEM/CFD study of 

turbulent agglomeration by Dizaji and Marshall (2016), who compared results with one-

way and two-way coupling and found significant deviance between the two as the 

agglomerate size increased. Becker et al. (2009) observed that small agglomerates rotate 

in an almost rigid-body fashion in the shear flow, large agglomerates break up into 

pieces, and agglomerates of an intermediate size undergo a restructuring, in which they 

deform and change form as they rotate but do not break up.  

 A full CFD-DEM study of agglomerate dynamics in a shear flow was reported by 

Zeidan et al. (2007), but the computations are restricted to two-dimensions and the 

models used for particle collision and adhesion forces were highly simplified. For 

instance, no tangential forces on the particles were included to resist rolling and sliding 

motions, which as noted by Becker et al. (2009) are important in modeling agglomerate 

deformation under the shear flow.  

 In the current section, we report on a three-dimensional CFD-DEM study of 

agglomerate dynamics in a shear flow using a complete and well-validated DEM 

approach, with a focus on resolving and understanding the flow field induced by the 

particles. In order to work with agglomerate structures typical of those found in turbulent 
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agglomeration processes, the computations were initiated by extracting an agglomerate 

from the turbulent flow computation described in Section 6.2.3 and inserting it into an 

initially linear shear flow. The flow evolution is then computed using the CFD method 

described in Section 6.2.2 and the DEM model described in Section 6.2.1.  

 The shear flow acts to rotate and stretch the agglomerate, whereas the adhesion 

force acts to hold the agglomerate together as a rigid body. The competition between 

these two effects determines the agglomerate behavior in the shear flow. We let 0gR  

denote the initial radius of gyration of the agglomerate and S denote the ambient shear 

rate. The characteristic length, time and velocity scales of the flow were selected as 0gR , 

S/1 , and 0gSR , respectively. The primary dimensionless parameter governing the 

agglomerate behavior in the shear flow is the adhesion parameter, which for current 

purposes is defined as the ratio of the adhesion force between individual particles 

( )( dO  ) to the viscous force ( )( dUO  ) imposed on a particle by the fluid flow. Using 

0~ gSRU  as the typical velocity scale, the adhesion parameter for this problem takes the 

form 

 
0

Ad
gSR


 . (6-23) 

This measure is essentially the same as the inverse of the fragmentation number proposed 

by Hansen et al. (1998). A secondary parameter characterizing the particle motion is the 

Stokes number St, which is interpreted as the ratio of particle characteristic time scale 

dmp  3/  to the fluid time scale Sf /1 , giving 
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18

St
2
Sdp . (6-24) 

 The values of the adhesion parameter Ad, the initial number of particles 0N , and 

the ratio dRg /0  of initial agglomerate gyration radius to particle diameter are given for 

all single-agglomerate runs in Table 6.1. All computations reported in the paper have 

Stokes number of St = 1.4 and density ratio of 10/ fp  . The shear Reynolds number 

can be defined in terms of shear rate and radius of gyration as /Re 2
0gS SR , which is 

found to have a value ranging from 52-102 in the current computations, depending on 

which of the three extracted agglomerates are under consideration. In a turbulent flow, 

the parameters used in these computations would therefore be larger than the 

Kolmogorov scale and smaller than the integral scale, perhaps typical of the Taylor 

microscale of the turbulent motion.   

Table 6.1. Listing of parameter values for cases examined with a single agglomerate in a 

shear flow, including adhesion parameter, initial number of particles, and ratio of initial gyration 

radius to particle diameter. For all cases examined St = 1.4 and 10/ fp  . 

Case Number  Ad 
0N  dRg /0  

A.1 133 328 4.81 
A.2 333 328 4.81 
A.3 666 328 4.81 
A.4 999 328 4.81 
A.5 146 269 4.40 
A.6 364 269 4.40 
A.7 728 269 4.40 
A.8 1092 269 4.40 
A.9 104 577 6.17 
A.10 259 577 6.17 
A.11 518 577 6.17 
A.12 778 577 6.17 
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 Computations in this section were performed using three different agglomerates 

selected from the turbulent agglomeration simulation, and for four different adhesion 

parameter values for each agglomerate. A time series of the particle positions during a 

typical run (Case A.4) for a case where the agglomerate rotates without breakup, but 

exhibits some restructuring during the rotation, is shown in Figure 6.3. The particles in 

