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ABSTRACT 

This study describes a 3-D computational framework to model stable extension of a macro

scopic crack under mode I conditions in ductile metals. The Gurson-Tvergaard dilatant 

plasticity model for voided materials describes the degradation of material stress capacity. 

Fixed-size, computational cell elements defined over a thin layer at the crack plane provide 

an explicit length scale for the continuum damage process. Outside of this layer, the materi

al remains undamaged by void growth, consistent with metallurgical 0 bserva tions. An ele

ment vanish procedure removes highly voided cells from further consideration in the analy

sis, thereby creating new traction-free surfaces which extend the macroscopic crack. The 

key micro-mechanics parameters are D, the thickness of the computational cell layer, and 

fo' the initial cell porosity. 

Calibration of these parameters proceeds through analyses of ductile tearing to match R

curves obtained from testing of deep notch, through-crack bend specimens. The resulting 

computational model, coupled with refined 3-D meshes, enables the detailed study of non

uniform growth along the crack front and predictions of specimen size, geometry and load

ing mode effects on tearing resistance, here described by J-b..a curves. Computational and 

experimental studies are described for shallow and deep notch SE(B) specimens having 

side-grooves and for a conventional C(T) specimen without side-grooves. The computation

al models prove capable of predicting the measuredR-curves, post-test measured crack pro

files, and measured load-displacement records. 
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spacing of the large inclusions, with one or two cells defining the layer thickness. The cells have 

initial (smeared) void volume fraction denoted by fo. The layer thickness (D) introduces a 

strong length-scale over which damage occurs; elsewhere, the background material obeys the 

flow theory of plasticity without damage by void growth. The 3-D form of the Gurson-Tvergaard 

(GT) dilatant plasticity theory [8,9] provides a suitable description of void growth within the 

cells. 

In these exploratory 3-D studies, computational cells in the shape of rectangular prisms 

form a slab of thickness D centered about the plane of growth. In planes normal to the initial 

front, cells retain the desiredD x D aspect ratio while tangent to the crack front cells have vary

ing lengths in multiples of D. With this simplification, a typical quarter-symmetric model of 

an SE(B) specimen for 3-D growth analyses contains 8-10,000 elements with crack growth of 

5 mm achieved in 700 loading increments. We would prefer to use uniform, cubical cells of lin

ear dimensionD throughout the growth layer. However, even with the advanced solution proce

dures developed to perform these analyses on supercomputers, that option remains computa

tionally intractable at present for crack front lengths in common specimens (e.g. B = 25 mm 

with D = 0.1 mm). The enormous model sizes would lead to excessive runtimes; the simplified 

SE(B) analyses mentioned above require a few hours on a Cray C-90. Nevertheless, these ini

tial 3-D studies using computational cells clearly demonstrate the capability to predict severe 

tunneling in non-sidegrooved specimens and to predict the reverse tunneling often observed 

in the root of side-grooves. 

The plan of the paper is as follows. Section 2 briefly summarizes the mechanism of void 

growth-coalescence and the synthesis into a computational cell model applicable in large-scale 

analyses. Section 3 describes the computational cell model including the relevant constitutive 

relations for the GT plasticity theory, the element vanish technique to remove highly voided 

cells, and the treatment of cells with low triaxiality. Section 4 outlines essential features of the 

finite element formulation, the computational procedures developed specifically for execution 

on supercomputers, and details of models for the various specimens analyzed. In Section 5, we 

first utilize the GT model to illustrate the elastic-plastic response of a single cell under uniaxial 

strain; such analyses enable a clear understanding of the response to strain-controlled nucle

ation of secondary voids at large plastic strains and low triaxiality (needed for the side-grooved 

configurations).The numerical analyses then consider ductile crack growth in 3-D with com

parisons made to experimental R-curves and to corresponding, plane-strain analyses. The in

vestigations here consider conventional C(T) and SE(B) specimens with and without side 

grooves. The analyses focus on predicting the measured R-curves and the measured crack front 

profiles. 

2. Mechanisms and Models for Ductile Growth 

2.1. METALLURGICAL PROCESSES AND IDEALIZATIONS 

At the microscale level, ductile extension of a pre-existing macro crack in ferritic steels follows 

a multistep mode of material failure which reflects several interacting, simultaneous mecha

nisms (see, e.g., the comprehensive reviews of Van Stone et al. [10], and Garrison and Moody 
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[11]). These mechanisms comprise: a) nucleation of micro voids by fracture/decohesion of se

cond-phase particles, e.g. MnS and Al20 3, b) subsequent growth of the larger microvoids, c) lo

calization of plastic flow between the voids, and d) final coalescence of micro voids to create new 

surfaces of the macrocrack. Certain features of these microscale processes play key roles in un

derstanding R-curve behavior; most notably the peak (macroscopic) opening stress attained 

ahead of the crack front and the extent of the region ahead of the front over which these pro

cesses occur (the process zone) [12,13]. Steeply rising R-curves occur when material flow prop

erties, metallurgical features, geometry and loading mode combine to develop high peak 

stresses and small process zones during crack extension (a small initial fraction of voids and 

only 1-2 voids interacting with the tip). Nearly flatR-curves develop when a large process zone 

lowers the peak stress capacity of material through damage well before the front extends to 

that location (a larger initial void fraction and many voids actively growing). These processes 

evolve deep within a continuum stress-strain field which is affected strongly by flow properties 

of the material, crack geometry, specimen size and loading mode. This complex interplay be

tween microstructural features of the material (size and spacing of inclusions) and crack-front 

constraint controls the R-curve. 

Experimental observations and computational studies [7,10,11,14] support simplifications 

of the four-step failure process described above which enable development of a tractable model 

for use in large-scale computations. For common structural and pressure vessel steels, the nu

cleation of microvoids by fracture/ decohesion of the largest second-phase particles occurs at 

a relatively low stress, well below the peak macroscopic stress that develops ahead of the crack 

front. This enables modeling of the larger particles simply as pre-existing microvoids without 

appreciable effect on the predicted microscale toughness of the material. A second population 

of much smaller inclusions in the material (e.g. iron carbides) often exists which assists in the 

final stages of coalescence between the larger voids. These inclusions participate in the re

sponse only at very large plastic strains which develop in material immediately ahead of the 

physical crack front but well behind the location of peak macroscopic stress. They have no ap

preciable affect on the peak stress capacity of the material nor do they affect the process zone 

size; they only infl uence the final separation in material which experienced peak stress earlier 

in the deformation process. Finally, growth under mode I loading remains macroscopically pla

nar and directed along the symmetry plane, yet often exhibits an uneven zigzag character at 

the scale ofl-2 x the spacing between larger voids. Outside the layer of material having approx

imately this thickness, void growth remains small and does not affect appreciably the macro

scopic toughness. Models of the ductile separation processes thus need focus only on this rela

tively thin layer of material along the crack plane, but which is coupled to the plastically 

deforming background material. Unfortunately, this "simplified" picture of growth does not 

hold in regions of low constraint which may develop shear lip or mixed-mode (slant) fracture; 

much additional work is needed to address this issue (see [14] for exploratory efforts in this 

direction) . 

2.2. MODELS SUITABLE FOR LARGE-SCALE COMPUTATION 

Computational approaches to model the progressive damage (void growth and coalescence) of 

material ahead of the extending crack have developed along essentially two lines ofinvestiga-
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tion: (1) cohesive-law fracture models defined on the crack plane, and (2) continuum damage 

plasticity models which soften material thereby reducing the macroscopic stress capacity. 

