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Abstract. A one-dimensional advective-dispersive contaminant transport model with

scale-dependent dispersion coefficient in the presence of a nonlinear chemical reaction of

arbitrary order is considered. Two types of variations of the dispersion coefficient with the

downstream distance are considered. The first type assumes that the dispersivity increases

as a polynomial function with distance while the other assumes an exponentially-

increasing function. Since the general problem is nonlinear and possesses no analytical

solutions, a numerical solution based on an efficient implicit iterative tri-diagonal finite-

difference method is obtained. Comparisons with previously published analytical and

numerical solutions for special cases of the main transport equation are performed and

found to be in excellent agreement. A parametric study of all physical parameters is

conducted and the results are presented graphically to illustrate interesting features of the

solutions. It is found that the chemical reaction order and rate coefficient have significant

effects on the contaminant concentration profiles. Furthermore, the scale-dependent

polynomial type dispersion coefficient is predicted to obtain significant changes in the

contaminant concentration at all dimensionless time stages compared with the constant

dispersion case. However, relatively smaller changes in the concentration level are

predicted for the exponentially-increasing dispersion coefficient.

Keywords: contaminant transport, scale-dependent dispersion, numerical solution,

nonlinear chemical reaction, finite-difference method.

Nomenclature

a, b constants used in exponential dispersion coefficient

c concentration of contaminant [ML−3]

c0 boundary concentration source [ML−3]

C dimensionless concentration of contaminant

D hydrodynamic dispersion coefficient [L2T−1]

De molecular diffusion coefficient [L2T−1]
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D0 characteristic dispersion constant [L2T−1]

D∗ dimensionless hydrodynamic dispersion coefficient

erf error function

erfc complementary error function

H unit step function

k chemical reaction rate coefficient of contaminant [T−1(ML−3)1−n]

n chemical reaction order

n1, N constant used in polynomial dispersion coefficient

Pe Peclet number

t time [T]

u flow velocity [LT−1]

x longitudinal distance [L]

x0 characteristic longitudinal distance [L]

Greek symbols

α dispersivity [L]

η dimensionless longitudinal distance

λ dimensionless chemical reaction rate coefficient

τ dimensionless time

1 Introduction

The problem of contaminant transport in soil, groundwater and surface water has been

a research subject of many recent and old theoretical and experimental investigations.

This is due to increased public awareness of significant contamination of groundwater

and surface water by industrial, municipal, agricultural chemicals, accidental spills and

effect of soil contamination resulting from landfills and burying of hazardous materi-

als. The principle differential equation governing solute transport and chemical reactions

has been developed using mass balance and advective-dispersive principles [1] and is

widely used in modeling solute transport phenomenon. A number of analytical solutions

for steady-state flow and different boundary and initial conditions were given by van

Genuchten and Alves [2] for problems with linear adsorption and zero- and first-order

production and decay. Analytical solutions play an important role in modeling because

they offer fundamental insight into governing physical processes, provide useful tools for

validating numerical approaches, and are sometimes more computationally efficient [3].

Most previously published analytical solutions to advective-dispersive transport problems

are obtained based on the assumption of a homogeneous porous medium [2]. In reality,

subsurface porous media through which the contaminant moves are seldom homogeneous

and significant spatial variability of transport properties should be expected [3–5].

As a result of the heterogeneity of the porous media, the dispersion coefficients

in all directions vary with the space coordinate and the resulting contaminant transport

equation contains spatially-dependent coefficients. Limited analytical solutions for scale-

dependent dispersion coefficients have been reported in the literature. Yates [6,7] obtained
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one-dimensional solutions for uniform flow with constant concentration or constant con-

centration flux boundary conditions when the medium has a linearly or exponentially-

increasing dispersion coefficient with the spatial coordinate. Huang et al. [8] also pre-

sented analytical solutions for a scale-dependent dispersion coefficient which increases

linearly with the distance until some distance after which it reaches an asymptotic value.