Figure 6.3 are colored by the magnitude of the relative particle velocity, defined by 

uvw  , where v is the particle velocity and u is the fluid velocity. We will also later 

refer to the relative fluid velocity xrel Syeuu  , which is simply the fluid velocity field 

minus the velocity of the ambient shear flow. The initial velocity of the agglomerate 

particles is set equal to a rigid body rotation at the rotation rate S/2 of the shear flow, for 

which there exists a vertical y-component of velocity in addition to the x-component of 

velocity characteristic of the ambient shear. This initial rotation rate of the agglomerate 

gives rise to a linear variation of the relative particle velocity extending outward from the 

agglomerate center, as shown in Figure 6.3a. At later times, the size of the region of low 

relative particle velocity near the agglomerate center appears to grow and the particles 

with higher values of relative particle velocity are restricted to the outer parts of the 

agglomerate. This development is due to the effects of the particle-induced velocity field 

in shielding the inner regions of the agglomerate.  
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Figure 6.3. Particle positions at times (a) t = 0, (b) 10, (c) 20, and (d) 30 for Case A.4. The particles are 
colored by the magnitude of the relative velocity vector. The agglomerate is rotating clockwise in the 

shear flow and completes approximately one rotation in the time interval shown.  

 In the following, we shall examine the results for Case A.4 in detail, which is 

typical of a case where the agglomerate does not break up in the shear flow. The particle 

coordination number for this computation remains nearly constant with time at a value of 

3.9. The radius of gyration 
gR  and the particle concentration 

aggc  within the agglomerate 

oscillate in time, as shown in Figure 6.4b. The value of 
aggc  is computed by dividing the 

volume of all particles associated with the agglomerate, 3)6/( NdVp  , by the effective 

volume 
effV  occupied by the agglomerate. The agglomerate effective volume is estimated 

by 3
,)3/4( ieffeff RV  , where the effective radius of the agglomerate 

effR  is related to the 

radius of gyration by geff RR 2/5 . This expression is based on the expression for 

radius of gyration of a solid sphere of uniform density. The particle volume fraction of 

the agglomerate can be related to the fractal dimension by (Jiang et al., 1991; Kusters et 

al., 1997)  

 
3

,0, )/(  fd

igiagg dRcc , (6-25)    
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where 0c  is a constant. If the fractal dimension  3fd , an increase in agglomerate size 

results in a decrease in average particle volume fraction (Olfert et al., 2007). Both the 

radius of gyration and the particle concentration 
aggc  within the agglomerate oscillate 

during the computation as agglomerate restructuring occurs, with oscillation amplitude of 

about 3% of the mean radius of gyration and 9% of the mean particle concentration.    

 

         
  

Figure 6.4. Plot showing the time-variation of the gyration radius 
gR  (solid line, left-hand axis) and the 

particle concentration within the agglomerate 
aggc  (dashed line, right-hand axis) for Case A.4. 

      The time variation of the magnitude of the particle velocity v and the relative 

particle velocity w are plotted in Figure 6.5a. The particle velocity magnitude oscillates 

during the computation and the relative particle velocity exhibits a rapid initial decrease 

and then oscillates during the remainder of the computation. The latter result indicates 

that the fluid flow within the agglomerate responds quickly to changes in the particle 

velocity. The fact that the relative particle velocity magnitude is lower than the particle 

velocity magnitude for most of the computation is a result of the particles dragging the 
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fluid flow around with them as they rotate in the flow field, thereby decreasing their 

relative velocity.    

 The distribution of different measures within the agglomerate is examined by 

computing the second-moment measure )(Fi of a given field )(xF  for each 

agglomerate i as  
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where ix  is the centroid of agglomerate i  and 
jF  is the value of the function )(xF  

evaluated at the centroid 
jx  of the jth particle within the agglomerate (Dizaji and 

Marshall, 2017). The second-moment measure is shown in Figure 6.5b for three different 

fields      the particle coordination number cn , the magnitude of the relative particle 

velocity magnitude w, and the magnitude of the relative particle rotation rate about the 

agglomerate center   

 
2

,,, )( aggcaggcrelagg xxwxxΩ  . (6-27) 

A value of the second moment )(F  equal to unity indicates that the function )(xF  is 

uniform (or statistically randomly varying) across the agglomerate, whereas a value of 

)(Fi  that is less (greater) than unity implies that particles with higher (lower) values of 

)(xF  are found near the center of the agglomerate compared to particles on the outer 

parts of the agglomerate. Figure 6.5b shows that the second moment measure for the 

coordination number is consistently less than unity (close to 0.9), indicating that the 
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agglomerate is more compact near its center than in its outer parts, as would be expected 

of a fractal agglomerate structure. The second moment of the relative velocity magnitude 

oscillates as the agglomerate restructures during rotation in the shear flow, but its value 

remains well above unity, varying from about 1.35 to 1.95. This observation supports the 

statement made earlier that small values of relative particle velocity are found near the 

center of the agglomerate and larger values are found only on the outermost particles. 