Tvergaard and Hutchinson [12,13] (T&H) describe recent applications of a cohesive-law frac

ture model to study R-curve behavior under plane-strain, small-scale yielding conditions with 

varying levels of T-stress. Their model defines a specific strength for the material (peak stress 

ahead of the crack) and an explicit length-scale over which damage occurs, i.e., the region of 

reduced stress capacity has a pre-defined limit. The model thus specifies the microscale work 

of separation for the material, denoted To by T&H, in a unidirectional sense-only tractions 

and displacements normal to the crack plane enter the process. Interactions of the cohesive 

zone, having a fixed Fo, with the background continuum fields of widely varying constraint (T 

positive and negative) demonstrate strong effects on predicted KR -£1a curves. 

In contrast, the continuum damage plasticity models enable consideration offull three-di

mensional stress-strain fields on material softening due to void growth. The similar dilatant 

plasticity theories ofGurson [8], with modifications by Tvergaard [9] hereafter denoted GT, and 

ofRousselier [15] have been used extensively in plane-strain analyses of ductile crack growth. 

Among the many researchers adopting the Gurson-Tvergaard (GT) theory to model crack 

growth include Needleman, Tvergaard and co-workers [9,16,17,18]; Brocks; et al. [19], and 

most recently Xia and Shih [5,6,7]. Researchers adopting the Rousselier plastici~y theory to 

model crack extension include Pineau [20] and recent extensive work by Bilby, Howard and Li 

[21,22,23] aimed at predicting large-scale fracture tests. With a few recent exceptions 

[21,24,25], these efforts employed plane-strain idealizations due to the enormous computation

al costs incurred with fully 3-D models. 

Both the GT and Rousselier plasticity theories predict the softening of material in a contin

uum context due to the idealized growth of a spherical void or a periodic array of voids. The GT 

model does include a capability to nucleate new voids, i.e., accelerate the softening process, 

. based on stress and/or plastic strain levels. However, neither theory includes: (1) an explicit 

or implicit length-scale over which the damage occurs, or (2) a coalescence criterion to model 

hole joining after extensive damage with the attendant creation of new crack surfaces. More

over, each plasticity theory contains a number of material dependent parameters which re

quire calibration from mechanical test data. These complicating factors have lead to a variety 

of approaches to overcome the very strong dependence of predicted R-curves on the details of 

finite element meshes and the calibration process, i.e., use of notched tensile specimens us. use 

of J-£1a curves from fracture tests on deep-notch C(T) or SE(B) specimens. 

2.3. COMPUTATIONAL CELLS 

In analytical efforts to support the development of transferability models for R-curves and to 

support large-scale experimental programs, a consensus appears to be developing for the use 

of computational cells; a term coined by Xia and Shih (X&S) in a series of recent papers [5-7]. 

X&S advocate a computational model for ductile growth which defines a single layer of void

containing, cubical cells having linear dimension D along the crack plane on which mode I 

growth evolves. Each cell contains a cavity of initial volume fraction fo; the GT constitutive 

model then describes progressive softening of the cells due to cavity growth. By deleting cells 

with severe damage whenfreaches a critical value (fE ) from the computational model, the pre-
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existing macro crack grows in length by the amount D. The background material outside this 

layer of cells obeys a J 2 flow theory of plasticity, undamaged by void growth. To introduce an 

explicit length-scale into the model, X&S associate D with the mean spacing between the larger 

inclusions and treat it as a material parameter in the model calibration process. Once cali

brated using a measured R-curve for a standard fracture specimen, D (and fo) must remain 

fixed in analyses of other configurations for that material. Plane-strain analyses of fracture 

specimens using the computational cell model have predicted the effects of geometry and load

ing mode on R-curves with surprising accuracy (see [26] for extensive comparisons). 

Independently ofX&S, Bilby, Howard and Li [21,22,23] (BH&L) have developed a modeling 

approach for crack growth very similar to the computational cell procedure. Differences arise 

in the choice of dilatant plasticity models for the cells (GT us. Rousselier), the calibration pro

cess (R-curves vs. notched tensile bars) and in other details for element removal, crack front 

definition, etc. While the comparisons to experimental data are less extensive, the BH&L anal

yses reveal similar levels of capability to predict R-curves for the cases considered and their 

work is also progressing into 3-D modeling [21]. 

3. Computational Cell Model for Ductile Growth 

3.1. PROCESS ZONES AND MATERIAL CONSTITUTIVE RELATIONS 

Figure 1 (a) illustrates a simplified view of the conditions ahead of a macroscopic crack front 

in a ferritic steel containing two idealized populations of different size inclusions. Void growth 

occurs over a relatively narrow band of thickness D comparable in size to 1-2 x the spacing be

tween the largest inclusions, e.g. MnS. Material outside this region experiences negligible void 

growth. The smaller inclusions (typically C) may influence the coalescence phase of void 

growth but have a more pronounced role as nucleation sites for cleavage fracture (not consid

ered here). The large inclusions undergo decohesion/fracture at low stress-strain levels form

ing voids which grow and coalesce in a locally complex pattern within the active layer D. How

ever, the global mode I loading confines growth of the macroscopic crack to lie within the 

essentially planar region of thickness D. This layer of damaged material ahead of the growing 

crack, which has a reduced stress carrying capacity, defines the process zone for ductile frac

ture. Void growth and coalescence with the macroscopic crack reduce to zero the surface trac

tions exerted on surrounding, undamaged material, thereby implicitly defining a traction-sep

aration reponse for the process zone layer. Moreover, this idealization provides a physically 

appealing length dimension (D) not present in the continuum representation of damage within 

the active layer. 

Within a finite element framework, a single layer of uniform, fixed-sized cells, having total 

thickness D, along the crack plane embodies this scheme into a computational model, see Fig. 

1 (b). Each cell contains a (smeared) cavity with initial volume specified by the fractionfo' i.e. 

the void volume relative to the cell volume. X&S [6] utilize a mapping of one finite element to 

a cell as the simplest solution for the issue of continuum averaging/localization of damage. 

Thus, cell size D and initial porosity fo define the key parameters coupling the physical and 

computational models. A calibration process which compares measured and predicted R-
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curves enables determination of characteristic values for a specific material. Figure 1 (c) illus

trates the typical mesh arrangement for a symmetric finite element model; here the cells (ele

ments) along the crack plane have a square cross section with specified height D /2. 

Competing demands dictate the choice of cell size: (1) D must be representative of the large 

inclusion spacing to support arguments that it couples the physical and computational model, 

(2) predicted R-curves scale almost proportionally with D for fixedfo (a thicker layer requires 

more total work to reach critical conditions), (3) the mapping of one finite element per cell must 

provide adequate resolution of the stress-strain fields in the active layer and in the adjacent 

background material,-(4) details of the continuum damage model, and (5) the type of finite ele

ment used (linear us. quadratic). For the ferritic steels studied thus far with this model, cali

brated cell sizes range from 50-200 J1m with fo in the 0.0001-0.004 range. This range of values 

for D satisfies issue (1) while providing satisfactory resolution of the near-tip fields required 

in issue (3) after some tearing (calibrated values for D are comparable to the experimentally 

measured value for CTOD at initiation of ductile tearing). Very early in the loading history 

prior to ductile growth, these D values (with one-element-per-cell) may not provide sufficient 

resolution of the near-tip stress fields, for example, to quantify conditions for cleavage fracture. 

Bilby, et al. [27] have investigated sub-cell averaging schemes to address this issue. 

The computations here employ the Gurson [8] and Tvergaard [16] constitutive model for 

porous plastic materials to describe the progressive damage of cells due to the growth of pre-ex

isting voids. The model derives from a rigid-plastic limit analysis of a solid having a smeared 

volume fraction (f) of voids approximated by a homogeneous spherical body containing a spher

ical void. The yield surface and flow potential, g7 is given by 

(1) 

where ae denotes the Mises equivalent (macroscopic) stress, am is the macroscopic mean stress, 

(j denotes the flow stress for the matrix material of the cell and f is the current void fraction. 

