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Abstract

In this contribution, we propose a mathematical framework and its numeri-
cal implementation for thermo-electro-viscoelasticity taking into account field-
dependence of the relevant material parameters appearing in the constitutive
model. Polymeric materials are typically viscoelastic and highly susceptible to
thermal fluctuations. Several experimental studies suggest that major material
parameters appearing in a constitutive model of a thermo-electro-mechanically
coupled problem evolve with respect to temperature as well as the applied elec-
tric field. Hence we propose a framework for the realistic modelling of polymeric
materials under coupled thermo-electro-mechanical loads in which the temper-
ature and electric field are not only considered as independent fields but also
show an effect on the material parameters. Furthermore we present the numer-
ical discretization of the coupled balance laws within the context of the finite
element method. To demonstrate the performance of the proposed thermo-
electro-mechanically coupled framework, several boundary value problems are
solved numerically.

1. Introduction

Among the class of smart materials, electro-active polymers (EAPs) drew special
attention in the past decade thanks to their large actuation mechanisms and
relative low production cost. Upon the application of an external electric field,
EAPs can undergo both changes in size and shape as well as in their mechanical
attributes, such as stiffness or viscosity. Potential applications of EAPs have
already been provided in a large variety of engineering fields, e.g. artificial
muscles in soft robotic mechanisms, optical membranes for shape correction in
lenses, or energy harvesting [32, 51], to mention a few. Due to the interplay of
the mechanical and the electric field the system of governing equations needs
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to be solved in coupled form, cf. [17, 23, 57]. The deformation of the polymer
is mainly due to two different electro-mechanical forces, cf. Vogel et al. [53].
Firstly, the Maxwell stress that arises due to the electric field that penetrates
free space and matter alike and secondly, the electrostriction that is due to
intramolecular electrostatic forces of the material. For exhaustive reviews on
the potential applications and related mathematical formulations for EAPs the
reader is referred to [6, 19].
Despite great progress in the recent decades on the theoretical formulations and
numerical modelling of electro-active polymers in finite strain regime, experi-
mental works related to either pure or composite EAPs are very rare in the
literature. Wissler et al. [59] conducted experiments on an acrylic type poly-
mer under uncoupled electro-mechanical loading while Johlitz et al. [31] did
a rigorous experimental characterization of silicone-based polyurethane mate-
rials. Diaconu et al. [13] studied the electro-mechanical properties of a syn-
thesized polyurethane elastomer film-based polyester. To illustrate the time-
dependent viscoelastic behavior of VHB 4910 polymer under pure mechanical
loading, a comprehensive experimental study was presented in Hossain et al.
[27]. Moreover, a micro-mechanically motivated constitutive Ansatz was pre-
sented to model the experimental results. Inspired by this work, a comprehen-
sive characterization of the electromechanically coupled properties of VHB 4910
polymer was proposed in Hossain et al. [28].
Concerning the constitutive modelling of electro-elasticity at finite strains, sev-
eral efforts have been made in recent years from various perspectives. In a series
of papers, Dorfmann and Ogden [17, 18, 19] and Bustamante and Ogden [8, 9]
proposed finite strain models of electro-elasticity which are mainly based on
various coupled invariants. Other efforts in formulating constitutive modelling
of electro-elasticity discarding time-dependence are due to Gao et al. [23], Zhao
and Suo [61], Henann et al. [23], Shariff et al. [47], Thylander et al. [49]. In or-
der to capture the underlying inhomogeneous behaviors of particle-filled EAPs,
Bustamante [8] and Hossain and Steinmann [26] proposed mathematical for-
mulations of electro-elasticity that incorporated transverse and dispersion-type
anisotropy, respectively. For the time-dependent viscoelastic behavior of EAPs,
Ask et al. [2] modelled the electrostrictive behavior of such materials by using a
phenomenological constitutive approach. Similarly, extending the Ogden-type
viscoelastic model which was originally devised by Reese and Govindjee [46],
Büschel et al. [7], Nedjar [39], Wang et al. [58], proposed electro-viscoelastic
models using a multiplicative decomposition of the deformation gradient into
an elastic part and a viscous part of the mechanical deformation. In contrast to
the works of Ask et al. [2], Nedjar, Wang et al. [58], Büschel et al. [7], Thylan-
der [48]; Vogel et al. [53] formulated their constitutive relation considering the
influence of the electric field also on the viscous response.
The finite element implementation of the electro-mechanically coupled prob-
lem is an active area of research. Variational formulations for the governing
equations of the coupled electro-mechanical problems are a prerequisite for the
finite element computation. Considering the nearly incompressible behavior of
the rubber-like bulk material, Bustamante et al. [9], Vogel [53] devised varia-
tional principles using a three-field formulation. In a series of papers Gil and
Ortigosa [24] and Ortigosa et al. [42] proposed a new constitutive framework
with finite element implementations for large strain electromechanics based on
convex multi-variable strain energies. Most of the earlier numerical formulations
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of EAPs neglected the free space contribution. However, very recently Vu and
Steinmann [56], Pelteret et al. [43], Nedjar [40] provided a computational frame-
work for quasi-incompressible electro- and magneto-elastic solids immersed in
free space.
Polymeric materials are inherently prone to temperature fluctuations which are
almost impossible to prevent during their application due to the high electric
voltages and various dissipation mechanisms responsible for temperature vari-
ations. Despite that, all of the above-mentioned modelling approaches discard
the temperature dependence in formulating electro-mechanical problem. In the
works of Vertechy et al. [20, 52] a solution to the thermo-electro-mechanically
problem can be found, whereas very recently Mehnert et al. [36] proposed a
framework for thermo-electro-elasticity which was extended to the case of finite
strain thermo-magneto-mechanical problems in Mehnert et al. [37]. A finite el-
ement implementation of the thermo-electro-elasticity framework was presented
in Mehnert et al. [38] with several boundary value problems. However, in
these contributions the rate-dependence of the underlying polymeric material
was discarded for the sake of simplicity. Moreover, in these contributions it was
assumed that the relevant material parameters appearing in the framework are
sensitive neither to the applied electric field nor to the temperature despite a
number of experimental evidences [14, 5, 30] that suggest that important ma-
terial parameters are very sensitive to temperature variations. Hence, both the
temperature sensitivity as well as the electric-field dependence of the constitu-
tive parameters need to be included in the modelling framework.
In this contribution, a rate-dependent thermo-electro-viscoelastic constitutive
model is proposed where different material parameters are varied with tem-
perature and electric fields. This paper is intended as the initial part of a
series of contributions with the ultimate goal to connect and verify a continuum
modelling approach with realistic experimental data. To this end the thermo-
electro-mechanical modelling framework presented herein will be compared with
data from electro-mechanical and thermo-electro-mechanical experiments. This
paper is organized as follows. In Section 2, the finite strain theory of electro-
mechanics is briefly reviewed where at first relevant nonlinear kinematics and
balance laws in the material setting are illustrated. In this chapter we also
present the necessary constitutive equations and sketch briefly the numerical
discretization of the balanced laws via the finite element method. Section 3
focuses on the key contribution of the paper, i.e. the constitutive modelling
of thermo-electro-viscoelasticity with field dependent material parameters. In
Section 4 two distinctly different boundary value problems are presented in or-
der to illustrate the capabilities of the derived modelling approach. Section 5
concludes the paper with a summary and an outlook to future works.