While this difference is related, in part, simply to the rotation of the agglomerate about its 

centroid, it is evident by comparison of Figure 6.3a and 6.3d that this effect becomes 

more pronounced with time, indicating that the particle-induced flow also plays a role. 

The relative particle rotation rate about the agglomerate centroid, also oscillates in time, 

increasing from near unity at the start of the computation to an average value of about 1.2 

in the second half of the computation. This quantity can be viewed as a measure of the 

effect of the particle-induced fluid flow - if there were no particle-induced flow the value 

of this quantity would remain at unity. The fact that this measure increases above unity is 

an indication that the particle-induced flow shields the inner parts of the agglomerate, 

resulting in a lower ratio of the relative velocity to radial distance in this region than in 

the outer part of the agglomerate. A somewhat similar observation of shielding of the 

center parts of agglomerates falling in a fluid was noted by Kusters et al. (1997).    



 

242 

   
                                       (a)                                                                  (b) 

 

Figure 6.5. Plot showing the time-variation of (a) the average value of the magnitude of the particle 
velocity v (dashed line) and the relative particle velocity vector uvw   (solid line) and (b) the 

second-moment measure for particle coordination number (black line), relative rotation rate about the 
agglomerate centroid (blue line), and relative velocity magnitude (red line) for Case A.4.  

 The rotation frequency of a fluid element in the shear flow is equal to 

0398.02/)2/(  Sf fluid
. The rotation period of the agglomerate was estimated by 

labeling each point and observing the time required for one rotation. This measurement is 

necessarily somewhat imprecise since there is some restructuring of the agglomerate 

during the rotation, but we took care to also estimate the uncertainty in the estimate. 

Taking the inverse of the rotation period, our estimate of agglomerate rotation frequency 

for this computation is 002.0027.03.37/1 aggf . Consequently, we observe that the 

particle agglomerate is rotating about 30% more slowly than would a fluid element in the 

shear flow. This observation is consistent with the findings of Li et al. (2016), who found 

that a porous circular particle in a two-dimensional shear flow rotates in the flow more 

slowly than a fluid element. In Figure 6.6a, we plot contours of the relative fluid velocity 

in the streamwise (x) direction, relu , at time t = 20, which is typical of the results 
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observed throughout the computation. The relative fluid velocity is found to be oriented 

in a direction opposite to the ambient shear velocity, with negative value for y > 0 and 

positive value for y < 0. A profile of the relative fluid velocity along the y-axis (x = z = 0) 

is shown in Figure 6.6b as dots, with the ambient shear flow drawn as a solid line. We 

again see that the computed velocity in the region near the agglomerate ( 4.0y ) lags 

behind the ambient shear velocity, which is due to the fact that the particle agglomerate is 

rotating more slowly than the fluid element so that the forces induced by the particles 

retard the fluid flow.     

     
                                   (a)                                                                          (b) 

Figure 6.6. (a) Contour plot of the x-component relu  of the relative velocity in the x-y plane, for Case 

A.4 at t = 26. (b) Profile of the x-component of velocity u along the y-axis. The solid line denotes the 
ambient shear flow and the dots denote the computed velocity profile.     

 A series of plots in the three cross-sectional planes (x-y, x-z, and y-z) are shown 

in Figure 6.7, where for each plane we plot the in-plane streamlines (obtained by setting 

the normal velocity component to zero) and the contours of both the normal vorticity and 

velocity components. The plots do not include the entire computational domain, but 

instead focus on the central part of the domain near the agglomerate. 
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Figure 6.7. (Left) contours of normal vorticity and streamlines of the in-plane velocity field and (right) 

contours of normal component of the relative velocity relu  in three orthogonal planes passing through 

the agglomerate, for Case A.4 at t = 26. 

  In Fig. 6.7a, the streamlines in the x-y plane are seen to exhibit a vortex at the 

origin (i.e., at the center of the agglomerate); however, we note that the fluid velocity 

near the vortex center is very weak, and hence the normal vorticity magnitude at the 

(a) (b) 

(c) (d) 

(e) (f) 
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vortex center is small. In all three cross-sectional planes, the normal vorticity component 

has a quadrapole structure, with four vorticity patches of alternating sign. From these 

cross-sectional plots, the velocity and vorticity fields associated with the rotating particle 

agglomerate appear to have the form of two tilted vortex rings with opposite circulation 

immersed in the shear flow.  

