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Non-Newtonian fluid can be encountered in many applications of Microdevices. In this study, two-dimensional non-
Newtonian simulations of viscous micropump were performed. The viscous micropump consists of a rotating cylinder
located eccentrically inside a microchannel. When the cylinder rotates, a net force is transferred to the fluid due to the
unequal shear stresses on the upper and lower surfaces of the cylinder, thus causing the fluid to displace. Navier Stokes
equations and modified Bingham model have been used to describe the fluid flow. Parameters as viscosity and stress
used in the model are based on experimental data. It was found that Reynolds number is a predominant parameter on the
variation of bulk velocity as a function of eccentricity. The stress and bulk velocity decrease with increasing the
eccentricity at low Reynolds number. The changes in non-Newtonian fluid structure are related to Reynolds number,
eccentricity and channel height. The pumping performance of non-Newtonian fluid is increasing with global pressure
gradient and decreasing with the channel height. 
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1.   INTRODUCTION

Increasing efforts are being directed towards applying the
technologies of microfluidic, to the development of micro-
devices for a wide range of applications such as medical,
biological and related technologies. The main advantage of
MEMS, in addition to their small size, is the fact that the
manufacturing costs are remarkably lower when compared to
their bigger counterparts, due to the mass fabrication methods
used to produce them.

Micropumps are between the most developed of all MEMS
devices, and have been executed into the mainstream.1,2)

Micropumps are imperative components for distributing fluid
and samples in microanalysis system. Positive displacement
pumping is the most widespread method used in micropumps,
on the other hand the actuation of the reciprocating diaphragm
can be achieved by different principles such as piezoelectric,
pneumatic, electrostatic etc.3,4). However, various pumping
ideas were proposed to overcome the valve problem correlated
with positive displacement pumps.

The novel viscous pump has attracted attention in recent
years. Experimental studies were performed using a pump
based on this principle at low Reynolds number.5) The
simulations for the novel viscous pump carried out are based
on this principle at high Reynolds number (Newtonian).6)

Predicting the dependence of fluid motion in open channel

through the rotational cylinder and the fluid properties is still
an issue receiving considerable attention in the literature.
Previous studies showed numerical simulation of two and
three-dimensional viscous fluid (Newtonian) and the influence
of the dynamic parameters, width and other geometric.7,8)

However, many fluids demonstrate a more complicated
relationship between the observed shear stress and the rate of
strain as non-Newtonian fluid. There has been few studies on
electro-rheological fluids whose apparent viscosity is controlled
by the applied electric field have been widely researched using
micro-systems9) Therefore, much attention is given to the flow
of non-Newtonian liquids in Micro-geometries. A crucial class
of non-Newtonian materials exhibits a yield stress, which must
be exceeded before significant deformation can occur. The
models presented for such so-called viscoplastic materials
included the Bingham, Herschel-Bulkley and Casson. A major
review article on the subject of the pressure-driven flow of a
Bingham plastic past a cylinder kept between parallel plates
has appeared by E.Mitsoulis.10,11) On the other hand, a popular
approach to regularize the ideal Bingham model has been the
exponential modification proposed by Papanastasiou.12) Also,
a theory for the non slip VPBL, involving a Bingham-Hooke
model was published by Piau.13) Several authors have
addressed the problem of creeping flow past a rigid sphere in
an unbounded regime and the problem of two rigid spheres
translating in a Bingham material.14,15)
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Non-Newtonian fluids have many industrial applications
and are of interest in MEMS devices. Non-Newtonian fluid
flow effects are important for polymeric liquids, particle
suspension flow and biomedical such as blood flow in
micropipes and drug delivery. It is known that the interactions
between the particles in Non-Newtonian liquids have a
profound effect on the viscosity of the liquid under shear rate
region. In order to verify the effect of Non-Newtonian on the
pump performance. Our interests in this work are to study the
effect of the height, rotor eccentricity and dynamic parameters
on the flow behavior of non-Newtonian liquid in a viscous
micropump. The influence of Reynolds number on the
variation of bulk velocity and stress as a function of the
eccentricity and channel height will be investigated. We focus
on the characterization of the changes in non-Newtonian fluids
in a Micro device. 

2.   VISCOSITY MEASUREMENTS

Carboxymethyl cellulose (CMC) is a non-Newtonian liquid
used in this work and it has a very wide range of application.16)

The viscosity of CMC was measured by a Haake rheometer
RheoStress RS100, which is computer controlled.  Samples
have been tested under controlled rate (CR) mode and
oscillation (OSC) mode, in the linear viscoelastic regime with
the corresponding range of stress of 1-50 Pa. All measurements
were performed using cone and plate geometry of diameter
equal to 35 mm. The cone angle was 4o and the gap at the tip of
the cone was 0.137 mm. 

