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Numerical Modeling of Photonic Crystal Fibers
Kunimasa Saitoh, Member, IEEE, Member, OSA, and Masanori Koshiba, Fellow, IEEE, Fellow, OSA

Invited Paper

Abstract—Recent progress on numerical modeling methods
for photonic crystal fibers (PCFs) such as the effective index
approach, basis-function expansion approach, and numerical
approach is described. An index-guiding PCF with an array of air
holes surrounding the silica core region has special characteristics
compared with conventional single-mode fibers (SMFs). Using a
full modal vector model, the fundamental characteristics of PCFs
such as cutoff wavelength, confinement loss, modal birefringence,
and chromatic dispersion are numerically investigated.

Index Terms—Finite-element method, holey fiber, microstruc-
tured optical fiber, numerical modeling, photonic band-gap fiber,
photonic crystal fiber.

I. INTRODUCTION

PHOTONIC crystal fibers (PCFs) [1]–[3], also called holey
fibers or microstructured optical fibers, have been under

intensive study for the past several years as they offer a number
of unique and useful properties not achievable in standard silica
glass fibers. PCFs fall into two basic categories. The first one,
an index-guiding PCF [4], [5], is usually formed by a central
solid defect region surrounded by multiple air holes in a regular
triangular lattice and confines light by total internal reflection
like standard fibers. The second one uses a perfect periodic
structure exhibiting a photonic band-gap (PBG) effect at the
operating wavelength to guide light in a low index core region,
which is also called PBG fiber (PBGF) [6], [7].

Numerical simulations play an important role for the design
and modeling of PCFs. So far, various modeling methods in
which not only a full-vector model but also an approximate-
scalar model is used have been developed such as effec-
tive index approach [5], [8], plane-wave expansion (PWE)
method [9]–[12], localized-function method [13]–[16], mul-
tipole method (MM) [17]–[21], beam propagation method
(BPM) [22]–[24], finite-difference method (FDM) [25], finite-
difference time-domain method (FDTD) [26]–[28], boundary
element method (BEM) [29], [30], and finite-element method
(FEM) [31]–[54]. An approximate-scalar model is a valuable
tool for aiding fabrication efforts because it is easy to use and
provides good qualitative information. However, in order to
model PCFs accurately, it is crucial to use a full-vector model.
In particular, a complete vector model is necessary for predict-
ing sensitive quantities such as dispersion and birefringence.
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Fig. 1. Schematic representation of a PCF.

The choice of modeling tool can impact the computational
time, required computational resources, and limitations of the
methods, so it is important to explore the usefulness and limita-
tions of each method.

In this paper, first, recent progress on numerical modeling
methods of PCFs such as the effective index approach, basis-
function expansion approach, and numerical approach is de-
scribed. Next, using a full-vector mode solver based on the
FEM with curvilinear hybrid edge/nodal elements [55] that
can avoid spurious solutions and can accurately model curved
boundaries of air holes in PCFs, fundamental characteristics
of index-guiding PCFs such as cutoff wavelength, confinement
loss, modal birefringence, and chromatic dispersion are numer-
ically investigated.

II. ANALYSIS METHOD

A. Effective Index Approach

The cross section of a typical index-guiding PCF with sixfold
rotational symmetry is schematically shown in Fig. 1, where Λ
is the hole pitch (center-to-center distance between the holes)
and d is the hole diameter.

The first approach developed for PCFs was the effective
index approach [5], [8] based on a very simple scalar model
using an effective cladding index. In this model, first, an effec-
tive index for the periodically repeated hole-in-silica structure
is evaluated and then the microstructured cladding region is
replaced by a uniform medium with a properly chosen effective
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index, resulting in an equivalent step index fiber (SIF) consist-
ing of a core and a cladding region. Using this simple model
and the well-established fiber theory, we can obtain a qualitative
information about PCFs with perfect hexagonal symmetry. The
core is pure silica, but the effective cladding index is deter-
mined by using the propagation constant of the lowest-order
fundamental mode propagating in the periodically repeated
hole-in-silica structure without any defects. The propagating
modes in such an infinite cladding material are called space-
filling modes, the propagation constants of which are strongly
dependent on the operating wavelength λ.

