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Abstract. We studyamodel of continental col- 
lision in which one of the continents acts as a 

rigid die indenting the other plate which flows 
as an incompressible viscoplastic medium. We con- 
sider two extreme cases of plane deformation: 
(1) plane strain which corresponds to an infini- 
tely thick lithospheric plate, and (2) plane 
stress corresponding to a very thin plate. Defor- 
mation of the lithosphere, a thick plate, should 
be intermediate between those extremes. We found 

that the flow in the plane strain case is quite 
similar to that obtained by slip line theory. The 

plane stress results are quite different, since 
in this case most of the plate shortening is ta- 

ken up by the thickening of the lithosphere. We 
also explored the role of boundary conditions on 
the flow, in particular, the role of the side 
walls containing the flow of the lithosphere. In 
the case of a free lateral boundary the main 
feature is a flow of matter toward this free wall 

and a S-like pattern for the horizontal stress 
field. For a rigid wall, on the other hand, the 
plane strain and the plane stress results are 
quite different. In the first case, there is a 
large return flow on the sides of the punch, the 
material being extruded along the only free sur- 
face available. In the plane stress case the 

return flow disappears, and the material displa- 
ced by the penetration of the die tends to thi- 
cken the plate. The role of a nonlinear constitu- 
tive relation is studied for power law creep. As 

the power of the flow limit increases, the flow 
retains its general features, but the deformation 
localizes creating sharper contrasts between high 
and low strain rate areas; in plane stress, the 

effect of nonlinearity is to increase the con- 
trasts in vertical motion. Available data for 

Asia are discussed in the light of the new re- 
sults. 

Introduction 

Plate tectonics, which considers that the 

lithosphere is divided into a small number of 
rigid plates interacting only near their common 
boundaries, can explain many of the global fea- 
tures of the earth. There exist, however, large 

regions, usually of continental nature, where 
the lithosphere undergoes large-scale deformation 
and a rather diffuse seismicity prevails. From 
its size and tectonic significance, the region 
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of central Asia behind the Himalayan range is one 
of the most interesting example of intracontinen- 

tal deformation. Tapponnier and Molnar C1976), 
observing the chronology and the geometry of the 
structures in this area, concluded that they had 
as a common origin the collision between India 

and Asia at the Himalayas. They went further to 
recognize that many of the observed features were 

quite analogous to certain common metallurgical 
processes, like indentation by a punch and extru- 
sion {Hill, 1950; Backoffen, 1972). They modeled 
the collision between India and Asia as the plane 
strain indentation of a rigid-plastic medium by a 
rigid punch. They justified this interpretation 
by the analogy between the slip line field asso- 
ciated with indentation and the great strike slip 
faults observed in satellite pictures of this 
region. The success of this simple anological 
model, in spite of its drastic simplification of 
boundary condition, rheology, etc., encouraged us 
to make a more detailed study based on continuum 
mechanics and using modern finite element techni- 
ques. A number of authors have used this approach 
in trying to model lithospheric deformation. Ci. 
e., Daigni•res et al., 1978; Bird, 1978; Bird and 
Piper, 1980; Vilotte, 1980; Melosh and Raefsky, 
1980; P. England and D. McKenzie, personnal com- 
munication, 1980•. Based on theoretical conside- 

rations [Mandel, 1972; Zarka, 1972• and experi- 
mental data [Weertman and Weertman, 1975; Ashby 

and Verrall, 1977•, we propose a rigid-viscoplas- 
tic rheology for the long-term deformation of the 
lithosphere. We then study two types of deforma- 
tion under the action of a rigid punch: plane 
strain and plane stress. Two alternative numeri- 

cal methods will be proposed, and their relative 
merits to solve plane stress or plane strain 
problems will be analyzed. One is a variational 

approach; the other is a weighted residuals 
Galerkin formulation coupled to a penalty func- 
tion to impose incompressibility. Our results 
will be discussed in the light of the observa- 
tions in central Asia that we review in the next 

section. 

A review of Indian-Asian collision 

We briefly review some observations relevant 
to the intraplate deformation and geodynamic 
history of the region of Asia to the north of 
India. The contact between the Asian and Indian 

continents was completely established about 
30 m.y. ago. Since then, the Indian plate has 
continued to penetrate into Asia at a mean rate 

of 3 to 5 cm yr -1. The total shortening of Asia 
since the beginning of collision is of the order 
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Fig. 1. Simplified map of recent tectonics in Asia {after Tapponnier, 1978]: 1, de- 
formation zone; 2, thrust fault; 3, strike slip fault; 4, normal fault; 5, shortening 
directicn; 6, extension direction; 7, plate displacement vector with respect to Asia. 

of 1500 km; this leads to an average strain of 
30% in the seismically active zone, which has a 
width of about 3000 km according to Tapponnier 

{1978]. Figure 1, extracted from Tapponnier, 
shows the main tectonic features of this region: 

1. There is a vertical deformation charac- 

terized by a crustal thickening which is probably 
of the order of 40 km (Argand, 1924; Chen and 

Molnar, 1981; Bird and Toks[z, 1977]. This thi- 
ckening is localized under the Himalayas and in 
the Tibetan plateau, whose mean altitude is close 
to 5000 m. The latter presents a number of NS 
oriented grabens in its southern end where it 
reaches the highest altitudes [Molnar and Tappon- 
nier, 1978; Ni and Ybrk, 1978]. 

2. The crustal thinning reaches about 10 km 
under Shansi and Baikal. The latter is probably 
associated not only with the India-Asian colli- 
sion. 

3. A large horizontal strain exists, which is 
characterized by the presence of two great strike 
slip faults systems. To the east are left-lateral 
strike slip faults whose total slip is very 
roughly of the order of a few hundred kilometers. 
To the west is a right-lateral fault system whose 
accumulated slip is a few tens of kilometers, 
clearly smaller than the previous one. 

These tectonic features are coupled to a regu- 

lar elevation of the present-day topography: the 
mean elevation diminishes from the Tibetan pla- 
teau toward the Pacific Ocean to the NE. 

Considering the geometry of these tectonic 
structures and the fault plane solutions of 
shallow earthquakes, we can roughly sketch the 
stress field in central Asia. In this way we can 
follow the orientation of the major principal 
stress axis, which starts with a NS direction to 
the W of Himalayas, turns progressively to the NW 
[Mattauer and Mercier, 1980], and finally becomes 
NW-SE at Tien-Shan and EW at Tadjikistan. To the 
E and NE of the Himalayas, on the other hand, we 

observe a different rotation of the principal 
stress direction: it starts NS on Tibet, tb. en it 
is NE in Szechwan, and finally returns to NS in 
Yunnan. 

Approximate rheology of the lithosphere 

The studies we are going to carry out require 
an approximation of t•e average behavior over 
long periods of time of the lithosphere. It is 
well established that for periods of time shorter 
than a characteristic time t c, the lithosphere 
behaves eslastically, while for longer times it 
creeps nonlinearly. This characteristic time is 
given approximately by t c = p/K, where p is the 
effective viscosity at a given stress level and 
K is the elastic rigidity. For different esti- 
mates of •, averaged over a vertical section of 
the lithosphere t c may vary between 109 and 
1012 s, i.e., l• 2 and 105 years {Cathies, 1975]. 
Thus for the phenomena associated with continen- 
tal collision, which extend over several tens of 
million years, the lithosphere should behave like 
a nonlinear viscous medium. 