3.   PROBLEM DESCRIPTION

3.1 Pump Geometery
The pump geometry is shown in Figure 1. The dimensionless

parameters, which are associated to the geometry, are channel
height (S) and cylinder eccentricity (ε), defined as: 

Where d is the cylinder diameter and h is the channel height,
Yc the distance between the lower wall of the channel and the
center of the cylinder. The cylinder rotates with an angular
velocity ω and is placed at different positions between the
upper and lower plates of the channel based on the eccentricity.
The pressure is exerted on the inlet and outlet of the channel. A
higher pressure is exerted at the outlet to simulate the pressure
head the pump should supply. This head is desirable to
conquer the pressure drop in whatever circuit the pump is
attached to. The dimensionless pressure rise is characterized
by (∆P*):  

and the dimensionless bulk velocity (u*) is defined as: 

Where P is the pressure at pump exit, P0 the pressure at pump
inlet, υ the kinematic viscosity, ρ fluid density and U the
average velocity of the Bingham plastic.

3.2 Mathematical Equations and Boundary Conditions
For incompressible and steady state non-Newtonian fluid,

the continuity equation and the equation of motion are:

With :

Where τ is the extra stress tensor, γ• the rate of strain tensor, V
the tangential velocity and η the fluid viscosity. Since non-
Newtonian fluid respond to the imposed flows. A different
constitutive equation is needed, τ = f (∇V,V material
information). 

The main independent parameters in the solution are the
channel height S, the Reynolds number Re and the eccentricityε.
The flow will be assumed laminar, incompressible and steady
state, and the fluid is non-Newtonian.Fig. 1. Problem geometry and variable velocity distribution.

(1)

(2)

(3)

(4)

(5)

(6)

(7)
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The boundary conditions are applied on a two-Dimensional
channel with a symmetrical wall sides. The flow is assumed to
be homogeneous and no slip boundary conditions are used.
The velocities at the upper and lower walls are zero. The
rotating cylinder with angular velocity ω causes the movement
of the flow. The pressure is specified on the inlet of the
micropump. The physical properties used in constitutive
equations, η , ρ are obtained from experimental measurements.
The validity of calculation results has been checked by
comparing with the previous experiment (see Fig.10).

4.   NUMERICAL SOLUTION

As it is well known, the range of validity of the Newtonian
constitutive equation is limited to some kind of liquid.
However, the flow phenomena observed with non-Newtonian
fluids cannot be predicted by the classical Navier-Stokes
equation.  Non-Newtonian behavior has many facets. One of
them is the shear rate dependence of the shear viscosity.
Therefore, we need to propose a model to describe the flow
behavior of non-Newtonian fluid.

The CFD package POLYFLOW 3.92 (FLUENT COMPANY)
is used to solve Navier-Stokes equations and the proposed
model. This CFD package uses the finite volume method. It
enables the use of different discretization schemes and solution
algorithms, together with various types of boundary conditions.
As part of the same package, (a preprocessor) Gambit is used
to draw the geometry and generate the required grid for the
solver. An unstructured grid with triangle elements is used.
The upper and lower walls were divided into non-uniformly
spaced elements using pave meshing scheme with a size 0.1.
The size specifies whether the nodes will be denser at the center
of the edges or at its ends, and also specifies the intensity of this
distribution. In addition to this meshing method, grid adaptation
by the solver itself was performed in the gap between the
cylinder and the lower wall for cases of high eccentricities,
where this gap size is very small. The grid was finer in regions
near the center and was coarser in regions far upstream and
downstream as shown in Fig. 2. Different meshes were used at
the beginning to determine the optimum grid size, four meshes
have been tested for the case of s= 3.5, ε = 0.875. The sizes of
all four grids are shown in Table I. As a convergence criterion
in the present work, the solver iterated the equations until it
stabilized at a constant value. Grid independent solution was
assured by observing three parameters. The first parameter is
the distribution of the x-velocity component on a vertical plane
just one diameter from the cylinder axis. The second parameter

is the shear stress. The third parameter is the average velocity
of the flow on the outlet from the pump, which will give a
good indication of the effect of the grid size in the entire
micro-pump domain.