The propagation constants of the space-filling modes are usu-
ally calculated by solving an approximate scalar-wave equation
within a unit cell centered on one of the air holes. By reflection
symmetry, the Neumann condition is enforced on each cell
edge, namely, the normal derivative of the cladding mode field
to the edge must be zero. In general, however, the hexagonal
cell shape is approximated by a circular one with radius of Λ/2
because of the difficulty in solving the boundary-value problem
with hexagonal boundaries. The propagation constant of the
resulting fundamental space-filling mode (FSM) βFSM is used
to define the effective cladding index as nFSM = βFSM/k0,
with k0 being the free-space wavenumber.

Recently, an analytical vector solution for the effective
cladding index has been reported [56]. Also in this solution, the
hexagonal unit cell is replaced by the corresponding circular
one. It is pointed out [56] that choices of the radius of the circle
influence the accuracy in nFSM and that the choice of Λ/2
yields results in good agreement with those of the full-vector
PWE method [9]. Discrepancies in the values of nFSM between
scalar and vector approaches are also demonstrated [56].

B. Basis-Function Expansion Approach

Although the effective index approach can provide good
qualitative information about PCFs, this approach is unable to
accurately predict modal properties such as dispersion or bire-
fringence. These quantities depend critically on PCF geome-
tries. An early full-vector model for PCFs has been based on
a modal decomposition technique using various basis functions
such as sinusoidal functions [9], [10], Hermite–Gaussian func-
tions [15], [16], and cylindrical functions [17], [18].

One of the most widely used is the PWE method [9], [10].
As the name implied, this method is based on the PWE of the
electromagnetic field (in PWE, as usual, three components of
the magnetic field) using Bloch’s theorem. Also, the position-
dependent permittivity (dielectric constant) is expressed as a
Fourier series expansion. In order to treat a spatial defect such
as a core region, a superperiodicity including the defect is
introduced where the defect is also periodically repeated. This
supercell approximation can accurately determine the proper-
ties of the defect region if the supercell is large enough to ensure
that neighboring defects are uncoupled. The modal fields and
their propagation constants may be found by solving a matrix
eigenvalue problem that is derived from a variational method
based on minimization of the functional corresponding to the
wave equation. The PWE has been effectively applied not only
to index-guiding PCFs [9], [10] but also to PBGFs [11], [12].

PWE involves defining the supercell over a restricted region
and using periodic boundary conditions to extend the structure
spatially, and therefore, the applicability to PCFs that do not
need to be periodic is somewhat restricted. An alternative
approach is the localized-function method (LFM) [15], [16].
As the guided modes in PCFs are localized in the defect core
region, their modal fields are well described using localized
Hermite–Gaussian functions. The LFM takes advantage of
mode localization, and thus, a modest number of functions
are required to accurately model the guided modes, resulting
in less computational efforts, compared with the PWE. By
decomposing the electromagnetic field (in LFM, as usual, three
components of the electric field) and the index defect into
localized Hermite–Gaussian functions, and the lattice of air
holes using sinusoidal functions, each quantity can be repre-
sented efficiently and accurately without requiring the use of
too many expansion terms [16]. Again, the wave equation is
reduced to a matrix eigenvalue problem that is solved for the
modal fields and their propagation constants. The LFM based
on an approximate-scalar model is also available [13], [14].

If all the air holes are assumed to be circular, the modal
fields can be expanded in cylindrical harmonic functions. This
approach exploiting the local circular geometry is called the
MM [17]–[21], which can describe the leaky nature of PCFs
with a finite number of air holes. In the proximity of each
air hole, the electromagnetic field (in MM, as usual, two
longitudinal axial components of the electromagnetic field) is
expressed in terms of Bessel and Hankel functions using local
cylindrical coordinates. Inside each air hole, on the other hand,
the axial electric and magnetic fields are expressed in terms
of regular Bessel functions only. In order to obtain relations
between all the expansion coefficients, boundary conditions on
hole surfaces are used.

C. Numerical Approach

Although the basis-function expansion approach can accu-
rately predict the modal properties such as dispersion and
birefringence, it is difficult to apply it to more complicated
fibers with noncircular air holes and/or longitudinally varying
structures. Recently, published models utilize other direct nu-
merical analysis techniques such as BPM [22]–[24], FDM [25],
FDTD [26]–[28], BEM [29], [30], and FEM [31]–[54].