Factors q l' q 2 and q 3 introduced by Tvergaard [16] improve the model predictions for interac

tion effects present in periodic arrays of cylindrical and spherical voids. Values of q 1 = 1.5, 

q2= 1.0 andq3= qi in accord with [16] are used here. The setting of(=O recovers the usual 

Mises yield surface for an isotropic, incompressible material; when f~ 1/ Ii; the yield surface 

collapses to a point. Constitutive computations are performed in a finite strain framework with 

Cauchy stresses expressed on a rotation neutralized configuration used to evaluate Eq. (1). In

tegration of the plasticity rate equations is performed using a specialized form of the backward 

Euler technique developed by Aravas [28,29] (see also Zhang[30]). 

Flow properties of the matrix material within the computational cells and of the void-free 

background material are described by the uniaxial tension, true stress-logarithmic strain 

curve. For parameter studies, a simple power-law response having the following form suffices 

(2) 
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where ao and EO are the reference (yield) stress and strain, and n is the strain hardening expo

nent, see Fig. 3 (a). Alternatively, a piecewise-linear representation often better describes the 

flow properties for the analysis of specific materials used in fracture tests. 

3.2. PHYSICAL CRACK GROWTH VIA CELL EXTINCTION 

The GT yield function in Eq. (1) does not model realistically the rapid loss of stress capacity 

for larger void fractions nearing coalescence levels, nor does the model create new traction free 

surfaces to represent physical crack extension. Tvergaard and Needleman [17] replace fin Eq. 

(1) with f* which accelerates the increase in void fraction once f= fc=0.15. Koplick and 

Needleman [31] and more recently Brocks et al. [32] employed discrete models for void growth 

in cells to demonstrate that fc depends weakly on stress triaxiality for the small values of fo 

used here (fo::S 0.005). Other models to estimate fc based on plastic collapse/instability have 

been proposed recently by Zhang and Niemi [33] and Leblond, et al. [34]; Brocks et al. [32] ex

amine the validity of each approach by using discrete models for void growth in cells. 

In the present work, the evolution of stress within cells follows the original constitutive 

model ofGTin Eq. (1) untilf= fE' where fE typically has a value of 0.15. The final stage of void 

linkup with the macroscopic crack front occurs by reducing the remaining stresses to zero in 

a prescribed manner. Tvergaard [16] refers to this process as the element extinction or vanish 

technique. Recent computations by Faleskog and Shih [14] provide support for this simplified 

approach. Their detailed analyses examine the response of a void containing, discrete cell fol

lowing the attainment of peak macroscopic stress, i.e., during the localization of strain leading 

to void coalescence. When there exists a second population of much smaller voids to promote 

localization, the cell (macroscopic) stresses drop sharply at f = fE with further cell deformation 

producing an approximately linear decay of stress to zero. 

Figures 2 (a-d) illustrate the cell extinction process coupled with such a linear-traction sep

aration model. This scheme provides computational simplicity yet retains close contact with 

the physical mechanism of void coalescence just described. Figure 2 (a) shows an undeformed 

cell element with initial size normal to the crack (symmetry) plane of D /2. Let Ho denote the 

average elongation of the cell normal to the crack plane as indicated in Fig. 2 (b) when the poros

ity reaches the critical value, f= fE. Forces, Puc, exerted on adjacent nodes by the remaining 

cell stresses are saved and the cell stiffness set to zero (vanished cells remain in the model but 

are marked inactive). During subsequent load increments, the now vanished cell continues to 

deform, with the average elongation, H, see Fig. 2 (c). The nodal forces Puc are relaxed to zero 

in a linear fashion with subsequent increases of H> Ho, as shown in Fig. 2 (d). At any point 

afterf= fE' the remaining fraction of nodal forces applied to the extinct cell is yPuc , with y given 

by 

H-H 

y = 1.0 - /3 (D/2~ (0 :::; y :::; 1) 

where a typical value for the release factor, /3, is 0.1. 

(3) 

This cell extinction process creates new traction free surfaces in a controlled manner and 

also eliminates numerical difficulties in the finite strain computations. Cell elements adjacent 
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to the evolving crack front grow increasingly distorted under loading, especially for the small 

cell sizes used here (D = 50-200 Jim). Compared to plane-strain models, our computations indi

cate this problem becomes far more acute in 3-D analyses. Non-uniform growth along the front 

(tunneling) causes local twisting of elements which would otherwise lead to inadmissible de

formation gradients and termination of the analysis. 

3.3. CELL RESPONSE AT LOW STRESS TRIAXIALITY 

Development of the GT constitutive model focused on describing void growth under conditions 

of high stress triaxiality, conditions typically found along a growing crack front remote from 

traction free surfaces. The yield surface,g, depends exponentially on am/a, while in pure shear 

it has a linear dependence onf. The behavior of the model under low constraint conditions does 

not affect plane-strain analyses of fracture specimens. Once the crack extends by a few cells, 

continued growth occurs under high constraint [26]. Consequently, the plane-strain analyses 

show very good agreement of predicted and measured R-curves using only the D and fo cell pa

rameters and the standard GT model of Eq. (1). At the onset of growth, however, the plane

strain models exhibit a higher J-value than shown by experiments. The ambiguity in defining 

a precise J Ic value experimentally, and behavior of the GT model to low triaxiality-Iarge plastic 

strain conditions at the blunted crack tip both contribute to this response. 

In 3-D analyses of through-crack and surface crack geometries, the response of the GT mod

el under low stress triaxiality conditions plays a much stronger role. Such conditions exist 

where the crack front intersects the traction free surfaces, including the root of side-grooves, 

and along the complete front prior to the first localized growth at each location. Preliminary 

3-D analyses for side-grooved SE(B) specimens demonstrated the severity of this problem. Ex

perimental observations sometimes reveal crack advance adjacent to the side-groove actually 

greater than at the centerplane, i.e., the crack often runs ahead at the side-groove. In contrast, 

the predicted the crack fronts exhibit severe tunneling, with minimal growth at the side-groove 

where the stress triaxiality remains surprisingly low, but plastic strains have large val-q.es 

(Ep> 50 EO)' Predictions for plane-sided specimens, while more realistic, clearly show sup

pressed growth relative to experimental observations. 

The strain-controlled acceleration of void growth rate (i) proposed by Chu and Needleman 

[35] provides an approximate method to improve the GT model response in regions of low tri

axiality, while leaving the response largely unaffected in regions of high triaxiality. Conceptu

ally, the additional contribution to f arises from the nucleation of new voids caused by large 

plastic strains at much stronger, smaller inclusions in the cell matrix material during the 

coalescence phase. For a fixed fE= 0.15 applicable in the high constraint regions along the 

front, fin low constraint regions achieves this value only when void growth is accelerated by 

the matrix plastic strain. Chu and Needleman [35] suggested a modified void growth rate hav

ing the form 

(4) 

where the first term defines the growth rate of existing voids due to macroscopic stress triaxial

ity. The proposed form for the scaling coefficient, A, applied to the plastic strain rate of the cell 

matrix material is given by 
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(5) 

In this expression, the plastic strain at nucleation of new voids follows a normal distribution 

with a mean value EN' a standard deviation sN and a volume fraction of void nucleating par

ticles given by fN. By setting EN=350EO' the onset of strain-controlled nucleation occurs well 

beyond the attainment of peak stress in cells under high constraint (see Section 5.1). Conse

quently, the accelerated fin Eq. (4) becomes active only in the low constraint regions described 

above and otherwise exerts minimal influence on the predicted R-curves. The parameters sN 

and fN control the rate and degree of nucleation; values must be chosen to maintain numerical 

stability of the stress update computations (Section 5.1 provides examples). The current ambi

guity in specifYing values for EN' S Nand f N underscores the need for improved cell constitutive 

models applicable in regions of low triaxiality. 

