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CONVERSION OF UNITS 

Metric units are used throughout this report. Thermal param- 
eters are reported in more familiar 'working" units rather than in 
the now-standard SI (Systeme Internationale) units. The following 
table lists metric and equivalent U S .  Customary units, and 'work- 
ing'' units and SI units for the thermal parameters. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Multiply metric units BY 

Length 
centimeters (cm) 0.3937 inches (in) 
meters (m) 3.281 feet (ft)' 
kilometers (km) .6214 miles (mi) 

square centimeters (cm') 0.155 square inches (in') 
square meters (m') 10.76 square feet (ft') 

cubic centimeters (cm3) 0.061 cubic inches (in3) 

Area 

Volume 

Mass 
gram (g) 3.528 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX lo-' ounces (oz) 
kilogram (kg) 2.205 pounds (lb) 
Temperature: degrees Celsius to degrees Fahrenheit 
O F  = 9/5"C +32 

THERMAL PARAMETERS 

To obtoin SI units Multiply %orking * units BY 

Thermal Conductivity 
calories per centimeter 
second * degree Celsius 
(cal cm-I s-l OC-') 

0.4187 watts per meter 
degree Kelvin 
(Wm-I OK-') 

Heat Transfer Coefficient 
calories per square 
centimeter second 
degree Celsius 
(cal cm-2 - I  O C - ' )  

calories per second 
(cal s-I) 

calories (cal) 

calories per gram 
degree Celsius 

41.87 watts per square 
meter degree 
Kelvin 
(Wm-'"K-') 

Heat Discharge 
4.187 watts (W) 

Energy 
4.187 joules (J) 

Specific Heat 
4.187 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX lo3 joules per kilogram 

degree Kelvin 

1 
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NUMERICAL MODELING OF LIQUID GEOTHERMAL SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
By M. L. SOREY 

ABSTRACT 

A mathematical model describing the physical behavior of hot- 
water geothermal systems is presented. The model consists of a set 
of coupled partial differential equations for heat and mass transfer 
in porous media and an equation of state relating fluid density to 
temperature and pressure. The equations are solved numerically 
using an integrated finite difference method which can treat arbi- 
trary nodal configurations in one, two, or three dimensions. 

The model is used to analyze cellular convection in permeable 
rock layers heated from below. Results for cases with constant fluid 
and rock properties are in good agreement with numerical and ex- 
perimental results from other authors. Considering variations in 
fluid viscosity and thermal expansivity with temperature results in 
substantial differences in the values of the critical Rayleigh num- 
ber for the onset of convection and the rate of vertical heat transfer 
compared with constant-parameter cases. For example, for a tem- 
perature difference of 30O0C across a horizontal layer, the critical 
Rayleigh number based on parameters evaluated a t  the cold-side 
temperature is 2, whereas the corresponding constant-parameter 
value is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA411-2. Numerical simulations of more realistic models for cel- 
lular convection show that for laterally-bound reservoirs, conduc- 
tion of heat across the side walls can lower the vertical heat 
transfer rate through the reservoir by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40 percent. For unbounded 
reservoirs, simulating heat conduction in impermeable layers 
above and below the convecting layer lowered the rate of vertical 
heat transfer by 50 percent. 

Heat and mass transfer associated with hot-spring systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas 
analyzed for cylindrical (isolated conduit) and plane symmetric 
(fault-plane) models. Results of numerical simulations yield non- 
dimensional relationships between spring discharge and tempera- 
ture drop in the spring due to lateral conductive heat loss from the 
spring conduit. For the same spring discharge, the fault-plane 
model yields considerably greater conductive heat loss and tem- 
perature drop a t  springs than the cylindrical conduit model. 
Steady-state temperature distributions in the rock surrounding 
the conduit show the effects of this lateral heat flow out to dis- 
tances of one conduit depth. The influence of convective motions 
in this region was investigated as a function of rock permeability. 
Finally, the time required for thermal equilibrium following hot- 
spring development can be estimated as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALZ/2a, where L is the con- 
duit depth and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is the thermal diffusivity of the saturated rock. 

INTRODUCTION 

Geothermal systems are receiving increasing atten- 
tion as an alternative source of energy; consequently, 
there is growing interest in understanding their na- 
ture and behavior. One approach to this problem is to 

attempt to deduce the physical behavior of such sys- 
tems using a mathematical model. Such a model con- 
sists of a set of equations that describe the processes 
occurring within the system and the solution to these 
equations subject to conditions that prevail at  a par- 
ticular site. 

The model approach has two important applica- 
tions: the geothermal system under natural conditions 
before being disturbed by man, and the geothermal 
system during exploitation. Natural geothermal sys- 
tems have been investigated by a great many workers. 
The main thrust of such studies has been to under- 
stand how geothermal systems can form and persist 
under the various geological constraints that can exist 
within the earth’s crust. Mathematical modeling of 
the natural conditions of heat and fluid flow in a 
geothermal area can be used to describe certain basic 
phenomenon such as fluid convection induced by den- 
sity imbalances and the associated convective heat 
transfer. Modeling also affords an economical alterna- 
tive to an extensive drilling program in that various 
system properties such as reservoir volume and per- 
meability can be inferred by using models to simulate 
known conditions and make parametric analyses. 

The mathematical model can also be applied to the 
problem of evaluating the behavior of a geothermal 
system during exploitation. The main purpose, of 
course, is to estimate the quantity, of recoverable 
energy and the rate at  which mass and energy may be 
extracted. As information from drill holes and initial 
production characteristics becomes available, the 
model can be refined and used to simulate optimal de- 
velopment procedures. 

Mathematical modeling of fluid and energy transfer 
in geothermal systems is a logical extension of similar 
techniques which have been successfully applied to 
the analysis of fluid flow in porous and fractured me- 
dia. In geothermal areas we may need to consider the 
effects of density gradients on flow, heat transfer by 
conductive, convective, and dispersive mechanisms, 
and the simultaneous transfer of two fluid phases. Be- 
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cause of the complex nature of the equations and 
boundary conditions, numerical solutions are usually 
required, although analytical results are available for 
simplified cases. The development of general numeri- 
cal models capable of treating all the complexities 
noted above is an area of considerable current inter- 
est. The purpose of this study is the development of a 
numerical model for single-phase fluid and heat trans- 
fer in three-dimensional porous media and the appli- 
cation of the model to problems involving natural 
convection and hot spring discharge in liquid geother- 
mal systems before development. 

PREVIOUS INVESTIGATIONS 

No rigorous definition of what constitutes a geo- 
thermal system is really possible. In a general sense, 
we are concerned with areas of above-normal tem- 
perature and heat flow in which circulation of warm to 
hot fluids may be a significant process. Two broad 
types of geothermal systems involving water, that is 
hydrothermal systems, are recognized: liquid-domi- 
nated and vapor-dominated. The general characteris- 
tics of vapor-dominated systems in which steam is the 
continuous, pressure-controlling phase are discussed 
by White, Muffler and Truesdell (1971), Elder (1966), 
and James (1968). Most of the world’s known hydro- 
thermal systems are liquid-dominated, with water as 
the controlling pressure phase. The following discus- 
sion pertains mainly to liquid-dominated systems. 

Mathematical modeling of hydrothermal systems 
has for a long time centered on the problem of convec- 
tive heat transfer in a homogeneous porous layer 
heated from below. Early work by Lapwood (1948) 
and others followed the pattern of previous analyses 
of Benard convection in a layer of viscous fluid. This 
work was directed primarily at  developing criteria for 
the onset of convective currents in a horizontal and 
laterally infinite permeable layer when the vertical 
temperature gradient exceeds a certain critical value. 
Beck (1972) extended the analysis of dynamic stabil- 
ity to a layer with lateral boundaries, that is-a box, 
and he developed criteria for the preferred shape and 
number of convection cells which form. 

Many studies have been made of the increased rate 
of vertical heat transfer through a freely convecting 
horizontal porous layer. Analytical results have been 
reported by Wooding (1957, 1963), Donaldson (1962, 
1968, 1970), and others; numerical and experimental 
results are given by Holst and Aziz (1972a, b), Com- 
barnous and Bories (1973), and Horne and O’Sullivan 
(1974). Some work has also been done on the problem 
of an inclined porous layer bounded by isothermal 

surfaces as summarized by Combarnous and Bories 
(1973). They show that since the temperature gradi- 
ent and gravity are no longer collineal, the fluid is con- 
s tan t ly  moving regardless of t he  tempera ture  
gradient. For the most part, previous investigations of 
the natural convection problem have treated one-lay- 
er systems with uniform boundary conditions and 
constant parameters. In the section on “Studies of 
Natural Convection,” results using the numerical code 
developed in this study are compared with those pre- 
vious investigations, and several more realistic models 
for natural convection are analyzed. 

Another physical model used to describe hydrother- 
mal systems is the pipe system, in which fluid is as- 
sumed to  be channeled through zones of higher 
permeability in the rocks. Einarsson (1942) and Bod- 
varsson (1961) discuss the nature of thermal areas in 
Iceland in terms of pipe systems involving circulation 
of water to depths of 2-3 km and discharge in hot 
spring areas. Elder (1966) analyzed hydrothermal 
areas in Iceland and New Zealand using zero dimen- 
sional (lumped parameter), one-dimensional (pipe 
system), and multidimensional (homogeneous porous 

media) models to quantify the general features of heat 
and mass transfer. White (1957, 1961) used pipe sys- 
tems to explain the chemical composition of waters as- 
sociated with hydrothermal areas. A useful convective 
model analyzed by Donaldson (1968,1970) consists of 
a permeable channel or reservoir at the base connect- 
ing recharge and discharge columns at  the sides. Geo- 
metrical and physical parameters of the model, 
including the heat available at depth, can be adjusted 
to simulate the gross features of several types of hot 
water systems. This model is analyzed numerically (in 
the section on “Studies of Natural Convection”) to 
evaluate effects of conducting side walls on circulatory 
convection in the discharge channel. Additional stud- 
ies of natural convection in homogeneous porous me- 
dia and pipe models are reviewed by Witherspoon, 
Newman, Sorey, and Lippman (1975). 