In the FEM, instead of solving the wave equation, the corre-
sponding functional to which a variational method is applied is
set up, where the fiber cross section is divided into the so-called
elements, an equivalent discretized model for each element
is constructed, and then all the element contributions to the
whole fiber cross section are assembled, resulting in a matrix
eigenvalue problem with nodal variables as unknowns, in con-
trast to the basis-function expansion approach taking expansion
coefficients as unknowns. As a result, the matrices derived from
the FEM and the basis-function expansion approach become
sparse and dense, respectively.

For the characterization of longitudinally varying PCFs, the
BPM is clearly the natural choice. Even the approximate-scalar
BPM based on the fast Fourier transform (FFT-BPM) is able
to describe some features of PCFs [22], [23]. This standard
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Fig. 2. Transverse electric field vector distributions of (a) HEx
11 and (b) HEy

11
modes.

BPM splits the actual wave propagation into a propagation in
a homogeneous medium, followed by a phase correction corre-
sponding to the inhomogeneous index distribution in the fiber
structure. The wave propagation in a homogeneous medium
is efficiently carried out in the spectral domain using the
FFT technique. In the FFT-BPM, however, a weakly guiding
structure is assumed, so the polarization effect cannot be taken
into account. Recently, the full-vector BPM based on the FEM
(FE-BPM) [35] or the FDM (FD-BPM) [24] has been applied
to compute the propagation constants and the modal profiles in
high-contrast PCFs. The FE-BPM has been effectively applied
to investigating the problem of leakage due to finite number of
arrays of air holes in PCFs [35].

Although the BPM is currently the most widely used for
the study of light propagation in longitudinally varying optical
waveguides, it is difficult to take into account backward re-
flecting waves. One method used to study distributed reflection
and diffraction at arbitrary angle is the FDTD technique. This
technique is very powerful and versatile and has been intro-
duced and adapted to PCFs [26]–[28]. Splice losses between a
standard SIF and a PCF, and spot-size and numerical aperture
conversion phenomena in a tapered PCF are numerically inves-
tigated [26], [27].

III. GUIDED MODES IN PCFS

In an index-guiding PCF, the core index is greater than
the average index of the cladding because of the presence of
air holes, and the fiber can guide the light by total internal
reflection as a standard fiber does. That is, the guided light has
an effective index neff that satisfies the condition

nco > neff =
β

k0
> nFSM (1)

where β is the propagation constant along the fiber axis, nco is
the core index, and nFSM is the cladding effective index of the
FSM. In the case of a PCF made from pure silica, nco is reduced
to the index of silica.

Fig. 2 shows the transverse electric field vector distribu-
tions of the fundamental modes in a multimode PCF, where
Λ = 2.3 µm, d = 1.8 µm, the background index of silica is
assumed to be 1.45, and the operating wavelength is 0.46 µm.
The fundamental modes in Fig. 2 resemble the linearly po-
larized modes LP01 in the conventional SIFs. As in the SIFs,
the linearly polarized fundamental modes HEx

11 and HEy
11 are

Fig. 3. Transverse electric field vector distributions of (a) TE01, (b) TM01,
(c) HE′

21, and (d) HE′′
21 modes.

Fig. 4. Transverse electric field vector distributions of (a) EH′
11, (b) EH′′

11,
(c) HE′

31, and (d) HE′′
31 modes.

degenerate. The degeneracy in these two fundamental HE11

states has already been confirmed by using the full-vector MM
[17], the full-vector FEM [32], and the full-vector BPM [24].
Figs. 3–5 show the higher-order modes. By analogy with the
SIFs, we call these guided modes TE, TM, HE, and EH. The
higher-order modes in Figs. 3–5 look like the LP11, LP21, and
LP02 modes, respectively.

The cutoff wavelength of each higher-order mode is deter-
mined by using the effective cladding index nFSM. The cutoff
of the higher-order mode occurs when its effective refractive
index becomes equal to the value of nFSM. The accurate
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Fig. 5. Transverse electric field vector distributions of (a) HEx
12 and (b) HEy

12
modes.

Fig. 6. Effective index of the FSM for the PCF with different hole diameters.

value of nFSM can be determined by applying the full-vector
FEM to the so-called elementary piece in the cladding region,
which acts as a boundary-less propagation medium [31], [34].
Fig. 6 shows a wavelength dependence of the effective index
of the FSM nFSM with different hole diameters, where the
background index is assumed to be 1.45. We can see the strong
wavelength dependence of nFSM that facilitates the unusual
chromatic dispersion properties of PCFs.