2. The finite strain theory of thermo-electro-mechanics

In the following chapter we briefly present a number of basic kinematic quanti-
ties, the balance equations in the material configuration, the constitutive equa-
tions and the necessary steps for the solution of the thermo-electro-mechanical
problem using the finite element method. For a more detailed representation the
reader is referred to [17, 53, 55] or our previous works on the topic [36, 38, 37].
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2.1. Kinematics

In the reference configuration B0 of a nonlinearly deforming body B the position
of a physical point is defined by its position vector X whereas x denotes the
corresponding position in the deformed configuration Bt. The two configura-
tions are connected via the nonlinear deformation map ϕ, such that x = ϕ(X).
Using ϕ we can introduce the deformation gradient F = Grad ϕ as the gra-
dient of the deformation map with respect to the material coordinates, with
the corresponding Jacobian determinant J = det(F ). Furthermore, we can use
the deformation gradient F for the definition of the right Cauchy-Green tensor
C = F TF and its isochoric counterpart C = J− 2

3C. In this work a deformation
due to a combined thermal and electro-mechanical loading is considered. Thus,
following [34], we introduce a multiplicative decomposition of the deformation
gradient into a thermal part FΘ = exp(α∆Θ)I, c.f. [22], that captures the
thermal expansion, and an electro-mechanical deformation FEM

F = FEMFΘ (1)

We here introduce the thermal expansion coefficient α and the temperature
difference ∆Θ which results in the decomposition of the Jacobian determinant
into

J = detF = detFEM detFΘ = JEMJΘ,

with JΘ = exp(3α∆Θ) and JEM = J exp(−3α∆Θ).
(2)

As the thermal expansion is purely volumetric it holds that the isochoric Cauchy-
Green Tensor capturing the combined deformation is equal to the electro-
mechanical contribution, i.e.