Developments of the appropriate mathematical 
equations for heat and mass transfer in single-fluid 
porous media where Darcy’s law is valid have been 
made by Bear (1972), and Fernandez (1972), and Mer- 
cer (1973). Combarnous and Bories (1973) and Green 
(1963) considered the adequacy of using a single equa- 
tion for energy transfer in the solid-fluid matrix; this 
equation requires assuming thermal equilibrium at 
points of contact between the two phases. They also 
analyzed the relative magnitude of dispersive and 
conductive heat fluxes as discussed in the section on 
“Numerical Model”. Equations for two-phase flow in 
porous media are presented by Bear (1972), Mercer, 
Faust, and Pinder (1974), and Witherspoon, Newman, 
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Sorey, and Lippman (1975). The common approach is 
to assume Darcian expressions for the flow of each 
phase and to combine them into a single flow equation 
under the assumption of equal pressure in both 
phases. The corresponding energy equation accounts 
for the effects of phase change, and the two-phase 
model can be applied to steam-water geothermal sys- 
tems. Numerical solution of the coupled partial differ- 
ential equations for mass and energy transfer by 
integral (Galerkin), finite element techniques is dis- 
cussed by Mercer (1973) and Faust and Mercer (1975). 
Finite difference schemes were utilized by Holst and 
Aziz (1972a, b) and Horne and O’Sullivan (1974). A 
particular difficulty in numerical solution of transport 
equations is the generation of numerical dispersion er- 
ror which can produce instabilities and spreading or 
smearing of temperature fronts. Lantz (1971) dis- 
cusses the sources of these errors and methods for 
minimizing their effects. 

Applications of numerical models to geothermal 
reservoir simulation are rather limited to date. Mercer 
(1973) attempted to simulate the Wairakei, New Zea- 
land, thermal system under both steady state and ex- 
ploitation conditions. At this stage his results are 
limited by the possible inadequacy of a two-dimen- 
sional areal model to simulate conditions in this sys- 
tem and the initiation of two-phase flow in the 
reservoir following several years of fluid production. 
Solutions to hypothetical two-phase reservoir prob- 
lems are discussed by Lasseter, Witherspoon, and 
Lippman (1975) and Faust and Mercer (1975). Nu- 
merical models for steam stimulation in petroleum 
reservoirs have utilized similar equations and solution 
procedures as those applied to the geothermal prob- 
lem (Weinstein and others, 1974; Coats and others, 
1973). 

The equations and numerical scheme used in this 

study are described in the section on “Numerical 
model”. An integrated finite difference method is 
used, and solutions to the heat and fluid flow equa- 
tions are interlaced in time. The model is applied to 
the problem of circulatory convection in permeable 
layers to demonstrate its capabilities and to extend 
the analysis to more realistic geometries and bound- 
ary conditions. Applications of numerical modeling to 
the transfer processes associated with hot spring sys- 
tems are also presented. 
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NUMERICAL MODEL 

Macroscopic description of mass and energy trans- 
port in porous media has been developed from the 
microscopic level using principles of statistical me- 
chanics. Bear (1972) and Fernandez (1972) present 
detailed discussions of the assumptions involved and 
the resulting equations. In this study we utilize the re- 
sults of these authors, making certain simplifications 
to yield a set of two partial differential equations for 
the flow of water and heat and an equation of state 
relating fluid density to temperature and pressure. 

PARTIAL DIFFERENTIAL EQUATIONS 

FLOW EQUATION 

To describe mathematically the flow processes in 
porous media, we must consider various properties 
such as pressure and temperature as averages over 
volume elements which are large compared with di- 
mensions of individual pores and solid particles, but 
small compared with the dimensions of the exterior 
boundaries of the medium. This introduces the 
assumption of what Bear (1972, p. 19) terms a repre- 
sentative elementary volume or REV and allows the 
actual porous medium to be treated as a continuum in 
which average values of dependent variables can be 
assigned to mathematical points. Thus we can write 
an equation for the conservation of mass as 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= fluid density, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 = porosity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt = time, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U d =  fluid flux vector. The actual fluid velocity, aver- 
aged over the appropriate REV, would be equal to 
ud/@. The momentum equation for flow in porous me- 
dia is 

- 

where P = fluid pressure, 7 = stress deviator tensor, 
and 2 = gravitational acceleration vector. Equation 2 
is obtained from the momentum equation for a homo- 
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geneous fluid system (as given by Bird and oth- 

ers, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1960, p. 79)  by neglectinginertial forces (pE) 
which are small compared with viscous forces (V 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) 
for laminar flow in porous media. For isotropic porous 
media, the empirical observations of Darcy (1856) and 
the similarity with Poiseuille-type flow in small-diam- 
eter tubes leads to the relation 

(3 )  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = fluid viscosity and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = intrinsic permeabil- 
ity. Combining equations 2 and 3 yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(4) 

or Darcy's law for laminar flow in isotropic porous me- 
dia. For anisotropic media, Bear (1972, p. 105) and 
Raats and Klute (1968, p. 540) developed a similar ex- 
pression for fid in terms of a permeability tensor E .  In 
this development, k will be treated as a scalar which 
can vary spacially, because in the geothermal systems 
we wish to model, little is known regarding the tensor- 

ial properties of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, and it is likely that large-scale in- 
homogeneities related to fractures and channeling will 
dominate the convective system. 

Combining the continuity and momentum equa- 
tions yields the flow equation 

For slightly compressible fluids such as water, we wish 
to solve the flow equation in terms of pressure rather 
than of density. Hence, we expand the right-hand side 
of ( 5 ) as 

where x = fluid compressibility, P = fluid thermal ex- 
pansivity, and a = vertical compressibility of the po- 
rous medium. Following Remson, Hornberger, and 
Molz (1971) we assume that the velocity of solid parti- 
cles is negligible and deformation of the solid matrix is 
significant only in the vertical direction. For the prob- 
lems considered in this study, the thermal expansivity 
term 4pP d T / d t  can be shown to be small compared 
with the compressibility terms ( p a  + ~ P K )  @/at owing 
to the large difference in response times between the 
thermal and hydraulic systems, that is d T / d t  < < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dP/dt. Thus, we will neglect the expansivity term in 

equation 6 and write the final form of our flow equa- 
tion as 

v .  ( + p - v P - p 2 g  k -) k = c x  ap 
P P 

(7 )  

where C = p ( @ K  + a) = compressibility coefficient. 

EQUATION OF STATE 

We wish to consider density as a function of tem- 
perature and pressure. Following Fernandez (1972, p. 
54) we can write 

p = poe-P(T-To),K (P-P,) (8) 

where po = fluid density a t  some reference state 
(To Po). Expanding the exponentials in series form and 
retaining terms of first order yields 

(9) 

For geothermal applications where ( T - T o )  may be 
large, a more accurate form for the temperature de- 
pendence was suggested by Wooding (1957, p. 274) as 

follows: 

P = P~[~-P(T-TO)-~(T-T~)'I. (10) 

Evaluating (po,T,) at 25OC and setting p = 3.17 x 10-4 
OC-' and y = 2.56 x 10+ OC-', yields p-po) to an accu- 
racy of 2 percent in the range of 25°C to 300°C. Be- 
tween 4°C and 25OC a first order expression can be 
used. 

In comparing the magnitude of the effects of tem- 
Ierature and pressure on the calculation of fluid den- 
iity, it is seen that, for liquid geothermal systems, the 
xessure dependence can usually be neglected. For ex- 
imple, assuming (P-Po) = 100 kg/cm2 (equivalent to 
ibout 1,000 meters of head), K = 4.5 X cm2/kg 
Cives (p-po)po = K (P-Po) = 0.0045. However, for 
T-To) = 100°C and P = 5 X lom4 OC-', (p-po)/pO = 
3 (To-T )= 0.05, an order of magnitude greater. Thus, 
n the numerical results that follow, equation 10 was 
itilized to compute fluid density except as discussed 
n the section on "Box Models". It should be noted, 
iowever, that in solving the flow equation 7 a portion 
)f the density change with time is always derived from 
,he fluid compressibility term 4pKdPlat. In effect, 
,hen, density changes with pressure contribute to 
xansient pressure changes, but calculated values of 
lensity are not updated as pressures change, only as 
,emperatwe changes. 

ENERGY EQUATION 

The energy equation in porous media can be written 
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following Mercer (1973, p. 7)  as 

where ps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= density of solid phase, c, = specific heat of 
solid phase, K, = total thermal dispersion tensor, and 
c = specific heat at constant volume of fluid phase. 
This relationship is obtained by combining the corre- 
syonding energy equations for the solid and fluid 
phases, as developed by Bird, Stewart, Lightfoot and 
others (1960, p. 314), with terms accounting for energy 
increases by viscous dissipation and compression ne- 
glected. To obtain (11) several assumptions are made. 
First, we assume that the fluid and solid are in ther- 
mal equilibrium at each point of contact so that a sin- 
gle temperature, T ,  can be assigned to  the sat- 
urated medium in a REV. This assumption has been 
shown to be valid for most porous media problems 
(Combarnous and Bories, 1973; Holst, 1970; and 
Green, 1963). However, a single energy equation may 
not be adequate under certain circumstances, such as 
forced convection at  high flow rates through porous 
material with relatively low thermal conductivity 
(Curry, 1970; Combarnous and Bories, 1973). One can 
also envision difficulties in treating ground-water flow 
through fractured rock as porous media flow necessi- 
tating the use of an effective REV which is not small 
compared with the overall size of t_he system. 