IV. NORMALIZED FREQUENCY OF PCFS

The V parameter (normalized frequency) is frequently used
in the design of conventional SIFs and is given by

V =
2π

λ
a
√

n2
co − n2

cl (2)

that must be less than 2.405 for the fiber to be single mode,
where λ is the operating wavelength, a is the core radius, nco

is the core index, and ncl is the cladding index. Recently, it has
been reported that the fundamental properties of index-guiding
PCFs such as cutoff wavelength, mode field diameter (MFD),
splice loss, and so on, can be easily estimated without the need
for heavy numerical computations by appropriately defining
the V parameter [57]. By analogy with SIFs, the effective V
parameter Veff for PCFs can be defined as

Veff =
2π

λ
aeff

√
n2

co − n2
FSM (3)

where aeff is the effective core radius. To adapt the concept of
V parameter to PCFs, the value of aeff should be determined.
We have confirmed from the full-vector FEM analysis that

Fig. 7. Relative cutoff wavelength λ/Λ as a function of relative hole diameter
d/Λ.

for small hole diameters, d/Λ < 0.43, the PCFs are endlessly
single mode. Until now, various effective core radii have been
proposed, such as aeff = Λ, Λ/2, and Λ − d/2. When using
these effective core radii, for the PCFs with hole diameter
d/Λ < 0.43, the effective V parameter Veff is not less than
2.405 at all wavelengths. So, to use the definition of the cutoff V
value as in conventional SIFs (V = 2.405), we have to choose
the value of aeff to be Λ/

√
3 [34], [57]. Mortensen et al.

proposed another effective V parameter for PCF [58]. How-
ever, this definition is intrinsically different from the original
V parameter definition in SIF theory and corresponds to the
normalized transverse attenuation constant W parameter. So
we adopt the V parameter definition of (3). From (3) with
aeff = Λ/

√
3, the cutoff condition is given by Veff = 2.405,

as in conventional SIFs, and therefore the V parameter in
(3) enables us to apply the design principle for standard SIFs
straightforwardly to PCFs [57].

Fig. 7 shows the relative cutoff wavelength λ/Λ as a function
of relative hole diameter d/Λ obtained from the cutoff condition
Veff = 2.405. The calculated cutoff wavelengths obtained from
(3) and Veff = 2.405 agree well with the experimental results
[59] and the results of direct numerical simulation based on
the FEM. We can see that PCFs with relative hole diame-
ters less than 0.43 can be endlessly single moded and that
even for large air holes single-mode operation is possible for
wavelengths above a cutoff wavelength. If the value of d/Λ is
given, a given cutoff wavelength can be obtained by scaling
the fiber structure. This allows for the development of single-
mode fibers (SMFs) with very small or large MFDs, which
are useful for highly nonlinear SMF application, high bit rate
wideband data transmission, single-mode high power delivery,
and so on.

Next, to evaluate the MFD, we introduce the Marcuse for-
mula [60] as

w

aeff
= 0.65 +

1.619

V
3
2

eff

+
2.879
V 6

eff

(4)

where w is the half MFD and is called the effective modal spot
size. In Fig. 8, calculated MFD results are shown as a function
of wavelength for different hole sizes. The experimental results
for two PCFs fabricated by Crystal Fiber A/S [61], namely,
LMA-5 (Λ = 2.9 µm, d/Λ = 0.44) and LMA-8 (Λ = 5.6 µm,
d/Λ = 0.49), are also shown. The results of (3) and (4) are in
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Fig. 8. Mode field diameter of PCFs as a function of wavelength for different
hole sizes.

good agreement with measured data [61]. Knowledge of MFD
is an important starting point in the context of nonlinearities.
Due to the high index contrast between silica and air, the PCF
technology can offer a smaller MFD compared to standard
fiber technology, which is useful for broadband supercontinuum
generation, soliton pulse transmission, nonlinear optical loop
mirror, optical signal processing, and so on. In addition, PCFs
have a large potential for single-mode large-mode-area optical
fibers with low nonlinearity because of their endlessly single-
mode properties combined with large MFDs.