The establishment of a constitutive relation 

requires the definition of stress and strain 
rate at every point of the continuum. What we 
need for our purposes however are the values of 
stress and strain rate (o= and •, respectively) 
averaged over certain characteristic volume of 
medium {Mandel, 1972], i.e., 

o== l/V •oL(x) dV (1) 

L = '/v ? av (2) 
where o_ L and •_L are local values. The averaging 
volume is a function of the problem at hand. The 

'averaged' strains allow for discontinuous dis- 
placements at the local scale, for instance, 
dislocations, cracks, or faults whose contribu- 
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tion to the 'averaged' deformation will be inte- 
grated inside the reference volume V. The local 
stress field may be slightly heterogeneous and 
compatible with local stress concentrations, slip 
discontinuities, etc., but at the scale of a 
million years it is averaged over the reference 
volume. A necessary requirement to replace local 
stresses by averaged ones is the following energy 
theorem {Mandel, 1972]: 

With these considerations at hand, we shall refer 
in the following only to averaged stresses or 
strains. 

Laboratory experiments on lithospheric mate- 
rials, extrapolated to the pressure and tempera- 
ture conditions in the earth, have permitted 
estimation of the strength envelope of the litho- 
sphere as a function of depth {Brace and Kohl- 
stedt, 1980; Kirby, ]980]. Using Byerlee's {]978] 
friction law as the lower limit for fracture and 

incorporating recent data for the brittle and 
semibrittle behavior of mantle rocks, Kirby 
built an approximate strength profile for the 
lithosphere {Kirby, ]980, Figures ]1 and ]2, 
p. 636]]. These profiles were calculated for a 
strain rate of 10 -14 s -1 which is of the order 

of what is expected for the geological processes 
that we are considering here. It comes out of 
this study that the lithosphere presents a layer 
of strength to slow deformation that extends 
between 20 and 70 km for dry olivine or between 
20 amd 55 km for wet olivine. He also found that 

the variations in strain rate had little effect 

on the position of this layer of strength {Kirby, 
1980]. We accept here that the long-term deforma- 
tion of the lithosphere is controlled by this 
layer, which is located mainly in the upper 
mantle, and that the constitutive relationship o• 
the whole lithosphere for extended period of time 
will be that of its strongest layer. 

The main constituent of the upper mantle being 
olivine {Goetze, ]978; Ashby and Verrall, ]977•, 
it is usually accepted that its rheology may be 
approximated by that of olivine. Experimental 
studies on the deformation mechanisms of single 

crystals of olivine [Goetze, ]978] and on poly- 
crystalline aggregates like dunite {Post, 1977] 
or lherzolite {Carter and Ave'Lallemant, 1970] 
show that the dominant mechanism is nonlinear 

creep. Therefore, we shall assume in the follo- 
wing that the mechanical behavior of the lithos- 
phere over periods of time extending beyond ] m. 
y. is nonlinear creep beyond a certain flow 
limit, i.e., it is what is usually denominated a 
rigid nonlinear visco-plastic medium. 

In establishing the rigid-viscoplastic law for 
the lithosphere in this particular case we may 
define, following Mandel {1972], a mean plastic 
strain rate •,P in the same way as the total 
strain rate was defined in (2), i.e., as an ave- 

rage over a small reference volume. In this way 
we do not exclude local elastic strains, provided 
that they are sufficiently small compared to the 
overall plastic behavior. In a rigid viscoplastic 
material as long as the stresses are inside a 
certain limit surface in stress space, i.e. 

F(o__) < O, the material remains in equilibrium. 
Once the stresses are on, or beyond this limit 
(F(o_) • 0), plastic flow or creep develops. F(o__) 

is called the flow limit. The strains associated 

with plastic flow are much more important than 
elastic strains, which are therefore ignored. For 
this reason, before the flow limit is reached, 
the lithosphere is essentially rigid and it may 
resist stresses reaching up to a few kilobars 
{McNutt, ]980; Jeffreys, 1976]. Beyond the flow 
limit there may still remain local zones which 
have not yet reached the plastic limit. Converse- 
ly, in regions where the plastic flow limit has 
not yet been established in the mean, small local 
pockets may have reached the plastic limit and 
have undergone contained plastic strains. Thus, 
the flow limit is a different concept from that 
of plastic limit. Here we shall assume that it is 
independent of initial stresses and the history 
of deformation. Also, under these assumptions the 
plastic strain rates are compatible, and during 
flow the volume does not change (trace • = 0), so 
that the flow limit is independent of the isotro- 
pic stress. 

We shall further adpot an associated flow law 
(i.e., every stress increase during the flow is 
normal to the flow surface in stress space). From 
Perzyna { ]966] or Zienkiewicz and Godhole { !975], 

•P..-- ¾ < •(F) > •F/•o.. (4) 
ß 3 •3 

where y is the fluidity, % is a function that we 
shall define next, and the symbol <•> means that 
<%> = %(F) for F >. 0 and <%> = 0 for F < 0. The 
flow surface F(!,T,• 3) is a function of stress- 
strain rate and temperature T. We shall assume 

here that F depends only on the second stress 
invariant, J2; in which case we obtain the well- 
known Yon Mises criterion: 

where 
y 

2•2 = (sijsij) l/2 (6) 
and S= is the deviatoric part of o=. Finally 

o_ = Oy(T,•_) is the flow limit. We may then 
r•write (4Y in the form 

•. = y <%(F)>(,/•2 J/•2)S.. (7) 
ß 3 z3 

As we have already discussed, in this work we 
shall adopt the power creep law that has been 

proposed for the flow of olivine under lithos- 
pheric conditions, i.e., 

%(F) = F n (8) 

where n is an integer that may vary between 3 
and 5. In the particular case n = ], we recover 

a linear viscous flow law. Following Zienkiewicz 
et al. {]978], we define an equivalent viscosity 
• for the lithosphere: 

o + (z•/¾/f) •/n 
W = Y (9) 

where 12 is the second invariant of the strain 
rate tensor: 

I2 -- /•-(•ij •ij )]/2 (]0) 
The plastic flow laws (7) or (9) permit us to 
represent in a single expression both the rigid- 
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perfectly plastic flow (¾ + •), in which case, 

• = Oy//• 12 (11) 
and the common power creep law without plastic 
limit (usually refered to as the Norton-Hoff 
law), for o -- 0 

Y 

P = (i21/•-¾) 1/n/g-•- i2 (12) 

In the latter case, (7) may be rewritten also 
in the form 

•P.. =((¾ 3n-1/2)/2)( J•2)n-ls.. (13) 
ß J •J 

which is the multidimensional extension of the 

power law • = Ao n (Weertman and Weertman, 1975]. 
The experimental data for high-temperature 

creep of lithospheric material (Goetze, ! 978) 
show that the local fluidity depends on the tem- 
perature T in the form 

•. •. -Q/RT 
¾ = ¾0 e (14) 

where Q is an activation energy and R is the uni- 
versal gaz constant. In order to estimate ¾ in 
(4) we integrate over the reference volume V, 
which in this case will be taken as a layer of 

thickness L in the lithosphere, 

! I ¾0L e-Q/RT dz (15) ¾=• L 

For a given geotherm of the type T = T O + 8z we 
get 

Y = T L - •'0 T + E 1 (Q/RT TO (16) 
where E 1 is an exponential integral function. 