 To better illustrate this flow field, we compute the velocity fluid vorticity 

zrel Seωω  , where we recall that the vorticity of the ambient shear flow is zSe . The 

iso-surface 46.0rel  of the magnitude of relω  is plotted in Figure 6.8 in both the x-y 

plane (looking from the side) and the x-z plane (looking from the top). The same two 

views of this iso-surface are also shown in Figure 6.8 showing contours of rel  on a slice 

of the flow field in the normal plane. The rel  iso-surfaces clearly show that the particle-

induced flow field for a single rotating agglomerate in a shear flow has the form of a pair 

of tilted vortex rings of opposite sign, with tilt angle of approximately 45  relative to the 

ambient shear flow (x-direction). As seen in the slices of the flow field in Figures 6.8c 

and 6.8d, each vortex ring is surrounded by stretched and reoriented vorticity from the 

ambient shear flow which trails behind the vortex rings in each direction. The dynamics 

of a single vortex ring in a linear shear flow was studied by Cheng et al. (2009), who 

found that the vortex ring becomes tilted relative to the shear and maintains a ring-like 

form while it drifts upward in the shear field (in the y-direction). This upward drift is 

negated in the current situation by the mutually-induced flow field when two rings of 

opposite sign exist, leading to a quasi-stationary flow with a quadrapole far-field 

structure (as is evident in the streamlines in Figure 6.7c). For computations where the 
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shear flow does not trigger breakup of the agglomerate, such as for Case A.4, this flow 

structure is observed to remain nearly constant with time as the agglomerate rotates in the 

shear flow.  

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6.8. Iso-surface of the relative vorticity magnitude 46.0rel  obtained from the velocity field 

for Case A.4 at t = 26, showing two tilted vortex rings generated by the particle-induced velocity field 
near the rotating agglomerate. The top two plots show iso-surfaces in the (a) x-y plane and (b) x-z plane. 

The bottom two plots, (c) and (d), show the same iso-surface views together with a slice showing rel  

contours in the normal plane. 

 As the adhesion parameter is varied in different computations, different behavior 

of the particle agglomerates in the shear flow is observed. For sufficiently low adhesion 

parameter values, some agglomerates are observed to break up into multiple fragments in 

the presence of the shear flow. A time series illustrating agglomerate breakup in the shear 

flow is shown in Figure 6.9 for Case A.1. We note from this example that while the 

(c)    (d) 

(a)    (b) 
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fragments that shed from the agglomerate are limited by the maximum size that the 

agglomerate can attain without breakup in the shear flow, there are also many 

agglomerates that are formed of a much smaller size. The set of fragments this has a wide 

size distribution. 

 
 

Figure 6.9. Time series showing breakup of single agglomerate in a shear flow, for Case A.1 at times (a) 
t = 0, (b) 5, (c) 10, (d) 15 and (e) 20.  

  A set of plots summarizing the computed agglomerate evolution for all of the 

single-agglomerate computations (Cases A.1 - A.12) is given in Figure 6.10. In Figure 

6.10a, we plot the number of fragments 
fragN  into which the agglomerate breaks up as a 

function of the adhesion parameter Ad, defined in (6-22). The data are from three 

agglomerates extracted from the turbulent agglomeration computation, and different 
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symbols are used in Figure 6.10 to denote the data from each agglomerate. For 

sufficiently high values of adhesion parameter, the agglomerate doesn't break up and the 

value of 1fragN  in Figure 6.10a. The number of particles N in each fragment at the end 

of the computation ( 30t ) is plotted versus adhesion parameter in Figure 6.10b on a 

log-log plot. The power law expression 878.0 SN  of Sonntag and Russel (1986) can be 

written in terms of the adhesion parameter as 878.0AdN . This expression is plotted as a 

dashed line in Figure 6.10b, where the coefficient of proportionality is fit to the data. The 

expression is found to be a reasonable fit for the maximum values of N, thus setting the 

largest size agglomerates that can survive without breakup in the shear flow.  

    
                                        (a)                                                               (b) 

Figure 6.10. Plots showing measures characterizing breakup of a single agglomerate in a shear flow. (a) 
Number of fragments that an agglomerate breaks up into versus adhesion parameter. When the 

agglomerate does not break up, 1
frag

N . (b) Number of particles N in agglomerates following breakup 

versus adhesion parameter. The dashed line is the experimental power-law fit 879.0AdN  from Sonntag 
and Russel (1986) for maximum number of particles, where the proportionality coefficient is fit to the 
data. The data is plotted for Cases A.1-A.4 (red deltas), A.5-A.8 (green circles), and A.9-A.12 (blue 

diamonds) from Table 6.1. 
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6.4. Agglomerate Pair Collision in Shear Flow 

 In this section, we examine the collision of two agglomerates in a shear flow. 