With the modal spot size, Gaussian beam propagation theory
states that the splice loss Ls between a PCF and a SMF is given
by [60]

Ls = −10 log10

{(
2wwSMF

w2 + w2
SMF

)2

exp
(

−2δ2

w2 + w2
SMF

)}
(5)

where 2wSMF is the MFD of the SMF that is also calculated
with (4) and δ is a transverse offset. In evaluating the splice
losses, we assume that the SMF is an SM28 fiber. Fig. 9(a) and
(b) shows the splice losses between the PCF and the SM28
fiber as a function of hole pitch Λ for d/Λ from 0.25 to
0.55 with δ = 0 and as a function of offset δ, respectively,
where an operating wavelength is 1.55 µm. For comparison,
the measured results [62] and the numerical results obtained by
use of the FEM [62] are also plotted. The results based on (5)
agree approximately with the measured and numerical results.

V. CONFINEMENT LOSS AND EFFECTIVE

MODE AREA IN PCFS

The losses in PCFs occur for a number of reasons, such
as intrinsic material absorption loss, structural imperfection
loss, Rayleigh scattering loss, confinement loss, and so on.
Fabrication-related losses can be reduced by carefully opti-
mizing the fabrication process [63]. Confinement loss is an
additional form of loss that occurs in single-material fibers.
PCFs are usually made from pure silica, and so the guided
modes are inherently leaky [18] because the core index is the
same as the index of the outer cladding without air holes. This
confinement loss can be reduced exponentially by increasing
the number of rings of air holes that surround the solid core, and

Fig. 9. Splice loss between the PCF and the SMF (a) as a function of hole
pitch Λ for d/Λ from 0.25 to 0.55 with δ = 0 and (b) as a function of offset δ,
where an operating wavelength is 1.55 µm.

is determined by the geometry of the structure. It is important
to know how many numbers of rings of air holes are required to
reduce the confinement loss under the Rayleigh scattering limit
for practical fabrication process.

Fig. 10 shows the normalized confinement loss of the funda-
mental mode in PCFs with finite cross sections as a function of
the normalized effective area, taking the ratio of hole diameter
to pitch ratio d/Λ as a parameter, where N is the number of
rings of air holes and the background silica index is assumed
to be 1.45. The effective area of the fiber core Aeff is defined
as [64]

Aeff =

(∫∫
S |Et|2 dxdy

)2

∫∫
S |Et|4 dxdy

(6)

where Et is the transverse electric field vector and S denotes
the whole fiber cross section. As expected, increasing the air-
hole size, the mode becomes more confined, and thus the
effective area and the confinement loss are both reduced. Also,
increasing the number of rings of air holes, the confinement loss
is significantly reduced. On the other hand, the effective area is
almost independent of the number of hole rings. We can see
that the confinement loss contributes significantly to the loss
of PCFs when the hole pitch Λ is small. Fig. 10 is a general
map of the effective area that can be used for designing various
PCFs, such as ultralow nonlinearity PCFs and high nonlinearity
PCFs with desired confinement loss properties. If, for example,
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Fig. 10. Effective area and confinement loss of PCFs operating at the wavelength of (a) λ/Λ = 0.2, (b) λ/Λ = 0.4, (c) λ/Λ = 0.6, (d) λ/Λ = 0.8,
(e) λ/Λ = 1.0, and (f) λ/Λ = 1.29.

the operating wavelength is given, the effective area and the
confinement loss can to a large extent be tailored via the choice
of hole pitch, hole size, and number of hole rings.

VI. MODAL BIREFRINGENCE

One of the interesting characteristics of PCFs is their strong
birefringence. Using PCFs, highly birefringent fibers can be
easily realized because the index contrast is higher than conven-
tional fibers and the fabrication process permits the formation
of the required asymmetric microstructure near the fiber core.
One possible use of highly birefringent PCFs is as polarization
maintaining fibers (PMFs) that can stabilize the polarization
state in the fiber. So far, various highly birefringent PCFs have
been reported [65]–[67] as shown in Fig. 11. The configurations
of Fig. 11(a) and (b) [65], [67] have different air-hole diameters
along two orthogonal axes near the core region and Fig. 11(c)
has two defects in the hole arrangement [66].

Fig. 12(a) shows an image generated from the scanning elec-
tron micrograph of the first reported highly birefringent PCF
[64]. To estimate the birefringence of this fiber with noncircular
air holes irregularly arranged around the core, it is necessary to
carry out the real-model simulation [51], so the full-vector FEM
is used here. The transverse electric field vector distributions
of the two different polarization modes called the slow-axis
and fast-axis modes are, respectively, shown in Fig. 12(b)
and (c). The effective index of the slow-axis mode is slightly
larger than that of the fast-axis mode. Fig. 13 shows the modal
birefringence as a function of wavelength. The birefringence
obtained by using the real-model simulation is 3.66 × 10−3 at
λ = 1.54 µm and is in good agreement with the measured value
of 3.7 × 10−3 [65]. The birefringence of the order of 10−3 is
one order of magnitude larger than that of conventional PMFs.