In the numerical models we are going to pre- 

sent we adopted a nonlinear creep law obtained 
from available experimental data for n and y of 
lherzolite, olivine, and dunite, as shown in 
Table 1. As a reference, we shall also calculate 
solutions for a linear creep law, in this case 
we used the value of y estimated by Weertman 
(1978) for the Herring-Nabarro creep of olivine. 
The values of the flow limit o are unknown; 

lacking experimental data, we •dopted three 

extreme values for the numerical simulations: a 

very weak o.-- 600 bars, strong o. = 3 kbar, 
and a very •igh, physically unreasonable value 
o = 60 kbar. The latter was used in order to 

a•proximate the perfectly plastic case. 

Modeling of continental collision 

Following the proposition of Tapponnier and 
Molnar (1976), we shall model continental colli- 

sion as the indentation of a lithospheric plate 
by a rigid punch. The lithosphere will be mode- 
led as a rigid viscoplastic medium resting 
without friction over the asthenosphere. We 
neglect the interaction between the lithosphere 
and asthenosphere because the shear stresses 
associated are probably much lower than those 
created by collision. The curvature of the litho- 
spheric plate is not considered here nor is the 
coupling of vertical and horizontal motions. This 
allows us to treat collision as a two-dimensional 

plane strain or plane stress problem. Both of 
these approximations will be considered here. 

In order to solve the problem for a finite 
section of the continental plate we have to impo- 
se boundary conditions on the plate limits. 
These conditions replace the interaction between 
the studied plate and the neighbouring ones. We 
shall consider that, to a first approximation, 
the plate boundaries associated with subduction 

are approximately stress free. The effect of the 
punch is replaced by the application of a cons- 
tant velocity U perpendicular to the indented 

.o. 

boundary. We lxmxt the region under study by 
means of artificial boundaries placed sufficien- 
tly far from the punch so that the strain velo- 
cities are approximately zero. Several of the 
problems studied here are symmetric about the 
axis of the punch. This allows us to reduce the 
size of the finite element grid if we take into 
account appropriate symmetry conditions about the 
axis of the indenter. 

In order to retain only the main features of 
the solution and to keep the calculation costs at 
a minimum, we choose an extremely simplified geo- 
metry. We study the flow of a rectangular plate 
A B C D of 8000 by 5000 km (Figure 2) indented at 
the center of AB by a punch of width MN (= 2400 
km) with a fixed normal velocity U . The bounda- 

o 

TABLE 1. Estimation of the Fluidity Parameter for two temperature ranges 

s-1 pa-n Rock or Q * Y0, ** Y, - 
Mineral n kJ mg1-1 s -1 Pa -n 0ø-800øC 0ø-1200øC 

Duni t e 

Wet 3.18 + 0.18 390.00 + 10.47 

Wet 2.4 + 0.2 334.78 + 31.42 

Dry 4.8 + 0.4 498.61 + 69.55 
Lherzolite 

Wet 2.3 + 0.3 334.36 + 39.38 

Olivine 

Dry 3 525.84' + 21 

1.234 x 10 -17 3.281 x 10 -36 
3.91 x 10 -13 5.122 x 10 -29 
4.777 x 10 -29 4.534 x 10 -53 

1.273 x 10 -11 1.669 x 10 -27 

4.22 x 10 -11 2.74 x 10 -37 

5.719 x 10 -29 
6.41 x 10 -25 
7.495 x 10 -t+5 

2.09 x 10 -23 

1.136 x 10 -30 

Estimation of ¾ from experimental values of power law creep equation parameters (after 

Weertman and Weertman, 1975). Dunite, Mr Burnett dunite of average grain size of 1 mm, 
composition is 98; lherzolite, from Australia of average grain size of 0.5 mm; olivine, 
single crystals from San Carlos (Arizona) peridotite. 
ß I kcal mo1-1 = 4.19 kJ mo1-1. 

ß • I kbar = 109 dyne cm -2 = 100 MN -2. 
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Fig. 2. Geometry of the numerical models. At the top of the fixed side-wall model in 
which zero velocity boundmry conditions are used on AD, DC, and BC. At the center the 
free lateral wall model. The sides AD, BC are free of stress, and the DC side is free 

to glide laterally (oxy = 0, • = 0). On AM and NB, stress-free boundary conditions are used, while the indenter is simulated by a fixed velocity. In all the calcula- 
tions, U0 = 5 cm yr -1 and MN = 2400 km. 
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ries AM and NB are stress free. We shall stud• 
two possible boundary conditions: (1) velocity is 
zero for AD, DC, BC; (2) BC and AD are stress 

free and DC is free to glide laterally. Because 
of the symmetry about the axis IJ, we study only 
the IBCJ rectangle in the following. 

The rheology was discussed in the previous 
section. The problem posed in this fashion is an 
extremely idealized version of the real situation 
during continental collision. Our main interest 
is to explore the effect of various parameters 
and boundary conditions on the flow pattern in 
the rectangular plate and to discuss the observa- 

tions in terms of this simple model. The two pos- 
sible modes of deformation in plane continuum 
mechanics will be discussed: plane strain and 
plane stress. 

Plane Strain Model 

In this case the flow is entirely contained in 
the x,y plane without a component perpendicular 
to it. Then 

and 

i = i -- • -- 0 (•7) 
zz yz zx 

! 

Ozz --i (o + Oyy) (18) 

The stress deviator • has two horizontal prin- 
cipal stresses, and the intermediate principal 

stre:s is o , which is exactly equal to the iso- trop c partZSf •. 
This is the approximation used in the formula- 

tion of the slip line method which was used by 

Tapponnier and Molnar [19763 to analyze continen- 
tal collision. Their principal argument was the 
small size of vertical motions when compared to 
horizontal ones. The main limitation of this 

approximation is that it does not allow for the 
presence of regions of elevation, and the only 
mode of faulting associated with it is strike 
slip. 

Plane Stress Model 

In this case the stresses on a plane parallel 

to x,y are identically zero, and in order to in- 
sure incompressibility we have to allow for a 
vertical strain: 

-- + • (19) •zz -(•xx yy) 

In this model there exists the possibility of 
vertical velocities and plate thickening. It does 
also have the advantage that the effect of gravi- 
ty may be incorporated in it, although it will 
not be considered here but will be left as a sub- 

ject of future research. 
The solution of the problemwe have posed may 

only be obtained with numerical methods. We have 
chosen a finite element technique because of its 

study without difficulty both stress and velocity 
boundary conditions. This method has clear advan- 
tages over stream function formulations, which 
present problems in dealing with stress-free 
boundaries. The second formulation was used to 

study plane mtress problems. This method, propo- 

sed by Daigni•res et al. [1978], uses a variatio- 
nal principle for the power dissipated by the 
flow and is based on the theory of convec func- 
tionals. 