4.1 Optimization and Evolution
The idea of optimization provides a significant savings in

computational time. Therefore, optimization suggests that for
a given set of possible models, there exists a model that is the
best fit to the experimental results. Non-Newtonian flow has
been characterized by different models: Carreau-Yasuda,
Modified Herschel-Bulkley and Modified Bingham, given by
equations 9, 10 and 11 respectively. Modified Bingham model
proposed an alternative model to describe the flow of CMC
fluid. This model provides a better fit as shown in Figure 3; the
decrease of viscosity with shear rate is called shear thinning. It
is due to the deformation and break down of the structured
material. At some point well down the viscosity curve, we see
the beginnings of a flattening out, and if data at a high-enough
shear rate or shear stress is available, then a second constant
viscosity region, η∞ , is usually seen. Thus we have the two
limiting Newtonian viscosities, η0 and η∞ separated by a
Modified Bingham Model.

Carreau-Yasuda:

(8)

Fig. 2. An example of mesh generation.

Table I. Description of the finite element grids for the case of s = 2.5
and ε = 1.125, are given the number of elements, nodes and
dimensionless bulk velocity.
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Modified Herschel-Bulkley:

Modified Bingham Model:

Where ηo = 8.3 Pas, zero-shear rate viscosity, τo = 301 Pa,
yield stress, and m = 0.4398 are the material properties have
been attained from the modified Bingham model, γ• c the
critical rate of strain, k the consistency factor, λ  the natural
time, a the index that controls the transition from the Newtonian
plateau to the power-law region and n the power-law index.
Papanastasiou12) proposed a modification in the Bingham
equation by introducing a material parameter, which controls the
exponential growth of stress. Papanastasiou ‘s modification,
when applied to the Bingham model, becomes

τ  = τ  [1−exp(−mγ• )]+ηγ• ,
Where m is the stress growth exponent and τy the yield stress.
As shown in Fig. 4, the exponential modification has now been
a standard way to treat viscoplastic materials, and a surplus of
papers has appeared in the literature, applying this model to
various types of flows.10,11)

The rate of strain dependence of the viscosity causes non-
linearity, it often makes computations difficult. There are
parameters as velocity and pressure consequently are
responsible for the non-linearity. Therefore, we expect to reach
the solution by assuming an evolution function (f(s)):

Polyflow calculates a solution at a discrete set of Ln, defined by

Where X is the vector of nodal unknowns such as velocity.
Where the subscript n refers to the L step. The next iteration
Xn+1  is calculated by:  

If the solution converges, the computation will continue. 

5.   RESULTS AND DISCUSSION

5.1 The effect of rotor eccentricity
The rotor eccentricity has a crucial effect on the performance

of micro viscous pump. It is the cylinder eccentricity that
provides the driving force to the fluid inside the micropump
channel, by introducing unequal shear stresses on the upper
and lower surfaces of the cylinder. For Non-Newtonian fluid,
the shear stress increases with increasing the rate of strain.
Figures 5 and 6 show the curves u*= f (ε) and τ = f (ε)
respectively, where S (channel height) is maintained constant
at 3.5. It is clear that u* is insignificant with increasing the
eccentricity at different p* investigated. However, the bulk
velocity start to decrease sharply in the range of ε >1. It can be
seen that the stress generated by the flowing fluid is starting to
decrease with increasing the eccentricity more than 0.9375.
Increasing the eccentricity causes a decrease in stress shearing.
This is due to the gap between the rotor and the lower plate is
very small which causes a decrease in the shearing between
the fluid particles and the wall. On the other hand, low shear is
not enough to break down the agglomeration between the
particles and subsequent a decrease in the bulk velocity.

(9)

(10)

(11)

Fig. 3. Viscosity variation as a function of shear rate using different models.

(12)

(13)

(14)

Fig. 4. Shear stress vs. shear rate according to the modified Bingham
equation for several values of the stress growth exponent m.
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Increasing pressure will cause dissipation between the
particles, therefore the particles movement will be faster and
the shearing between the particles and between the particles
and the wall will rise. It can be concluded that the stress
shearing and the bulk velocity decreases with increasing the
eccentricity at ε >0.9375 and low Reynolds number. An
increase in the gradient pressure increases the stress and the
bulk velocity.