Highly birefringent PCFs have possibilities of realizing a
single-polarization single-mode (SPSM) fiber [68], [69], which
guides only one polarization state of the fundamental mode.
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Fig. 11. Highly birefringent PCF configurations.

Fig. 12. (a) Highly birefringent holey fiber and the transverse electric field
vector distributions of (b) slow-axis and (c) fast-axis modes.

The SPSM fiber can eliminate both polarization mode coupling
and polarization mode dispersion. Fig. 14 shows an example
of SPSM-PCF structure [50], [70], where Λ is the hole pitch
and d and d′ are the diameters of the small and large air holes,
respectively. The design principle of SPSM fiber is to have
the cutoff wavelengths of the fundamental modes polarized
along the slow axis (slow-axis mode) and the fast axis (fast-
axis mode) longer and shorter than the operating wavelength,

Fig. 13. Modal birefringence in the highly birefringent PCF in Fig. 12(a).

Fig. 14. Single-polarization single-mode PCF.

Fig. 15. Confinement loss as a function of wavelength for the single-
polarization PCF with ten rings of air holes in Fig. 14. The hole pitch
Λ = 2.2 µm, d/Λ = 0.5, and d′/Λ = 0.95.

respectively. The cutoff of either polarization occurs when
its effective refractive index becomes equal to the cladding
effective index of the FSM. In order to reduce the confinement
loss of the slow-axis mode, eight of the central air holes are
enlarged. Fig. 15 shows the wavelength dependence of the
confinement loss for the single-polarization PCF with ten rings
of air holes, where Λ = 2.2 µm, d/Λ = 0.5, d′ = 0.95, and
the background index of silica is calculated through the Sell-
meier equation. Within the wavelengths ranging from 1.48 to
1.6 µm, the confinement loss of the slow-axis mode is less
than 0.1 dB/km and the fast-axis mode is unguided. From these
results, a low-loss SPSM-PCF can be realized with the highly
birefringent PCF in Fig. 14. The SPSM-PCF is expected to be
used in various optical devices as the pigtails of polarization-
sensitive optical components.
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Theoretically, in the PCF structure with sixfold symmetry,
the two linearly polarized fundamental modes are degenerated.
Small imperfections in the PCF structure that are produced
during the fabrication process, however, create asymmetries
that break the degeneracy and lead to birefringence. Small
irregularity, such as the variation of the hole size or the posi-
tion, results in the perturbed PCF from the sixfold rotational
symmetry structure. Since PCFs with the small hole pitch and
the large hole diameter cause large perturbation from the perfect
structure [71], [72], the PCFs with the large hole pitch and
the small hole diameter have the advantage for suppressing the
birefringence induced by the structural irregularity.

VII. CHROMATIC DISPERSION TAILORING

PCFs possess the attractive property of great controllability
in chromatic dispersion. The chromatic dispersion profile can
be easily controlled by varying the hole diameter and the hole
pitch. Controllability of chromatic dispersion in PCFs is a very
important problem for practical applications to optical commu-
nication systems, dispersion compensation, and nonlinear op-
tics. So far, various PCFs with remarkable dispersion properties
have been investigated both experimentally and numerically.

Fig. 16 shows the chromatic dispersion property of PCF with
perfect hexagonal symmetry shown in Fig. 1 as a function of
wavelength for d/Λ ranging from 0.2 to 0.9 in steps of 0.1,
where the material dispersion given by a Sellmeier formula is
included directly in the vector FEM calculation. The chromatic
dispersion D of a PCF is easily calculated from the effective
index of the fundamental mode neff versus the wavelength
using

D = −λ

c

d2neff

dλ2
(7)

where c is the velocity of light in a vacuum. When the hole
diameter to pitch ratio is very small and the hole pitch is large,
the dispersion curve is close to the material dispersion of pure
silica. As the air-hole diameter is increased, the influence of
waveguide dispersion becomes stronger. We can see that it
is possible to shift the zero dispersion wavelength to visible
to near-infrared (IR) regions by appropriately changing the
geometrical parameters such as hole pitch and hole diameter
[73], [74] and that a PCF with a very small hole pitch and
a large air-hole diameter has large normal dispersion in the
1.55-µm wavelength range [48]. In addition, Fig. 16(c) points
out that a PCF with Λ ≈ 2.5 µm and d/Λ ≈ 0.25 exhibits
nearly zero dispersion-flattened behavior [75], [76].