Results 

We have solved the indentation of the rectan- 

gular plate for two types of rheology: a rigid- 
viscoplastic medium and a Norton-Hoff (power law 
creep) medium. For the rigid-viscoplastic medium 
we explore the role of the different parameters 
o., n, and ¾ appearing in the constitutive rela- 
t{on (9). For the Norton-Hoff law (12) we vary 
both n and ¾. While the results are entirely com- 
parable, from a numerical point of view we found 
that the Galerkin approach described in Appendix 
A is more efficient for plane strain problems. 
The method of Appendix B was more economical in 
dealing with plane stress problems. In the follo- 
wing we discuss separately the results obtained 
for each of the two modes of deformation. In 

every case, we studied the role of the boundary 
condition on the border BC of the rectangular 
plate (see Figure 2), the influence of the nonli- 
nearity of the creep law (for n = 1, 3, and 5), 
and the influence of the flow limit o (0.6, 3, 
60 kbar). Y 

The numerical solutions were all calculated 

for an indenter velocity U = 5 cm yr -1 and width 
ß O 

L = 2400 km. The solutions may be scaled to other 
values of U and L, noting that they are control- 

O . . 

led by two nondlmensronal numbers: the index n of 
the nonlinear creep law and the ratio: 

o 

K - Y (20) 
l/n 

(u ø/¾L) 

that represents the ratio between the yield 
strength and a representative value of the creep 
stress. We may write the solutions in the follo- 
wing nondimensional forms: 

x = Lx' 

u = U u'(K,n) 
o 

• -- (U o/L) •'(K,n) 
(21) 

o (u o/¾L) l/n , = o (K,n) 

The nondimensional primed functions depend 
only on the nondimensional numbers n and K. If 
o = 0, K = 0 and the numerical solutions depend 
o•ly on n. Velocities and strain rates depend on 
¾ only through.K. Stresses, on the other hand, 

1/n 
scale like V- and are very sensitive to this 

flexibility in dealing with nonlinear constituti- parameter, which in our opinion is still poorly 
ve laws. We have used two different formulations known for the lithosphere. The values of ¾ used 
of the finite element method in order to solve in the calculation were calculated averaging the 
the two modes of plane deformation that we have ¾ shown in Table 1; we found ¾ = 10 -23 s -1Pa -1 

. , fo 2 37 1 3 studied In the first a weak formulation of r n = 1, ¾ = .74 10- s- Pa- for n = 3, 

Galerkin's method was used to solve plane strain and ¾ = 4.53 10 -53 s -1Pa -5 for n = 5. The solu- 
problems. A penalty function was introduced to tions may be easily rescaled to other values of ¾ 
approximate incompressibility. In this way we can using (20) and (21). 



Vilotte et al.: Numerical Modeling of Intraplate Deformation 10,71S 

+ + +-.i.. +¾. w, i i / i. 
...................... _4':___• :f.. +.16. )!... .... L---i .... L/LLI ...... \ • 

.................. V--'•---V'--•"-"r .... 

+ -t. 1tt,'•x a-+ +-4. , 

I I /''"-- .. x • , , I + +-t--I-•t•.)• + + + .4. • I z.-_ 
-4- ¾' • I I II///'-'- x \ \ ?• :: +. •,• , i i// 

.................. _,___•__,___•__•___z • .... j ..... mu__'___,_._,•___,___•___• .... 

Fig. 3. •lane strain results for fixed bounda• 

conditions on BC, •e model at the top of Figure 

2. Deviatoric stress field (left) and velocit• 

field (right) are shown for (a) n = 1• y = lxl0 -23 

s -• •a-1; (b) • = 3,3Ys•Z2.7•x10-37 s -• •a-3; n = 5, y = 4.53x•0-s •a-S wi• a yield 
stress oy = 600 •a (60 bars). The corresponding 
stress ratios are (a) K = 0.1, (b) K = 0.5• (c) 

K = 0.35. The stress field (left) is described by 
•e principal stresses• wi• •e solid line indi- 

cating •e m•im• compressional axis (Oz) and 

•e dotted line, the minim• compressional axis 
(03). The stress scale is indicated by the short 

bars to the left of the figures. The bar next to 

(a) represents •00 bars• the one next to (b) is 

• kbar; bottom one equals 10 kbar. Velocities are 

shown as vectors on the right• the scale is given 

by •e short bar at •e bottom right which measu- 
res 5 cm •r-z. Stresses were calculated at the 
integration points of the n•erical grid• while 

velocities were obtained at the nodal points; 

Plane Strain Results 

Influence of the boundary condition on the 
side BC. Figures 3 and 4 show the Ceviatoric 
stress and velocity fields for the two possible 
boundary conditions on BC: rigid boundary (Figure 
3) and free boundary (Figure 4). In both we show, 

from the top, the results obtained for the power 
laws n • 1, n = 3, and n = 5, the corresponding 
values of y are listed in Table 1. A very low va- 
lue of o = 60 bars was used in these calcula- 

tions. Y 

The results for these two boundary conditions 
are quite different. The stress field is shown at 

I t- + 'tH¾'H I. '/- • 

I I/I/ / .. - 

[ I IIIIIII / / / , , - 
I IIIi / , 
I I IIIIIII • • .... 
I III/ • , 

Jr- -t- -PH-H-F + t- t- F + -i- 

I -f •- -t Ft./F/ / '/ , • , 

I //// 

I I IIIIII/ , ,, .... 
I III/ , , 
I I IIII1•/ • .... 
I I I I• , , 

I I//1111 

I IIII / .. _ 

I IIIIII/ / ..... I I I1• , , 
I I IIII1• , .... 
I III/ , , 

Fig. 4. Plane strain results for free boundary 
conditions on BC, the middle model in Figure 2. 
Deviatoric stress field (left) and velocity field 

this is why they are shown at different places on (right) are shown in the same way and for the 
the grid. same parameters as in Figure 3. 
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Fig. 5. Free surface velocity on the sides of the punch, calculated for (a) plane 
strain for fixed boundary conditions on BC, (b) plane strain for free boundary condi- 
tions on BC, (c) plane stress for fixed boundary conditions on BC, and (d) plane 
stress for free boundary conditions on BC. Results are shown for n--I, 3, and 5. 

• km 

the left of both figures. In plane strain the two 
horizontal principal deviatoric stresses are 
equal and of opposite sign, in the figures the 
solid line is the compressive axis and the dotted 
line, the extensive one. When the boundary BC is 
rigid (Figure 3), the stresses rotate by a full 
90 ø as one moves away from the punch into the 
material and out to the right toward the rigid 
boundary BC. To the right of the punch, the ten- 
sional axis becomes perpendicular to the punch 
front. The results are thus very similar to those 
reported by Tapponnier and Molnar {]976} for slip 
line theory. A very different result is obtaimed 
when BC is stress free. In this case, the com- 
pressional stress in front of the punch rotates 
by 20 ø to the E, then passes through an inflexion 
point and becomes eventually normal to the back 
wall describing an S-like_patterm. These results 
are new and interesting since they may be con- 
fronted with the stress directions obtained by 

Mattauer and Mercier {]980] from a number 

geological observations. 
For the velocity field the difference between 

the two boundary conditions are even more drama- 
tic. For the fixed boundary (Figure 3, right), 
incompressibilit• forces the material to 'escape' 
along the free surface on both sides of the 
punch. The velocity vector rotates sharply by 
about ]80 ø in the vicinity of the edge of the 
punch. Numerical experiments showed that this mo- 
tion toward the free surface depends strongly on 
the incompressibility. It disappeared as soon as 
a weak compressibility was introduced. Ahead of 
the punch, we observe a region that undergoes an 
almost rigid translation. This zone has a trian- 
gular shape that closely corresponds to the dead 
triangle found in the slip line solution of this 
problem. When the boundary BC is free (Figure 4), 
the velocity vector rotates only by 90 ø so that 
the material moves lateraly parallel to the punch 
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front and escapes lateraly through the BC walls. 
The rigid block in front of the punch is larger 
than for a rigid wall BC. Thus it appears as if 
the material was being squeezed laterally through 
BC with a minimum of rotation. 