Logan [9] derived an analytical solution for the one-dimensional equations incorporat-

ing rate-limited sorption and first-order decay under time-varying boundary conditions,

assuming an exponentially-increasing dispersion coefficient. Zi-ting [10] reported an

analytical solution for an exponential-type dispersion process. However, the solutions

given by Yates [6,7], Huang et al. [8], Logan [9] and Zi-ting [10] are complex and difficult

to evaluate numerically. It is worth noting that other studies of solute transport employ

time-dependent coefficients. Warrick et al. [11], Barry and Sposito [12] and Basha and

El-Habel [13] reported analytical solutions to the one-dimensional advection-dispersion

equation with arbitrary time-dependent dispersion and velocity coefficients.

This paper presents numerical solutions for one-dimensional contaminant transport

through a semi-infinite porous medium domain in the presence of a nonlinear chemical

reaction. The transport starts from a continuous contaminant source and the mechanical

dispersion effect is assumed to vary with the downstream distance. The solutions include

first- and second-order homogeneous irreversible chemical reactions as well as polyno-

mial and exponentially-increasing spatially-dependent dispersion coefficients.

2 Formulation

Consider transient one-dimensional advective-dispersive contaminant transport in a porous

medium from a continuous source with a non-linear chemical reaction. The movement

of the contaminant takes place in the semi-infinite region 0 ≤ x < ∞ and the dispersion

coefficient is assumed to be spatially-dependent. The governing equation for this situation

can be written as:

∂c(x, t)

∂t
+ u

∂c(x, t)

∂x
=

∂

∂x

(

D(x)
∂c(x, t)

∂x

)

− kc(x, t)n, (1)

where t is time, x is the one-dimensional spatial coordinate (0 ≤ x < ∞) (or longitudinal

distance), c(x, t) is the concentration, u is the uniform velocity, D(x) is the spatially

variable hydrodynamic dispersion coefficient representing the sum of both the effects

of molecular diffusion (De) and mechanical dispersion (αu where α is usually called

the dispersivity), k is the chemical reaction rate coefficient and n is the order of the

homogeneous irreversible chemical reaction. It should be noted that the first term on

the left hand side of equation (1) represents the transient or accumulation effect. The

second term on the left hand side of the equation represents the advection or convection

effect which is defined as the transport of contaminant by the mean velocity in the flow

stream. The first term on the right side of the equation accounts for the dispersion or

diffusion effect which is responsible for the spreading of the contaminant in the medium.

The last term of equation (1) represents the nonlinear reaction effect which may take place
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(depending on the nature and properties of the contaminant) between the contaminant and

the medium.

The initial and boundary conditions for this problem are

c(x, 0) = 0, c(0, t) = c0, c(∞, t) = 0 or
∂c(∞, t)

∂x
= 0, (2)

where c0 represents a constant continuous concentration source.

Equation (1) can be written as

∂c(x, t)

∂t
+ u

∂c(x, t)

∂x
= D(x)

∂2c(x, t)

∂x2
+

∂D(x)

∂x

∂c(x, t)

∂x
− kc(x, t)n. (3)

It is convenient to work with dimensionless equations. This can be accomplished by

using

η =
x

x0

, τ =
ut

x0

,

C(η, τ) =
c(x, t)

c0

, D∗(η) =
D(x)

D0

,

(4)

where x0 and D0 are characteristic longitudinal distance and dispersion constant, respec-

tively.

Substituting equation (4) into equations (3) and (2) gives, respectively

∂C(η, τ)

∂τ
+

∂C(η, τ)

∂η
=

D∗(η)

Pe

∂2C(η, τ)

∂η2
+

1

Pe

∂D∗(η)

∂η

∂C(η, τ)

∂η
−λC(η, τ)n, (5)

C(η, 0) = 0, C(0, τ) = 1, C(∞, τ) = 0 or
∂C(∞, τ)

∂η
= 0, (6)

where

Pe =
ux0

D0

, λ =
kx0c

n−1

0

u
(7)

are the Peclet number and dimensionless chemical reaction rate constant, respectively.