The cladding structure of typical PCFs is usually formed by
air holes with the same diameter arrayed in a regular triangular
lattice shown in Fig. 1. However, using a PCF with all of the
same air-hole diameter in the cladding region, it is difficult to
control both the dispersion and the dispersion slope in a wide
wavelength range. In index-guiding PCFs, since the periodicity
in the cladding region is not essential to confine the guiding
light into the high-index core region, it has been reported
that various effective refractive index profiles can be obtained

Fig. 16. Chromatic dispersion properties of PCFs for (a) Λ = 1.0 µm,
(b) Λ = 2.0 µm, (c) Λ = 2.5 µm, and (d) Λ = 3.0 µm.

by varying the hole diameter of each air-hole ring along the
radius [43].

Fig. 17 shows two examples of PCFs and their effective
refractive index profiles, where di (i = 1 to n) is the hole
diameter of the ith air-hole ring and the air-hole diameters are
d1 > d2 = · · · = dn in Fig. 17(a) and d2 < d1 = d3 = · · · =
dn in Fig. 17(b). The effective refractive index in the cladding
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Fig. 17. Examples of PCFs and their effective refractive index profiles. The
air-hole diameters are (a) d1 > d2 = · · · = dn and (b) d2 < d1 = d3 =
· · · = dn.

region increases with decreasing air-hole diameter, and the
effective refractive index in the cladding region decreases with
increasing air-hole diameter. By optimizing the air-hole diame-
ters di and the hole-to-hole spacing, both the dispersion and the
dispersion slope can be controlled in a wide wavelength range.

Fig. 18 shows an example of nearly zero dispersion-flattened
PCF with ten air-hole rings designed by using this design
principle, where Λ = 1.6 µm, d1 = 0.47 µm, d2 = 0.71 µm,
d3 = 0.74 µm, d4 = 0.62 µm, d5 = · · · = d10 = 0.65 µm. It
is possible to decrease the effective refractive index in the
cladding region along the radius by increasing the air-hole
diameters along the radius. It is also possible to realize flattened
dispersion by using the effective refractive index profile in
Fig. 18(b) with small hole pitch.

Fig. 19 shows the chromatic dispersion and effective area
as a function of wavelength for the PCF in Fig. 18(a). The
wavelength range for which the PCF dispersion remains be-
tween 0.1 and 0.3 ps/(km · nm) is from 1.41 to 1.68 µm.
The confinement loss of the fundamental mode is less than
0.1 dB/km in the wavelength range shorter than 1.7 µm. In
short wavelength range, this PCF supports the second order
mode; however, the confinement loss of the second-order mode
is larger than 1000 dB/m in the wavelength range over 1.0 µm
and the effective refractive indices of the second-order mode
are quite different from those of the fundamental mode, so this
PCF effectively operates as an SMF in the telecommunication
window. The PCF with nearly zero flattened-dispersion and
small effective area is attracting interest because it can offer
high nonlinearity over a wide wavelength range [77], [78].

VIII. CONCLUSION

Analysis methods for numerical modeling of photonic crystal
fibers (PCFs) were reviewed in detail. Through the full-vector
finite-element method (FEM), the fundamental characteristics
of PCFs such as normalized frequency, cutoff wavelength, con-
finement loss, modal birefringence, and chromatic dispersion
have been numerically investigated. The numerical method
used here can be applied to designing not only index-guiding

Fig. 18. (a) Nearly zero dispersion-flattened PCF with ten air-hole rings
and (b) its effective refractive index profile. The hole-to-hole spacing is Λ =
1.6 µm and the air-hole diameters are d1 = 0.47 µm, d2 = 0.71 µm, d3 =
0.74 µm, d4 = 0.62 µm, d5 = · · · = d10 = 0.65 µm.

Fig. 19. Chromatic dispersion curve and effective area as a function of
wavelength for dispersion-flattened PCF with ten air-hole rings in Fig. 18(a).

PCFs but also photonic band-gap fibers (PBGFs). Numerical
modeling techniques have great potential for designing prof-
itable PCFs.
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