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Numerical Modeling of Intensity and Phase Noise
in Semiconductor Lasers

Moustafa Ahmed, Member, IEEE, Minoru Yamada, Member, IEEE, and Masayuki Saito

Abstract—A self-consistent numerical approach is demon-
strated to analyze intensity and phase noise in semiconductor
lasers. The approach takes into account the intrinsic fluctua-
tions of the photon number, carrier number, and phase. A new
systematic technique is proposed to generate the Langevin noise
sources that derive the laser rate equations keeping their cross-
correlations satisfied. The simulation is applied to AlGaAs lasers
operating in a single mode. The time-varying profiles of the
fluctuating photon and carrier numbers and the instantaneous
shift of the oscillating frequency are presented. Statistical analysis
of the intensity and phase fluctuations is given. The frequency
spectra of intensity and phase noise are calculated with help of
the fast Fourier transform. The importance of taking into account
the carrier number noise source and its cross-correlation with the
noise source on the phase is examined by comparing our results
with those by conventional methods.

Index Terms—Fourier transform, noise, numerical modeling,
semiconductor lasers, spontaneous emission, time-domain anal-
ysis.

I. INTRODUCTION

I NTENSITY and phase noise on the output of laser diodes
limit their reliability when applied as light sources in optical

communication systems, optical discs, optical measuring, etc.
The quantum noise corresponds to intrinsic fluctuations in the
photon number, carrier number, and phase that are generated
during the quantum interaction processes of the lasing field
with the injected charge carriers [1], [2]. Excess noise is
generated when other effects, such as the re-injection of light
by optical feedback, amplify the intrinsic fluctuations. Analysis
of the laser noise-types is necessary for further improvement of
device performance. Theoretically, this is achieved by mathe-
matical solution of the laser rate equations including Langevin
noise sources that account for generation of the fluctuations.
Linearization of the rate equations following the small-signal
approximation brings about the analytical treatment of the
problem [3], [4], which was applied in most of the previous cal-
culations of noise [5]–[12]. However, information concerning
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the instantaneous fluctuations of the intensity and the phase is
missed and, moreover, the accuracy of such an analysis is not
guaranteed under large fluctuations.

Direct numerical integration of the rate equations has been
applied to overcome the limitations of the small-signal analysis
[13]–[23]. Looking into the dynamic behavior of the photon and
carrier numbers as well as the phase is a merit of applying the
numerical analysis [13]. The Langevin noise sources affecting
the photon number, carrier number, and the phase have mu-
tual cross-correlations among them. However, most previous
calculations generally ignored the noise source associated with
the carrier number [16], [17], [20], [23], or assumed artificial
cross-correlations without reporting a solid basis for that as-
sumption [14], [15], [18], [19], [21], [22]. An exception is the
calculations of D. Marcuse, who reported a model of inten-
sity fluctuations in which the Langevin noise sources on the
photon and carrier numbers are generated with defined auto- and
cross-correlations [24]. However, neither the generation of the
phase noise source and its cross-correlations to the other sources
nor applications to calculate noise were treated.

In this paper, we report a self-contained numerical model to
analyze the intensity and phase noise and broadening of the
line shape. We demonstrate a new systematic technique to gen-
erate the Langevin noise sources on the photon number, car-
rier number, and phase while keeping their auto- and mutual
cross-correlations satisfied. The main idea of the technique is to
represent each of the noise sources in a 3-D space of noncorre-
lated sources in analogy to the conventional vector-representa-
tion. Our technique could be understood as a generalization of
the method by Marcuse [24]. The time variations of the fluc-
tuating photon number, carrier number and phase are analyzed
and their statistics as well. Frequency spectra of both intensity
and phase noise are calculated with the help of the fast Fourier
transform (FFT). The noise results are compared with those pre-
dicted by the small-signal analysis. Moreover, we pay attention
to examining the importance of including the noise source on the
carrier number in the rate equations, as well as its cross-correla-
tion with the noise source on the phase. We do this examination
by comparing our data with those resulting from the approxi-
mate calculation of ignoring such random processes.

In the next section, the proposed theoretical model of the nu-
merical simulation is presented, which includes formulation of
the laser rate equations and devising a technique to generate the
correlated Langevin noise sources. In Section III, the numerical
simulation is given for AlGaAs lasers, and the simulated data
are compared with those resulting from other methods. Finally,
we conclude our work in Section IV.