3 Numerical method

In its most general form, equation (5) is nonlinear. Therefore, an analytical solution to this

equation is unlikely and a numerical procedure is required. Many existing computer codes

employ a finite-difference approach for the solution of transport equations. It is logical to

investigate the applicability of this methodology to equation (5). In the present work,

an implicit iterative tri-diagonal finite-difference method similar to that discussed by

Blottner [14] is employed. A two-point backward difference quotient is used to represent

the dimensionless time τ derivative and three-point central difference quotients are used
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to represent the dimensionless space η derivatives. The computation starts at τ = 0
and marches forward in time. At each time, a system of non-linear algebraic equations

must be solved to determine the η distributions of C. An iterative procedure is employed

for this purpose. At each iteration, an equivalent linear system of algebraic equations

(the linearization being effected by representing some quantities by their values from the

previous iteration) must be solved. These equations have a tri-diagonal form and can be

solved by the Potter’s method variables which can be determined by a forward sweep in

the h direction. Then the physical variables can be found from a corresponding backward

sweep. This process avoids the need for matrix inversion. Iteration is continued until

convergence is obtained at a given time. The procedure moves forward for the next time.

It is helpful to have some analytical solutions for special cases of equation (5) to use

as standards of comparison for the numerical procedure.

4 Analytical solutions

Consider the special case where D∗(η) = 1 (constant dispersion) and n = 1 (first-order

chemical reaction) for which equations (5) and (6) are simplified to read

∂C(η, τ)

∂τ
+

∂C(η, τ)

∂η
=

1

Pe

∂2C(η, τ)

∂η2
− λC(η, τ), (8)

C(η, 0) = 0, C(0, τ) = 1, C(∞, τ) = 0 or
∂C(∞, τ)

∂η
= 0. (9)

These equations are linear and can be solved analytically by the Laplace transforma-

tion methods. Without going into detail, the solution of the above initial-value problem

can be shown to be

C(η, τ) =
1

2

(

exp

(

Pe −
√

Pe2 + 4λPe

2
η

)

erfc

(

√
Pe η −

√
Pe + 4λ τ

2
√

τ

)

+ exp

(

Pe +
√

Pe2 + 4λPe

2
η

)

erfc

(

√
Pe η +

√
Pe + 4λ τ

2
√

τ

)

) (10)

erfc(ζ) = 1 − erf(ζ) =
2
√

π

∞
∫

ζ

exp(−θ2)dθ, (11)

where erf and erfc are the error function and complimentary error function, respectively

and θ is a dummy variable. It should be noted that equation (10) is consistent with and

represents the dimensionless form of that reported earlier by van Genuchten and Alves [2].

As Pe → ∞ (no diffusivity), equation (10) reduces to

C(η, τ) = exp(−λη)H(τ − η), (12)
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where H is the unit step function. For small amounts of diffusivity (1/Pe ≪ 1) the

discontinuity exhibited by equation (12) at η = τ is replaced by a narrow continuous

transition layer.

For the special case in which λ = 0 (no chemical reaction), equation (8) becomes a

simple convection-diffusion equation. Equations (10) and (12) are valid with λ = 0. This

leads to the respective results:

C(η, τ) =
1

2

(

erfc

(

√
Pe(η − τ)

2
√

τ

)

exp(Pe η) erfc

(

√
Pe(η + τ)

2
√

τ

)

)

, (13)

C(η, τ) = H(τ − η). (14)

The accuracy of the numerical method discussed above is validated by direct com-

parisons with the analytical results given in equations (10) and (13). These comparisons

are presented in Figs. 1 and 2, respectively. It is clear from these figures that excellent

agreement between the numerical and analytical results exists at all presented dimension-

less times for both Pe = 1 and Pe = 100 considered in these figures.
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Fig. 1. Comparison between numerical and analytical solutions for concentration

profiles.