4. Finite Element Procedures and Geometric Models 

4.1. SOLUTION PROCEDURES 

The three-dimensional computations reported here are generated using the research code 

WARP3D [36]. Key features of the code employed in this work include: (1) the GT and Mises 

constitutive models implemented in a finite-strain setting, (2) cell extinction using the trac

tion-separation model, (3) automatic load step sizing based on the rate of damage accumula

tion, and (4) evaluation of the J-integral using a domain integral procedure. WARP3D employs 

a continuously updated, Lagrangian formulation naturally suited for solid elements having 

only translational displacements at the nodes. The governing equations of equilibrium derive 

from the principle of virtual work expressed on the current configuration at n + 1, 

f T n+1 . oUn+ldS - f OE: un+ldV = 0 (6) 

sn+l vn+l 

where an + 1 denotes the Cauchy stress, T defines the applied surface tractions acting on the 

model at n + 1, OU defines an admissible virtual displacement field and Of: represents the sym

metric, rate of the virtual deformation tensor relative to the current configuration, i.e., Of: = 

sym(aou/axn + 1). Vn+l and Sn+l denote the current, deformed volume and surface area, re

spectively. 

Starting from Eq. (6) linearized about the current configuration, the global solution pro

ceeds in an incremental-iterative (implicit) manner with nodal equilibrium stringently en

forced at n + 1. Full Newton iterations advance the solution from n~n + 1. An extrapolation 

scheme to estimate the displacement increment for the step and the use of consistent tangent 

moduli for the GT and Mises constitutive models, C = (Ba/a€)n+l' prove essential to maintain 

rapid convergence of the iterations. Final increments of logarithmic strain over n ~ n + 1 are 

then computed using the linear strain-displacement matrix evaluated on the converged mid

increment configuration, x n + 1j2 . 
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For these large, 3-D analyses which typically require 1500 or more solutions of the linea

rized equations, an exceptionally fast code/solver becomes critical to render the analyses com

putationallyfeasible. WARP3D solves the equations at each iteration using a linear pre-condi

tioned conjugate gradient (LPCG) method implemented within an element-by-element (EBE) 

software architecture. This approach reduces memory sizes and execution times significantly 

below those for sparse direct solvers (no assembly of the system stiffness matrix). The EBE ar

chitecture permeates through the entire code. A pre-assignment scheme locates elements into 

blocks to eliminate sharing of common nodes. This enables a maximum level of vectorization 

that sustains 50% of the theoretical performance of a Cray C-90, for example, over a 3-4 hour 

production run of the code. 

To accommodate finite strains and rotations, the GT and Mises constitutive equations are 

formulated using strains-stresses and their respective rates defined on an unrotated frame of 

reference, computed from polar decompositions of the deformation gradients (F=RU). The 

stress update proceeds as follows (see [37] for full details): (1) using Rn + 1/2 rotate the spatial 

increment of the deformation tensor (D), evaluated from B n + 1/2 . /J..u e, to the unrotated config

uration, dn+1/2=R~+1/2Dn+1/2Rn+1/2; (2) compute the unrotated Cauchy stress at n+ 1 

(tn + 1) using a conventional small-strain, backward Euler procedure; and (3) compute the spa-

tial Cauchy stress at n + 1 as an+ 1 = R n+ 1tn+ 1R;+1' The polar decompositions insure accuracy 

in the rotational operations independent of the displacement gradient magnitudes over 

n ~ n + 1. Our implementation of the backward Euler integration scheme for the GT model 

builds upon Aravas's work [28]. The linearized form of Eq. (6) requires a tangent operator 

which couples the spatial rates of Cauchy stress iT n + 1 and deformation tensor, En + l' The proce

dure adopted here follows the development ofN agtegaal and Veldpaus [38], which uses the ex

act consistent tangent operator on the unrotated configuration, E = (at/ad) n + l' the instanta

neous rotation rate at the material point (Q= RRT), and the Green-Naghdi rate of the spatial 

Cauchy stress (iT GN= iT - Qa + aQ) to define a suitable approximation for C = (aa / at:.)n + l' 

Fracture models are constructed with three-dimensional, 8-node hexahedral elements. Use 

of the so-called B formulation [39] precludes mesh lock-ups that arise as the deformation prog

resses into fully plastic, incompressible modes. Dilatational terms of the original strain-dis

placement matrix, Bdil, are replaced by a volume averaged set of dilatational terms, Bdil, 

which yield uniform mean stress over the element and minimal locking. The B matrix thus has 

the form B = Bdeu + Bdil, where Bdeu denotes the unmodified deviatoric contributions. Stabi

lization to prevent hourglass modes takes the form B = Bdeu + B dil + E [B
dil 

- Bdil], with E typi

cally 0.05. To construct plane-strain models when required, a single thickness layer of the 3-D 

elements is defined with out-of-plane displacements constrained to vanish. 

The local value of the mechanical energy release rate at a point along a crack front is given 

by [40] 

J = limJ[cwn 1-p .. aU i n.]dr 
F-O pax

1 
J 

(7) 

F 

where r denotes a contour defined in a plane normal to the front on the undeformed configura

tion (t = 0) beginning at the bottom crack face and ending on the top face, nj is the outward nor-
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mal to F, CUi denotes the stress-work density per unit of un deformed volume, Pijand u i are Car

tesian components of (unsymmetric) Piola-Kirchoff stress and displacement in the crack front 

coordinate system. Our finite element computations employ a domain integral procedure [40] 

for numerical evaluation ofEq. (7). A thickness average value for J is computed over domains 

defined outside material having the highly non-proportional histories of the near-tip fields and 

thus retains a strong domain (path) independence. Such J-values agree with estimation 

schemes based upon eta-factors for deformation plasticity (corrected for growth). They provide 

a convenient parameter to characterize the average intensity of far field loading on the crack 

front. 

4.2. FINITE ELEMENT MODELS 

SE(B) Specimens 

Finite element analyses are described for shallow notch (a/W = 0.14) and deep notch 

(a/W = 0.6) 1T-SE(B) specimens with thickness,B, of25.4mm. Here a denotes the crack length 

and W the specimen width. Joyce and Link [41] performed unloading compliance tests at 100°C 

on these specimens made of ASTM A533B (TL orientation) to measure tearing resistance 

curves in terms of J-!:3.a. After fatigue pre-cracking, the specimens were side-grooved to a depth 

ofO.1B on each side to promote uniform ductile growth over the thickness. Figure 3 (b) shows 

a piecewise-linear approximation of the measured true stress-logarithmic strain curve. Other 

mechanical properties needed for the analyses include E = 200 G Pa and v = 0.3. The matrix ma

terial of the computational cell elements and the void-free background material are assigned 

these properties. 

Figure 4 (a) shows the finite element model constructed for 3-D analyses of the specimen 

with a/W = 0.6. The shallow crack model has similar features. Symmetry conditions enable 

analyses using one-quarter, 3-D models and one-half, plane-strain models. The 3-D models 

have approximately 8000 elements arranged into 13, variable thickness layers over the half

thickness (B /2), as illustrated in Fig. 4 (a). The first 9 layers lie along the crack front and the 

outermost 4 layers define the side groove region; each layer has the identical "in-plane" (X-¥) 

mesh refinement. Unfortunately, less refined models in the thickness direction proved incapa

ble of capturing details of crack growth near the root of the side groove. The 20% side-grooves 

(10% each side) are introduced by releasing the Y direction (symmetry) constraints on affected 

crack-plane nodes for the outermost 4 layers of elements. These nodes are then translated vari

ous distances in the Y direction to match the angle specified for the side groove. In this process, 

the root radius of the side groove becomes one-half the cell size (D /2). 

Within each of the 9 layers over the crack front, the element mesh contains a row of 60 com

putational cells along the remaining ligament (W - a) arranged as shown in Fig. 1 (c). A series 

of calibration analyses suggest an optimal cell size of D = 250 fl-m. The initially blunted crack 

tip accommodates the intense plastic deformation and initiation of stable crack growth in the 

early part of ductile tearing. The slab of 540 (9 X 60) computational cells over which damage 

occurs to model crack growth extends 7.5 mm ahead of the initial crack front. 