Three different agglomerates were extracted from the turbulent agglomeration 

computation described in Section 6.2.2, which were used to conduct 30 computations of 

agglomerate collision, the parameters for which are listed in Table 6.2. For each 

computation, the agglomerates are initialized as shown in Figure 6.2b, with orientations 

of  45  and displacement of the agglomerate centroid by an amount aD  in the y-

direction. Each computation examines collision of an agglomerate with an exact copy, 

and we did not consider collisions of different size agglomerates. 

Table 6.2. Listing of parameter values for cases examined for collision of two 

agglomerates, including adhesion parameter, initial numbers of particles in each agglomerate 

( N ), ratio of initial gyration radius ( 0gR ) of each agglomerate to particle diameter d, and ratio of 

initial offset distance to 0gR . For each case examined St = 1.4 and 10/ fp  . Also listed was 

the observed type of collision - merger (M), bouncing (B) or fragmentation (F) – and the number of 

particles in each remaining agglomerate (Aggl 1-5) after the collision.  

Case 
Number 

 
Ad 

 

0N  
 

dRg /0  
 

0/ ga RD  
Collision 

Type  
Aggl 

1 
Aggl 

2 
Aggl 

3 
Aggl 

4 
Aggl 

5 

B.1 333 328 4.81 0.52 F 213 392 51 - - 
B.2 666 328 4.81 0.52 M 656 - - - - 
B.3 999 328 4.81 0.52 M 656 - - - - 
B.4 1998 328 4.81 0.52 M 656 - - - - 
B.5 333 328 4.81 0.78 F 338 168 8 5 3 
B.6 666 328 4.81 0.78 F 331 317 8 - - 
B.7 999 328 4.81 0.78 F 276 380 - - - 
B.8 1998 328 4.81 0.78 M 656 - - - - 
B.9 333 328 4.81 1.04 F 262 315 69 8 - 

B.10 666 328 4.81 1.04 B 350 305 - - - 
B.11 999 328 4.81 1.04 B 358 298 - - - 
B.12 1998 328 4.81 1.04 B 326 330 - - - 
B.13 364 269 4.40 0.57 F 326 161 51 - - 
B.14 728 269 4.40 0.57 M 538 - - - - 
B.15 1092 269 4.40 0.57 M 538 - - - - 
B.16 2184 269 4.40 0.57 M 538 - - - - 
B.17 364 269 4.40 0.85 B 291 247 - - - 
B.18 728 269 4.40 0.85 B 286 252 - - - 
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B.19 1092 269 4.40 0.85 B 296 242 - - - 
B.20 2184 269 4.40 0.85 M 538 - - - - 
B.21 364 269 4.40 1.14 B 268 270 - - - 
B.22 728 269 4.40 1.14 B 268 270 - - - 
B.23 1092 269 4.40 1.14 B 268 270 - - - 
B.24 2184 269 4.40 1.14 B 268 270 - - - 
B.25 778 577 6.17 0.41 B 749 405 - - - 
B.26 1556 577 6.17 0.41 M 1154 - - - - 
B.27 778 577 6.17 0.61 F 171 619 364 - - 
B.28 1556 577 6.17 0.61 M 1154 - - - - 
B.29 778 577 6.17 0.81 B 579 575 - - - 
B.30 1556 577 6.17 0.81 B 607 547 - - - 

 

 Consideration of the computational results indicates three different types of 

behaviors, which are illustrated in scatter plots in Figure 6.11. In these plots, each particle 

is colored either red or blue to indicate the agglomerate from which the particle 

originated. The first type of collision outcome is merger of the agglomerates into a single 

agglomerate, which then rotates in the shear flow. The second type of behavior, referred 

to as a bouncing collision, results in two separate agglomerates following the collision. 

As seen in Figure 6.11, it is common for some particles to be exchanged between the two 

colliding agglomerates during bouncing collisions. The third type of behavior is referred 

to as fragmentation, which describes collisions that result in three or more agglomerates. 

In the case shown in Figure 6.11, the collision results in three agglomerates - one 

composed entirely of red particles, one composed entirely of blue particles, and one 

composed of a combination of red and blue particles. In other cases, more than three 

agglomerates will form in a fragmentation collision, often yielding a wide variation in 

agglomerate sizes. Sometimes it is not clear whether a collision should be classified as a 

bouncing case or a fragmentation case; for instance, cases where two colliding 

agglomerates break away from each other but leave behind a very small third 'satellite' 

agglomerate composed of just a few particles can be regarded as somewhat in-between 
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these two classifications. For purposes of this paper, collisions are classified as bouncing 

cases if only a single ‘satellite’ particle is separated from the two main agglomerates, and 

they are classified as fragmentation cases if the satellite agglomerate consists of two or 

more particles. More typical fragmentation cases are similar to that shown in Figure 6.11, 

however, producing at least three large agglomerates and sometimes also several smaller 

agglomerates.   
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Figure 6.11. Scatter plots illustrating three types of agglomerate interactions: merger (Case B.15), 
bouncing (Case B.19) and fragmentation (Case B.13). 