In order to check the accuracy of the numerical results for a nonlinear chemical

reaction, further comparisons are performed with the work of Onyejekwe [15] who re-

ported the solution of a single-phase isothermal flow with nonlinear kinetics involving

one reactant. The governing equation for this problem in an idealized one-dimensional

finite region is given by the following transport equation and conditions:

∂C(η, τ)

∂τ
+ Pe

∂C(η, τ)

∂η
=

∂2C(η, τ)

∂η2
− λPeC(η, τ)n, (15)

C(η, 0) = 0,
∂C(0, τ)

∂η
− PeC(0, τ) = −Pe,

∂C(1, τ)

∂η
= 0. (16)
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The initial-value problem given by equations (15) and (16) was solved numerically by

the implicit finite-difference scheme discussed above. The obtained results for the exit

concentration were compared with those reported by Dale [16], Ramachandran [17] and

Onyejekwe [15] for different values of n, Pe and λ. These various comparisons are shown

in Tables 1 through 3.
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Fig. 2. Comparison between numerical and analytical solutions for concentration

profiles.

Table 1. Comparison of numerical and approximate exit concentration for a single phase

reactor with Dale (1969) and Onyejekwe (1997) with λ = 2.5 and n = 2

Pe Dale Onyejekwe Present

[16] [15]

1 0.4164 0.4164 0.41815

2 0.3882 0.3887 0.39058

3 0.3712 0.3707 0.37261

4 0.3587 0.3581 0.35994

10 0.3249 0.3239 0.32581

Table 2. Comparison of numerical and approximate exit concentration for a single phase

reactor with Ramachandran (1990) and Onyejekwe (1997) with λ = 10 and n = 2

Pe Ramachandran Onyejekwe Present

[17] [15]

0.1 0.2604 0.2609 0.26164

1 0.2056 0.2056 0.20674

10 0.1209 0.1206 0.12082

100 0.0958 0.0957 0.09521

200 — 0.0836 0.09336

300 — 0.06341 0.09272

1000 0.0250 blows up 0.09181
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Table 3. Comparison of numerical and approximate exit concentration for a single phase

reactor with Onyejekwe (1997) with λ = 2.5 and n = 0.5

Pe Onyejekwe Present

[15]

1 0.5951 0.59968

2 0.5896 0.59179

4 0.5808 0.58299

10 0.5710 0.57363

Again, these comparisons show good agreement except for high values of Pe for which

Onyejekwe’s [15] method seem to under predict the exit concentration considerably and

blows up for Pe = 1000. These discrepancies are probably due to the inaccurate evalu-

ation of the closed-form solutions who involve complicated functions reported by Onye-

jekwe’s [15] for large values of Pe as evident from the fact that his solution blows up for

Pe = 1000. The various favorable comparisons reported in Figs. 1 and 2 and Tables 1

through 3 lend confidence in the numerical results to be reported in the next section.

5 Results and discussion

Numerical solutions for the general advective-dispersive-reactive contaminant transport

equation (5) subject to the initial and boundary conditions (6) are obtained for two differ-

ent types of scale-dependent dispersion coefficients. These are

D∗(η) = 1 + Nηn1 , (17)

D∗(η) = 1 − a exp(−bη), (18)

where all of N,n1, a and b are dimensionless constants. It should be noted that when

N = 0 in equation (17) and a = 0 in equation (18), the constant dispersion cases are

recovered. It should be noted herein that Zoppou and Knight [18] derived an analytical

solution for a transport problem with variable velocity and diffusivity. In the notation of

this work, Zoppou and Knight [18] assumed that D∗(η) = η2. Also, Zi-ting [10] used the

exponential-type dispersion coefficient given by equation (18).

The computational domain was divided up into 500 points in the η direction and

600 points in the τ direction with variable step sizes in both directions. The initial step

sizes and growth factors employed in the η and τ directions were 0.001, 0.001, 1.055 and

1.03, respectively. In this case, ηmax = 4 × 1010 represented the condition η → ∞.

These values were arrived at after performing various numerical experiments to access

grid-independent results. The convergence criterion required that the difference between

the current and previous iterations must be 10−7.