Appropriate constraints are imposed on the symmetry planes for all configurations. Dis

placement controlled loading of the models as indicated in Fig. 4 (a) permits continuation of 
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the analyses once the load decreases during crack growth. For both ajW ratios, multiple sets 

of nodes on Y = 0 near the top surface must have imposed displacements to prevent locally se

vere, element distortions. 

A typical solution to advance the crack by 40 cells (~a = 40 x D /2 = 5 mm) on the centerplane 

(Z = 0) in the deep crack specimen uses 700 load increments and requires 3 CPU hours on a 

CRAY C-90 supercomputer. The predicted R-curves exhibit a moderate sensitivity to the load 

step sizes specified during growth. The use of larger (and thus fewer) load increments increases 

the number of cells simultaneously in the process of extinction which alters the stress histories 

of cells ahead of the crack front. The WARP3D code includes adaptive solution procedures 

which automatically adjust load increment sizes based on previous and estimated porosity 

changes, and which track the progress of cell extinction (steps to complete traction-separation). 

The plane-strain models have in-plane mesh refinement similar to that used in the corre

sponding 3-D models, but with only one layer of the 8-node elements. Plane-strain conditions 

are enforced by setting all Z displacements to zero. These models for the shallow and deep crack 

specimens have approximately 700 elements with a calibrated cell size of D = 200 11m. In con

trast to the 3-D analyses, an analysis to advance the crack by 50 cells (~a = 5 mm) in the deep 

crack specimen uses 400 load increments and requires only 40 minutes of CPU time on a curent 

Unix (HP) workstation. 

CrT) Specimens 

Three-dimensional analyses are also conducted on a deep crack (a/W = 0.6), 1 T-C(T) specimen 

that has no side grooves. Panontin and Nishioka [44] performed unloading compliance tests 

at room temperature on specimens made of ASTM A516-70 to measure tearing resistance 

curves in terms of J-~a. The experimental matrix includes specimens in both TL and LT 

orientations. Figure 3 (b) shows a piecewise-linear approximation for the measured true stress

logarithmic strain curve constructed from the average of three tensile tests. Other mechanical 

properties needed for the analyses include E = 200 GPa and v = 0.3. 

With minor exceptions, the finite element model has features identical to those for the 

SE(B) specimens. The quarter-symmetric, 3-D model has 5432 elements arranged into 7 vari

able thickness layers defined over the half thickness, as illustrated in Fig. 4 (b). This refine

ment in the thickness direction proved satisfactory to resolve the tunneled crack front profile. 

Displacement controlled loading applied at the pin hole indicated in Fig. 4 (b) again permits 

continuation of the analyses once the load decreases during crack growth. 

Within each of the 7 layers over the crack front, the element mesh contains a row of 60 com

putational cells along the remaining ligament (W - a) arranged as shown in Fig. 1 (c). A series 

of calibration analyses suggest an optimal cell size of D = 200 11m for this material. The slab of 

420 (7 x 60) computational cells over which damage occurs extends 6 mm ahead of the initial 

crack front to accommodate 4 mm of growth on the centerplane in the analyses. All other model

ing details follow those already described for the SE(B) specimens. 

12 



5. Results and Discussion 

5.1. SINGLE CELL UNDER UNIAXIAL STRAIN 

Figure 5 (a) shows a computational model for a single cell with initial void fraction fo = 0.002 

subjected to macroscopic, uniaxial straining (c22 > 0, cll = c33 = 0). Using plane strain analy

ses, X&S [7] investigated the strain states in material elements immediately ahead of a grow

ing crack in high constraint geometries and found that, on average, uniaxial strain provides 

a good characterization of the deformation state (c22 ~O, c11 = c33 =0). Here we examine the 

elastic-plastic response of this isolated cell for material properties relevant in analyses of sub

sequent fracture specimens. The single cell model readily illustrates the loss of stress carrying 

capacity associated with void growth as predicted by the GT constitutive model. Moreover, po

tential effects of the growth acceleration process needed for cell response in low triaxiality (see 

Section 3.3) can be quantified for high triaxiality cells. 

Flow properties for the matrix material of the cell obey the simple power-law model ofEq. 

(2), as illustrated in Fig. 3 (a), with assigned values of n = 10 and E / a 0 = 500. The A533B and 

A516-70 materials have comparable flow properties. Acceleration of the void growth rate at 

large plastic strains in the matrix material follows the normal distribution model ofEqs. (4,5), 

with different sets of values assigned in the analyses for the nucleation parameters, CN' fN and 

sN. For a fixed cN andfN, smaller values of the standard deviation, sN' restrict the nucleation 

of new voids to an increasingly narrow range of plastic strain as illustrated in Fig. 5 (b). Pro

vided C N has a sufficiently large value, this acceleration process becomes active beyond the 

plastic strain at development of the peak stress in cells with high triaxiality. Under this restric

tion, the initial porosity (fo) and matrix flow properties determine the peak (macroscopic) 

stress (022 ) attained by the cell. The cell strength, governed by this peak macroscopic stress, 

plays the dominant role in the defining the fracture resistance for a material [12,13,26] and 

should not be affected by the acceleration procedure. 

Figure 6 shows the single cell response in terms of the macroscopic tensile stress, porosity 

and matrix plastic strain for a fixed s N= 0.01 at two values of C N= 0.1, 0.75. Clearly, the peak 

stress in the cell remains invariant of these nucleation parameters and develops at levels of 

matrix plastic strain insufficient to trigger the accelerated growth rate. At a matrix plastic 

strain of Ep = 0.3-0.4 x C N' acceleration of the void growth dominates the cell response; the mac

roscopic stress falls sharply and the porosity increases rapidly. These results also illustrate 

clearly the role of the parameter,fN, in setting the amplitude of the accelerated growth rate in 

Eq. (5). Figure 7 shows the single cell response for a fixedsN= 0.05 again at two values of 

E N= 0.1, 0.75. Here the acceleration of void growth rate occurs at lower values of Ep; moreover, 

cN= 0.1 lowers the peak stress thus indicating an unacceptable set of parameters. Figures 7 

(c), (d) show the smoothing effect of increased s N val ues-the acceleration process evolves over 

an increased range of Ep. 

The following sections describe 3-D analyses of crack growth which utilize the accelerated 

void growth rate illustrated in Fig. 7 with sN= 0.05, cN= 0.75. Several key features emerge 

from the single cell analyses for materials with these flow properties. A value of cN= 0.75 elimi

nates the effect on peak stress for cells with high triaxiality; a requirement for the process to 
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have minimal impact on tearing resistance in high triaxiality, low plastic strain regions along 

the crack front. This value of sN' coupled with a relatively large value of fN= 0.5, produces an 

accelerated, but smooth, reduction in the stress-carrying capacity of the cell element. During 

preliminary 3-D analyses of fracture specimens using sN= 0.01, the computations exhibited se

vere convergence difficulties due to the very large void growth rate shown in Fig. 6 (d). 

While values of sN= 0.05 and fN = 0.5 do not seem likely to represent act-dal metallurgical 

characteristics of these materials, some computational benefits accrue from their use, even for 

cells with moderate triaxiality. Cell extinction occurs at fE= 0.15, afterwhich the remaining 

cell stresses and associated nodal forces decrease in accord with the traction-separation model. 

Figures 7 (c), (d) show that whenf= 0.15 for high triaxiality cells, the accelerated void growth 

has not yet begun to reduce the stresses. This will not be the case for cells with moderate-to-low 

triaxiality. In cells with lower constraint, plastic strains increase more rapdily which triggers 

the acceleration of void growth at a much smaller f than for high constraint cells. Our para

metric studies of 3-D models clearly show the beneficial effects of this smooth stress reduction, 

for both high and low constraint cells, in the improved convergence rate of global Newton -i tera

tions and local Newton iterations required to update material point stresses. 