Influence of nonlinearit• of the constitutive 
equation. The influence of nonlinearity ig simi- 
lar for both types of boundary conditions on BC. 
As the nonlinearity increases from n = ! to n = 5, 
we observe a progressive concentration of strain 

rate near the punch in the same regions where 
stresses concentrate. There are larger zones 
where there is practically no strain rate, i.e., 
that move like rigid blocks. The return of mate- 
rial in the case of the rigid wall BC tends to 
concentrate closer and closer to the punch as n 
increases, as is clearly seen in the surface 
velocity plots on Figures 5 and 6. 

While the value of the velocity appears to be 
mainly controlled by the velocity of indentation, 
the stresses are very sensitive to the degree n 
of the nonlinear law. For n = 1, stresses are of 
the order of tens of bars, while for n = 5 they 
reach several kilobars {Vilotte and Daigni•res, 
1981; Neugebauer et al., 198]•. For n fixed, the 

stress field is, of course, very sensitive to the 
value of ¾, which depends, in turn, on the acti- 
vation energy Q and the thermal structure of the 
lithosphere (see equation (16)). For instance, a 
variation of 200 øK at the base of the lithosphe- 
re, for an activation energy of 530 kJ mo1-1, 
creates for n = 3 a variation. of a factor of 20 

in the stresses. 

Influence of the plastic limit. Keeping n = 3 
and ¾ = 2.74 x 10 -f? s kbar-3 as constants, we 

explore the effect of changing Oy from 0.6 to 3 
to 60 kbar. The last value was adopted only to 

study the influence of Oy and has no geophysical 
applicability in itself. For a fixed boundary BC 
we find that the geometry of the results are very 

sensitive to Oy. We note (Figure 7) that the ma- 
ximum return flow across the free surface concen- 

trates near the punch as oy is increased. We also 
observe that the transition between ghe zones 

undergoing large strains (10 -14 s -1 • •P > 10 -1õ 
s -1) and those that remain practically rigid 
(•P < 10 -17 s -1) gets sharper with increasing 
Thus, the effect of Oy is similar to that of in • 
creasing n since in both cases the nonlinearity 
of the law is increasing. 

In the case of a free boundary BC, the role of 

o is also very important and produces the same 
e•fects as above: a progressive concentration of 
strains in the vicinity of the punch as Oy 
increases. 

Plane Stress Results 

In Figures 8 and 9 we Present the horizontal 
deviatoric stresses and the horizontal velocity 
vectors calculated under the conditions of plane 

stress by means of the method described in Appen- 
dix B. 

The horizontal principal deviatoric stresses 
in this case are not equal and opposite as in 
plane strain, and the incompressibility is insu- 
red by the vertical thickening or thinning of the 
plate. This allows for a larger variety of fea- 

tures in the plane stress problem. 

Fig. 6. DefOrmed grid after 10 6 yr of steady 
indentation in plane straini•with rigid Wall bOun- 
bary condition on BC and an indenter velocity of 
5 cm yr -1. (a) , (b), and (c) refer to the same 
parameters as in Figure 3. 
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tion as one moves away from the free surface 
next to the punch. In the case of the free wall 

BC the geometry of the horizontal flow is very 
similar in plane strain and plane stress (cf. 
Figures 4 and 9), the main effect of the indenta- 
tion being to push the material laterally across 
BC. 

When we study the horizontal velocities, we 
reach the same conclusion: there is practically 
no influence of the mode of deformation when the 

boundary BC is free. The main feature is a rota- 
tion of velocity by 90 ø away from the punch. If 
the boundary BC is a rigid wall, on the other 
hand, the plane stress results (Figure 8) are 
very different from those in plane strain (Figure 
3). While in plane strain, the major feature was 
the return flow on the sides of the punch; under 
plane stress we observe velocities which are pa- 
rallel to the motion of the punch (Figure 5). The 
material is squeezed vertically thickening the 
plate (see below and Figure !!). 

State of stress. As already mentioned, in 
plane stress there may be different stress regi- 
mes depending on the relative sizes of the prin- 
cipal stresses. In fact one of the principal 
stresses is zero and vertical, while the two 
others are on the plane. Depending on whether the 
vertical stress is the greatest, the intermediate, 
or the least principal stress, one has different 

stress regimes. This is the state of stress that 
prevails in the layer of strength of the lithos- 
phere, but we shall assume that it also controls 
the type of tectonics that will affect the brit- 
tler surface layer. Under this assumption we 
define reverse, strike slip, and normal faulting 
zones in Figure ]0 for fixed and free boundary BC 
and two values of the power law n. We clearly 
see in all the examples that there is a well- 
defined reverse faulting zone in front of the 
punch (! in Figure 10). The extent of this zone 
depends on the boundary conditions-, it is narro- 

Fig 7. Effect of Oy on the free surface velo- wer and deeper for the free lateral boundary than 
city for the plane strain case with fixed boundary for the rigid one. Outside this zone most of the 
conditions on BC (top), and free boundary condi- 

tions on BC (bottom). A creep law with n = 3, 

y = 2.74x10-37 s- ! Pa- 3 was used. The yield 
stresses are o. = 0.6 kbar (K = 0.2), Oy = 3 kbar 
(K = 1), Oy = •0 kbar (K = 20) 

Influence of boundary conditi.o.n.s on the border 
B.C. In the rigid BE boundary case ('F'ig•re' '8) we 
observe that the compressional stress, which is 

initially parallel to the direction of advance of 
the indenter, turns to the right and and rotates 
clockwise by 45 ø as one moves laterally and away 
from the punch. In the case of the free BC wall 
(Figure 9) the compressive stress makes the same 
S-like sideways turn that was observed in plane 
strain. Comparing with the plane strain solution 
now, the results are quite different in the case 
of a fixed BC wall (cf. Figures 3 and 8). This is 
because in the plane stress model, incompressibi- 
lity is achieved by a vertical strain •__; there 
is no horizontal incompressibility and •e large 
return flow at both sides of the punch that was 

so visible in plane strain disappears. On the 
other hand, the relative values of the principal 
stresses change rapidly passing from a large 
horizontal extension parallel to the punch to a 
large horizontal compression in the same direc- 

plate is characterized by an intermediate verti- 
cal principal stress, the stress condition for 
strike slip faulting. We also notice to the right 
of the punch two zones of extension (normal 
faulting) along the free surface. This region 
extends also along the side wall BC when this is 
free of stress. 