The flux of heat represented byK,.VT is a compos- 
ite of heat conduction through the solid-fluid matrix 
and the spreading effects of dispersion in the fluid 
phase. Bear (1972, p.650) gives the components of the 
total thermal dispersion tensor as 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzc = thermal conductivity tensor for solid- 
fluid matrix and& = coefficient of thermal disper- 
sion. Bear states that heat transfer by dispersion is 
analogous to mass transfer by hydrodynamic disper- 
sion and results from the distribution of local veloci- 
ties caused by the presence of grains and molecular 
diffusion. Mercer (1973, p. 10) develops the functional 
form of the thermal dispersion tensor as 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA€ i j k l =  dispersivity of the medium, a fourth rank 
tensor, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuk,u1 = components of velocity in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 
and I directions, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu = magnitude of the velocity. 
Green (1963) has shown analytically and experimen- 
tally that for relatively uniform porous media, heat 
transfer due to dispersion is small compared with con- 

duction for values of velocity rmmally encountered in 
ground water systems. Unfortunately, it is difficult to 
apply these laboratory results to field situations where 
considerable variability in permeability may increase 
the dispersive effect. Indeed, it is possible that where 
dispersion is important in heterogeneous systems, the 
assumption of thermal equilibrium between phases 
may also break down and a more complicated math- 
ematical description for heat transfer will be required. 
With this in mind, and considering the absence of in- 
formation as to the magnitudes of the tensoria1 com- 
ponents of (E?), it seems reasonable to treatK, as a 
scalar K,, which could represent an enhanced con- 
ductivity to account for dispersion. For example, Hen- 
ry and Hilleke (1972, p. 33) used a value of K, which 
was five times the static thermal conductivity to 
match the temperature distribution in a coastal salt 
water-fresh water aquifer. Thus, the energy equation 
11 becomes 

- m  
pc - = V.K,VT-pGdc*VT 

at 

where pC = [ @ p c  + (1-4) p s c s ]  = heat capacity of 
solid-fluid matrix. 

NUMERICAL SOLUTION 

The flow equation 7 is linear only if we neglect the 
pressure dependence of p and k;  however, both p and p 
must be treated as functions of temperature, and thus 
the pressure and velocity fields depend on tempera- 
ture. The energy equation 14 is nonlinear because of p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( r )  and c (T), and the temperature field depends on 
the velocity field. Thus, we must solve a coupled non- 
linear set of equations. Further, in the geothermal sys- 
tems we wish to study, properties such as permeability 
and thermal conductivity will vary spacially and the 
boundary geometry may be complex. For these rea- 

sons numerical solutions are required, and a code 
which can treat multidimensional problems with vari- 
able geometries would be desirable. A computer pro- 
gram for slightly compressible heat and fluid flow was 
therefore developed. 

, 
GENERAL PROCEDURE 

The basic procedures in the program were derived 
from the work of Edwards (1969) and Lasseter (1974). 
Before writing finite difference approximations, we 
integrate the equations over the volume of a finite ele- 
ment and apply the divergence theorem to reduce the 
flux terms to integrals over the area of the element. 
Thus, for an equation of the form ' 

aX 
at 

CY - = V$Vh 
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integration yields, 

To solve this equation numerically, we discretize thc 
continuum into a finite series of elements, each with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 

specified volume and a surface area between it and 
surrounding elements. We must then assume that thc 
volume-integrated factors on the left-hand side an 
constant over each element, and the surface-integrat. 
ed terms are reasonably constant over each of the con. 
necting areas. 

Consider an element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“n” and two adjacent elements 
m l  and m2 as shown below 

Writing equation 16 in difference form for this system 
yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

AXn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
V o l ,  a, - - An,,, Pn,mi (VX)n,rni At 

+ A , m z  Pn,mz (VX)n,m: 

= C A n , m  Pn,m (VX)n,m (17: 
m 

To evaluate the flux at  each interface, we assume thai 
the average values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and X over the element apply ai 
a particular point or node within the element. Thc 
gradient (VX)n ,m is approximated as 

In general the distances d , ,  and dm,n are measured 
normal to the interface An,m. 

To preserve continuity of flux and potential acrost 
the interface, the coefficient P,,, must be evaluated as 
the harmonic mean of the values Pm for node m and P, 
for node n. Thus 

D , m  PnPm 
Pnlm = Pndm,n+ Pmdn,m (19) 

where D , ,  = d , ,  + dm,n. Equation 17 can now be 
written 

(20: 
AXn An,mPnPm ( X m - X n ) .  V o l ,  a, - - 
At - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF Pndm,n + Pmdn,m 

The system of algebraic equations generated by 
writing equation 20 for each node in the system is 
solved by iteration. This general procedure puts no in- 
herent restrictions on the number of nodes connected 
to node “n” or on the shape of the connecting surfaces. 
Thus it can be applied, as noted previously, to multi- 
dimensional problems with simple or complex ele- 
ment geometries. Narasimhan (1975) refers to this 
scheme as the IFD (Integrated Finite Difference 
Method) and gives a detailed conceptual comparison 
of the IFD method with the finite element method. 

NUMERICAL FORMULATION OF FLOW 
EQUATION 

The flow equation is 

After volume integration, the difference equation can 
be written 

n,m 1 + ( P2kA711g ) 
P 

where qn,m is the direction cosine of the angle between 
the outward normal of “n” towards “m” and the gravi- 
tational acceleration vector s. Evaluating ( k / ~ ) ~ , ~  as 
the harmonic mean 

and weighting the density by 

we can rewrite equation 21 as 

where *n,m = transductance = [- Pn,m ( $) n,m 

We wish to solve the flow equation implicitly. Thus, 
we expand equation 24 into implicit and explicit parts 
as 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP is the pressure at  the old time and AP is the 
change in Pduring the time step At. The interpolation 
factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 can be set to 1 for a fully implicit or backward 
differencing scheme, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?4 for a Crank-Nicholson implic- 
it scheme, or 0 for a fully explicit scheme. In solving 
the flow equation, 0 is set to 1. The explicit part of 
equation 25 is computed first and then the implicit 
part is solved by iteration. 

NUMERICAL FORMULATION OF 
ENERGY EQUATION 

The energy equation 14 is 

Before integrating, we rewrite this equation in diver- 
gence form as 

The corresponding difference equation is 

-t ( P u d C A )  n,m (Tn,m - Tn) ]  

where velocity is defined as positive into node n and 
Kn,, is the harmonic mean conductivity. 

Expanding into implicit and explicit terms yields 

+ (PUdCA)n,mATn,rnl) ' 

Temperature-dependent material properties are eval- 
uated at  some intermediate time between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt and t +At. 
The procedure by which this point is determined is 
discussed by Lasseter (1974, App. C). The value of 0 
used to solve the energy equation is adjusted between 
0.57 and 1.0 in order to damp out small oscillations in 
the solution. 

The temperature a t  the interface Tn,m could be 
evaluated by a linear interpolation 
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I t  can be shown, however, and anticipated physically, 
that the temperature variation in the presence of con- 
vection is not linear and that the interface tempera- 
ture  is weighted in favor of the upstream node 
temperature. Numerically, it is also found that insta- 
bilities develop unless we use this upstream weighting. 
Thus, we rewrite equation 29 in terms of the adjusted 
distances d'n,rn a n d  d&,n as 

The energy equation now becomes 

in terms of transductances 

and 

The instability noted above may develop if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ1,,m 
and Q 2 , , ,  have the same sign. To avoid this, we 
weight the interface temperature in favor of the up- 
stream node temperature as follows. If ( p u d ) n , m ,  the 
mass flow rate from node "m" to "n", is large and posi- 
tive, the transductances may both be positive. In this 
case the weighting d',,, , ,, /D ,, ,, on T, is reduced until 
W,,m is just negative. If (pUd)n,m is large and negative, 
the transductances will both be negative and the 
weighting d,,,,/Dn,,, on T ,  is reduced until Wn,,  is 
positive. This computation is done internally by the 
computer program so that stability is always assured. 
The accuracy of this weighting technique was verified 
by Lasseter (1974) by comparing numerical results 
with analytical solutions for forced convection 
through porous media. 

ITERATIVE SOLUTION 

For each time step, the flow equation 25 is solved in 
a fully implicit fashion with the interpolation factor 8 
set to 1. With the energy equation 31, 0 is adjusted 
between 0.57 and 1.0 and an implicit-explicit op- 
timatization method is used. In the latter, a stability 
limit or time constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7,  is defined for each node as 
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Q*n,m 
7n = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ*n,nt  signifies that we sum the conductive 
components of Q n ,  over all connections and take the 
difference between inflow and outflow of the convec- 
tive components. 7, represents the largest stable time 
step that could be used to solve equation 31 explicitly 
for node n. Physically, it is the approximate time re- 
quired for a node to react significantly to changes in 
temperature of nodes it is connected to. Thus, for each 
time step, At, the energy equation is solved explicitly 
for nodes with 7,<At and implicitly for all other 
nodes. 

The time step used to solve the energy equation is 
controlled mainly by an input parameter, TVARY, 
which is the desired maximum temperature change 
per time step. For accuracy in transient problems, 
TVARY is set to about 1 percent of the maximum 
temperature change expected in the system. For 
steady state solutions, TVARY can be increased to 
speed convergence. Control of the time step for the 
flow equation is discussed in the next section. 