5.2. PLANE-STRAIN ANALYSES OF SE(B) SPECIMENS 

This section describes the results of plane-strain analyses performed on models of the deep and 

shallow notch SE(B) specimens tested by Joyce and Link [41]. The parameters governing cell 

response, D and fa, are calibrated using the deep notch specimens to establish agreement be

tween predicted and measured R-curves (strain-controlled acceleration of void growth is un

necessary). The calibrated values for these parameters are then applied in similar analyses to 

predict the shallow notch R-curves. Side-grooves cut into the tested specimens enforce reason

ably uniform growth along the crack front and thus the plane-strain models should provide 

credible predictions for a thickness-average response. Moreover, the much less expensive 

plane-strain models (in terms of computational effort) provide very good starting estimates for 

D andfo needed in the 3-D analyses. Guided by similar plane-strain analyses ofX&S [6] and 

experimental observations, we specified the cell size D /2 = 100 11m for the A533B material. 

With the length scale, D, fixed for the models, the calibration process then focuses on determin

ing a suitable value for the initial volume fraction, fa, that produces the best fit to the measured 

crack growth data for the deeply cracked specimens. Because each change in D requires 

construction of a new mesh, it is obviously much less effort to fixD early on and then calibrate 

fo. The measured CTOD at initiation of ductile tearing often represents a good estimate for D. 

The calibrated values for D and fo clearly do not constitute a unique pair of parameters; for 

example, a slightly larger D value may be compensated for by a larger fo value. Nevertheless, 

there exists a reasonably narrow range of D andfo pairs which yield R-curves in agreement 

with the experimental results. 

Figure 8 (a) shows the measured and predicted J-l:J..a curves for both the deep and shallow 

crack specimens. For each ajW ratio, tests were performed on three nominally identical speci

mens; the experimental data are indicated with symbols. Consider first the deep notch speci

men. Predicted R-curves are shown for two values of the initial volume fraction, fo = 0.0035, 

0.005. For consistency, the location of the growing crack tip in all analyses (2-D, 3-D) is taken 
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at the cell withf= 0.1. As Fig. 7 (c) suggests, this corresponds to a position between the cell cur

rently undergoing extinction and the peak stress location; at this position stresses are decreas

ing rapidly and the void fraction is increasing sharply. Consequently, the use of slightly differ

ent f values, other than 0.1, to define the crack-tip location for plotting purposes does not 

appreciably alter the R-curves (at a fixed J, the amount of crack extension would vary only by 

a fraction of the cell size); X&S [7] discuss this issue in detail. For fo = 0.0035, the predicted 

R-curve agrees well with the measured values up to = 4 mm of growth and thereafter lies above 

the measured data. In contrast, the use of fo = 0.005 produces a much lower resistance curve 

relative to the measured data and predicts a steady-state (flatR-curve) after =4 mm of growth. 

The initial volume fraction fo = 0.0035 is thus taken as the (plane-strain) calibrated value for 

the A533B steel used in the fracture tests. Now consider the resistance curves for the shallow 

crack specimen shown in the same figure. There exists a remarkable agreement between the 

measured data and the predicted curve for the calibrated value of fo = 0.0035. The computa

tional cell model predicts almost entirely the experimental resistance curve for the shallow 

cracked specimen, particularly well over the range 1 ~4 mm of crack growth. 

In the very early stages of growth when the crack has advanced only 1-2 cells, the predicted 

resistance curves lie above the corresponding measured data. As noted previously, we attribute 

this to the low triaxiality in these cells caused by crack tip blunting prior to growth and thus 

the delayed attainment of f= fE . In these plane-strain computations, the accelerated void 

growth procedures described in Section 3.3 can be used to lower the R-curves during crack 

growth over the first few cells with minimal impact on the curves at larger extensions. 

The above calibration-prediction procedure employs J-resistance data for the highly 

constrained, deep crack specimen to set values for D and fo. The question also arises whether 

load us. load-line displacement (LLD) records might enable calibration of D and f o. Figure 8 

(b) shows load us. LLD curves measured for the deep and shallow crack specimens. Predicted 

curves derived using fo = 0.0035 and fo = 0.005 (D /2 = 100,um) are also shown for each speci

men. Not surprisingly, load us. load-line displacement values exhibit small sensitivity to this 

range of fo values. Additionally, the predicted curves in Fig. 8 (b) suggest that fo = 0.005 yields 

a better fit to the experimental data. This larger porosity most likely compensates for the in

herently stiff response of the plane-strain model. The crack growth resistance curves in Fig. 

8 (a) exhibit a much stronger sensitivity to fo as required to define a robust calibration proce

dure. The calibrated values of D and fo also reflect other features of the numerical model in

cluding, for example, (1) the ability of the element formulation to represent strain gradients 

ahead of the crack front, (2) the ability of the mesh to represent nearly incompressible deforma

tion modes, and (3) localized off-plane growth of the crack front not included in the numerical 

model which constrains growth to the symmetry plane. Consequently, it seems essential to 

base cell calibrations on experimental data (R-curves) that most closely characterize the duc

tile fracture process expected in predictive applications of the model. 

5.3. 3-D ANALYSES OF SIDE-GROOVED, SE(B) SPECIMENS 

This section describes the results of detailed 3-D analyses to predict R-curves for the deep and 

shallow notch SE(B) specimens tested by Joyce and Link [41]. The plane-strain analyses of 

these specimens reported above appear to capture successfully the thickness auerage features 
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of the response. However, predictions of the evolving crack front profile require a 3-D model 

for these through-crack specimens. Moreover, the present analyses of geometries with nomi

nally straight crack fronts serve as the precursor to consideration of more complex surface 

crack geometries. Our efforts in these exploratory analyses remain focused on the effects of cell 

parameters (D~ fo~ EN' f Nand S N) when the model now includes the full 3-D stress-strain fields 

ahead of the crack front. 

Figure 9 (a) shows the predicted, 3-D J-resistance curve for the deep crack specimen com

puted using the calibrated plane-strain parameters: fo = 0.0035, no plastic strain controlled 

acceleration of void growth, but with D /2 increased slightly from 100 to 125 f-lm (discussed be

low). The solid line in the plot represents a mean resistance curve obtained by a weighted aver

age taken over the half-thickness. The dashed line represents the computed resistance curve 

for crack extension defined at the centerplane (Z = 0). The two predicted R-curves thus have 

the same thickness average J-value from the domain integral procedure plotted against two 

different values of crack extension. The open symbols indicate each of the three measured R

curves with crack extensions estimated using unloading compliance data. The predicted R

curves showed such poor agreement with the experimental data that the analysis was termi

nated after only 2 mm of growth on the centerplane. Figure 9 (b) shows the predicted shape of 

the crack front when ~az=o = 2 mm. Negligible crack growth occurs in the two element layers 

on the front adjacent to the side grooves. This degree of crack front tunneling was clearly unex

pected. The predicted crack front profile contrasts sharply to the near uniform growth observed 

routinely in deep-notch, side-grooved specimens. Moreover, the crack often runs ahead slightly 

in the root region of the side-grooves in further contrast to the predicted front. 

A series of 3-D analyses to investigate sources of the poor model performance suggested: 

(1) the use of a smaller initial porosity fo = 0.002 rather than 0.0035, and (2) the introduction 

of accelerated void growth in low triaxiality cells driven by the presence of large plastic strains 

(see Section 3.3). Consider first the need for a smaller value of fo. Previous work by Nevalnien 

and Dodds [42] (N&D) using detailed 3-D models of stationary cracks reveals that constraint 

over the crack front differs significantly from the levels given by plane-strain analyses of deep 

notch SE(B) specimens. As a consequence of load re-distribution over the 3-D front, a high level 

of stress triaxiality at the centerplane persists to largerJ-values than indicated in plane-strain 

models. In their analyses, N&D defined high stress triaxiality by the presence of positive val

ues for the non-dimensional Q-stress. In the present model, this maintenance of high stress 

triaxiality coupled with the plane-strain initial porosity, fo = 0.0035, leads to excessive crack 

growth at the centerplane. Additional 3-D analyses of the a/W = 0.6 specimen led to the adop

tion of fo = 0.002 and D = 250 Jim as more suitable values. 