C = CΘCEM = CEM . (3)

Finally, as rubber-like materials can be assumed to be incompressible at constant
temperature the decomposition between the electro-mechanical and the thermal
deformation resembles a split into a purely isochoric and a purely volumetric
deformation. In this case the we can state that

C = CEM with JEM = 1 and J = JΘ. (4)

2.2. Balance equations

In the presence of matter, the constitutive relation between an electric field ❊
and the electric displacement in the referential configuration reads❉ = ε0JC

−1 ·❊+P,
with the electric polarization P and the electric permittivity of vacuum ε0 =
8.85 × 10−12 F/m. In the absence of matter, the polarization vanishes and we
can define the vacuum electric displacement ❉ε := ε0JC

−1 ·❊. The behavior
of the electric field in the material configuration is governed by the Maxwell
equations which take the form

Div ❉ = 0, Curl ❊ = 0 in B0. (5)

The expressions Div and Curl are the corresponding differential operators de-
fined with respect to the material position vector X. The second Maxwell
equation is fulfilled a priori when the electric field ❊ is derived from a scalar
electric potential φ, i.e.

❊ = −Grad φ, in B0. (6)
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In electro-mechanics the balance of linear momentum takes the form

Div P tot + b0 = 0 in B0, (7)

with the total Piola stress tensor P tot, which can be decomposed into a purely
mechanical contribution P and a ponderomotive contribution P pon the latter
of which contains the polarization stress P pol and the Maxwell stress Pmax [36].
We complete our description with the formulation of the necessary boundary
conditions that can be defined as

−❉ ·N = ˆ̺f
0
, on ∂B̺

0
and P tot ·N = t

p
0
, on ∂Bt

0, (8)

where N is the outwards pointing surface normal, tp
0

are the mechanical trac-

tions prescribed on the part of the boundary ∂Bt
0 and ˆ̺f

0
is the density of free

surface charges per undeformed area [54] on the part of the boundary ∂B̺
0
.

2.3. Derivation of constitutive equations

As a starting point for the derivation of the constitutive equations we use
the local form of the balance of energy in the material configuration. For the
quasi static case this reads

U̇ = P : Ḟ − Div Q+R+❊ · Ṗ+ P pol : Ḟ . (9)

Here we introduce the change in the internal energy density per unit undeformed
volume U̇ , the heat source R and the heat flux vector Q, which can be calcu-
lated from the gradient of the absolute temperature Θ using the Fourier type
relation Q := −κconJC

−1 · Grad Θ where κcon is the isotropic heat conductiv-
ity. Next we introduce the dissipation power density D = D(X, t) ≥ 0 that
can be decomposed into the dissipation power density due to the heat conduc-

tion Dcon = −
Q

Θ
· Grad Θ ≥ 0 and the local dissipation power density Dloc [55]

which can be defined in the form of the Clausius-Planck inequality

Dloc = ΘḢ − U̇ + P : Ḟ +❊ · Ṗ+ P pol : Ḟ ≥ 0, (10)

using the entropy H. It should be noted that in the case of a reversible process,
the local dissipation term vanishes. With the help of a Legendre transformation
[11] a formulation for the energy density Ψ(F ,Θ,❊) can be obtained as

Ψ(F ,Θ,❊) = U −ΘH −❊ ·P. (11)

Using this energy density the Clausius-Planck inequality transformed to

Dloc = −Ψ̇− Θ̇H + [P + P pol] : Ḟ − ❊̇ ·P ≥ 0. (12)

Note that in the formulation of Ψ(F ,Θ,❊) the energy that is stored in the
electric field itself is not taken into account. In order to consider this en-
ergy contribution as well, we have to amend the energy density by the term
E(F ,❊) = − 1

2
ε0J [❊ ⊗ ❊] : C−1 which leads to the amended total energy

density per unit volume in B0 [15, 16]