0018–9197/01$10.00 © 2001 IEEE
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II. THEORETICAL MODEL

A. Laser Rate Equations

The electric component of the lasing field oscillating at fre-
quency is expressed by

c.c. (1)

where is a slowly time-varying amplitude of the field, and
is its spatial distribution function. Both intensity and phase

fluctuations are described by the time variation of the field am-
plitude [10]

(2)

where and are coefficients of the gain and phase change
induced by the stimulated emission. is the threshold gain
level. The term is a complex function describing the rate
of change of due to inclusion of the spontaneous emission
in the stimulated emission. Mathematically,and represent
the real and the imaginary parts of the laser susceptibility, and
vary with the injected carrier number as follows [10], [25]:

(3)

(4)

where is the carrier number at transparency, whileis the
time-averaged carrier number. The parameteris the so called
“linewidth enhancement factor,” and is given by [8], [10]

(5)

By writing the complex field amplitude in terms of the optical
phase

(6)

we obtain the rate equations for the absolute value of the ampli-
tude and phase as

(7)

(8)

The fluctuation of the lasing frequency is described by
the variation of the optical phase as

(9)

Equations (8) and (9) show how both the carrier number fluc-
tuations and the random process of spontaneous emission in-
duce the frequency fluctuations. The former effect induces vari-
ations in the refractive index of the active region which, in turn,
changes the oscillating frequency.

Equations (7) and (8) can be given in terms of the photon
number by using the relation [26]

for optical emission
for optical absorption

(10)

where is the dielectric constant of the active region. In expres-
sion (3) for the gain coefficient, the first term indicates
optical emission, while the second term corresponds
to optical absorption. Thus, (7) and (8) become

(11)

(12)

where

(13)

and

(14)

The functions and are Langevin noise sources. The
mean values of these sources are zero, because the mean value
of is zero as follows:

(15)

The autocorrelation functions of the noise sources are

(16)

(17)

where and are the variances of autocorrelations, and
is Dirac’s delta function.

Since is a random complex function, we can assume

(18)
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Using this relation with (10), (16), and (17), we find that

(19)

The cross-correlation between and should be zero,
because and are orthogonal,
i.e.,

(20)

On the other hand, the rate equation of the carrier number
is

(21)

where
carrier lifetime;
injection current;
electron charge.

The function is the Langevin noise source on the carrier
number, and is characterized mathematically by

(22)

(23)

The source is cross-correlated with the photon number
noise source , as well as with the phase noise source ,
which was not considered by previous calculations except the
work of Abdulla and Saleh [14]

(24)

(25)

The relation between and is estimated by (13), (14),
and (18) with (10) to be

(26)

Generating fluctuations on a quantum number forms a
Poisson probability distribution, where the variance is equal
to the mean value. Therefore, the variances , and

are obtained from the rate equations (2), (11), and (21) as
[3]–[5], [9]

(27)

(28)

(29)

The other variances of the generating fluctuation function
and are determined via (19) and (26).

The output power from the front facet of semiconductor
lasers is given by

(30)

where
speed of light in vacuum;

, refractive index and the length of the active region,
respectively;
photon energy of the emitted light;

, power reflectivities of the front and back facets, re-
spectively.

B. Constructing Langevin Noise Sources

Obtaining explicit forms for the functions , , and
is necessary to perform numerical integration of (11),

(12) and (21). Unless these noise sources are cross-correlated,
we could numerically simulate them with three independent
random generations using their auto-variances in (19), (27), and
(28). Here, we demonstrate a general technique to simultane-
ously generate the cross-correlated noise sources , ,
and .

Equations (11), (12), and (21) are transformed into a new set
of three equations of the photon number, phase , and a vari-
able defined as (where and are two real
numbers)

(11 )

(12 )

(31)

When the parametersand are defined as

(32)

(33)

the noise functions , , and
become mutually orthogonal without cross-correlations among
them so that we can define them independently. The auto-cor-
relation of the new random function is

(34)
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Fig. 1. Schematic representation of the mutual correlations among the
functionsF (t), F (t), F (t), andkF (t) + mF (t) + F (t). A vector
represents each function. The vectorkF (t)+mF (t)+F (t) is orthogonal
to bothF (t) andF (t) using appropriate settings ofk andm.

TABLE I
VALUES OF THEPARAMETERS USED IN THEPRESENTCOMPUTERSIMULATION

OF A BURIED HETEROSTRUCTUREAlGaAs LASER

In analogy with the vector notation, the orthogonal functions
, and can form a 3-D

functional space in which the function can be represented
as the linear combination

(35)

which satisfies relations (23)–(25). The idea of orthogonaliza-
tion of the functions is illustrated in Fig. 1.

