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1.1 INTRODUCTION 

When intense laser  l i gh t  i s  focused onto a target during a laser  

plasma interaction experiment, energetic electrons are  observed e i ther  

direct ly  with an electron mass spectrograph,' or film stack,' o r  indirectly 

through k-alpha radiation from moderate-2 f i l l e d  microballoons3 or  t he i r  

hard x-ray signature.' These electrons, variously referred to  as non- 

Maxwellian, non-thermal or supra-thermal, can be created by resonant 

absorption5 or  parametric or  stimulated processes6 a t  the plasma c r i t i ca l  

(plasma frequency equal s 1 aser frequency) or quarter c r i  t i  ca1 surf aces. 

Whatever the exact mechanism for  creating these supra-thermal electrons, 

i t  is  clear  t ha t  a substantial fraction are  too energetic (>lOkeV) - to be 

thermalized on any time scale of in te res t  in the hydrodynamic computational 

models us'ed t o  simulate laser  plasma interaction. 

Supra-thermal electrons can radically a l t e r  the dynamics of imploding 

laser  f u s i o n  targets by preheating the target  material, by transforming 

energy t o  a rapid i o n  blowoff or ,  due to mean free path e f fec ts ,  decoupling 

the core from the corona. 

o f  a laser  driven target ,  i t  is  necessary to  develop an accurate physical 

and computational model of  these electrons. The d i f f i cu l t i e s  inherent 

i n  this problem-can b e  appreciated by noting that the supra-thermal 

velocit ies can vary by over an order of magnitude while the density of 

the background thermal electron f lu id  through which they propagate can 

vary by over four orders o f  magnitude. 

free-path i s  proportional t o  v / n e ,  there can be an eight order of 

magnitude variation i n  this scaling parameter, 

In order to  correctly simulate the dynamics 

Since the supra-thermal mean 

4 
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Most mode:s of par t ic le  transport i n  a thermal background start 

w i t h  the Boltzmann equation. Both  Sn7 and Monte-Carlo methods have 

been used extensively i n  neutron transport problems, however the l a t t e r  

are ineff ic ient  when used i n  conjunction w i t h  a one-dimensional Lagrangian 

hydrodynamic code as i s  our  intention here. In the l imit  of small angle 

scat ter ing,  the Fokker P l a n k  equation replaces the Boltzman equation and 

this equation i s  tractable t o  solution by several approaches. Since the 

transport o f  supra-thermal electrons must be followed i n  both the diffusive 

and f ree  streaming ( i . e . ,  very short and very long mean-free-path) 

l imits ,  neither f l u x  limited d i f f u s i o n  models nor truncated moment 

methods" a re  adequate. 

8 

9 

We require a model which simultaneously includes the two mean free 

path l imits ,  allows bidirectional non-isotropy i n  velocity space b u t  

retains one-dimensional i ty i n  real and velocity space. 

i s  again dictated by computational res t ra ints .  There are  several reasons 

for  the existence of a strong bidirectional ( b u t  paral le l  t o  a radius 

vector) asymmetry i n  the dis t r ibut ion function when the coupling of 

supra-thermal and thermal electrons i s  weak. These include strongly 

non-isotropic flow away f rom source regions, preferential  acceleration 

by e l ec t r i c  f i e lds  and coll isional depletion of electrons returning toward 

the source region. Note tha t  the non-isotropy of the source i s  expl ic i t ly  

res t r ic ted to  be parallel  to  a radial vector ( i . e . ,  the suprathermals 

must be created e i ther  isotropically or preferent ia l ly  i n  the radial 

direct ion) .  

T h i s  l a s t  requirement 

A three component model of a transport of supra-thermal electrons i s  

developed here t o  sa t i s fy  the requirements s ta ted above. In th i s  model, 

a nearly isotropic dis t r ibut ion function is used in the diffusive regime 

when the radial anisotropy i s  weak, while two half-isotropic dis t r ibut ions,  

peaked respectively i n  the posit ive and negative radial directions,  a re  
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used i n  the f ree  streaming regine when the radial anisotropy is strong. 

Motivation fo r  this part icular  form of a multigroup transport model 

7 11 
follows from both Sn methods and methods useful i n  radiation transport. 

Each velocity group i n  each Lagrangian computational cel l  of the 

hydrodynami c computati onal model '* i s i denti f i ed as bei ng i n  ei ther  the 

short  o r  long mean f ree  path regime and treated accordingly. 

d i v i s i o n  into the two regimes i s  based on comparing the 90' deflection 

The 

mean f ree  path a t  the mean group velocity and local plasma conditions 

w i t h  the suprathermal density scale length. 