 The question of whether a given collision will be of the merger, bouncing or 

fragmentation type depends primarily on the values of the adhesion parameter Ad and the 

ratio of the y-direction offset distance aD  to the initial radius of gyration 
goR  of the two 
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agglomerates. A plot identifying the type of collision for all computations conducted is 

shown in a mapping of Ad versus  0/ ga RD  in Figure 6.12, and details of the number of 

particles in each agglomerate following collision are listed in Table 6.2. Regions of the 

map in Figure 6.12 are marked to provide a rough identification of values of Ad and 

0/ ga RD  for which the agglomerates individually break up in the shear flow (to the far 

left of the plot) and values resulting in merger, bouncing and fragmentation type 

collisions. The numbers indicate the number of agglomerates present at the conclusion of 

the computation, where an agglomerate is defined as a group of two or more touching 

particles. In general, collisions resulting in mergers occurred for smaller values of 

dimensionless offset distance 0/ ga RD  and values of Ad well above the critical value for 

breakup of the individual agglomerate in shear flow. Bouncing collisions occur for larger 

values of 0/ ga RD , resulting in glancing collisions of the agglomerates. Fragmentation 

occurs for moderate values of 0/ ga RD  with adhesion parameter values just slightly 

larger than the critical value for breakup of a single agglomerate in the shear flow. Two 

cases in Figure 6.12 requiring special discussion are indicated with asterisks. One of 

these cases, indicated by 2*, was identified as a bouncing collision because it resulted in 

two agglomerates, but a much larger number of particles were exchanged between the 

two agglomerates compared to other bouncing cases. Indeed, 172 particles originating in 

the red agglomerate, out of an initial 577 particles, were torn off and captured by the blue 

agglomerate during the collision. The case indicated by 4* in Figure 6.12 was, on the 

other hand, a fairly typical fragmentation case, resulting in three fairly large agglomerates 

with 263, 315 and 69 particles and one smaller 'satellite' agglomerate with 8 particles. 
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The presence of this fragmentation case in a region where we otherwise see a lot of 

bouncing cases is a reminder that each agglomerate has its own unique structure and each 

collision involves different parts of these unique agglomerates, so one must expect 

substantial variation from case to case. The plot in Figure 6.12 should therefore be 

regarded as providing only a rough indication of the conditions under which different 

types of collisions occur and not as a strict regime map.  

 
Figure 6.12. Summary of results for all agglomerate collision runs, showing the number of agglomerates 

(
aggN ) remaining after collision as a function of adhesion parameter and the ratio goa RD /  of offset 

distance to initial radius of gyration. Colors indicate results from different agglomerates. Numbers 
indicate cases with agglomerate merger ( 1aggN ), bounce ( 2aggN ), and fragmentation ( 2aggN ).  

 While we have used the term bouncing collision to be in conformity with 

terminology used in previous literature (e.g., Brisset et al., 2016), it is clear that the 

bouncing agglomerate collisions for the loosely-packed agglomerates described here 

differ substantially from the tradition bouncing collision of two elastic particles. In a 
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traditional bouncing process, two colliding elastic bodies deform locally near the 

collision point, resulting in an elastic (or sometimes plastic) repulsion force pushing the 

two bodies away from each other. In a bouncing case, this repulsion force is sufficiently 

strong to overcome the adhesive force between the bodies, so that the two bodies will 

detach and continue to move away from each other. The bouncing collisions of two 

loosely-packed agglomerates observed in the current paper are characterized more by 

tearing away and eventual capture of particles from the opposing agglomerate by the 

particle adhesion force. It is not that the elastic force between the agglomerates 

overcomes the adhesive force between the bodies, but rather that the adhesion force 

imposed on the captured particles by one agglomerate overcomes the adhesion force from 

the agglomerate to which the captured particles were originally attached. A plot showing 

number of captured particles from both agglomerates during the different bouncing 

collisions computed is given in Figure 6.13. As we see from this plot, all bouncing 

collisions included captured particles. In some cases only one agglomerate captures 

particles, and in other cases both colliding agglomerates capture particles from the other 

agglomerate.    
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Figure 6.13. Plot indicating the number of captured particles in bouncing collisions versus the total 
number of particles in an agglomerate. The number of red particles captured by blue agglomerates is 

plotted in red, and the number of blue particles captured by red agglomerates is plotted in blue. Different 
symbols are used to indicate different computations, with one red and one blue symbol for each 

computation.   