Ω(F ,Θ,❊) = Ψ(F ,Θ,❊) + E(F ,❊). (13)
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When the amended energy function Ω(F ,Θ,❊) is inserted into the Clausius-
Planck inequality we find a formulation that contains the total Piola stress and
the electric displacement

Dloc = −Ω̇− Θ̇H + P tot : Ḟ − ❊̇ ·❉ ≥ 0, (14)

which further establishes the constitutive relations for the total Piola stress
P tot, the electric displacement ❉ and the entropy H [36]

P tot =
∂Ω

∂F
, with Pmax =

∂E

∂F
, ❉ = −

∂Ω

∂❊
, H = −

∂Ω

∂Θ
. (15)

Next we derive the first law of thermodynamics in the entropy form by combining
the Clausius-Planck inequality (12) with (9), resulting in

c(Θ)Θ̇ = R− DivQ+Θ∂Θ

[
P tot : Ḟ −❉ · ❊̇

]

︸ ︷︷ ︸
H

+Dloc, (16)

where we introduce the specific heat capacity c(Θ) at constant deformation and
constant electric field.We can finalize the thermal description of our system by
imposing boundary conditions for the thermal system in addition to the ones for
the mechanical and the electric problem defined earlier. We impose Dirichlet
boundary conditions for the temperature and Neumann boundary conditions
for the heat flux on the boundary ∂B0 = ∂BΘ

0

⋃
∂BQ

0
.

Θ = Θp on ∂BΘ

0 and Q ·N = Q on ∂BQ
0
. (17)

2.4. Derivation of FEM discretization and linearization

Equations (5), (7) and (16) in combination with the respective bound-
ary conditions present a complete description of the thermo-electro-mechanical
problem. Instead of solving the entire system monolithically, we partition the
thermo-electro-mechanical system into an electro-mechanical subsystem, that
is solved at a constant temperature distribution, and a thermal sub-problem,
which is calculated at constant displacement and electric potential. In this
staggered approach we use Newton’s method to solve both subproblems simul-
taneously with an information exchange after each iteration i. In order to find
a formulation of the virtual work equation this system of equations has to be
transformed from the strong form into the weak form. We find a formulation
that contains both internal (•)int and external contributions (•)ext

Gϕ,φ(ϕ, φ, δϕ, δφ, t
p
0
, b0, ˆ̺

f
0
)|Θ =

∫

B0

P tot : ∇Xδϕ+❉ · ∇Xδφ dV

︸ ︷︷ ︸
Gint

ϕ,φ

−

∫

∂Bt

0

t
p
0
· δϕ dA−

∫

B0

b0 · δϕ dV +

∫

∂B̺
0

ˆ̺f
0
δφ dA

︸ ︷︷ ︸
Gext

ϕ,φ

= 0.

(18)

In the case of electro-mechanics the virtual internal work is the result of the
stresses and strains as well as the electric displacement and the electric field
whereas the virtual external work is due to external loads such as external forces
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and free surface charges. We can derive these terms for the thermal subproblem
in a similar fashion as presented in [21, 22]. In combination with the boundary
values expressed in equation (17) we can use equation (16) to derive

GΘ(Θ, δΘ,H, R,Dloc,Q)|ϕ,φ =

∫

B0

c(Θ)Θ̇δΘ+∇XδΘ · κcon∇XΘ dV

︸ ︷︷ ︸
Gint

Θ

−

∫

B0

[H+R+Dloc]δΘdV −

∫

∂BΘ

0

QδΘdA

︸ ︷︷ ︸
Gext

Θ

= 0.

(19)

For the finite element implementation of the thermo-electro-mechanical frame-
work we have to linearize and discretize the internal contributions of the virtual
work Gint

Θ
and Gint

ϕ,φ. The linearized from of the electro-mechanical subproblem
reads

∆Gϕ,φ(ϕ, φ, δϕ, δφ)|Θ =
∫

B0

∇Xδϕ :
∂P tot

∂F
: ∇X∆ϕ−∇Xδϕ :

∂P tot

∂E
· ∇X∆φ dV

+

∫

B0

∇Xδφ ·
∂❉

∂F
: ∇X∆ϕ−∇Xδφ ·

∂❉

∂E
· ∇X∆φ dV,

(20)

while the corresponding linearization of the temperature variation is

∆GΘ(Θ, δΘ)|ϕ,φ =

∫

B0

c(Θ)

∆t
δΘ∆Θ+∇XδΘ · κcon∇X∆Θ dV. (21)