Section 1 . 2  reviews the derivation of the Fokker-Planck equation 

fo r  the transport of supra-thermal electrons through a less  energetic 

thermal background. The supra-thermals are assumed to  couple coll  isional l y  

only to  the thermal background. Equations for  the diffusive,  nearly 

isotropic regime are  obtained i n  section 1.3. The fu l l  three-component 

model is developed i n  section 1.4 and the equations describing the self-  

consistent thermal return current and e l ec t r i c  f i e ld  a re  developed i n  

section 1.5. Finally, the source function i s  discussed i n  section 1.6. 
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1.2 Fokker-P1 anck Equation 

The Fokker-Planck equation is  derived from the Bo1 tzmann equation 

i n  the l imit  of dominant small angle coll isions.  

i s  given by 

The Boltzmann equation 

where includes forces othern t h a n  collisions.  The Fokker-Plank coll ision 

operator i s  obtained by assuming that  a par t ic le  has the probability 

$(v,a), independent o f  the pa r t i c l e ' s  history, t h a t  the velocity r 

acquires an increment A v  i n  a time AT i n  a time A t . 1 3  T h i s  col l is ion 

operator can then be expressed as 

Where 

The f i r s t  term i s  the coefficient of dynamical f r ic t ion  and the second 

term is the coefficient of diffusion whose e f fec t  i s  t o  spread a stream 

of i n i t i a l l y  uni -di rectional par t ic les .  14 

To define the probability $J, multiple col l is ions a re  treated as 

sequences of binary col 1 i sions. Col 'I i sions among supra-thermal s can 

be ignored due to  the i r  large veloci t ies  and relat ively low densi t ies .  

Using the Coulomb scattering cross-section, the col l is ion operator can 

be written 
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( 4 )  

where 
4 r = -  4~re 

3 

e 
m L  

n r  

and where the summation over j represents the contribution o f  a l l  thermal 

species, $.(v ) i s  the distribution function of each thermal species and 

RnA i s  the Coulomb logarithm for  coll isions between suprathermal and 

thermal speci es. 

J 2  

T h e  expressions for H and G in eq.(4) can be simplified by treating 

the suprathermal electrons as t e s t  par t ic les  interacting w i t h  f ie ld  

par t ic les  which are in thermal e q u i 1 i b r i ~ m . l ~  When a Maxwellian distribution 

i s  substituted for  $(y2), the functions H and G become 



m +m 
e j  z n j  

H(v) = :(F)Z~ 
- - @(a J . v ) t n n S j  
V 

(5) 

where n; denotes thermal electrons or ions.  
x 2  m J 

2 
fi j 2 k T j  d x )  = - jo e-Y dy, a * = 

j 

The supra-thermal electrons are  selected by the cr i ter ion ae2v2 1. 4,  

(i . e . ,  v > 2v ) .  T h i s  requires that  electrons w i t h  velocity less  than 
e t h  

- 

twice the electron thermal velocity be thermalized on a time short 

compared t o  the other hydrodynamic times o f  interest  in laser plasma 

interaction (e.g. ,  electron-ion thermal equilibration time and acoustic 

or thermal propagation times ) .  
12 

I t  wi l l  be shown l a t e r  t h a t  this i s  a 

reasonable requirement. Under these conditions, the error  function 

becomes 

~ ( x )  = 1 for x - > 2 

and the functions H and G simplify t o  
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E q u a t i o n  4 can now be rewritten as 

where @ denotes the supra-thermal electron distribution function. The 

diffusion term i n  eq.(9) can be expanded t o  become 

The f i r s t  term in the bracket i s  a dynamical f r ic t ion  term and the 

second term i s  a diffusion term which vanishes when the velocity i s  e i ther  

uni-directional or  isotropic.  

combine t o  yield 

T h e  two f r i c t ion  terms i n  eq.(9) and (10) 

Since the f r i c t ion  term i s  proportional t o  the mass ra t io ,  electron-ion 

coll isions can be neglected. On the other hand, the diffusion term i s  

inversely proportional t o  the electron mass so t ha t  both thermal species 

must be i ncl uded. 