 While exchange of particles was a characteristic feature of all bouncing collisions, 

this is not to say that there was no rebound force between the agglomerates. An 

examination of the rebound force is reported below for the bouncing collision in Case 

B.19, in which 28 particles originating in the red agglomerate are captured by the blue 

agglomerate and one blue particle is captured by the red agglomerate. The number of 

touching red-blue particles (i.e., touching particles originating from opposite 

agglomerates) is plotted as a function of time in Figure 6.14a. This number is zero until t 

= 5, at which time the collision occurs, and then suddenly spikes up to a peak value of 18 

at a time of about t = 6.5. After this point the number of touching red-blue particles 

decreases to 14 and remains there, with the exception of a small blip at t = 10 due to 
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restructuring. The fact that the number of red-blue touching particles does not reduce to 

zero following the collision is due to the presence of captured particles. The total 

compressive force between the two agglomerates (which is characteristic of the elastic 

rebound force) is plotted as a function of time in Figure 6.14b. We again observe a 

sudden increase at collision onset at t = 5 and a peak value at t = 6.5, followed by a 

gradual decrease of the compression force as the two agglomerates tear away from each 

other.  

     
       (a)                                  (b) 

Figure 6.14. Time variation of (a) number of touching particles originating in different agglomerates and 
(b) total dimensionless compressive force between the agglomerates for a typical bouncing case (Case 

B.19). Collision occurs at approximately t = 5. 

 The position of particles carrying the compressive load between the two colliding 

agglomerates is illustrated in Figure 6.15 at a time of t = 7, close to the peak time of the 

collision. In Figure 6.15a, we color the particle scatter plot with red or blue to identify the 

originating agglomerate for each particle. In Figure 6.15b, each particle is colored by the 

magnitude of the total compressive force acting on the particle. The highest compressive 

loads are borne by a core of particles on the inside of the agglomerate, shown in Figure 
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6.15c with the lower-compression particles removed, within a tube of force chains 

radiating outward from the collision point. The highest compressive load occurs on the 

particles just at the collision point, indicated by red or orange in Figure 6.15c. We have 

thus confirmed that a rebound force does occur in bouncing collisions, and it may be 

reasonable to characterize this aspect of the collision phenomenon by some type of 

effective elastic modulus assigned to an effective spherical body representing the 

agglomerate. However, this effective sphere representation does not include the important 

phenomenon of particle capture during bouncing collisions, which in most of the cases 

that we have examined is very important to the agglomerate behavior during collision.        

 
                      (a)                             (b)                          (c) 

 

Figure  6.15.  Scatter plots during a bouncing agglomerate collision (Case B.19) at t = 7, with colors 
indicating (a) agglomerate from which each particle originated, (b) total compressive force acting on 

each particle, and (c) same plot as in (b) with the low-compression particles (with compressive force < 
1.5) blanked out. High compression force chains occur in a particle core region spreading outward from 

the collision point.    

 In Section 6.3, we discussed the observation that the particle-induced flow field 

from a single agglomerate in a shear flow has the form of two tilted vortex rings of 

opposite sign. In the event of a collision of two agglomerates, one naturally wonders what 

happens to the particle-induced flow during the collision. To examine this question, an 

iso-surface of the relative vorticity magnitude rel  is plotted at four different times 
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during a collision resulting in merger (Figure 6.16 for Case B.15) and during a collision 

resulting in bouncing (Figure 6.17 for Case B.19). The relative-vorticity iso-surface for 

fragmentation cases depends on the number of fragments produced, and so are highly 

variable. 

  In Figure 6.16, the particle-induced flow field at time t = 6 (just before the 

collision) has the form of two opposite-sign tilted vortex rings for each agglomerate, 

hence four tilted vortex rings in all. At time t = 8 the agglomerates are in the midst of 

colliding and the innermost vortex rings of each agglomerate collide with one another. At 

t = 10, the inner vortex rings have significantly decayed while the outer vortex rings have 

grown in strength. The inner rings continue to break up and be swept downstream by t = 

12, leaving the two strong outer vortex rings, which have opposite sign from each other. 

With the exception of the small-scale remnants of the inner rings, the particle-induced 

flow for the merged agglomerates at t = 12 thus appears similar to that for a single 

agglomerate in a shear flow, as discussed in the previous section.  