Vertical motions. We have calculated the 

vertical strain rates for all the plane stress 
models. In Figures 11 and 12 we show three- 
dimensional plots of the vertical strain calcula- 
ted for both types of boundary conditions on BC. 
The most important feature of the vertical strain 
is the broad thickening (positive vertical 
strain) zone in front of the punch. Strain rates 
there reach values of the order of (l-3)x10-$yr -1 
which are of the order of the reference strain 

rate of 2.5x10 -8 yr -1 calculated dividing the 
velocity by the width of the indenter. The verti- 
cal strain rate presents concentrations near the 
edges of the punch, which appear as peaks in Figu- 
res ]! and ]2. These are due to the abrupt change 

in boundary conditions across the punch edge, 
i.e., fixed velocity inside the punch and free 
surface outside the punch. Stress concentrations 
of this type are known to appear in all mixed 
boundary value problems like this one. In the 
elastic case the strain presents an inverse 
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Fig. 8. Plane stress results : horizontal devJatoric stress field (left), and hori- 
zontal velocity field (right) for rigid wall boundary condition on BC. Same parame- 
ters as in Figure 3. The stress scale is given by the short bars to the ].eft of the 
figures which represent ]00 bars, 100 bars, and 10 kbar from top to bottom. Velocity 
scale is given by the short bar at the right which measures 5 cm yr -1. 

square root simgularity inside the punch that is are regions which are undergoing thinning with of the same type as the stress concentration 
vertical strain rates of up to -2x]0 -10 yr-1. associated with crack edges in fracture mechanics. This is presented in a more quantitative form 

These concentrations are smoothed here by plastic in the plots of Figure 13, where vertical strain 
behavior and would be further reduced by a smoo- rates zones are identified by different shadings. thing of the punch geometry. They would, however, The vertical strain rates may be converted into 
be always present, and it would be very interes- vertical velocities if one makes an assumption ting to try to identify them in the geological about the thickness of the plate. As discussed in 
maps of Tibet. To the sides of the punch_ there the section on rheology, the effective thickness 
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Fig. 9. Plane stress results: horizontal deviatoric stress field (left) and horizon- 
tal velocity field (right) for free boundary condition on BC. Same parameters as in 
Figure 3. The stress scale is given by the short bars to the left of the plots, they 
represent 100 bars, 200 bars and 10 kbar from top to bottom. The velocity scale is 
given by the short bar at the right which measures 5 cm yr -1. 

of the plate is that of the layer of strength of flat thickening zone in front of the indenter 
the lithosphere: 50 km for dry olivine, 35 km for which is tempting to relate to the Tibetan pla- 
for wet olivine. Calculating surface elevation teau in the case of the Himalayan collision. The 
velocities requires further assumptions about thickening zone disappears more or less abruptly 
isostatic compensation which may seem premature as a function of the index n of the creep law. 
to introduce here without consideration of The higher n is, the sharper is the boundary 

gravity. between the plateau and the rest of the plate. 
Let us note, finally, that the thickening Influence of nonlinearity. The influence of 

region penetrates deeper in the case of the rigid nonlinearity may be characterized, as in the case 
sidewall. In all the examples we have a rather of plane strain, by a sharpening of the bounda- 
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Fig. 10. Deviatoric stress state (type of faulting) for plane stress indentation. 
(a), (b), and (c) refer to the parameters described in Figure 3. (left side) Free 
boundary condition on BC. (right side) Rigid wall boundary condition on BC: 1, verti- 
cal minimum deviatoric stress, the condition favoring reverse faulting; 2 and 3, 
vertical intermediate principal stress axis, the condition for strike slip faulting; 
4, vertical maximum principal stress, the condition for normal faulting. 
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Fig. 11. Three-dimensional plot of vertical 
strain rate for plane stress for rigid wall boun- 

dary condition on BC. (a) , (b) , and (c) refer to 

the parameters listed in Figure 3. 

ries between strongly deforming and more or less 
rigidly moving areas of the plate. This is clear- 
ly illustrated by the velocities of the free 
surface on the side of the punch shown in Figure 
5. Another interesting effect of n is the slight- 
ly negative horizontal component of the velocity 
near the edge of the punch when n = 1. This 
component becomes positive (movement away from 
the punch) for n • 3 when BC is free. For the 
rigid BC wall the velocity is inward (negative) 
near the punch edge even for n = 3. As for plane 
strain, the stresses vary dramatically with n, 
while the values of the velocities remain essen- 

tially controllea by the velocity of penetration 
of the •unch. 

For the vertical motion, nonlinearity tends to 

concentrate it closer to the punch and gives an 

increased amount of thickening. At the same time 
the topography decreases faster when one moves 

away from the punch in the nonlinear case (Figu- 
res 11 and 12). 

The geometry of the possible tectonic zones 
depends also on n. The region of possible thrus- 
ting which is confined to the front of the punch 
in the linear case extends significantly for 
n = 5 (Figure 10). Similarly, the extension 
(normal faulting) zone increases slightly with n. 

An asymmetric example. The examples studied 
so far were symmetric about the punch axis. We 
studied an asymmetric example with a rigid side 
wall to the left and a free wall to the right. 
The results for the plane stress case are shown 

in Figure 14. Here the arrows represent the 
instantaneous velocities at four successive times. 

4000 km 

Fig. 12. Three-dimensional plot of vertical 

strain rate for plane stress for free boundary 

condition on BC. Same parameters as in Figure 3. 
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The integrated effect of the velocity field is 
taken into account by recalculated grid indicated 
by the dotted lines. The velocity field changes 
very little with time. Its main feature is the 
lateral motion of material to the right, through 
the BC wall. The thickening due to this model is 

A 

c \ 

shown at the bottom of Figure 12. It is clear 

from these two figures that the dominant features 
of the solution, to the right of the punch, are 
those of the symmetrical free BC boundary problem; 
while to the left, the solution is very similar to 
the fixed side wall solutions. 

Discussion 

We have presented numerical results for the 
two-dimensional flow of a rigid nonlinear visco- 
plastic material, driven by the penetration, at a 
fixed velocity, of a rigid indenter. This model 
was proposed by Molnar and Tapponnier {1975] to 
explain the deformation of Asia due to the colli- 
sion. with India. Tapponnier and Molnar {]976] 
studied this model with slip line theory, which_ 
applies only to plane strain (no vertical motion) 
deformation of a rigid-plastic material. In this 
paper, we studied the deformation of a continen-. 
tal lithospheric plate under both plane strain 
and plane stress conditions and for more realls- 

tic power law creep of the lithosphere. Under 
plane strain there is no vertical velocity, and 
therefore one may not study the thickening of the 
lithosphere, which is one of the possible origins 
of Tibet. Also in this case, the vertical stress 

is equal to the isotropic stress and is the 
intermediate principal stress. The least and 
greatest principal stresses are horizontal, and 
the only mode of rupture that we would normally 

associate with plane strain is strike slip. 
The other mode of deformation we studied is 

plane stress in which the vertical stress is 
exactly zero. This is the mode of deformation of 
a very thin plate. There are no simplified 
methods, like slip line theory, to solve plane 
stress plasticity problems; only numerical solu- 
tions are possible. Under plane stress, incompres- 
sibility is assured by vertical strain, i.e., 
thickening or thinning of the lithosphere. Also, 
the greatest and least principal stresses are not 
confined to the plane of the plate, so that states 
of stress compatible with normal and thrust faul- 
ting are possible. Our results are strictly valid 
for the layer of strength of the lithosphere that 
according to Kirby []980] lies between 20 and 
50 km (or 70 km) depth. At shallower depths the 
crust is brittle and fractures under the driving 
action of the stresses in the deeper layer of 
strength. 

The lithosphere is, of course, a thick plate 
which does not deform in either pure plane strain 

or plane stress. From the results of plate theory 
we expect that the center of the plate deforms 
approximately in plane strain, while the surface 
of the plate deforms as in. plane stress. There 

Fig. 13. Vertical strain rate for the plane 

stress case, with n = 3 and an indenter velocity 

U0 = 5 cm yr -1. These solutions are independant 
of 7. (a) Rigid wall boundary condition on BC; 

(b) Free boundary condition on BC; (c) Asymmetric 

case. The sh.ading indicates the vertical strain 

rate •z: •, •z > 2 x .10 -• yr-1; 2, 2 x 10 -8 > •z 
> 1 x 10- yr-1; 3, 1 x 10 -8 > • > 0 3 x 10 -8 • Z ' 

x > > x O.1 x 1 - > •z > 0 yr- ; 6, 0 > •z > -0.9 x 0 -lø 
yr-1; 7, -0.9 x 10 -•0 > •z > -2 x 10 -1'0 yr-1; 8, 
-2 x 10-1ø > •z' 
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Fig. 14. Horizontal velocity field and deformed 

grid as a function of time for the asymmetric 
plane stress model shown at the bottom of Figure 
2 with a creep law (n = 3). The vectors indicate 

instantaneous velocities at the displaced grid 
points. 

should be a complex coupling between the behavior 
at the center and at the surface of the plate. 