Within each time step, the set of equations 31 for 
each node is solved by using the iterative technique 
developed by Edwards (1969) and discussed by Las- 
seter (1974). Convergence is generally rapid, but the 
number of iterations necessary depends on the rela- 
tive number and time constant of interconnected 
nodes, the relative transductances for these connec- 
tions, and TVARY which is used in the convergence 
test. The program adjusts At to optimize on about 40 
iterations per time step. 

COUPLING OF FLOW AND ENERGY EQUATIONS 

Simultaneous solution of the flow and energy equa- 
tions can be accomplished numerically by interlacing 
the solutions in time. Starting with initial tempera- 
ture and pressure distributions at  time to, we assume 

that temperatures are reasonably constant over a 
short interval of time and solve for a new pressure dis- 
tribution at  time to+ At,/2. We then use this pressure 
distribution to determine the new temperature distri- 
bution at to + At. These temperatures are then used to 
compute pressures at t o  +3At/2, and so on. This tech- 
nique is illustrated in figure 1. 

The actual scheme used is simplified due to the 
large difference between time constants of the two 
equations. The flow equation has time constants 
which are typically on the order of seconds while the 
energy equation has time constants on the order of 
tens of days. Thus after each temperature time step, 
the flow field will rapidly converge to a quasi-steady 
state solution. This is not a true steady state because 
temperatures are varying slowly with time and pres- 
sures will slowly but continually change. But we can 
solve for the quasi-steady state pressure distribution 
once we have computed a new temperature distribu- 
tion without worrying about finding P and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAud at A t/2. 
The difficulty with this technique is that many flow 
cycles per energy cycle are required to properly solve 
for the new pressure distribution because of the dif- 
ference in time constants. A cycle is a step forward in 
time, whether it is a flow calculation or an energy cal- 
culation. For each temperature cycle, about 10 flow 
cycles are needed to compute the quasi-steady state 
solution. The time step for each flow cycle is adjusted 
to utilize about 40 iterations per cycle. 

It should be noted that the equations presented and 
the problems solved in this paper do not involve 
source terms. With a mass source, such as a recharge 
or discharge well, the flow field would not necessarily 
equilibrate within each thermal cycle and the interlac- 
ing scheme shown in figure 1 would have to be fol- 
lowed. 

STUDIES OF NATURAL CONVECTION 

It is useful to identify two types of convective heat 
transfer in porous media. Forced convection results 

SEQUENCE 
NUMBER 1 

PRESSURE TIME STEPS 

3 5 

I I I I I > 
t o  t 0 + A d 2  t o  +At t o  +3At/2 t o  +2At zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

v 

2 4 

TEMPERATURE TIME STEPS 

FIGURE 1.-Interlacing of temperature and pressure steps. 
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from externally imposed hydraulic conditions; fluid 
velocity is independent of the temperature distribu- 
tion. Natural or free convection arises from buoyancy 
effects caused by temperature differences. In geo- 
thermal systems, both types of flow occur and convec- 
tion could be termed mixed. One example of this 
mixed convection is the circulation of hydrothermal 
fluids from recharge areas to hot spring discharge 
areas. The driving force for this circulation, which 
may extend to depths of several kilometers, could be 
derived from a combination of the difference in eleva- 
tion of the recharge and discharge areas and the den- 
sity difference between the cold downflowing water 
and hot upflowing water. 

CIRCULATORY CONVECTION 

Of particular interest in geothermal studies is the 
phenomenon of circular or cellular convection. Con- 
sider a laterally extensive layer of permeable material 
heated from below as in figure 2. For the idealized 
condition where the upper and lower surfaces of the 
permeable layer are at  constant temperatures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo and 
TI, the conditions for the existence of the convective 
pattern shown are related to the dimensionless Ray- 
leigh number, defined as in Witherspoon, Newman, 
Sorey, and Lippman, (1975) as 

(33) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= thickness of the permeable layer, and the 
other terms are as previously defined. The Rayleigh 
number relates buoyancy forces to viscous forces; and 
for the system in figure 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARa must exceed a critical 
value of 4sz for convection to occur (Lapwood, 1948). 
For permeable layers with lateral boundaries, analyt- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Permeable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?r layer 

FIGURE 2.-Cellular convection in an extensive horizontal layer. 

ical results by Sutton (1969) and Beck (1972) can be 
used to determine the critical Rayleigh number (Rat) 
and the preferred convective mode as discussed.below. 
The preferred convective mode refers to the number 
and shape of convective cells which would form at val- 
ues of the Rayleigh number above Rac. 

In real systems, it is doubtful that a critical Ray- 
leigh number exists because there would be horizontal 
temperature variations along the upper and lower 
bounding surfaces. Convection is then set up for any 
value of Ra>O, provided the adiabatic temperature 
gradient dT/& = gTPlcp is exceeded (Landau and Lif- 
shitz, 1959, p. 9). However, we would expect convec- 
tive effects on the thermal and hydrologic regimes to 
be negligible except in geothermal areas with above 
normal heat flow and temperature gradients. Donald- 
son (1968) estimates that in geothermal areas the 
Rayleigh number is in the range of 500 to 5,000; and 
Horne and O’Sullivan (1974) estimate that in the 
Wairakei, New Zealand geothermal reservoir Ra is 
near 5,000. 

Previous investigations of cellular convection in po- 
rous media have treated either the infinite layer case 
or box models with insulated, impermeable vertical 
sides. Results from box model studies have applica- 
tion to both laterally extensive aquifers where the 
zone of influence of each of the convection cells forms 
a box with respect to adjacent cells and to structurally 
bounded aquifers or channels. The effects of assump- 
tions of isothermal surfaces above and below the 
aquifer and insulated side walls are discussed in the 
section on “Realistic Models.” In the next section, a 
general description of heat and fluid flow in box model 
systems will be given and numerical results from the 
program developed for this study will be compared 
with analytical, experimental, and numerical results 
from other authors. 

BOX MODELS 

GENERAL CONSIDERATIONS 

The geometry and boundary conditions for the box 
model are shown in figure 3. All sides are impermeable 
and the vertical sides are insulated. Following the 
analysis by Beck (1972), the problem of the onset of 
convection is solved by writing steady state forms of 
equations 7 and 14 for static conditions (no convec- 
tion) and for a small disturbance upon the static state, 
under assumptions of constant coefficients and con- 
stant fluid density except in the gravity term of 7. The 
two sets of equations are subtracted and the resulting 
set of equations nondimensionalized. Solutions have 
been obtained by the linear and energy methods, both 
yielding the same result for the box model problem 
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FIGURE 3.-Box model for cellular convection with 
heating from below. 

(Beck, 1972). The critical Rayleigh number, which is 
the smallest eigenvalue of this eigenvalue problem, 
depends entirely on the aspect ratios zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhx/hz and hylhz. 
The minimum value of Ra, is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA47r2 for the infinite layer 
case, and bounding the fluid tends to make it more 
stable, that is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARa, >4xz. 

For values of Ra just above the critical value, several 
modes of convection are possible. The motion can be 
either 2- or 3-dimensional with single or multiple cells. 
In contrast with the corresponding problem of free 
convection of an enclosed homogeneous fluid, 2-di- 
mensional motion is possible because a no-slip bound- 
ary condition at the walls is not required for the 
porous media system. A roll is defined as a cell with 
only two non-zero velocity components. It has the ap- 
pearance of a cylinder with axis parallel to the zero 
velocity coordinate. Beck's (1972) solution to the 
minimum eigenvalue problem shows that rolls are 
preferred over 3-dimensional cells whenever the 
height h, is not the smallest dimension. When rolls do 
form, they are usually parallel to the shorter side, al- 
though the overriding rule is for the number of rolls 
and the direction of their axes to be such that each roll 
has the closest approximation to a square cross section 
as possible. For example, for h, = 2.0, h, = 0.75, and h, 
= 1.0, two rolls form parallel to the y-axis as shown in 
figure 4. Three-dimensional cells occur when h,, h,, 
and h, are nearly the same size, that is, a cube, and 
when the height h, is less than both lateral dimen- 
sions. For a cube, the motion resembles a toroid with 
vertical axis through the center of the box. The veloc- 
ity pattern in the ( X J )  plane is shown in figure 5 .  

One effect of this convective motion is to increase 
the heat transferred vertically through the system. 
The Nusselt number Nu is defined as the ratio of heat 
flow with convection to heat flow by conduction in the 
absence of convection. For Ra<Ra,, Nu =l. In regard 

FIGURE 4.-Convective rolls in box with h, = 2 h,. 

FIGURE 5.-Velocity pattern on lower surface of 
cube for three-dimensional convection. 

to the number and shape of the convection cells which 
form at Rayleigh numbers above Ra,, the analysis of 
Platzman (1965) indicates that the solution exhibiting 
the maximum heat transfer is physically preferred. 
Thus, for a square box with Ra = 100, a single roll for 
which Nu = 2.60 would be preferred over a two-roll 
mode for which Nu = 2.20. Numerical and experimen- 
tal studies by Combarnous and Bories (1973) and 
Holst and Aziz (1972b) show that Nusselt numbers 
are not significantly different for two-and three-di- 
mensional motions involving the same number of con- 
vection cells. Using the program code, comparison of 
plane symmetric, axisymmetric, and three-dimen- 
sional models with one convection cell at  Ra = 100 
yielded differences in Nu at steady state of less than 
10 percent. In the discussions which follow, only two- 
dimensional convective motions are considered. 