Various numerical results are obtained and a representative set of results is presented

in Figs. 3 through 12. These results are chosen to illustrate the influence of the chemical

reaction order n, the Peclet number Pe, the chemical reaction constant λ, and the scale-
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dependent dispersion constants n1 and a. In Figs. 3 through 6, the dispersion coefficient

is constant while in Figs. 7 through 12, the dispersion coefficient is spatially variable.

Fig. 3 presents the temporal development of the contaminant concentration profiles

for various values of the chemical reaction order n (corresponding to first-, second- and

third-order reactions) for the case of constant dispersion effects with Pe = 1. In this and

all subsequent figures, the space coordinate is represented by a logarithmic scale so as

to capture the complete transition from unsteady conditions at small time values of the

dimensionless time τ to steady-state conditions at τ = ∞. In general, it is predicted that

increases in the chemical reaction order increases the concentration. This is accompa-

nied by an increase in the concentration boundary-layer thickness. The increase in the

concentration field and its boundary layer appears to be more significant at larger time

values especially at steady-state conditions. Physically, the increase in the concentration

boundary-layer thickness as n increases means that it a solute transport with a first-order

chemical reaction reaches its steady-state conditions at a faster rate than it would with a

higher chemical reaction order.
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Fig. 3. Effects of reaction order on the temporal development of concentration profiles.

Fig. 4 displays the same parameters as in Fig. 3 except the value of the Peclet number

which is set to 100 representing a small dispersive effect. The same general conclusion is

obtained is which the contaminant concentration profile and its boundary-layer thickness

tend to increase as n increases. Also, effect of increasing n is more pronounced at the

steady-state conditions. However, by direct comparison with Fig. 3 for Pe = 1, it can be

seen that the effect of the chemical reaction order is more for contaminant transports with

higher dispersive effects.

Fig. 5 illustrates the influence of the Peclet number Pe on the concentration profile

for a contaminant transport with a second-order reaction at three different time values cor-

responding to early time (τ = 0.6), intermediate time (τ = 52) and state-state conditions

(τ = ∞). It is predicted that higher dispersive effects (low values of Pe) provide smooth-

ing effects in the concentration profiles. Also, increasing the dispersive effects (that is,

decreasing the values of Pe) has the tendency to increase the ability of the contaminant to

337



A. J. Chamkha

transport easier through the porous medium. This is reflected in the increases in the values

of C as Pe decreases. In addition, as Pe decreases, the concentration boundary-layer

thickness increases and this seems to be more pronounced at early transport time stages.

It should also be noted that at early time stages (τ = 0.6), the concentration increases as

Pe decreases every where except in the immediate vicinity of the inlet boundary (η = 0).

This is because as Pe → ∞ (no dispersive effects), it is expected that the concentration

profile to drop sharply (a step function) to the terminal condition as η → ∞.
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Fig. 4. Effects of reaction order on the temporal development of concentration profiles.

η

C
(η

,
)τ

τ

τ

λ
τ

1x10
-1

1x10
0

1x10
1

1x10
2

1x10
3

1x10

0.00

0.25

0.50

0.75

1.00

8t

t =52

t =0.6

Pe=1.0

Pe=1000
Pe=100

Pe=0.1
Pe=0.01

n=2.0
l =0.01

Fig. 5. Effects of Peclet number on the temporal development of concentration profiles.

Fig. 6 depicts the influence of the chemical reaction constant λ on the temporal devel-

opment of the concentration profiles for a second-order reaction and Pe = 1. Physically,

the chemical reaction term in equation (5) represents a concentration decay or sink term.

This means that for a specific reaction order, as λ increases, the decaying effect increases

causing the contaminant concentration to decrease everywhere in the flow region away
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from the boundaries and for all times except the early time stages. It is worth noting that

the decaying effect is much more significant at the steady-state conditions than at all other

time conditions. In addition, the concentration boundary-layer thickness decreases as λ
increases.
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Fig. 6. Effects of reaction constant on the temporal development of concentration

profiles.