The average behavior of the lithosphere should be 
integrated across the thickness of the plate. 
Such an approach requires three-dimensional solu- 

tions which are beyond our possibilities at 
present. 

Our results for plane strain and plane stress 
in the case of a free lateral wall are not very 
different, however, for the horizontal motion and 
deviatoric stresses. This agreement improves as 
we move away from the indenter. In this case then 
the two-dimensional solutions obtained here are a 

good approximation to the deformation of a thick 

plate. The same is not true for the rigid lateral 
wall since the plane strain model insures incom- 
pressibility by a return flow on the sides of the 
indenter, while in plane stress this is obtained 

by thickening or thinning of the plate. In this 
case then the solution for a thick plate may have 
to be eventually discussed by three-dimensional 
models. 

We discuss now our results in terms of the 

observations made on the collision between India 

and Eurasia. The asymmetry of the stress field to 
the east and west of the collision front, with a 
rotation of almost 90 ø to the west and an S-like 

rotation to the east, may be related to a diffe- 
rence in the boundary conditions on both sides of 
the Himalayas (Figure 15). The S-like variation 
of the orientation of the stress field is obser- 

ved in our results both for plane stress and 
plane strain, but only for free boundary condi- 
tions to the E of the plate. The S-like stress 
field may be explained if the eastern boundary, 
at the Pacific subduction zone, is approximately 
stress free. To the west, the rotation of the 

stress field may be explained by our models if we 
adopt a rigid boundary condition. This may be 
associated with an artificial boundary separating 
the region of large deformation from another to 
the west where the strain rate is negligible. 

The plane strain results show very large 

values of the vertical stress Ozz in front of the 
indenter. This is due to the tendency of the 
material to deform vertically; a large vertical 
pressure is required to force the deformation to 
be restricted to a plane, as assumed in plane 
strain. This explains why the plane stress mode 
is important: in order to maintain plane incom- 
pressible strain, large vertical stresses avera- 
ged over the lithosphere have to be accepted. 
These stresses are of the order of several 

hundred bars to a few kilobars, according to our 
results. 

Our plane stress results seem in good agree- 
ment with certain aspects of the observed faul- 
ting pattern in Asia if we make the hypothesis 
that the faulting in the surface brittle layer 
reflects the state of stress at the deeper flowing 
layer. We observe a zone compatible with thrust 
faulting ahead of the indenter, while farther 

away, to the sides of the punch, the maximum and 
minimum principal stresses are horizontal, the 

condition for strike slip faulting. We also note 
extensional stresses, the condition for normal 

faulting, near the free lateral walls. This may be 
correlated with the normal faulting observed in 
Yunnan and Shansi, the size of the normal fault 

areas depending on the exponent of the creep law. 
We note that these results were obtained without 

consideration of gravity, which should most likely 
emphasize even more these features, so that they 
are clearly related to the indentation. Let us 
remark also that this extension is associated with 

a thinning of the lithosphere, which also agrees 
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Fig. 15. Maximal horizontal stress direction in Asia infered by Mattauer and Mercier 
[ 1980) from geological observations. Note the S-like rotation of the stre•.s direction 
to the east of Tibet. 

with observations at Yunnan and Shansi. However, 

we never found any results that could evoke the 
Baikal extensional structure, which seems to in- 

volve a more complicated mechanism. In all our 
plane stress results we find that the vertical 
motions are small when compared to the horizontal 
strains, which is entirely compatible with obser- 
vations. Yhe small vertical motions alone may not 
be invoked to justify the use of a plane strain 
approximation. 

Tapponnier and Molnar [1976) and Tapponnier 
[1978) suggested that the arcs to the side of the 
Himalayas were due to the material movement toward 
the free boundaries as a consequence of the inden- 
tation. This return movement is present in incom- 

pressible plane strain only if the lateral wall is 
rigid, i.e., if the matter may not escape through 
the lateral walls. As shown in Figure 6, this 

but it will be the subject of further research. 
There are no topographic peaks at the eastern 

edges of the Himalaya range which could be rela- 
ted to the vertical strain rate concentrations 

near the edges of the punch, as shown on Figures 
11, 12, and 13. However, the outcrops of the 

deeper crustal rocks at both ends of the Himalayan 
range may be due to the erosion of crustal layers 
that have been uplifting more rapidly near the end 
zones than elsewhere in the Himalayas. Thus the 
vertical strain rate concentrations exist, but 

they are continuously rounded down by erosion. 

Conclusions 

We have presented two finite element methods 
for the study of two-dimensional viscoplastic 
flow. One o•f these methods, based on a weighted 

return motion does not exist in plane stress since residuals approach is found to be more efficient 
the material moves preferably in the vertical in the solution of plane strain problems. The 
direction, thickening or thinning the plate. other method, based on the minimization of a con- 

In front of the indenter, for plane stress we vex functional, is more efficient in plane stress 
observe a significant zone of plate thickening problems. With these two methods we solved the 
which we may associate with the Tibetan plateau. problem of indentation of a rectangular plate by a 
Our results show that its extents toward the inte- rigid die penetrating at constant velocity. Plane 

rior of the plate and on the sides of the indenter strain and plane stress solutions were studied for 
are controlled by the exponent of the creep law: 
the higher the nonlinearity of the law, the shar- 
per are the boundaries of the elevated zone. Our 
plane stress results do not show, however, a 
lateral extension regime in front of the punch 
that we could associate with the normal faulting 

in Tibet observed by Chen and Molnar [1981), Ni 
and York [1978), and Tapponnier et al. [1981). It 
is possible that this normal faulting may be due 
to the lateral push induced by gravity on the 
elevated areas. We have not yet incorporated the 

a number of choices of boundary conditions and 
rheological laws. We find that the boundary condi- 
tions on lateral walls far from the indenter have 

very large effects on the characteristics of the 
plastic flow. For a free lateral wall the flow is 
preferentially in the lateral direction, as had 
been proposed by Tapponnier and Molnar [1977], 
while for a rigid lateral wall the flow pattern 
differs according to the mode of deformation. For 
plane stress (thin plate model) the plate thickens 
or thins in the vertical direction, while for 

effect of gravity in our plane stress calculation plane strain (very thick plate model) there is a 
(gravity would have no effect in plane strain, large return flow on the sides of the indenter. 
since there is no vertical motion in this case) The actual condition for the lithosphere, a mode- 
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rately thick plate, should be intermediate between expression (9), is posed in terms of velocities 
these two extreme models. 

A nonlinear creep rheology was adopted, and it 
is shown that the main effect of increasing the 
exponent of the power law is to sharpen the flow 
features, concentrating the differential motion on 
rather narrow bands. The effect of a finite creep 
strength or yield stress is similar. 

Finally, the stress patterns and the vertical 
motions are compared to some observations made on 
the Indian-Asian collision. 