The delta functions appearing in the auto- and cross-correla-
tion functions are treated in the numerical calculation such that

for

for
(36)

where is the time interval between sampling
times of and . Since , , and vary with time, the
variances (with and standing for any of , or )
in (19), and (26)–(29) also vary with time. These variances at
sampling time are evaluated from the corresponding values

Fig. 2. Dependence of the dc values of: (a) the photon numberS, and (b) the
carrier numberN on the injection currentI . CorrespondingL–I characteristics
are also given in (a) with the right-hand vertical axis.

at the preceding time by supposing a quasisteady state
during the time interval , as in the

following equations:

(37)

(38)

(39)

(40)

(41)

By supposing , , and to be independent random numbers
forming Gaussian probability distribution functions with zero
mean values of , and unity variances

for ensembles of time, the noise
sources , , and are
expressed as

(42)

(43)

(44)

Finally, we generate the noise source by substituting
(42)–(44) into (35).

Thus, we can integrate (11), (12), and (21) using the generated
forms of , , and , or equivalently the system
of equations (11′), (12′), and (31) with forms (42)–(44).
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(a) (b)

Fig. 3. Time-variations of the photon numberS(t), the carrier numberN(t), and the instantaneous frequency fluctuations��(t): (a) during transients and
(b) after termination of transients. Characteristics without the noise sourcesF (t),F (t), andF (t) (dashed lines) are included for comparison. These quantities
fluctuate around their dc values even after the termination of transients.

C. Noise and Spectral Linewidth

Most of the previous calculations of noise were based on
small-signal analysis, which was developed by McCumber
[3] and applied to semiconductor lasers by Haug [4]. In such
an analysis, the time-fluctuating components are transformed
into Fourier frequency components from which the noise
and linewidth are calculated. The small-signal analysis of the
proposed model is shown in the Appendix.

In the present numerical approach, the relative intensity noise
and the frequency, or phase, noise are evaluated

from the fluctuations and , respec-
tively, that result from time integration of (11), (12), and (21)
and using (9) and (30). The spectra of the and are orig-
inally defined as the Fourier transform of the auto-correlation
functions

(45)

(46)

and are calculated over a long time periodfrom the equations

(47)

(48)

where is the Fourier angular frequency.
The laser linewidth, the full-width at half-maximum (FWHM)

of the single-mode spectrum, is determined from the low-
frequency component of the as [12]

(49)
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III. N UMERICAL SIMULATION AND DISCUSSION

Numerical calculation of the photon number , carrier
number , instantaneous frequency shift , and the
corresponding noise terms are presented in this section. Typical
values of AlGaAs laser parameters that appeared in the system
of (11), (12), and (21) are listed in Table I. The corresponding
( – ) characteristics are plotted in Fig. 2(a) through the
application of (30). The corresponding dc-values of the photon
number and the carrier number are also plotted in Fig. 2(a)
and (b), respectively. Applying the fourth-order Runge–Kutta
method using a short time interval of ps was the
means for carrying out the numerical integrations. This small
value of results in noise sources that approximately describe
a white noise spectrum up to a frequency of 100 GHz ( ),
which is much higher than the relaxation frequency [15]. The
integration has been extended to a time period as long as 40s,
which requires more than 4 million integration steps.

Each of the independent Gaussian random variables,
and are generated with the aid of the computer. The

technique for generating the Gaussian random variables is
as follows [27]. Two uniformly distributed random numbers

and ranging between 1 and 1 are obtained from the
computer random number generator. Then, following the
Box–Muller transformation [28], we calculate each of the
Gaussian random variables as one of the deviates

(50)

in an alternative way. The generated Gaussian random variables
vary between 5 and 5.

A. Fluctuations of the Photon and Carrier Numbers and the
Oscillating Frequency

The time-varying profiles of the photon number , the car-
rier number , and the frequency fluctuations , calcu-
lated at an injection current of 1.5 times the threshold value

, are plotted in Fig. 3(a) and (b) during and after the ter-
mination of transients, respectively. For comparison, the corre-
sponding time variations when ignoring the fluctuation func-
tions , , and in (11), (12), and (21) are in-
cluded in the figures. As shown in the figures, the effect of
driving the rate equations by the Langevin noise sources is to
fluctuate these physical quantities around their dc values. The
fluctuations continue with time, even after the transient phe-
nomena die away. The root-mean-square of the fluctuations over
the integration time length is about 14.5% of , which is com-
parable to the range observed by Gonda and Mukai [29].