Fig. 7 displays the effect of the dispersion coefficient power exponent n1 for the

polynomial-type dispersion coefficient on the temporal development of the contaminant

concentration profiles for a first-order chemical reaction. In general, as the power expo-

nent n1 increases, the concentration level decreases everywhere except in the region close

to the end boundary where it increases causing the concentration boundary-layer thickness

to increase. This behavior takes place for almost all time stages. It should be noted that
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Fig. 7. Effects of dispersion exponent on the temporal development of concentration

profiles.
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for n1 = 2, the steady-state condition is reached at a faster rate than that observed for

the linear case where n1 = 1. Specifically, for n1 = 2 the steady-state conditions are

achieved already at τ = 12.

Fig. 8 presents the same parameters as in Fig. 7 except for the value of n which is

set to 2 representing a second-order chemical reaction. As is obvious from this figure,

the same conclusion as in Fig. 7 is reached. That is, increasing the value of n1 causes

reductions in the contaminant concentration level everywhere except in the region close to

the end boundary where it increases resulting in increases in the concentration boundary-

layer thickness. Also, for n1 = 2 the steady-state conditions are achieved at τ = 12.

Fig. 9 shows the effect of increasing n1 on the contaminant concentration for a

second-order chemical reaction and Pe = 100. Again, in general, the concentration
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Fig. 8. Effects of dispersion exponent on the temporal development of concentration

profiles.
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level decreases in most of the domain except near the downstream boundary where it

increases as n1 increases. The changes in the concentration profiles are more prominent

at the steady-state conditions than at the earlier time stages of the flow.

Figs. 10 through 12 present the effects of the constant of exponential-type dispersion

coefficient a on the unsteady concentration profiles for the cases of first-order chemical

reaction with Pe = 1, second-order chemical reaction with Pe = 1, and second-order

chemical reaction with Pe = 100, respectively. It is observed from these figures that

increasing the value of the constant a causes decreases in the contaminant concentration

level and in the concentration boundary layer thickness. Also, this decrease is greater at

small time stages than it is at higher time stages. In addition, as expected, the effect of

increasing the constant a is very little for high values of Pe (small dispersion effects).

These trends are clearly depicted in Figs. 10 through 12.
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Fig. 10. Effects of exponential dispersion constant on the temporal development of

concentration profiles.
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Fig. 12. Effects of exponential dispersion constant on the temporal development of

concentration profiles.

6 Conclusion

A one-dimensional advective-dispersive contaminant transport model with scale-dependent

dispersion coefficient in the presence of a nonlinear chemical reaction was considered.

The scale-dependent dispersion coefficient was used to characterize dispersion in a het-

erogeneous porous medium. Two types of variations of the dispersion coefficient with

the downstream distance were considered. The first type assumed that the dispersivity in-

creased in a polynomial function with distance while the other assumed an exponentially-

increasing function. The nonlinear chemical reaction assumed an arbitrary reaction order.

Since the general problem was nonlinear and possessed no analytical solutions, a numer-

ical solution based on an efficient implicit iterative tri-diagonal finite-difference method

was obtained. The accuracy of the numerical method was validated by various favorable

comparisons with known analytical solutions and reported numerical solutions for special

cases of the main transport equation. Several numerical solutions based on the general

model were reported assuming a uniform flow field. A parametric study was conducted

and the results were presented graphically to illustrate interesting features of the solutions.

It was found that the chemical reaction order and rate coefficient had significant effects

on the contaminant concentration field especially at the steady-state conditions. It was

predicted that as the chemical reaction order increased, the contaminant concentration

increased. On the other hand, increases in the chemical reaction rate coefficient produced

reductions in the contaminant concentration level. In addition, as the Peclet number

was increased, the concentration level was decreased. Furthermore, the scale-dependent

polynomial-type dispersion coefficient was predicted to obtain significant changes (re-

ductions) in the contaminant concentration at all time stages compared with the constant

dispersion case. However, relatively smaller changes (reductions) in the concentration

level were predicted for the exponentially-increasing dispersion coefficient.
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