NUMERICAL SOLUTIONS 

To model the box problem using the program, a 10 
X 10 grid of nodes was normally used for 2-dimension- 
a1 solutions and a 6 X 6 X 6 grid for 3-dimensional 
solutions. The effect of grid spacing on the Nusselt 
number for a typical 2-dimensional problem is illus- 
trated in figure 6 where the error for the 10 X 10 grid is 
only 3 percent of the extrapolated value for A x = Ay 
= 0. 

For most problems, only the steady state solution 
was desired. Hence, starting with initial temperature 
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FIGURE 6.-Influence of grid spacing on steady state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANu, N = 
number of nodes in n and y directions. 

and pressure conditions, the thermal time step was 
advanced rapidly using a large value of TVARY as dis- 
cussed in the section on “Coupling of the Flow and 
Energy Equations”; steady state conditions were indi- 
cated when the hot and cold side Nusselt numbers be- 
came equal. 

For a given aspect ratio, the choice of initial condi- 
tions affected the cellular pattern and the Nusselt 
number as steady state was approached. For example, 
using uniform initial temperature and pressure distri- 
butions in a square with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARa = 100 results in a 2-cell 
convective pattern with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANu = 2.20 as indicated in fig- 
ure 7. If the initial temperature distribution is not 
symmetric, unicellular convection develops with Nu = 
2.60 as shown in figure 8. In addition, Horne and 
O’Sullivan (1974) report that for a uniform initial 
temperature distribution in a square box, heating the 
lower boundary slowly instead of instantaneously, re- 
sults in unicellular rather than multicellular motion. 
Thus, the convective pattern which may exist in a 
geothermal system probably depends, in part, on its 
thermal history. 

The relationship between Ra and Nu determined 
numerically using the program is plotted in figure 9. 
These results are for a square, and the Nusselt num- 
ber for each value of Ra corresponds to the cellular 
pattern which maximizes the heat transfer, which is 
the preferred cellular mode. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs found numerically and 
experimentally by Combarnous and Bories (1973), the 
preferred cell size is a decreasing function of Rayleigh 
number, varying from an  aspect ratio (width to  
height) of 1 at low values of Ra to an aspect ratio of 
0.25 at  Ra = 1,000. Also shown in figure 9 are numeri- 
cal results from Combarnous and Bories (1973), ob- 
tained from finite difference solutions of non- 
dimensional forms of equations 7 and 14. These au- 
thors also present experimental data for several com- 
binations of porous materials and fluids. The Ra-Nu 
relationship in figure 9 fits with the average experi- 
mental results; variations between the different ex- 
perimental systems were attributed to finite heat 
transfer coefficients a t  solid-fluid contacts. However, 

210°C 

FIGURE 7.-Steady-state temperature distribution obtained 
from uniform (symmetric) initial temperature distribu- 
tion. 

FIGURE 8.-Steady-state temperature distribution obtained 
from nonuniform (asymmetric) initial temperature 
distribution. 

for materials with thermal conductivity K ,  between 2 
and 5 mcal/(s, “C cm) (for example, natural earth ma- 
terials), the numerical model assuming an infinite 
heat transfer coefficient was found to be adequate. 
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FIGURE 9.-The relationship between Ra and N u  determined 
numerically for cellular convection in box model. 

The existence of oscillatory or fluctuating convec- 
tive states has been investigated by Horne and O’Sul- 
l ivan (1974) and  Caltagirone, Cloupean, and  
Cornbarnous (1971) for box models in which the lower 
boundary is uniformly and nonuniformly heated. 
Their work includes experimental and numerical ob- 
servations of regular and irregular variations in the 
convection cell pattern and the resultant Nusselt 
number at Rayleigh numbers above about 300. Real 
time periods for these fluctuations at  Ra near 1,000 
were approximately equal to the expression (0.006 
L Z ~ / K m ) ,  which yields a range from 200 to 700 years 
for typical thermal properties in  systems with 
L near 1 Km2. Corresponding variations in Nusselt 
number of _+ 15 percent were found. Numerical simu- 
lations using the program for the uniformly heated 
case indicate similar instabilities at a Rayleigh num- 
ber of 1,000 for motion which is dominantly unicellu- 
lar, although the Nusselt number variation was only 
k 6  percent. Thus, from the standpoint of modeling 
natural convection in geothermal systems, the rather 
large periodicity and limited quantitative effect on 
heat flow associated with this oscillatory phenomenon 
suggest that its practical significance may be limited. 

TEMPERATURE-DEPENDENT PARAMETERS 

In previous studies of the critical Rayleigh number 
and the Ra-Nu relationship, the properties p and c 
were treated as constants and the first-order equation 
of state (9) was used to relate fluid density to tempera- 
ture. In the program the relationships p ( T )  and c ( T )  
can be tabulated or suitable analytical expressions can 

be solved at each thermal time step. Table 1 lists val- 
ues of p ,  c, and p for pure water at  temperatures cover- 
ing the range found in hydrothermal systems. The 
viscosity variation with temperature is considerably 
larger than that for density or specific heat, and the 
variation suggests that results obtained with a con- 
stant viscosity assumption may be significantly in er- 
ror. Actually, thermal expansivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, which appears in 
the equation (33) for Rayleigh number, increases con- 
siderably with temperature and further complicates 
the analysis. 

TABLE 1. Temperature-dependent properties of pure water 
[From Dorsey (19SS)l 

160----- 50 .910 .174 2333 
260----- 50 ,788 .lo9 .763 
310-- - - -  100 .692 .090 .741 

The combined effects of the temperature depen- 
dence of p, c, p, and @ on the analysis of cellular con- 
vection were evaluated for a box model with aspect 
ratio of 1.0. The Nu-Ra relationship was examined for 
several values of the vertical temperature difference 
(T,-To), using an average temperature in each case of 
160°C. The second-order relation (eq. 10) for p ( T  was 
used and permeability k was adjusted to keep Ra con- 
stant as (T,-To) varied. For each run, two Rayleigh 
numbers were calculated. One could be termed the 
cold-side Rayleigh number Ra,, 
where 

and the subscript (0) indicates evaluation at  T = To. A 
mean Rayleigh number Ram was also computed as 

where the subscript (m) indicates evaluation at  T = 
(Tl-To)/ 2 = 16OoC, and f i e  is an effective expansivity 
computed as 

For each (Tl-To), eight-point tabulations of p ( T )  and 
c(T)  were used with linear interpolation between 
points. 

The results are shown in figure 10. The heavy solid 
curve is the same as the curve in figure 9 for the con- 
stant parameter case. We note that for a given system, 
computing the Rayleigh number based on p, c, and @ 
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FIGURE 10. - Nusselt number with temperature-dependent fluid 
properties as a function of cold-side Rayleigh number (eq. 34, 
dashed lines) and mean Rayleigh number (eq. 35, solid lines) 
for temperature differences TI-To between 40°C and 300°C. 
Critical Rayleigh numbers a t  Nu = 1.0. Heavy solid line is for 
properties independent of T (see fig. 9). 

evaluated at  To yields a value of N u  which increases 
with (?",-To) and is greater than the constant param- 
eter result for (Tl-To) greater than about 40°C. In 
contrast, the Nusselt number corresponding to Ram is 
less than the constant parameter result and decreases 
with(Tl- T,).The position of the Nu-Ram curves may 
vary with the actual average temperature (T1-T0)/2 
due to nonlinearities in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(T) ,  c(T),  p ( T )  relations, 
but the choice of (TI-To)/2 = 160°C should be repre- 
sentative of geothermal reservoirs. The explanation 
for the lower heat transfer with variable fluid proper- 
ties (Nu-Ram) may also be related to the nonlinearity 
in p ( T )  which causes the centroid value of p for To  I T 
5 TI to  be greater than p at  (T,-T,)/2. Because Ra is 
inversely proportional to p, the effective Ra should be 
less than Ram. A similar trend of decreasing heat 
transfer with increasing (TI-To) was reported by 
Holst and Aziz (1972a) with n-heptane as the convect- 
ing fluid. 

Results in figure 10 also show that the critical Ray- 
leigh number is influenced by variable fluid proper- 
ties. In terms of the cold-side Rayleigh number Ra, 
the onset of convection occurs near the theoretical val- 
ue of 4n2 for (TI-To) < about 40°C but occurs a t  val- 
ues of Ra < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4n2 for (Tl-T,) > 40°C. For (Tl-To) = 
300"C, the critical value of Ra, is only 1.7. However, 
the critical value in terms of Ram is always greater 
than 47r2, reaching a value of 61 for a temperature dif- 
ference of 300°C. Finally it should be noted that vari- 
able fluid properties also cause the temperature and 

TEMPERATURE, IN DEGREES CELSIUS 

FIGURE 11.-Temperature and velocity profiles a t  midplane (x 
= h,/2) for convection cell with Ram = 100 and Tl-To = 
100°C. Temperature curve A is for constant fluid proper- 
ties; temperature curve B and velocity curve C are for tem- 
perature-dependent fluid properties. 

flow patterns to be asymmetric as shown in figure 11. 
The asymmetry reflects the fact that the hotter, less 
viscous fluid near the bottom moves more easily than 
the colder fluid above. 

EFFECT OF DENSITY VARIATION WITH PRESSURE 

The effects of allowing fluid density to vary with 
pressure according to  equation 7 were evaluated for 
the system shown in figure 12. Two runs were made, 
one with p ( T )  and one with p = p (?",E'), for(?",-T,,) = 
1°C and 100°C. For a temperature difference of 100°C 
across the box, the effect of temperature on density 
should dominate, as discussed in the section on "Par- 
tial Differential Equations." However, for a tempera- 
ture difference of 1"C, the density increase from top 
to bottom due to the increase in hydrostatic pressure 
is 10 times the density decrease due to the tempera- 
ture difference. 