The Fokker-Planck equation now reduces t o  
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where 

There are  two other effects ,  apart from col l is ions,  which must be 

accounted for :  

radiation. 

the self-consistent e lec t r ic  f i e ld  and Bremsstrahlung 

The force due t o  the e l ec t r i c  f i e ld  i s  given by 

- F E = - -  e ' E  

Me 

The Bremsstrahlung radiation can be treated as  a force and can t h u s  be 

written a s  16 

w 

[ x ( w )  dw 
- 
F = - e  n 

B v i  

where 

1 2  
E = - m v  

2 

2 mv 
max h w 

J 
0 

The integral can be shown.to reduce t o  unity and the force becomes 

2 6  - -16 n i Z i  e - 

3 bV 
F =  

3mec h 

0 

A more useful form of the Fokker-Planck equation can be obtained by 

substi tuting 
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into equations 1 2 ,  13, 14, 15, and 1 7  and the double par t ia l  i n  the diffusion 

term becomes 

1 2 ae (sin$%) 
au v sine 

The f inal  form of the Fokker-Planck equation i s  now, 

-- 
3 (F,E,v,t) + i7 . - a ( @ v >  - m e -- a ( + E * Q  R )  - K B  4 *(@a) 

aF e av av a t  

where 2 6  16 n , Z t  e - I I  

2 3  ’ 
Kg - 3mec h 

= rn - e ’  

r 2 
K = - (n  + Z n i ) ;  

d 2 e  
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The Fokker-Planck equation i s  two dimensional i n  velocity space. 

The angular dependence i s  generated by the diffusion term and possibly 

by the source term. 

thermal par t ic les ,  the col l is ion term can be neglected and eq.(19) 

becomes one-dimensional i n  velocity space - the electrons are  then 

transported by a streaming equation. 

are dominant, the col l is ion term must be retained - a one-dimensional 

description can be recovered t h rough  the derivation of a diffusion 

equation i n  which the dis t r ibut ion function i s  assumed nearly-isotropic. 

I f  the electrons undergo few collisions w i t h  the 

On the other hand, i f  coll isions 
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1.3 THE DIFFUSION EQUATION 

The diffusion equation i s  obtained in the l imit  o f  a nearly isotropic 

distribution of par t ic les  i n  velocity space. There are  several ways of 

deriving this equation; here we use a spherical harmonic expansion of 

the dis t r ibut ion function i n  velocity space which will allow us to 

retain some mathematical simplicity while s t i l l  being able to  understand 

the nature of the physical approximations inherent i n  this approach. 

Any d i s t r i b u t i o n  function can be expanded in the complete s e t  of spherical 

harmonics.17 I t  i s  suff ic ient ,  for  the derivation of  the diffusion 

equation t c  keep only the f i r s t  two terms 

- 
where A/ I 1 i s  not a function of Q. Since the s e t  of equations 

developed below are  one-dimensional (spherically symmetric) i n  the 

velocity space, the magnitude and angular dependence of the velocity 

vector have been separated in the argument of + . 
the dis t r ibut ion function for  the diffusive mode requires tha t  the terms 

omitted i n  eq. (20)  be appropriately smal 1. 

The near isotropy of 

For convenience i n  the following work, we note here several useful 

integrals.  I f  A and are  any vectors independent of 5, which may 

include the gradient operator, then integration over the en t i r e  solid 

angle yields  
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Following the usual definit ions of par t ic le  kinetic theory, the 

number density and f l u x  are  related to  the d i s t r i b u t i o n  by 

where zr i s  a u n i t  vector i n  real space. 

of eq. (20) then yield 

The zero and f i r s t  moments 

- 
A = ( 4 T l - l  n ( r ,  v ,  t ) ,  B = 3 ( 4 T v ) - ' ~ ( ~ ,  v ,  t )  

and the d i s t r i b u t i o n  function can be rewritten as 

We now suppress the (r,v,t) arguments of n and 5. 

Equations for the number density and f l u x  are obtained by taking 

the corresponding moments of the Fokker-Planck equat ion  

-- Kf a (lnAse :) + 2 Kd lnAse = ($)s 
V 

2 a v  
V 

This s e t  of coupled equations has been closed by the truncation of the 

spherical harmonic expansion expl ic i t  i n  eq. (20). 

will be applied t o  the description of the transport of supra-thermal 

electrons i n  the diffusive mode. 