5.2 Effect of Reynolds number
In this problem, the average velocity in the channel

 is an output of the solution. Reynolds number will be
defined as: . The Reynolds number for micropump is
based on the rotor angular velocity, and not on the average
fluid velocity in the micropump. The calculation of the flow of
a Newtonian fluid for Re = 1, 10, 50 and 100 has been solved
in the literature.17) It has been noted that higher Reynolds numbers
means that the effect of the viscous forces is less significant
when compared to the inertia forces. Also, previous studies
showed that the pumping efficiency of a Newtonian fluid
decreased one order of magnitude when Reynolds number
increased from Re =1 to Re =10, and it decreased another order

of magnitude when Reynolds number was increased to
Re = 100.17)

In Figure 7, the bulk velocity is plotted as a function of
Reynolds number (Re) with different eccentricities and
constant p* = 0.5. We notice that the bulk velocity increases
with decreasing eccentricity at constant p* = 0.5.  Figure 8
shows the effect of Reynolds number on the generated stress
with different eccentricities. It is noticed that when Re < 40,
Reynolds number has insignificant effect on the stress. For
Re > 40, it is observed that the stress is increasing sharply with
increasing Reynolds number. This is due to the interaction
forces between the particles. These forces need high shearing
generated by increasing the velocity to be broken down. 

Viscosity is recognized as a material property of a liquid.
Since the viscosity of non-Newtonian is not constant and it
depends on the rate of strain. Therefore, it is very important to
cover the changes of the viscosity in micropump. This has
been demonstrated in Figure 8, the viscosity as a function of
the eccentricity. It can be seen that the viscosity is increasing
with increasing the eccentricity. The operating parameters are:
Re =100, ε =1.125 and p* = 0.5. Narrow gap between the
rotating cylinder and the lower plate of the channel leads to

Fig. 5. Changes of the bulk velocity as a function of eccentricity. For
P* = 0.5, 40 and 150.

Fig. 6. Changes of the stress as a function of eccentricity. For P* = 0.5,
40 and 150.

Fig. 7. Changes of the bulk velocity as a function of Reynolds number.

Fig. 8. Changes of the stress as a function of Reynolds number.
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increase the viscosity. This is due to a decrease in the rate of
strain and the shearing stress that cause a less deformation in
the fluid structure and subsequent an increase in the viscosity.
Also, it can be seen that the bulk velocity is decreasing with
increasing the eccentricity. It is crucial to note the effect of
Reynolds number on the variation of the velocity as a function
of the eccentricity. It can be concluded that the bulk velocity
decreases with increasing eccentricity at high Re. 

 5.3 Effect of micropump channel height
Steady state cases were simulated. Experimental results were

obtained from5), while numerical results were obtained from.7,17)

Figure 10-b compares the results calculated by Sharatchandra
et al.7), Abdelgawad17) and 10-a for non-newtonian. It shows the
decrease in the bulk velocity of Newtonian fluid for S >1.5. It is
clear that the increase in channel height results a decrease in
the velocity of Non-Newtonian fluid for S<2. This is due to the
reduction of the shear stress on the upper cylinder surface
resulting from the larger distance between the cylinder and the
upper wall; this reduces the flow driving force. The change in
the channel height of viscous micropump affected on the
resulting stress as shown in Figure 11. The working
parameters are: ε = 0.9, ∆P* = 0.5 and Re = 0.5. It is observed
that the stress decrease with increasing the height of the
channel up to a certain height then followed by an increase in
the stress. The stress contours in Figure 12 are better explained
in the context of Figure 11, which shows the shear stress
distribution around the cylinder. Increasing the height cause
agglomeration between the particles and subsequent the
viscosity increase. Due to that, the shear stress and rate of
strain decrease. A more interesting facet is observed that after
specific height the stress increases with increasing the
height. The variation in the shear stress contours is shown in
Figure 12-a, b, c and d. This can be explained that the viscosity

decreases with increasing the height and the agglomeration
dissipate between the particles. 

Figure 13 shows the influence of the variation in channel
heights on the computed streamlines. The operating parameters
are: ε = 1.125 and p* = 1.5. In Figure 13-a, the flow structure
reveals co-rotating vortices around the cylinder. The thinning
of the vortices can be explained by decreasing the viscosity of
the fluid results in an increase the rate of strain and subsequent
shear stress increases as shown in Figure 13-d.

5.4 Pump Performance 
In this section, we focus on the pump performance. The mesh

affects the distribution of the computed stress and a subsequent
the computed moment coefficient (CM) calculated by

Fig. 9. Changes of the bulk velocity as a function of eccentricity at high
Reynolds number.