Consider now the absence of crack growth at the side-grooves. Figure 10 (a-b) show the dis

tribution of plastic strain in the cell matrix and cell stress triaxiality, am/ae , ahead of the crack 

front at the centerplane (Z = 0) and at the side-groove root (the outermost layer, 9, of elements 

on the front, Z = 10 mm). The figure includes results for both the deep and shallow notch SE(B)s 

at a J-value corresponding to incipent growth in the deep notch specimen. The results indicate: 

(1) at the side-groove region for both specimens, the stress triaxiality is nearly identical and 

significantly lower than centerplane levels, (2) plastic strain is significantly larger at the side

groove root than at the centerplane for both specimens, and (3) stress triaxiality at the center-
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plane is higher for the deep notch specimen even though the plastic strains remain very similar. 

The suppressed crack growth at the side-grooves evident in Fig. 9 (b) and the large plastic 

strain, low stress triaxialitythere as shown in Fig. 10 (a-b) motivated our use of the accelerated 

void growth scheme described in Section 3.3. 

With the introduction of accelerated void growth into the 3-D analyses, an entirely different 

picture emerges. Figure 11 shows the predicted J-resistance curves for the SE(B) specimens 

computed using fo = 0.002, D = 250!lm with the acceleration parameters assigned the values 

EN = 0.75, sN = 0.05 and fN = 0.50 (the same values usedin the single cell results of Fig. 7 (c-d)). 

The calibration process to set values for these parameters used experimental results for only 

the deep notch R~curve. The prediction effort then focused on the shallow notch specimen. The 

centerplane and average resistance curves generated in the 3-D analyses now agree quite well 

with the experimentalR-curves for 4-5 mm of crack extension. The centerplane and thickness 

average R-curves bracket the three experimental data sets for each a/Wratio. Note that the 

experimental crack extensions shown in this figure derive from the unloading compliance esti

mates and thus represent some average crack growth over the front. Also recall that the layer 

of 60 computational cells defined ahead of each point along the initial crack front allows maxi

mum growth of7.5 mm (60 xD/2). However, at crack extensions beyond the =5 mm range it 

seems reasonable to expect some influence on the R-curve from the non-voided, background 

material ahead of the 7.5 mm limit. As shown subsequently, the crack front at the side-groove 

in the shallow notch specimens exhausts the 60 cells at = 4 mm of growth on the centerplane. 

Detailed studies of the porosity distribution on the crack plane suggest that the decreasing 

slopes observed in R~curves follow from the continually expanding size of the process zone for 

void growth on the crack plane. In the analyses, cells at increasingly larger distances from the 

crack front experience void growth. Consequently, as the crack front extends to their location, 

little additional deformation is required to attainf= fE . Without the expanding region of prior 

damage to cells, the predicted R-curves do not continue to exhibit a decreasing slope. 

Figures 12 and 13 show the evolution of crack front profiles predicted for the deep and shal

low notch specimens, respectively. These figures provide the profiles at (centerplane) exten

sions of 1 and 4 mm to enable comparisons of the deep and shallow notch specimens. Near the 

side-grooves in the shallow crack specimen, the crack runs significantly ahead of the main 

front, even at the low level of1 mm centerplane growth. At the 4 mm (centerplane) growth level, 

the crack has extended to the 7.5 mm limit at the shallow notch side grooves, which exhausts 

the 60 computational cells defined ahead of the front. The side-grooves playa less pronounced 

role in the deep notch specimen which shows a more uniform front, see Fig. 12 (b). 

At completion of the tests, the specimens were removed (unbroken) from the loading appa

ratus, heat tinted to mark the end of ductile tearing, then fractured in liquid nitrogen. 

Photographs of the broken faces were taken and digitally scanned to enable construction of the 

initial fatigue and final crack profiles. Figures 12 (c) and 13 (c) show these measured profiles 

for a deep and a shallow notch specimen; the irregularity of the measured fronts typify com

monly observed features. The numerical models use perfectly uniform and symmetric initial 

crack fronts. The predicted amounts of growth from these idealized fronts are added to the mea

sured fatigue front position and then drawn in the figures to define the predicted ductile crack 

front at test termination. The agreement is remarkably good, especially for the shallow notch 
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specimen (which has a very straight fatigue crack). The run ahead of crack growth in the side

grooves is clearly visible in the shallow notch specimen and is captured very well by the analy

sis. In tests of shallow-notched (ajW = 0.1) SE(B) specimens of an HY-130 steel, Towers and 

Garwood [43] observed even stronger reverse tunneling for specimens having 20% side

grooves, see Fig. 11 (b) in [43]. 

Mesh refinement in the thickness direction affects rather strongly features of the predicted 

crack front profile. We experimented with various numbers of elements in the thickness direc

tion. A satisfactory model has 9, variable thickness layers of elements along the (half) crack 

front with the thinnest layers defined at the side groove. For comparison, a coarse mesh with 

7, uniform thickness layers along the (half) crack front does predict the trend of more growth 

at the side grooves, although the larger elements diffuse the process and suppress localization 

at the side-groove root. 

5.4. 3-D ANAL YSIS OF PLANE-SIDED CrT) SPECIMEN 

Panontin and Nishioka [44] performed unloading compliance tests at room temperature on 

1T-C(T) specimens of an A516-70 steel. The specimens have ajW=0.6 but do not have side

grooves. Figure 14 (a-b) show the measured resistance and load-displacement curves for tests 

performed using two different orientations of the crack plane relative to the rolling direction 

of the steel plate. In the TL orientation, the crack grows in the rolling direction of the plate, 

i.e., crack growth is aligned with the elongated grain structure. In the LT orientation, crack 

growth occurs transverse to the rolling direction. Although the R-curves exhibit substantial 

differences for the two crack plane orientations, tensile tests on specimens taken in the two 

orientations revealed negligible differences. Measured load-displacement responses show a 

definite influence of orientation once crack growth begins. The test values of crack extension 

are those estimated by the unloading compliance procedure. Due to the severe tunneling, the 

compliance estimate offinal crack extensions for these specimens represents 30-40% of the ac

tual values on the centerplane measured following the tests. 

Figure 14 (a) also shows the predicted crack growth resistance curves obtained with the fol

lowing cell parameters: fo=0.002,D=200,um, EN=0.75, sN=0.05, fN =O.50, fE =O.15. Val

ues for the three void nucleation parameters (EN' SN' fN) are defined from the outset based on 

experience with the SE(B) analyses described above for A533B and do not enter the calibration 

process. The large value set for EN limits severely the influence on the centerplane region, i.e., 

stress triaxiality controls void growth in these cells and they are eliminated before strain-con

trolled n uclea ti on becomes active. The val ue for D equals approximately the CTO D at ini tiation 

of growth. This value for fo is selected on the basis of preliminary plane-strain analyses to 

match the LT specimen. The dashed line represents the R-curve constructed using a weighted 

average of crack extensions (at a fixed J) taken from the cell layer in the finite element model. 

The solid line indicates theR-curve constructed using crack extensions predicted at the center

plane. The raw comparisons on this basis appear quite poor due to significant underestimation 

of crack extension by the unloading compliance procedure. To illustrate the magnitude of this 

difference, the final point of the LT curve is re-plotted as an (*) at the final (measured) center

plane extension. Now, much better correlation between the measured and predicted values is 

observed. The TL specimen yields a similar difference between compliance estimated and mea-

18 



sured growth at the centerplane (indicated with the arrow on the final TL data value). This 

specimen is not modeled in the current study. 