Equations (23) and (24) 

The source terms on the right-hand sides 
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represent the creation of suprathermal particles and the i r  associated 

f l u x  by promotion o u t  o f  the thermal distribution, 

Equations (23) and (24) are  too d i f f i cu l t  t o  solva in the i r  present 

To make these equations tractable t o  our analysis, we introduce form. 

the standard d i f f u s i o n  assumptions: t h a t  the flux source and scattering 

a re  isotropic and tha t  the d i f f u s i o n  time is short compared w i t h  any 

other time scale of interest .  Only the second and l a s t  terms on the 

left-hand s ide of (24) are  retained and the resulting simp1 i f ica t ion  

yi el ds 

where a 90' deflection mean free p a t h  

has been defined. 

The assumption on time scales which was used t o  eliminate the time 

derivative i n  eq.(24) does n o t  hold very well i n  the problem of charged 

par t ic le  slowing down i n  plasma. 

describe par t ic les  w i t h  large energy, the diffusion coefficient must be 

corrected because, as the speed of the part ic les  increases, the mean-free- 

path, which varies as v4, will exceed the free-streaming "distance" given by 

vat (where A t  i s  a computational time step ).  For large veloci t ies  the 

diffusion term must go over t o  free-streaming, 

l imiter  can be introduced and the diffusion coefficient written as 

When the diffusion equation is  used t o  

12 

To correct this,  a f l u x  

9 

V 

- + -  3 2an 
A nar 

D =  
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However, diffusive and streaning transport are  basically different  and 

incompatible. I n  diffusive transport the "driving forcell for  the flux 

o f  par t ic les  i s  the density gradient; i f  the density i s  uniform there i s  

no flux. On the other hand,  i n  streaming transport the " d r i v i n g  force" 

i s  the i n i t i a l  impulse on the par t ic les  and the i r  f l u x  is  n o t  affected 

by the i r  density gradient; thus a local f l u x  can ex i s t  w i t h  a uniform 

density. In addition, the flux-limited transport assumes t h a t  near- 

isotropy, which ex is t s  i n  the diffusive regime because of col l is ions,  

will carry over i n  the streaming formulation; this i s  rather doubtful i n  

si tuat ions where the source is localized in space and the part ic les  move 

d i rec t ly  away. 

l imiter formulation and develop the three component model i n  the next 

section. 

Because of these problems, we avoid the -- ad hoc f l u x  
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1.4 THE THREE-COMPONENT MODEL 

Two equations have been derived which can describe the transport of 

the non-thermal electrons over two velocity regimes: a streaming 

Fokker-Planck equation for the high energy, near-collisional regime and a 

diffusion equation for the low energy collisional regime. For computational 

purposes it is necessary to sharply divide these two regimes although a 

smooth transition exists in reality. 

can be found by considering the limits of the validity o f  the diffusion 

equation and, in particular, the point at which the diffusion coefficient would 

have to be flux-limited to retain physical meaning. 

This transition point in velocity space 

We delimit the boundary between the diffusive and streaming formulations 

by reference to the density scale length 

A 
5' Ls 

4 
V 

= 
2K d lnAse 

diffusion regime 

streaming regime. (27 )  

To see that this is consistent with the formulation of the diffusion 

equation, we note that a diffusion time can be obtained from eq.(24) 

The diffusion time scale follows from (27) 

where T~ is associated with the convective term in (24). This condition is 
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only weakly sa t i s f ied  a t  the boundary where Td = T~ . Note t h a t  

streaming non-thermals undergo very few collisions and,  on the average, 

are deflected only t h r o u g h  very small angles. 

The simplest streaming model which can accommodate the major 

sources of anisotropy, a source region localized t o  a t h i n  spherical 

region and s t r o n g  radial  e l ec t r i c  f ie lds  ( the source function i t s e l f  i s  

discussed i n  section 1.6), i s  a semi-isotropic d i s t r i b u t i o n  which t rea ts  

separately electrons w i t h  positive and negative radial veloci t ies  (see 

figures 1). This semi-isotropic d i s t r i b u t i o n  function has the two 

components 

gS(T,v,t) 5 @(T,v,TT,t) dTT = ZIT@ for  0 - -  < e <  IT/^ s 
IT 

h , ( F , v , t )  z @(T,v,n,t) d n  = ZIT+ for  - < 9 < IT s 2 -  - 

S u b s t i t u t i o n  of  this distribution function into eq. (19) and 

integration over the angles yields 
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a -  e a -  K~ a 2 - (F,v,t) + y js- - - - (VE'Ts-) - 2 = (hSV ) - 
V 

2 a v  
ar 2mv 

a t  

\ 

where 
TT/ 2 

I t  will  bi? necessary t o  re ta in  the general expression for  the f l u x  

rather than i t s  integrated form. 