The results of the computer runs are listed in table 
2. Although the Nusselt number for run 4 with p = p 
(T,P) is slightly higher than the value for run 3 with p 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp (T) ,  the difference in heat transfer between the 
various runs were negligible. Similarly, temperature 
and velocity distributions were essentially the same 
for each run. Thus, for problems or circulatory con- 
vection in porous media, density can probably be con- 
sidered a function of temperature only. 
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FIGURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12.-Box model to test effects of 
density variation with pressure. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

TABLE 2.-Results of computer runs with density a function of 
pressure 

REALISTIC MODELS 

Application of results from box model investiga- 
tions are somewhat limited because the boundary con- 
d i t i o n s  a r e  n o t  r ea l i s t i c .  I n  p a r t i c u l a r ,  t h e  
assumptions of insulated sides and constant tempera- 
ture at  the top and bottom of the convecting layer may 
not hold in the field problem. It  is possible, however, 
to use the numerical code to evaluate the effects of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m 

r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- X  

To zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
l o  

these assumptions on temperature distributions and 
heat transfer rates. 

CONDUCTING SIDE WALLS 

Consider the model shown in figure 13 which is 
similar to one proposed by Donaldson (1968,1970) for 
simulation of convecting geothermal systems. The 
permeable channel, labeled B, could represent a frac- 
tured zone of upflowing liquid, separated from a re- 
charge area with downflowing water by impermeable 
blocks, labeled A. A horizontal channel connecting the 
recharge and discharge areas is not shown at  the bot- 
tom of this model because our interest here is on circu- 
latory convection in the vertical channel. For this 
reason we also treat the upper and lower surfaces of 
Channel B as impermeable. A constant temperature 
To is imposed along the top and sides, and a linear 
temperature variation from To to T, is imposed along 
the bottom of the blocks A. The bottom of channel B 
is maintained at  TI, and the vertical sides of the chan- 
nel are impermeable but thermally conductive. 

For a particular case in which T,-T, = 100°C, w/L 
= 2.1, and y / L  = 0.5, and a Rayleigh number for the 

channel of 100, the temperature distribution shown in 
figure 14 would result. The temperature distribution 
for the case of conduction only (Ra = 0) is also shown 
and was used as a reference in computing the Nusselt 
number to account for the influence of the distance w 
and the temperature To imposed at  the sides of the 
model. Heat transfer rates along various boundaries 
are listed in table 3. 

The Nusselt number for the channel is 1.3, com- 
pared with a value of 2.2 determined for the corre- 
sponding box model with insulated sides as in figure 7. 

v,=o 
To TO 

To 

FIGURE 13.-Physical model for cellular convection with conducting side walls. 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.-Heat transfer results for convection in vertical chan- 
nel with conducting side walls 

Location Q for Ra = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARa = 100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANu 
(joulesld X 10’) (joulesld X 10’) 

Top of channel 4.38 5.76 1.32 
Bottom of channei - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 6.41 7.98 1.24 

Bottom of model - - 29.0 31.0 1.07 
Top of model - - - - 24.4 26.3 -1.08 

A simulation was also performed on the box model in 
figure 7 with a linear temperature variation imposed 
along the vertical sides. This simulation also allows 
heat conduction through the sides and for Ra = 100, 
N u  = 1.8. 

These results indicate that analysis of circulatory 
convection in bounded reservoirs should provide for 
the retarding effect of heat conduction through the 
lateral boundaries. The basic physical model in figure 
13 can also be used to simulate the combination of 
convective throughflow from recharge to discharge 
areas and circulatory or secondary convection in the 
upflow channel (Donaldson, 1968,1970). Results pro- 

duced by using the program are in agreement with 
the  general features of Donaldson’s combined 
throughflow and secondary convection results; these 
results indicate that the amount of heat transferred 
by the secondary flow decreases markedly as the 
throughflow increases. Numerical analysis of this ba- 
sic model, including recharge channel(s) at  the sides 
and a reservoir at  the base, could utilize more complex 
boundary conditions and parameter variations to sim- 
ulate conditions in a specific hydrothermal system. 

TWO- AND THREE-LAYER MODELS 

For the case of convection in a laterally extensive 
reservoir, we could remove the restrictive assumption 
of constant T along the upper and lower surfaces by 
considering a multi-layer system with less permeable 
rock above and below the reservoir. Convective flow in 

0 

model with conducting side walls for w / L  = 2.1 and 
= 0.5. 

the reservoir would not draw heat evenly from below 
and heat would not be conducted evenly across the top 
of the layer. Consequently, isotherms in the less per- 
meable layers would be bent near the contacts with 
the permeable layer in contrast to the constant tem- 
perature contacts in the single-layer model. 

Donaldson (1962) analyzed the magnitude of this 
effect for a two-layer system with a permeable layer 
underlain by an impermeable layer. Both zones had 
the same finite thickness and were of infinite lateral 
extent; the upper surface of the permeable layer and 
the lower surface of the impermeable layer were held 
at  constant temperatures. Donaldson found that the 
value of Ra, was lower in the double-layer case than in 
the single-layer case, but that the conducting layer 
tended to retard convection effects for values of Ra 
above the Ra,. 

Several runs using the program were made to com- 
pare the results with Donaldson’s results and to 
extend the models to the three-layer case. The multi- 
layer-models are illustrated in figure 15. An equiv- 
alent Rayleigh number was computed using the 

vertical temperature difference across the permeable 
layer which would exist with heat flow by conduction 
only and the thickness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL of the permeable layer. In 
table 4, the steady state Nusselt numbers for each 
model for Ra = 100 are listed. The retardation effect 
noted by Donaldson is evident in the decrease in Nu 
from 2.60 for one layer to 1.19 for three layers; al- 
though for an aspect ratio of 1.0, the Nusselt number 
for the three-layer system may have been closer to 
that for the two-layer case. 

TABLE 4.-Effect of multiple layers on heat transfer in permeable 
layer with circulatory convection 

[S = cell aspect ratio] 

Model Rn S Nu 

1 Laver _ - _ - - - _ -  100 1.0 2.60 
2 Layers -------- 100 1.0 1.34 
3 Layers -------- 100 .a 1.19 
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FIGURE 15.-A, Isotherms for two-layer model with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARa = 
100; B ,  Isotherms for three-layer model with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATa = 100. 

The corresponding temperature distributions in the 
multilayered systems as plotted in figure 15 show the 
distortion of the isotherms in the impermeable layers 
near the contacts with the convecting layer. Near the 
constant temperature boundaries, the isotherms flat- 
ten out but are more closely spaced than if there were 
no convection. This effect raises the question of how 
deep to place the constant temperature lower bound- 
ary to minimize its influence on simulating the con- 
vective system. We can use an analysis by Birch (1967) 
of the temperature distribution beneath the sea floor 
to  show tha t  the isotherm distortion decays as 
e - r z / x ' ,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = distance from the convective 
boundary and x' is the distance from peak to trough 
for a sinusoidal isotherm at z = 0. For m / x '  = 2, the 
isotherm distortion would be less than 10 percent of 
the value at z = 0. Hence, distortion will be small at 

the outer boundaries of the multilayer models if x k z ,  
that is if the thickness of the impermeable layer ex- 
ceeds the peak to trough distance (the width of the 
convection cell). Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx' must be equal to or less than 
the thickness of the permeable layer L, Z Z L  ensures 
sufficient thickness for the impermeable layer. 

HOT SPRING MODELS 

In many of the potential geothermal areas in Cali- 
fornia and Nevada, the convective and conductive 
heat flow in and around hot springs are the dominant 
features in the near-surface thermal regime and ac- 
count for most of the heat discharge from these areas 
(Sorey and Lewis, 1975; Olmsted and others, 1975). 
Commonly, information from deep drilling as to the 
location and properties of the reservoir or reservoirs 
supplying the hot spring discharge does not exist. 
However, we would expect to find fluid and rock with 
relatively high heat content in and around the hot 
springs at  depths considerably shallower than the un- 
derlying reservoirs which may be at depths of 1-5 km 
(Olmsted and others, 1975). The shallow occurrence of 

hot fluid and rock suggests the possibility of extrac- 
tion of energy from relatively shallow depths in these 
areas of natural discharge, either by capturing the hot 
spring discharge or the injection and withdrawal of 
fluid from another source. The feasibility of this ap- 
proach has been demonstrated at  the Casa Diablo Hot 
Springs in Long Valley, California (McNitt, 1963). 

To describe the transfer processes associated with 
an upflowing hot spring system, the effects of conduc- 
tive heat losses, mixing, subsurface discharge, and 
boiling need to be accounted for. Geochemical tech- 
niques, including those based on concentrations of 
silica and the ratio of concentrations of the cations 
Na, K, and Ca in the hot spring water can provide esti- 
mates of the source temperature at  depth for the 
spring water (Fournier and others, 1974). In some 
cases, the amount of colder, fresher ground water mix- 
ing with the thermal water can be determined from 
the chemistry and enthalpy of the spring discharge. 
However, to quantify the amount of heat loss by con: 
duction away from the spring conduit and the resul- 
tant temperature drop in the spring water, we need to 
use a numerical model. In addition, it is of interest to 
analyze the thermal and hydrologic regimes in the 
rock adjacent to the spring conduit under conditions 
of circulatory convection and in the absence of con- 
vective motions. 