Figure 14 (c) compares the measured crack front profile for the LT specimen with the front 

profile predicted by the 3-D analysis. The unloading compliance test was interrupted at a J of 

510 kJ /ITl2; the specimen was fatigue cycled to mark the end of ductile tearing, and finally 

loaded to fracture. The predicted crack front indicated on the figure is obtained by adding the 

measured fatigue pre-crack to the numerical results at each point along the crack front (pre

dicted growth values taken at J of 510 kJ 1m2 ). Generally good agreement exists between the 

computed and the measured crack-front shape; the analysis captures the features of the ex

tending crack front, especially in the mid-thickness region. At the quarter-thickness location, 

the measured front has less growth and less curvature than the predicted curve, perhaps an 

effect of the curved fatigue pre-crack. 

6. Closure 

This study describes a 3-D computational framework to model stable extension of a macroscop

ic crack under mode I conditions in ductile metals. Material separation occurs through a local 

fracture mechanism based on the growth and coalescence of micro voids dispersed in the mate

rial. The Gurson-Tvergaard dilatant plasticity model for voided materials describes the 

eventual loss of material stress capacity under sustained loading. Fixed-size computational 

cell elements defined on a thin layer adjacent to the crack plane provide an explicit length scale 

for the continuum damage model. Outside of this layer, the material remains undamaged by 

void growth, consistent with metallurgical observations. An element vanish procedure re

moves highly voided cells from further consideration in the analysis, thereby creating new trac

tion-free surfaces which extend the macroscopic crack. The key micromechanics parameters 

are D, the thickness of the computational cell layer, and fo, the initial cell porosity. Other pa

rameters that playa lesser role are the critical porosity, fE' and those governing strain-con

trolled acceleration of void growth in low triaxiality cells (EN,fN,sN). Calibration of these pa

rameters proceeds through analyses of ductile tearing to match R-curves obtained by testing 

simple through-crack specimens. The resulting computational model, coupled with refined 3-D 

meshes, enables the detailed study of non -uniform growth along the crack front, including tun

neling and reverse tunneling, and predictions of specimen size, geometry and loading mode ef

fects on tearing resistance, here described by J-~a curves. 

Our computational studies confirm previous work that less costly, plane-strain analyses of 

simple through-crack specimens, e.g., SE(B)s, predict adequately the effects of "in-plane" 

constraint loss on the R-curves. Moreover, they enable relatively inexpensive analyses to esti

mate starting values for calibration of the micro-mechanics parameters required in subse

quent 3-D computations. However, fully 3-D models remain essential to quantify the interac

tion of absolute size, in-plane and thickness dimensions in through-crack specimens and to 

model ductile growth in surface crack configurations. 

Exploratory 3-D analyses of deep and shallow crack SE(B) specimens and of a deep crack 

C(T) specimen" demonstrate the capability to predict geometry effects on R-curves and to pre

dict the measured crack front profiles. Numerical results for the plane-sided C(T) specimen 
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predict a tunneled crack front profile in very good agreement with the post-test, measured pro

file. Similarly, the measured and predicted crack-front profiles for the side-grooved SE(B) spec

imens agree very well, including the reversed tunneling of growth at the side-groove root for 

the shallow-notch specimens. Analyses of the SE(B) specimens demonstrate the strong effect 

of side-grooves on theR-curves and the crack front profiles. The 3-D analyses reveal a relatively 

low level of stress triaxiality in material along the side-groove root accompanied by large plas

tic strains. With the simplified cell model having only parameters D, fo and fE' the low stress 

triaxiality retards growth at the side grooves leading to a tunneled profile, which contrasts 

with the more nearly uniform growth and reversed tunneling in the side-groove routinely ob

served in tests. To capture these features, we augment the GT constitutive model with strain

controlled nucleation to accelerate void growth at high plastic strains. The associated micro

mechanical parameters (EN' fN' SN) are assigned values which minimize the accelerated 

growth in cells having a high level of stress triaxiality, i.e., the porosity reaches fE prior to a 

plastic strain level which triggers the acceleration. The same set of nucleation parameters rem

edies the side-groove issue and does not adversely impact prediction of the plane-sided C(T) 

specimen. From this we conclude that the strong effect of the side-grooves in maintaining uni

form crack extension arises more from the elevation of plastic strain than from an elevated 

stress triaxiality. However, this ad hoc procedure using the strain-controlled nucleation clearly 

underscores the need for additional development of cell element models for low triaxiality, high 

plastic strain conditions. 

For general 3-D applications, the calibration procedure to specify values for the remaining 

cell parameters (D, fo' fE' f3) remains a non-trivial task and does not appear to possess a unique 

solution. For example, this study demonstrates clearly that parameters calibrated to match ex

perimental R-curves on the basis of simpler plane-strain analyses differ from the values re

quired in 3-D analyses of the same specimens; the plane-strain models predict different strain

stress fields ahead of the crack tip. This simply reinforces the loose coupling between these 

computational parameters and metallurgical features of the materials. D sets the layer thick

ness over which damage occurs and indirectly sets the layer mesh refinement; 2-D models have 

square cell elements with rectangular prism cells employed in the 3-D models. The layer thick

ness plays the key role in calibration as resistance scales with D. Fracture surface morpholo

gies and analysis experience thus far suggest the CTOD at initiation of ductile tearing (0 Ie) in 

deep-notch specimens represents a good starting value for D. Consider the A533B material of 

this study. From the experimental R-curves, ole = 250 J1m and also equals the 3-D, calibrated 

D value with fo = 0.002. For the C(T) specimen taken from an A516-70 plate material, 0 Ie = 200 

J1m and again provides the calibrated D value. 

Particle morphologies and distributions also provide guidance on the values for D and fo. 

Van Stone [45] estimates a 0.12% volume fraction of MnS and Al203 inclusions in a similar 

A533B plate material, with largest inclusion sizes of5-10J1m and spacings of 50 J1m. These val

ues imply D = 50 J1m and fo = 0.001, but post-test surveys ofC(T) fracture tests in [45] revealed 

a ole = 2-300 J1m with some void growth as far as ~ 1.S x ole from the crack plane. For the 

A516-70 material, particle morphologies [46] indicate MnS inclusion sizes of3-4J1m at spacings 

of 45-50 J1m. For this material, Franklin's formula [47] estimates fo = O.OOOS. Perhaps not sur-
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prisingly then, calibrated values for D andfo take on larger values than metallurgical esti

mates for these two pressure vessel steels. 

The element extinction parameters (fE' (3) have reasonably limited ranges of fE = 0.15-0.25 

and (3 = 0.05-0.25. Presently assigned values of fE = 0.15 and f3 = 0.1 maintain good numerical 

stability in the 3-D solutions. Cell elements are deleted at fE prior to their becoming so dis

torted as to terminate the computations. Moreover, X&S [6] show that predictedR-curves vary 

little over this range of fE values, which are consistent with experimental observations and 

fine-scale localization models of ligament necking between voids [16]. The (3 value influences 

theR-curve in perhaps unexpected ways at large amounts of growth. Increasing (3 actually low

ers the R-curve by holding the crack faces closed which increases the process zone size for void 

growth ahead of the front. The current work ofFaleskog and Shih [14] may provide more quan

titative, constraint dependent estimates for fE' (3. 

The com pu ta tional demands for refined 3-D analyses of ductile growth remain formidable. 

However, the numerical procedures described here coupled with the newest generation of Unix 

workstations will soon make feasible these analyses on a more routine basis. Ongoing work 

with the 3-D computational cell framework focuses on modeling of ductile tearing in surface 

cracks in flat plates/cylinders to resolve R-curve transferability issues and on the effects of 

ductile tearing as the precursor to cleavage fracture in the ductile-to-brittle regime (see [4] for 

initial studies). 
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