These two equations a re  coupled by the boundary conditions a t  the 

center o f  the target  where a l l  electrons w i t h  negative velocity are  

reversed and a t  the outer boundary where some of the electrons w i t h  

positive velocity a re  reversed and par t  could escape t h r o u g h  a potential 

sheath. 

t o  future work and here assume tha t  a l l  outgoing  electrons a re  reversed 

a t  the outer boundary. 

Because of the d i f f icu l ty  of the sheath problem, we have this  

Equations (23) and (29 )  are  coupled i n  another more subt le  way a t  

each p o i n t  i n  the plasma because of the use of the semi-isotropic two 

component dis t r ibut ion function. I n  traversing any spherical annulus of 

radius r and w i d t h  d r ,  part  of the electron dis t r ibut ion w i t h  negative 

velocity will move tangentially i n  such a way a s  t o  re-emerge a t  the 

outer ra ther  than the inner boundary. Such electrons must then be 

transferred from the negative to  the posit ive velocity d i s t r i b u t i o n  via 

source-sink terms i n  the equations. Failure to do this means that  
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ingoing electrons penetrate to  the center o f  a sphere giving r i s e  t o  anomalously 

large preheat. These source-sink terms are treated expl ic i t ly  in the 

chapter on f i n i t e  difference methods. 

12 The transport  equations a re  to  be solved i n  the Lagrangian frame 

of a hydrodynamics code. The transformation from Eulerian to  Lagrangian 

frames leads to  a term of the form 

(V-U)V@ 

for the convective term where i s  the macroscopic thermal velocity. I t  

wi l l  be seen - a poster ior i  t h a t  since 7 i s  always required to  be larger 

than the thermal velocity of the thermal electrons, i t  is always a t  

l ea s t  an order of  magnitude larger t h a n  u. T h i s  small correction can be 

then neglected and equations 23, 28, and 29, together w i t h  the definit ions 

of the fluxes,  can be used t o  describe the transport w i t h  respect t o  the 

thermal f 1 u i  d. 

The non-thermal electrons are  now described by a three-component 

dis t r ibut ion function and the i r  transport i n  r-v space i s  treated by 

three equations w h i c h  have been obtained from the Fokker-Planck equation 

under the assumptions of the three-component model. 

i n  these equations a re  the e l ec t r i c  f i e ld  and the thermal return current 

S t i l l  to  be specified 

w h i c h  are  considered i n  the next section. 
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1.5 SELF-CONSISTENT ELECTRIC FIELDS AND RETURN CURRENTS 

A complete description of a plasma w i t h  two thermal components and 

suprathermal electrons requires two continuity, momentum and energy 

equations, Poisson's equation for the e l ec t r i c  f i e ld  and the transport 

equations of the l as t  section. 

transport of  supra-thermal electrons away from the source region, by the 

excess of electrons i n  regions of the f luid where supra-thermals have 

been thermalized, and by the electron thermal pressure gradient. Return 

currents will i n  turn be created which tend to cancel the f i e ld .  The 

effectiveness o f  t h i s  cancellation depends on the electron-ion coll ision 

frequency , 

Electric f ie lds  are created by the 

H i g h  temperature, 1 ow density plasmas carry larger return currents hili 1 e 

low temperature, h i g h  density plasma will impede the cancellation of 

the e l ec t r i c  f ie lds .  The return current can also be impeded by such 

phenomena a s  ion acoustic turbulence which is  equivalent to higher 

coll ision frequencies. 

The complete s e t  of equations for the plasma are  l i s t ed  i n  Table I .  

These equations m u s t  be manipulated t o  yield a description of the motion 

of the thermal plasma and a description of the return current re la t ive  

to  the hydrodynamic motion. A1 1 of the species conservation equations 

i n  Table I contain mass, momentum and energy source terms due to  thermal- 

suprathermal coupling as well as  momentum and energy exchange terms 

between the two thermal components (we emphasize tha t  although many 

different  ionic s t a t e s  may be present in the plasma, a l l  ions a re  assigned 

the same temperature). 
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The hydrodynamic equations are obtained by addition o f  the species 

equation, 

dp! 

d t  - -en -in 
f @ - e(zni-ne)E = -K -K 

- 5 - A i  = Jne dPeee d 1  
pe dt F - d, - -  

d t  

where p ,  pU, P are  the total  mass, momentum, and pressure o f  the plasma, 

p i ,  pe,  n i ,  ne, e i ,  and e, 

densit ies and energies, Z the local average ionization s t a t e  and Q and W 

the thermal f l u x  and ra te  of laser energy deposition, A t  the electron-ion 

energy t ransfer  and dt the Lagrangian operator. The mass, momentum, 

and energy source terms have been isolated on the right-hand sides of (33) 

where ( ),, i s  used to  denote supra-thermal components. 

momentum sources in these equations a re  O ( m e / m i )  and can be neglected. 