B. Intensity Noise, Frequency Noise, and Linewidth

The quantum and are calculated via (47) and (48),
respectively, using the FFT. The effect of transients on calcula-
tions is avoided by counting the fluctuations after ns.
The simulated spectra of the and are shown in Fig. 4(a)

(a)

(b)

Fig. 4. Frequency spectra of: (a) quantumRIN and (b) quantumFN at
injection currentI = 1:5I . The spectra peak around the resonance frequency
f and are almost flat in the low-frequency regime. The characteristics are a
good fit with those calculated by the small-signal analysis.

and (b). Around the relaxation frequency, both the and
show the pronounced peak that was detected in experiments

[30]–[32]. At low frequencies, the is flatter than . These
characteristics are in good agreement with those determined by
the small-signal approximation described by (A5) and (A6) in
the Appendix.

As given in (49), the laser linewidth is determined by ex-
tending the calculation of to very low frequencies .
Although this is very difficult when using the short integration
step ps from the computational point of view, the flat-
ness of the at the low-frequency side enabled us to approxi-
mately calculate at frequencies as low as 100 kHz. The cal-
culated value at the injection level is MHz
which is comparable to the value 11.9 MHz obtained from (A11)
in the Appendix, based on the small-signal approximation.
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(a) (b)

Fig. 5. Instantaneous fluctuations of: (a) the output powerP (t) and (b) the oscillating frequency shift��(t) far from the relaxation regime at different injection
currents. The fluctuations are suppressed while their repetition becomes faster whenI increases.

C. Dependence on Injection Current

The output power and the frequency shift at
different injection currents are shown in Fig. 5(a) and (b).
The plotted fluctuations are far from the relaxation regime. A
common feature of both variations is that the repetition of the
fluctuations becomes faster with increasing, which indicates
an increase of the relaxation frequency. The dependence
of the fluctuations on is further illuminated by collecting
statistics for both and . Fig. 6(a) and (b) plot the
probability distributions of , normalized to the corre-
sponding dc-power , and , respectively, at different
injection levels. In these calculations, both and are
counted over a long time interval (1s). The probability of

is calculated for powers in the range : , while
that of is done over the interval of : 1 GHz
1 GHz.

Although Fig. 5(a) indicates an increase in the amplitude of
the power fluctuations with increasing, the fluctuations are

actually suppressed as proved by the higher and narrower prob-
ability distributions at higher currents as shown in Fig. 6(a). The
standard deviation of the fluctuations was found to decrease
from near threshold to far from
threshold . Similarly, the fluctuations of the oscil-
lating frequency are suppressed and become regular with
increasing current , as shown in Fig. 5(b). This result is also
confirmed by the results of the corresponding probability dis-
tributions given in Fig. 6(b). The distribution becomes narrower
and higher with increasing. Suppression of both power and fre-
quency fluctuations occurs because when the current is far from
threshold, the contribution of the random spontaneous transi-
tions to the emitted light can be neglected when compared to
the stimulated transitions and, hence, the emitted light becomes
more coherent.

The corresponding spectra of the and are plotted in
Fig. 7(a) and (b), respectively. The variations of noise character-
istics shown are in correspondence with those of the fluctuations
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(a)

(b)

Fig. 6. The probability distributions of: (a) the output powerP (t) and (b) the
frequency fluctuations��(t) at different injection levels. High and narrow dis-
tributions are shown at high current values.

of and in Fig. 5. That is, the increase of the repeti-
tion of the fluctuations with increasingcorresponds to a shift
of the peak frequency of both the and spectra toward
the higher frequency side. On the other hand, the suppression of
the fluctuations leads to a decrease in the level of both and

with , as shown in Fig. 7.
Fig. 8 plots the corresponding results of the linewidth.

The figure proves the rapid narrowing of with increasing
near threshold [12]. The decrease of with matches the

corresponding decrease of the shown in Fig. 6(b). Fig. 8
also plots the corresponding variation of the contributions to
the frequency noise and linewidth: namely the carrier number
fluctuations, spontaneous emission, and the correlation of the
Langevin noise sources and . The noise due to the

(a)

(b)

Fig. 7. Variation of the spectra of: (a) the intensity noiseRIN and (b) the fre-
quency noiseFNwith currentI . IncreasingI causes shift of the peak frequency
and decrease of the noise level.

carrier number shows the highest contribution, while the noise
due to the cross-correlation of and is several orders
of magnitude lower, and can be neglected in the present model
of intrinsic phase fluctuations. Nevertheless, the latter source
might be enhanced or suppressed, especially near threshold,
when operating with multi-modes or under optical feedback.
The dependence of the linewidth on the injection current
is then typically described by the modified Schawlow–Townes
relation [12]

(51)

where is the current at transparency.