Fig. 10. Changes of the bulk velocity as a function of channels height (a)
non-Newtonian (b) Newtonian. ε = 0.9,  P* = 0.5 and Re = 0.5

Fig. 11. Changes of the stress as a function of channel height.
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Table II shows the computed moment coefficients values. A
magnitude of the pumping efficiency, E, is calculated to depict
the performance of the pump to be

In non-dimensional terms, the efficiency reduces to:

It is perceptible from Figure 14 that the pump performance is
associated to the channel height. The pumping performance is
increasing with increasing p*, the efficiency of the pump at
S = 1.5 is higher than at S = 3. This is because the flow structure
will change with  shearing. Since the change in the rate of
strain is constant (angular velocity is constant), the variation in
the shear stress will be proportional to the change in the
viscosity of non-Newtonian flow. Therefore the structure will
deform and cause an increase in the movement of the particles
and increase in the pumping performance. It is clear that
increasing the channel height reduces the velocity gradients on
the cylinder surface and therefore reduces the pumping
efficiency, and hence the viscous forces decrease. It is
concluded that the pumping performance of non-Newtonian
fluid is increasing with p* and decreasing with the channel
height.

6.   CONCLUSION

The objective of the present study was to explore the effect of
Micro pump geometry on the flow behavior of non-Newtonian
fluid. Therefore, it is desirable to investigate the deformation
in the structure of fluid flow system in micro pump. Numerical
solution of the flow through the micropump is calculated by
simulating Navier-Stokes equations. Experimental results
model the effect of shear thinning using a modified Bingham
model. It was found that, the stress shearing and the bulk
velocity decrease with increasing the eccentricity at low
Reynolds number. Increasing the channel height of the micro
pump influence the flow behavior of non-Newtonian fluid.
The viscous forces dominate non-Newtonian fluid flow in
micropump. The changes of non-Newtonian fluid structure in

(16)

(17)

Fig. 12. Stress contours for ε = 1.125, ω = 10rad/s and at different
dimensionless heights (s): a-s = 1.5, b-s = 2, c-s = 2.5, d-s = 3.

Fig. 13. Streamlines for ε = 1.125, ω = 10rad/s and at different
dimensionless heights: a-s = 1.5, b-s = 2, c-s = 2.5, d-s = 3.

Table II. The CM values at different pressures.

(18)

Fig. 14. Pump performance at S = 1.5 (dotted line) and S = 3.
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micropump are related to Reynolds number, eccentricity and
channel height. The pumping performance of non-Newtonian
fluid is increasing with pressure and decreasing with the
channel height. In the future, more investigations should be
conducted on non-Newtonian fluid in different designs of
micropump. 

REFERENCES
1) Voigt P, Schrag G, Wachutka G, A66, 9 (1998).
2) Schomburg WK, Goll C, A 64, 259 (1998).
3) Shoji S, Esashi M, J. Micromech. Microeng. 4, 157 (1994).
4) Gravesen P, Branebjerg J, Jensen OS, J. Micromech. Microeng.

3, 168 (1993).
5) Sen M, Wajerski D, Gad-el-Hak M, Journal of Fluid Engineering,

118, 624 (1996).
6) Podell GM, Kovasznay LSG, Journal of Fluid Mechanics, 50,

535 (1971).

7) Sharatchandra MC, Sen M, Gad-el-Hak M, ASME, Journal of
Fluids Engineering, 119, 372 (1997).

8) Decourtye D, Sen M, Gad-El-Hak M, IJCFD, 10, 13 (1998).
9) Yoshida K, Kikuchi M, Park JH, Yokota S, J. sensors and

actuators A, 95, 227 (2002).
10) Mitsoulis E, J. Non Newtonian Fluid Mech. 105, 1 (2002).
11) Blackery J, Mitsoulis E, J. Non Newtonian Fluid Mech. 70, 59

(1997).
12) Papanastasiou TC, J. Rheol. 31, 385 (1987). 
13) Piau JM, J. Non Newtonian Fluid Mech. 102, 193 (2002).
14) Liu BT, Muller SJ, Denn MM, J. Non Newtonian Fluid Mech.

102, 179 (2002).
15) Benjamin T. Liu, Susan J. Mullar, Morton M. Denn, J. Non

Newtonian Fluid Mech. 113, 49 (2003).
16) Mamdouh T. Ghannam, M. Nabil Esmail, Journal Applied

Polymer Sci. 64, 289 (1997).
17) Abdelgawad M, Hassan I, Esmail N, Journal of Microscale

Thermophysical Engineering. Accepted.

Vol36_1.book  58 ページ  ２００８年１月１７日　木曜日　午前９時４分