The energy source terms are  qui te  important and are the (negative) sum 

of the dissipation and slowing down terms i n  the supra-thermal transport 

equations. An expl ic i t  formulation for  these terms will be given in the 

next chapter. 

velocity, two temperature nature of the thermal f l u i d .  

are  the ion and electron mass and number . 

d 

The mass and 

Equations (33), i n  the form given, emphasize the one 
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The ret.urn current equations are  obtained by subtracting the 

species continuity and momentum equations t o  obta in  

where 

6 = ZnI - ne (35) 
- - 

f = Z n I u I  - neue 

are  the local net charge and f l u x .  I n  our notation "j" and "J" are 

also used for  f l u x  and i t  i s  convenient t o  work w i t h  these quantit ies 

rather than go expl ic i t ly  t o  currents. 

Equation (34b) was obtained by neglecting terms quadradic i n  (U.- 

U ) and - f which i s  consistent w i t h  the Chapman-Enskog formulation of a 

mu1 t i-species diffusion equation. 

i s  the neglect o f  aT/at. Replacing Lie with -ineveif. and n o t i n g  that  

-1 

-e 

Also consistent w i t h  this formulation 

6/ne<<l (as required by the one velocity formulation above), then 

p = m.n 
i i  

ne = zp/mi-6 

and (34b) becomes 

7 = +- ( vpe t eFn, + me K~,,) 
m v  e ei  
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Equations (34a) and (36) are  direct ly  transformed (following some 

elementary manipulation) i n t o  Lagrangian form 

7' x __I_ 

e ei  
(vpe + erne + m e K l e n )  m v  

where 7' = ne(ue-g) 

terms are calculated from the transport of non-thermals i n  the Lagrangian 

frame. The sources will  be discussed la te r .  

Equations ( 3 7 )  can be combined t o  give 

i s  the " f l u x "  i n  the moving frame, and the source 

The e l ec t r i c  f i e l d  i s  to  be obtained from Poisson's equation 

v*T = h e (  6-nn)  

where n n  is  the local density of suprathernals. Tak ing  advantage of the 

spherical symmetry of the system and the f a c t  that ,  (Ul/c<<l, we can use 

this equation i n  the computaticns in an integral for9 

e e  -r 
2 r 

E = %Er = - - ( 6-nn)dV I (39) 
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The time scale for  the relaxation o f  the charge separation i s  

estimated from eq.(38) a n d  (39) in the form 

which yields 

0 eLne ( kTe)”’ 

This relaxation time depends only weakly on ne throucjh the coulomb 

logarithm and i s  shown i n  Fig. 2 as a function of electron temperature 

f o r  2’125 and lnA=2.  

f ie lds  and return cixrents occur near the source regions a t  the c r i t i ca l  

surface i n  a laser  plasma. As can be seen from F i g .  2, except fo r  very 

early times when the plasma is  cold, the charge relation time is short 

compared w i t h  other possible time scales of in te res t  (wh ich  are  a l l  

O(10-14)sec o r  longer) and a steady s t a t e  calculation f o r  6 would 

follow from (38). 

d i f f i c u l t ,  and no fur ther  approximation i s  made i n  t h i s  equation. 

I t  i s  anticipated tha t  the largest  e l ec t r i c  

Fortunately the time dependent calculation is  not 

In order t o  G b t a i n  expressions for the source terms, i t  is  necessary 

to  return t o  the Fokker-Planck equation (19 ) .  I t  will be necessary ts 

take various velocity moments of this equation and i t  must be recalled 

t h a t  a t  each space-time point a suprathermal electron is  e i ther  i n  the 

diffusive region V m i K  < V d *  - or in thc streaming region, V>V*. Vmin i s  

the speed a t  which the suprathermals are considered thermalized and are 

demoted into the thermal electron f luid and V* follows from condition 

(27) .  As V- a l l  of the dist r ibut ion functions must v a n i s h .  Since electrons 
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i n  both regions ex i s t  a t  the same point, we define the three quantit ies 

g(F,t) = Jw gsv2dv f o : *  0 - -  < o < ~ / 2  

'mi n 

h ( 7 , t )  E 0 3 2  hsv dv for  f < 0 < IT - 
'mi n 

for  O < ~ < T  - -  

The integrations over angle of eq.(19) has already yielded eqs. 