1608 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 37, NO. 12, DECEMBER 2001

Fig. 8. Variation of the linewidth�f with currentI at a frequency as low
as 100 kHz. The corresponding variations of the mechanisms contributing to
broadening of�f are also shown. The figure shows the rapid narrowing of�f

with increasingI near threshold.

D. Effect of Ignoring the Carrier Number Noise Source

Henry assumed that the carrier number noise source
has a negligible contribution to the phase fluctuations [7], [8].
Other authors followed the assumption by Henry, even when
calculating the intensity noise [17], [20], [23]. In this subsection,
we examine this assumption by comparing our results with other
results with the assumption that .

Fig. 9(a) plots the calculated data for both the cases of
and at . As found in the figure,

the characteristics in the high-frequency regime (including the
peak position) are unaffected, while the values are overes-
timated at low frequencies when the source is ignored.
The reason behind this effect can be traced to the small-signal
analysis discussed in the Appendix. The at low frequencies
in this case is given by

(52)

which does not depend on the cross-correlation .
Since has negative values and then contributes to
reduce the as given in (24) and (29), the assumption of

brings the to a larger value. The dependence of
such a discrepancy in the on the current in the low-fre-
quency regime is illustrated in Fig. 9(b). The overestimation
of is larger at higher injection levels. Then, inclusion of
the noise source in the rate equations is necessary for
accurate analysis of the noise.

Regarding the frequency noise, we did not find a big differ-
ence between the calculated data. The fluctuation source
may affect the intensity fluctuations more than the frequency
fluctuations.

(a)

(b)

Fig. 9. Effect of ignoring the carrier noise sourceF (t) on the: (a) spectrum
of RIN at I = 2:0I and (b)RIN values at the low frequency of 100 kHz.
RIN is overestimated whenF (t) = 0 in the low-frequency regime at injection
levels far from threshold.

IV. CONCLUSION

Numerical simulations of intensity and phase noise in semi-
conductor lasers are demonstrated. A new technique is devised
to generate the correlated Langevin noise sources on the photon
and carrier numbers, as well as on the phase of the lasing field.
Simulations of line-shape broadening and its dependence on the
injection current are analyzed. The results are in agreement with
those obtained by small-signal analysis. Contributions of the
carrier-number noise source and its cross-correlation with the
phase noise source to intensity and phase noise are examined
for the first time. Our proposed model will be applied to ana-
lyze complicated phenomena under optical feedback with suit-
able extensions of the model.

APPENDIX

Here, we show the application of the small-signal analysis
to calculate the spectral dependence of both the and .
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The frequency components of the fluctuation functions ,
, and are defined through the Fourier transform

(A1)

where the symbol stands for each of , , and . Both the
photon number and the carrier number are assumed
to have fluctuations as

(A2a)

(A2b)

and the frequency fluctuations are transformed as

(A2c)

with , and being the corresponding fluctuating com-
ponents in the frequency domain.

By substituting the above equations in (11), (12) and (21),
and assuming that the fluctuations and are so small that

and , the equations are linearized for both
the dc components and the fluctuating components so as to the
following two system of equations:

(A3a)

(A3b)

(A4a)

(A4b)

(A4c)

We calculate the dc-values and by solving (A3a) and
(A3b), and then solve the system of equations (A4) for the fluc-
tuation components and . Both and are then
determined with the ensemble averages of the square values of
the fluctuations

(A5)

(A6)

where the noise on the photon number and the carrier number,
as well as the noise due to correlation of the fluctuations on the
carrier number and the phase are given, respectively, by

(A7a)

(A7b)

(A7c)

The term in the denominator is given by

(A8)

where is the angular relaxation frequency, and is given by

(A9)

Therefore, the noise is determined by the correlations
, with and standing for either , , or , in the

frequency domain. These correlations are the frequency compo-
nents of the corresponding correlation functions
in the time domain and are determined as the time averages of
their variances

(A10)

These time-averaged variances are calculated via (19) and
(26)–(29) using the dc valuesand .

Finally, the spectral full-linewidth is determined from the
low-frequency component of the as [9]

(A11)
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