Appendix A: Weighted Residuals Method 

only. We look for velocities of the form 

where 

u(•) = w(•) + v(•) (A8) 

w • H 1 (2) and w = 0 on r 
and -- -- -- v (A9) 

v • H 1 (2) and v = v on F 

In the finite element method we discretize the 

domain 2 into a set 2 of elements 2 e characterized 

by a grid parameter 0 < h < 1. We find in this way 
the best approximation uh(•) to u in a subset 

Let 2 be the domain under study, with a bounda- H•(2) of H•(2). We replace u(x) •efined in 2 by a 
ry r (of normal n_) which may be decomposed into function un(•) defined at the nodal points of the 
rv, where velocity is specified, and F•, where discrete a--pproximation •. We restrict uh(•) to the 
stress is given In 2 a body force density f is element 2 e which we have chosen to be--of the ß , 

specified. Including the condition of incomp--ressi- 8-node isoparametric serendipity type. Then, omit- 
bility for the flow our problem consis. ts in the ting h and • for notation simplicity, 
determination of the velocity field u and the 

stress field • that satisfy the following system 

o... + f. = 0 in 2 (AI) 
•-J,J •- 

u i = 0 in 2 (A2) ,i 

u. = v. on F (A3) 
1 1 v 

o..n. = •. on F (A4) 

to which we add the constitutive relation 

øij =-PSij + •(ui.•j + uj,i) (A5) 
where B is the nonlinear equivalent viscosity 
defined by (9). 

In order to solve the problem with stress and 

velocity as the variables, we adopt a penalty 
function method (Zienkiewicz, 1977; Hughes et al., 

N 

i=l 

(Al0) 

e 

where x. •s the position of the ith node of the 
eth e].•ent. The shape functions have the proper- 
ties 

e e ' x e. ' %i(xj ) = 0 if --3 (All) 

e(x;) = • if x e. • 2 e %i -- ij --3 
ß e 

The form functions %.(x) for the 8-node seren- 
dipity element are from•Zi--enkiewicz (1977, p. 174 ]. 
The problem may now be reduced to finding w and v 
in H 1 (2), such that 

P(w + v) -- f (AI2) 

1979•. This allows replacement of problem (AI) to where P is a nonlinear operator. Restricting P to 
(A4) by an associated problem where the incompres- functions defined only on 2 and denoting it P , 
sibility (A2) is insured by means of a penalty we define the residue e e 
function (Oden, 1978). Let us define the Sobolev 
space Hl(2) of functions defined on 2 such that 
they and their first-order partial derivatives are 
square integrable. The problem is to find a func- 
tion u(½) (and o_(•)) such that 

o...(s) + f. = 0 in 2 
•3,3 • 

u i(s) = v i on r v 

o..(s)n. = •. on F (A6) 

oij(e) =-p(e)Sij + B(ui, j + uj, i) 
-p(•) = -•(•) V.u(•) + P0 

r e(x) = •(w e + v_ e) - fe (Al3) 
e e 

and the goal is to find the functions w and v 
that minimize this residueß For this purpose we 
adopt a weighted residual methodß We introduce the 
weighting function •e(x) defined on the element e 
and require that the residue averaged on the ele- 
ment be zero: 

f e r e(x) m (x) d2 = 0 (Al4) 
2e -- -- e 

We shall use here Galerkin's version of the 

weighted residual method. In this case the 
where P0 is a constant, and •(•), the penalty weighting functions m are expanded with the same 
function, has the property that for every 0 < • < 1, shape functions used--for the expansion of velo- 
there exists a •0 such that city (see (A10)): 

0 < •0 < •(•) < • (A7) N 
e e (x) a e m__ (x_) = Z •i -- i 

It is possible to show that (A6) admits a solu- i--1 
tion for every value of s and th8t if lim s+0 •(s) 
= •, the solution u(s) converges toward the solu- 
tion of the problem (A]) to (A4) [Roddy, ]978). 
In our calculations we have adopted •(s) = 

The problem (A6) once U is replaced by the 

(Al5) 

e e e 

with m (x.) = a.. 
1. 

In•te• of using (A14) directly we have adopted 
a weaker version of it from Hughes et al. {1979], 
which we write 
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•f•(•p(œ)V.w V.?_+ 2•;(Vw)' (Vco__)) df = If•f.co df (AI6) 

T 

Substituting the weights m and velocities v_, w_ by 
their expansions (A15),(A10) in terms of the 

ß e 

basis function •.(x) we obtain the matrix equa- 
tion of the finite element method from the requi- 

rement that (A16) be satisfied for arbitrary a•: 

following conditions: (1) it minimizes the func- 
tional 

and (2) it is kinematically admissible, i.e., it 
is incompressible (V.u = 0) and satisfies the 
velocity boundary conditions on F . The finite 
element approximation to this proglem consists in 
finding the best approximation to u in a discrete 

KW=F 

where the rigidity matrix is assembled from the 
elementary matrices defined explicitely by 

Ke= v(2K11+K= 22)+?(s)K=11 ?(s)K12 +v(K=12) T 
,(z)K•2+•(K12)T 2J (AI8) _ •<K_i 1+2K_22) +*<•) K2 

where the component matrices K__ lk are defined by 

Klk = I (3qb /•Xl)(•j/•x k) d• e ij fie i 

(AI7) approximation of the space f. In the computer 
implementation used here, we choose 3-node trian- 
gular elements. Introducing the notation 
p = (n+l)/n, we reduce the problem to the minimi- 
zation of 

N I (-•eT Z l/p A u )P/2d•e - wTF (B4) 
e=l fie =e --e 

where u is the vector of nodal velocities that 

we decompose in two parts •e ? w + v with w incompressible, i.e., V. w = 0 V is--a vecto--r 
whose only nonzero components are the velocities of 
the nodes where a velocity boundary condition is 
imposed. In the vector w the velocities of the 

The pressure p(s) may be calculated accessorily by nodes where a velocity •s imposed are put to zero. 

p(•) = -•(•)V.u(•) 

The force vector F in (AI7) is also assembled 

from the elementary force vectors for every ele- 
ment {Zienkiewicz, 1977), and the vector W is the 
solution vector assembled from the nodal veloci- 

ties v(x•) and w(x•). 
The system of equatzons (A17) was solved by a 

frontal method adapted to the modified Newton 

Finally, A=• is the rigidity matrix for the element e. 
The incompressibility is insured by a saddle 

point method: 

N I Sup (Inf ( Z 1/p fie A u )l/P dfe A u e=l ==e --e 

+ I At w •e -- =• --e ---- 
iterative algorithm {Irons and Ahmad, 1980]. The 
stresses and strains were calculated at the points where D is the incompressibility matrix for the 
of numerical integration in order to improve their elemen•e and A T is a Legendre coefficient vector. 
estimation. The precision of the iterative solu- 
tion depends on the way • approaches zero. There 
appear certain stability problems that we solved 
by the use of a collective reduced Gauss integra- 
tion (2 x 2) in the calculation of the rigidity 
matrix K of (AI8). Sani et al. {19823 showed that 

for c < • < I the solutions are stable if c is 
the truncation error of the computer being used. 
Unfortunately, the numerical solution may still 

This problem is solved by a variation of Uzawa's 
method developped by Delbecq et al. {19773. 

For the plane stress problem, the incompressi- 
bility on the plane is not necessary (see (19)) 
and we only have to minimize (B4). This is 
achieved by a gradient method. A more detailed 
description of the method may be found from 
Friaa {1979]. 
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