(23),  (28), and (29 ) .  Integrating now the zero (mass) order moment of 

these equations over the velocity space for  V>Vmin  - and u s i n g  (27)  and 

(41)  yie lds ,  

- a t  + v - j s  v dv + eF [vjs],,* - mc [YjS]Vmin + [nslnLqes 
e a n d  s - 

We have expl ic i t ly  assumed tha t  any par t ic le  demoted from the streaming 

t o  the thermal regime must pass through the diffusive regime. 

the suprathermal electrons pass through the velocity dis t r ibut ion and 

drop out the bottom a t  Vmin so the source term i n  (38) becomes 

Effectively, 
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Note tha t  the e l ec t r i c  f i e ld  term i s  effective only when -- E * j > O ;  when 
- _  
E *  j < O ,  thermal par t ic les  cannot be promoted t o  suprather,nal. The f i r s t  

term on the right-hand side represents the loss of supra-thermal electrons 

due t o  Bremsstrahlung radiation and collisions w i t h  thermals and the 

l a s t  term i s  the number of thermal electrons raised into the supra- 

thermal component because o f  various absorption mechanisms. 

To obtain the momentum contributions, i t  i s  necessary t o  redo the 

angular integrations of  the Fokker-Planck regime for  the f i rs t  moment, 

meVb. 

yield,  

For a l l  three components o f  the model, the angle integrations 

2Kdv 

S 
(TslnAes) + 3 

KfV a 
2 a v  
-- 

V V 
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The convective and Bremsstrahlung terms will n o t  contribute to  the 

momentum transfer t o  the thermal f l u i d .  

the momentum equation becomes 

After integration and su;mation, 

( j s++ j s -+ j s )v  2 civ + 3 1 - a I w  v 2 (gs+hs+ns)v 2 dv - PJm - - -  a7 a t  

'mi n "mi n 

where the thermal-suprathermal interaction i s  separated i n t o  i o n  and 

electron components, 

- 

1 - Kn e = - -  e' PI v $- [v*(gs+hs+ns)] d v - K p b  $ ~ n b e s ( ~ s + + j s - + j S )  dv 

me 3me vmin 

+ Kf\p Tsv2dv - I [(>)s + (g)s +(%) v2dv 

- 2  - =  K n i  rz2nI ('r:es js v dv 
me 

As before, i t  m u s t  be remembered tha t  n d ,  g, and h, are non-zero only 

for certain ranges of v and the same for the corresponding j ' s .  

now, any change i n  suprathermal momentum is  transferred t o  the thermal 

f luid ( this  will also be t rue o f  energy below) n o t  just a t  the bottom of 

the dis t r ibut ion where v=vmin. These integrals  could be simplified by 

expanding by parts,  b u t  the difference scheme used i n  the transport 

equation (see chapter 2 )  requires tha t  they be i n  this form before 

differencing. 

However 
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The energy contribution of the suprathermal electrons to  the thermal 

f lu id  i s  found i n  exactly the same manner u s i n g  the energy moment 

hfl v . O m i t t i n g  the lengthy manipulation, the thermal electron source 
2 

e 

i s  

and the i o n  source i s  O ( r n e / m i )  and i s  neglected. 

has already been expl ic i t ly  represented i n  eqs. (33) and hence i s  not 

The ohmic heating term 

aws 
repeated here. ( F ) ~  represents not only the d i rec t  energy absorption 

from the laser  f i e l d ,  b u t  also the energy already contained i n  the 

thermal electrons when they are  promoted t o  the  suprathermal distribution. 
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1.6 THE SUPRATHERMAL SOURCE 

The source function i n  this transport model is  characterized by the 

energy d i s t r i b u t i o n  of the suprathermal electrons and the fraction of 

the incident energy absorbed. T h i s  description must be obtained from 

plasma physics and, i n  particular,  from the numerical simulation of the 

plasma i n s t a b i l i t i e s  of various absorption processes. 

has been investigated numerically and despite extensive numerical simulations 

under diverse plasma conditions, i t  is  d i f f i c u l t  t o  extract  absorption 

his tor ies  and energy d i s t r i b u t i o n  functions. 