For the simplest model, we assume an isolated cy- 
lindrical conduit with vertical orientation surrounded 
by impermeable rock as in figure 16. The lower bound- 
ary is formed by the top of a reservoir with fluid at  
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FIGURE 16.-Isolated cylindrical conduit hot spring model. 

temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATb and the upper boundary is the land 
surface at temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,. The model is extended far 
enough laterally to justify an insulated boundary con- 
dition on the sides. Water enters the bottom of the 
conduit with temperature Tb at some constant mass 
flow rate PUd. As the fluid moves up the conduit, heat 
is conducted into the adjacent rock and the fluid tem- 
perature falls. The fluid emerges at  the land surface at  
temperature T,, and the conductive heat loss from 
the conduit is discharged at  the land surface within an 
area of above normal heat flow. Note that the constant 
temperature T ,  is imposed on the land surface up to 
the edge of the spring conduit but that the tempera- 
ture of the spring discharge is not fixed. This condi- 
t ion is possible numerically by neglecting heat 
conduction across the spring surface. 

Another possible model for heat transfer in a hot 
spring system involves water moving up over a more 

extensive fault plane and then converging near the 
surface as shown in figure 17. In a specific area, the 
applicability of the fault plane model over the cylin- 
drical model can be judged from data on the thermal 
regime adjacent to the springs (Olmsted and others, 
1975) and from hydraulic considerations of upward 
velocities permitted by the available head and conduit 
permeability (Sorey and Lewis, 1975). I t  is important 
to make this distinction, because for the same total 
spring discharge, the plane model would have consid- 
erably greater area for conductive heat loss and lower 
fluid velocity than the cylindrical model, and there- 
fore greater heat loss and temperature drop. 

Mathematical analysis of these models is facilitated 
by combining the relevant parameters in energy bal- 
ances for the upflowing fluid columns. Geometries 
and boundary conditions for each model are illus- 
trated in figure 18. As an approximation, the fault 

FIGURE 17.-Fault plane hot spring model. 

plane model is treated as 2-dimensional and plane 
symmetric, and the mass flux rate is computed as the 
total spring discharge divided by the area of upflow. 
For the cylindrical model, neglecting heat conduction 
in the vertical direction, 

dT dT 
2xrcK, - 1 = pudcrr  t - 

dr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaz 
PC 

which can be rearranged as 

Substituting 8 = (T-T,)/(Tb-T,), r’ = r/rc, and 
z’ = z/L we obtain 

(37) 

(39) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

where M, = pudcr; /2K,L = dimensionless mass flow 
rate in the cylindrical spring conduit. Integration of 
(39) from z’ = 0 to z’ = 1 yields 

1 0 

where e,, = (T,, - Tb)/(Tb - T,) = dimensionless 
spring temperature at  land surface and Q, = dimen- 
sionless radial heat loss from the cylinder. A similar 
development for the fault plane model in figure 18 
yields 

Mp(esp-i) = Q, (41) 

where M p  = pudcwyK,L = dimensionless mass flow 
rate in fault plane conduit and QP = dimensionless ra- 
dial heat loss from plane. 
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Fo ni merical analysis of heat transfer in these 
models, a grid of 150 nodes with grid spacing increas- 
ing with distance from the spring and depth below 
land surface was used. The fluid mass flux and tem- 
perature were prescribed at  the base of the conduit 
and the same mass flux was removed at the top of the 
conduit. The initial temperature condition was the 
conduction-only solution with dT/dz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (Tb -T,)/L ev- 
erywhere, and following the initiation of springflow, 
transient and steady state solutions were obtained for 
a range of mass flow rates. Results for cases where the 
rock surrounding the spring is impermeable are shown 
in figure 19, in terms of the relationships between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM,., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M p  and (1 - Osp).  

For both models, as the flow rate goes to zero, 
(i-esp)=( Tb-Tsp)/(Tb-Ts) approaches 1.0, that is, 
the spring temperature approaches the land surface 
temperature. Unfortunately, the relationships ex- 
pressed by equations 40 and 41 are not unique because 
Qc depends on L and r, and Qp depends on L and W. 
The solid curves shown in figure 19 were obtained for 
the parameters r,=6 m, W=lO m, and L=l km. Por- 
tions of additional curves for other parameter values 
as shown by the dashed lines indicate that variations 
in (i-es ) for a given dimensionless mass flow rate are 
within a i  out 20 percent of the values computed from 
the solid curves for parameter values varying by a fac- 
tor of 2. 

For an example of the use of figure 19, consider 
spring flow in a cylindrical conduit of radius rc = 6 me- 
ters and depth L = 1 km and a fault plane of half- 
width W = 10 meters, length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD = 1 km, and depth L = 
lkm. For a total mass flow of 1.1 X lo5 kg/day, with 

and c = 1 cal/gm"C, the corresponding values of M,. 
and Mp are 1.00 and 0.031. From figure 19, (l-OSp) = 
0.11 and 0.61 for the cylinder and plane, respectively. 
These values correspond to a temperature drop of 

Tb-T, = 18O"C-1O0C, Km = 2 X cal/(sec OC cm), 

18OC and a spring surface temperature of 162°C fo 
the cylindrical model and a temperature drop of 
104°C and spring surface temperature of 76°C for the 
plane model. The total lateral conductive heat loss 
from spring conduit can be computed for the cylinder 
as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(42) 
and for the fault plane as 

(43) 

These equations yield, for the example above, heat 
losses of 2.3 X lo4 cal/sec and 1.3 X lo5 cal/sec for the 
cylinder and plane. 

The steady state temperature distribution in the 
impermeable rock adjacent to the fault plane model 
considered above is shown in figure 20. The isotherm 
pattern for the cylindrical model is similar in cross 
section. Distortion of the isotherms due to the spring 
flow occurs in a zone within about 1 km of the fault, 
and the excess heat is conducted upwards toward the 
land surface. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs anticipated, conductive heat losses 
from the conduit are considerably larger in the upper 
portion near the land surface than at  depth. For this 
reason, the boundary conditions at the land surface 
should have a significant influence on spring tempera- 
tures near the surface. One complication to consider is 
that by imposing a constant temperature T, at the 
land surface, a singularity in heat flow exists at the 
wall of the conduit. Numerically, the infinite tempera- 
ture gradient is avoided by averaging over finite dis- 
tances; but in actual hot spring areas, the land surface 
temperature increases considerably near the spring. 
Thus, a more realistic boundary condition would be 
the  linear heat transfer or radiation boundary 
condition 

Q = 2rKmL(Tb-Ts) Qc 

Q = BKmUTb-Ts) (D/W)Qp * 

K m x -  aT - H T , a t z = L  (44) 
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FIGURE 19.-Relationships between dimensionless flow rates (Mc,  M p )  and dimensionless temperature drop zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I-OSp) due 
to conductive heat loss in cylindrical and fault plane hot spring models. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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FIGURE 20.-Steady state temperature distribution in fault plane hot spring model with discharge = IO5 kg/d, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW = 10 m, D = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 Km, and Ra = 0 ( k  = 0). 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= coefficient of surface heat transfer (Car- 
slaw and Jaeger, 1959, p. 19). This radiation boundary 
condition reduces to the constant temperature bound- 
ary condition as H .+ 03 and to an insulated boundary 
condition as H + 0. An upper limit for H could be ob- 
tained from experimental data on turbulent air flow 
over flat plates. For example, Rohsenow and Choi 
(1961, p. 200) give zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ~ O - ~ ( ~ C U ) , ~ ~  (45) 

which for air at 15°C yields the following relationship 
at  the land surface between Hand  mean annual wind 
velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu. 

Other factors complicate the choice of an effective 
value of H, such as intermittent air flow, evaporation, 
and the presence of a dry, low conductivity soil layer. 
In the latter case, we could relate a particular value of 
H to a low conductivity layer of thickness 1 = K,/H. 
For example, for K, = 0.5 X cal/sec "C cm, 1 
ranges from 0.01 to 1.1 meters for Hbetween 4.5 X lo-* 
and 4.5 X cal/sec "C cm2, respectively. In this 
study, the effect of using the radiation boundary con- 

dition (44) was examined for a range of H from to 
io-* cal/(sec "C cm2). 

Results are tabulated in table 5 for the fault plane 
case considered previously with spring discharge 
equal to 1.1 X lo5 kg/day. 

TABLE 5.--Spring temperature, Tsp, total conductive heat 
loss, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ, and heat flux at land surface near spring, q, for select- 
ed values of coefficient of surface heat transfer H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

q ( x  = 5m) 
(a calfsec-cm? 

8 ?& (calfsec) 
H 

(callsec O C  cmP) 

For values of H greater than about the radi- 
ation boundary condition yields essentially the same 
results as the constant temperature boundary condi- 
tion. However, for H < the spring temperature is 
significantly greater and the total conductive heat loss 
and land surface heat flux near the spring less than for 
the constant temperature case. The temperature dis- 
tribution for H = cal/sec "C cm2 is shown in figure 
21. Land surface temperatures and heat flows vary 
from 53°C and 43 HFU at a distance of 5 meters to 
13.5"C and a normal conductive heat flux of 3.5 HFU 
beyond about 1 km from the spring. Thus, if the effec- 
tive values of heat transfer coefficient in field areas 
are below the radiation boundary condition 
should be used in simulating the near surface thermal 

0 1 k m  2 k m  

1 km 1 80°C I t  

FIGURE 21.--Steady state temperature distribution in fault plane hot-spring model with discharge = lo5 kg/d, W = 10 m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD = 
1 Km, and Ra = 0 ( k  = 0), and H = loe6 cal/sec"C cm2 a t  land surface. 
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regime. It  should also be noted that we are ignoring 
the details of heat and mass transfer at  the surface in 
the spring. Many factors such as the geometry of, the 
spring orifice, presence or absence of lateral discharge, 
and evaporative cooling may cause considerable vari- 
ations in actual temperatures near the surface. 