 
 
 (a) (b) (c)                    (d) 
 

Figure 6.16. Iso-surface of relative vorticity magnitude 3.0rel  for a case where the particle 

agglomerates merge (Case B.15), at times (a) 6t , (b) 8, (c) 10, and (d) 12 during which collision and 
merger of the agglomerates occurs.  

 In Figure 6.17, a time series of iso-relative vorticity magnitude surfaces are 

plotted for a case with bouncing agglomerate collision. The first two images in Figure 
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6.17 appear similar to those in Figure 6.16 for a merging collision. The two inner rings 

collide at time t = 6 and nearly extinguish each other by time t = 8 as the agglomerate 

collision occurs. However, as the agglomerates bounce and move away from each other, 

the inner rings reform, such that by t = 12 we see a pair of vortex rings for each 

agglomerate moving away from each other. A trail of vorticity connects these two vortex 

ring pairs, which is either left over from the collision or generated by stretching of the 

background shear vorticity.      

 
 

(a) (b)                   (c)                           (d) 
  

Figure 6.17. Iso-surface of relative vorticity magnitude 3.0rel  for a case where the particle 

agglomerates bounce (Case B.19), at times (a) 6t , (b) 8, (c) 10, and (d) 12 during which collision of 
the agglomerates occurs.  

6.5. Conclusions 

 A computational study was reported examining rotation and breakup of a single 

particle agglomerate and collision of two particle agglomerates in a shear flow. The 

agglomerates are extracted from a direct numerical simulation of turbulent 

agglomeration, and therefore have the characteristic loosely-packed fractal structure 

typical of turbulent agglomeration processes. Computations are performed with two-way 

coupling between the particles and the fluid and with sufficient resolution of the 

agglomerates to capture the details of the particle-induced flow field. Simulations of a 
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single agglomerate rotating in the shear flow with high values of the adhesion parameter 

indicate that the agglomerate rotates more slowly than would an ambient fluid element in 

the shear flow. The flow field induced by the particles of a rotating agglomerate in a 

shear flow are found to exhibit a very distinctive form, characterized by a pair of tilted 

vortex rings with opposite sign circulation, surrounded by a sea of stretched vorticity 

from the ambient shear flow. To our knowledge, this is the first time that the particle-

induced flow of an agglomerate in shear flow has been examined in detail and the first 

time that the interesting vortex ring pair structure of this flow has been described. This 

vortex ring pair structure remains with constant orientation and strength as the particle 

agglomerate rotates. For sufficiently low values of the adhesion parameter, the 

agglomerate is observed to break up in the shear flow, where the exact value of adhesion 

parameter at breakup varies slightly with the specific choice of the agglomerate under 

examination. 

 The problem of collision of two agglomerates was found to result in either 

merger, bouncing or fragmentation, depending on the value of the adhesion parameter 

and the ratio of offset distance to agglomerate radius of gyration. In merger collisions, the 

inner vortex rings of the particle-induced flow from each agglomerate interact with each 

other and eventually break up into small scale structures, and the outer vortex rings grow 

stronger leading to development of the vortex ring pair structure typical of that observed 

for a single agglomerate. It was observed that bouncing collisions result both in repulsive 

force between the agglomerates due to elastic deformation as well as exchange of 

particles between agglomerates. The innermost vortex ring structures of the particle-

induced flow for bouncing collisions similarly exhibit interaction of the two inner vortex 
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rings, but these inner rings are found to quickly reform as the agglomerates bounce and 

move away from each other. Fragmentation collisions may result in three or more 

agglomerates with widely different sizes, many of which are formed of a combination of 

particles originating in different agglomerate structures.      

 Many theoretical and computation models of turbulent agglomeration processes 

make use of the common approximation that an agglomerate can be replaced by an 

'effective particle', in which some effective elastic modulus of the agglomerate is 

assigned. The current study clearly demonstrates that this effective particle 

approximation omits many of the important physical phenomena associated with 

agglomerate collision, including fragmentation collisions and exchange of particles 

between agglomerates in bouncing collisions. These physical omissions must also raise 

doubt regarding the predictions of bouncing versus merger behavior from the equivalent 

sphere model, particularly since this model does not include the critical processes of 

agglomerate restructuring during collision and capture of particles by the colliding 

agglomerates.  The particle-induced flow field is also quite different for a loosely-packed 

agglomerate than it is for an equivalent sphere due to the fact that the fluid flow can 

penetrate into the outer parts of the agglomerate. This penetration affects the rotation rate 

of an agglomerate in a shear flow and gives rise to the tilted vortex ring structure of the 

particle-induced flow.  
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