Resonant absorption 

When a sphere i s  irradiated by a polarized focused laser  beam, 

absorption conditions a re  complex. 

over most of the surface, the rays continuously diffracted,  and the 

absorption will  be a mixture of col l is ional ,  resonant and parametric 

processes. 

illumination. 

o f  the laser  l i g h t ,  the self-consistent density profile,  the quality of 

the beam or  ta rge t  surface and the temperature o f  the plasma; there are 

uncertainties a b o u t  the e f fec t  of cavities and filamentation on the 

production o f  h i g h  energy electrons. 

The propagation vector is non-radial 

The s i tuat ion becomes even more complex for  multi-beam 

The absorption processes a re  also dependent on the intensity 

Because of the d i f f i cu l t i e s  i n  describing the absorption physics, a 

simplified model is  used i n  the transport code. A n  approximate 

description of the dis t r ibut ion function o f  the hot electrons can be 

obtained from simulation codes18; unfortunately this d i s t r i b u t i o n  

function i s  usually given for  only one set of conditions. 

i s  t o  describe the source of hot electrons by a second isotropic Maxwellian 

dis t r ibut ion w i t h  temperature aTe where Te is the thermal electron 

temperature a t  the c r i t i c a l  density and a varies between 4 and 12 

One approach 

9318. 
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the lower number applies t o  resonant absorption w i t h  very steep profiles 

and the higher t o  parametric processes. A n  isotropic dis t r ibut ion,  

while not compatible w i t h  the directed motion of the electrons calculated 

i n  simulation code, approximates the complex behavior of the absorption 

on the pe l l e t  surface. 

The number of electrons contained i n  the h i g h  temperature Maxwellian 

i s  obtained from the energy absorbed. Fractional absorption usually 

published fo r  a given case and over the short  time of the simulation can 

vary from 15% t o  55% depending on the angle of incidence.'* In view o f  

the complexity of the illumination pattern on spherical pe l le t s ,  a 

r e a l i s t i c  absorption fraction would be impossible to  obtain. 

way t o  obtain the energy absorbed into the suprathermal f l u i d  is  t o  

assume t h a t  the p a r t  of the total  specified absorbed energy which has 

not  already been absorbed through inverse Bremsstrahlung i s  absorbed 

anomalously; i .e. , the energy "dump" usually employed i n  hydrodynamic 

codes i s  transferred from the thermal to the non-thermal component. Let 

E, be the remaining energy to be absorbed a t  the c r i t i ca l  surface and 

l e t  Ne be the number of electrons raised into the non-thermal distribution; 

t h e n  the energy "absorbed" i n  tha t  dis t r ibut ion i s  

The simplest 

= Ec + N e  Cv Te 
ET 

-29- 



where 

The integration yields 

2 
N a v e  

3 
E~ = B 'e e 

Equations 48 and 49 are used as  the source function w i t h  a l e f t  as a 

f ree  parameter. 

Extensive testing and usage of this supathermal package for  the 

This energy can be expressed i n  terms of the distribution function as 

and the number o f  electrons i s  given by 

SUPER code i s  being carried out. A complete documentation of the supra- 

19 
thermal code will be available as an internal theory technical note. 

Theoretical interpretationz0 and design of  experimentsz1 have been completed 

through simulations including the effects  of suprathermals. 

of theory and experiment, i t  will be possible to  work backwards th rough 

the numerical simulations t o  p i n  down the f ree  parameters i n  equations 

such as (48 and (49) .  

understanding of the suprathermal electron generations processes. 

By a comparison 

Ultimately this should be a direct  guide to  an 
7 
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TABLE 1 

Two-Fluid Equation - Lab Frame 

Con t i  nui t y  Equa t ion  

- + 8-  (neue )  = 
'"e 

a t  

MOMENTUM EQUATION 

- - -  
- - Ken - (m n U ) + V *  meneueue + V-p, + n,eF = -Kei a t  e e e  

a 

- - - -- a 
- a t  ( m I n I u I )  + V* m I n I u i u i  + v * p I  - ZnIei? = - K i e  - Kin 

meneue + m I n I u I  
where = 

'ene + ' I ~ I  

Poisson's Equations 

8-f = 4.rre(zni - ne - n n )  



FIGURE 1: 

FIGURE 2: 

FIGURE CAPTIONS 

Velocity distribution function i n  streaming model 

Charge separation equil ibriation time as a fu'nction 

o f  thermal electron temperature. 
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