I t  is of interest to consider the time required for the 
conductive thermal regime to reach equilibrium fol- 
lowing the development of the spring system. From 
equation 32, the effective time constant for this 2-di- 
mensional heat transfer problem could be approxi- 
mated by the expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL' jZ/4Km, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL' can be 
thought of as the area through which heat flows from 
the spring t-o the land surface. For example, from fig- 
ure 20, L' might represent an area 1 km deep by 1 km 
wide or 1 km'. This means that the time constant in 
this case would be about 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX lo6 days or 25,000 years. 
The transient numerical simulations for this problem 
show that temperatures are within 0.1"C of equilibri- 
um after a period of about 50,000 years, or twice the 
effective time constant. The thermal diffusivity in 
this problem was a relatively low 0.0032 cm2/sec; equi- 
librium times for larger diffusivities would be propor- 
tionately smaller. 

If the restriction is removed that the rock adjacent 
to the spring is impermeable, ground-water circula- 
tion in this region will affect the thermal regime. Even 
if the rock permeability is low enough that the critical 
Rayleigh number of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA47~' is not exceeded, the fluid 

would still be unstable because of the high tempera- 
ture boundary formed by the spring conduit. In mod- 
eling this problem numerically, the simplification is 
made that there is no hydraulic connection between 
the spring conduit and the adjacent ground-water sys- 
tem. To simplify the problem, a thin impermeable 
zone is included at  the contact between the two re- 
gions; such a zone may exist in many field situations 
where chemical deposition has sealed off the conduit 
from the surrounding rock. 

Once again, consider the fault plane model analyzed 
previously, that  is, discharge = 1.1 X lo5 kg/day, 
Tb-T, = 180°C - 10°C (fig. 20), but with a rock per- 
meability of 1 millidarcy ( l O - I 5  m'). In the absence of 
spring flow, the equivalent Rayleigh number for this 
case would be 20. With spring flow, the steady state 
temperature distribution shown in figure 22 would re- 
sult. The existence of convection cells is not clearly 
delineated by the isotherm pattern although compari- 
son with the 125°C and 150°C isotherms from figure 
20 show the shifts caused by upflowing fluid near the 
conduit and downflowing fluid to a distance of about 
1.5 km. The actual velocity distribution includes 3 
convection cells but with the magnitude of convection 
decreasing with distance from the spring. As a result 
of the convection, the temperature drop and total con- 
ductive heat loss from the spring are about 6 percent 
less than for the corresponding impermeable rock 
case. The 25°C isotherms in figure 22 indicate that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 10°C 1 k m  2 km 

- - - - _ _ _  

1 km 180°C 

FIGURE 22.-Steady state temperature distribution in fault plane hot-spring model with discharge = lo5 kg/d, W = 10 m, 
D = 1 Km, Ra = 20 (solid lines), Ra = 0 (dashed in fig. 20). 
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heat flow near the land surface is not appreciably af- 
fected by convection in the rock below. Similar results 
in terms of slight-lowering of the conductive heat loss 
from the conduit and negligible changes in heat flow 
near the land surface were found for other spring dis- 
charge rates in systems with Rayleigh numbers below zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ra, although the distortion of the temperature distri- 
bution at  depth increases somewhat for the higher 
spring discharge rates. 

Now, if the rock permeability is increased to 10 mil- 
lidarcies m2), the Rayleigh number would be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200; 
and for a discharge of 1:l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX lo5 kg/d the resultant tem- 
perature distribution is plotted in figure 23. In this 
case the influence of cellular convection set up by the 
constant temperature boundaries at  the top and bot- 
tom of the model dominates the thermal regime. The 
effect of the hot spring is evident out to a distance of 
about 0.5 km over which the 100°C and 125OC isoth- 
erms show reversals characteristic of cellular convec- 
tion at large Ra. In this case, convection in the rock 
causes a more substantial lowering of the conductive 
heat loss from the spring conduit-0.99 X lo5 calhec 
versus 1.29 x lo5 for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARa = 0 case-and a tempera- 
ture drop of 84OC compared with 104OC for Ra = 0. 
The relative effects of the conductive heat loss from 
the conduit and the enhanced heat transfer caused by 
convection in the rock are indicated near the land sur- 
face by the more closely spaced isotherms between 0 
and 0.5 km from the spring compared with the spacing 
at corresponding intervals beyond 1 km. 

These results represent preliminary attempts to 
simulate heat transfer and fluid flow associated with 
hot spring systems. To model specific field areas, it 
may be necessary to include nonvertical orientation of 
the spring conduit, subsurface discharge and re- 
charge, and boiling near the land surface in the simu- 
lation. This work is being planned as sufficient data 
become available from field studies in California and 
Nevada. As noted previously, energy development in 
many of these geothermal areas may focus on localized 
regions of natural discharge. Thus a useful extension 
of the numerical modeling work described ,here will be 
the evaluation of various schemes for energy develop- 
ment. 

SUMMARY AND CONCLUSIONS 

We have discussed the development of a numerical 
code which can treat problems involving slightly com- 
pressible fluid and heat transfer in multidimensional 
porous media. Solutions to the appropriate partial dif- 
ferential equations are obtained by the integrated fin- 
ite difference method which is essentially equivalent 
to balancing mass and energy over finite subregions or 
elements. The resultant system of finite difference 
equations is solved by an iterative procedure, and so- 
lutions to the fluid flow and energy equations are 
coupled by interlacing in time so that the temperature 
and velocity fields are interdependent. The useful 
concepts of fluid and thermal time constants as indi- 

FIGURE ZB.-Steady state temperature distribution in fault plane hot-spring model with discharge = lo5 kg/d, W = 10 m, 
D = 1 Km, and Ra = 200. 
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cators of nodal response times and numerical stability 
limits are an inherent part of the numerical scheme. 

In applying the numerical model to the problems of 
circulatory convection in saturated porous media, the 
relevant aspects have been discussed as they pertain 
to geothermal systems, and we find that results from 
the program on the relationship between the Rayleigh 
number and the dimensionless heat transfer coeffi- 
cient or Nusselt number are in good agreement with 
numerical and experimental results from other au- 
thors. Then the numerical model was used to extend 
these results to include the effects of temperature de- 
pendent parameters and density variations with pres- 
sure. Variations in fluid viscosity and thermal 
expansivity with temperature result in substantial 
differences in the values of the critical Rayleigh num- 
ber for the onset of convection and the Rayleigh num- 
ber-Nusselt number relationship compared with cor- 
responding constant parameters results. However, 
consideration of fluid density as a function of pressure 
produced no noticeable effect on convective motion. 

Numerical simulations of more realistic models for 
circulatory convection show that for laterally bounded 
reservoirs, conduction of heat across the vertical side 
walls results in significant lowering of the rate of verti- 
cal heat transfer through the reservoir. For a laterally 
extensive reservoir, consideration of impermeable or 
less permeable layers above and below the convecting 
layer removes the restrictive assumption of constant 
temperature boundaries on the permeable layer and 
has the effect of lowering the value of the critical Ray- 
leigh number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARac while retarding convective heat 
transfer at  values of Ra above Rac. 

Heat and mass transfer associated with hot spring 
systems was analyzed to determine the amount of 
heat lost by conduction to the rocks surrounding the 
spring conduit. An isolated cylindrical conduit model 
and a fault plane conduit model were considered, and 
the temperature drop in the hot spring water between 
the source reservoir and the surface due to conductive 
heat loss was determined numerically as a function of 
flow rate. The steady state temperature distribution 
for the case where the rock surrounding the spring is 
impermeable shows that heat loss from the spring dis- 
torts the normally horizontal position of the isotherms 
out to distances comparable to the depth of the spring 
conduit. Conductive heat flux at the land surface is 
high near the spring but near the normal or back- 
ground level beyond one conduit depth. The time re- 
qu i red  for t h e  conduct ive thermal  regime t o  
equilibrate following the development of hot spring 
activity can be approximated by the expression LzpC, 
2Km where L is the depth to the source reservoir. For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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unconsolidated sediments with low thermal conduc- 
tivity, the equilibration time is about 50,000 years for 
a reservoir at  1 km. 

The effects of fluid circulation in the rock surround- 
ing the spring conduit were examined for systems in 
which the equivalent Rayleigh number (in the absence 
of hot spring activity) was both above and below the 
critical value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA47r2. With Ra <47r2, circulatory convec- 
tion is set up due to the presence of the hot spring, but 
it causes only slight effects on the thermal regime in 
the rock surrounding the spring conduit and on the 
conductive heat loss and temperature drop associated 
with the spring. For the case with Ra>47r2, circulatory 
convection resulting from the temperature difference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Tb-T, between the source reservoir and the land sur- 
face dominates the thermal and hydrologic regimes 
and significantly reduces the conductive heat loss and 
temperature drop for the spring. 

The results of this investigation demonstrate the 
usefulness of numerical modeling to describe the nat- 
ural conditions of heat transfer and fluid flow in 
geothermal areas. Given preliminary thermal, hydro- 
logic, geophysical, and geochemical information, it is 
possible to construct and analyze simplified conceptu- 
al models of specific hydrothermal systems as a guide 
to further data collection in undeveloped areas. An 
application of this technique applied to the Long Val- 
ley caldera in California is described by Sorey, Lewis, 
and Olmsted (1978). As sufficient parametric and geo- 
metric data become available from deep test drilling 
to refine the model, it can then be used to evaluate 
rates and magnitudes of energy recovery and effects of 
development on existing water resources. 
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