Here we have introduced a first order accurate implicit backward Euler dis-
cretization of the temperature rate Θ̇ ≈ [Θt − Θt−1]/∆t with the current time
iterate t and the time increment ∆t. Finally we discretize the geometry of the
body B0 to result in a finite-element formulation. For this we introduce the
vector and scalar valued shape functions Nα and Nα corresponding to each
degree-of-freedom α, which are used for the approximation of the respective
field variables. Focusing on a single element we find the following formulation
for the displacement, its variation and the corresponding gradients

ϕ(X) ≈
∑

α

ϕαNα(X), δϕ(X) ≈
∑

α

δϕαNα(X),

∇Xϕ(X) ≈
∑

α

ϕα

∂Nα(X)

∂X
, ∇Xδϕ(X) ≈

∑

α

δϕα

∂Nα(X)

∂X
.

(22)

In the same fashion, we can find the interpolation of the electric potential φ and
of the temperature. The finite-element formulation is completed by inserting
the approximations into the respective functionals. For the residual equations
(18) and (19) this results in

Gu,v(ϕ,ϕ, δϕ, δϕ, t
p
0
, b0, ˆ̺

f
0
) = δϕα

[ ∫

B0

P tot :
∂Nα(X)

∂X

]

− δϕα

[ ∫

∂Bt

0

t
p
0
·Nα(X) dA−

∫

B0

b0 ·Nα(X) dV
]

+ δφα

[ ∫

B0

❉ ·
∂Nα(X)

∂X
dV

]
+ δφα

[ ∫

∂B̺
0

ˆ̺f
0
Nα(X) dA

]
= 0,

(23)
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GΘ(Θ, δΘ,H, R,Dloc,Q) = δΘα

[ ∫

B0

c(Θ)Θ̇Nα +
∂Nα

∂X
· [κconΘα]

∂Nα

∂X
dV

−

∫

B0

[H+R+Dloc]NαdV −

∫

∂BΘ

0

QNαdA
]
= 0.

(24)

3. General framework for a thermo-electro-viscoelastic energy func-

tion

In our previous contribution to thermo-electro-elasticity [36] the specific heat
capacity is assumed to be temperature independent, i.e. c(Θ) = c0 = const.

When we use the definition of c(Θ) = −Θ ∂2
Ψ

∂Θ∂Θ
as by starting point for the

derivation of the energy function Ψ(F ,Θ,❊) this leads to a linear scaling of the
isothermal energy contribution W0(F ,❊) with the temperature in the form

Ψ(F ,Θ,❊) =
Θ

Θ0

W0(F ,❊)−
[
Θ−Θ0

]
M(JΘ)−c0

[
Θ−Θ0−Θ ln

( Θ

Θ0

)]
, (25)

where M(JΘ) describes the purely volumetric thermal expansion of the material.
As it is well documented for example in the works of Treloar [50] and Nowinski
[41] the mechanical material parameters such as the shear modulus and the bulk
modulus exhibit a nonlinear dependency on the temperature. Thus in order to
find a more generalized and realistic formulation we follow the notions presented
in Reese [45] and define the specific heat capacity to be temperature dependent
in the form

c(Θ) = c0 −Θ
∂2g(Θ)

∂Θ2
W0(F ,❊), (26)

where g(Θ) is a temperature sensitive scaling function. This results in a non-
linear relation between the temperature and the energy function in the form

Ψ =

[
Θ

Θ0

+ g(Θ)

]
W0(F ,❊)−

[
Θ−Θ0

]
M(JΘ)−c0

[
Θ−Θ0−Θ ln

( Θ

Θ0

)]
. (27)

This framework can now be used for the formulation of thermo-electro-viscoelastic
material behavior. Therefore we propose a modification of the isothermal en-
ergy contribution W0(F ,❊) into a form W̃0(F ,❊,Ai) that depends not only on
the deformation gradient and the electric field but also on a number of tenso-
rial internal variables Ai. The subscript i indicates the possibility of multiple
viscous mechanisms, the behavior of which are represented by the strain-like
internal variables. Furthermore we introduce an additive decomposition of the
isothermal energy into an isochoric contribution W̃iso(C,❊,Ai) and a volumet-

ric contribution W̃vol(JEM), the latter vanishes if we consider the material to be
incompressible at constant temperature. In the next step the isochoric energy is
further decomposed into an elastic part W̃ e

iso(C,❊) and a viscous contribution

W̃ v
iso(C,❊,Ai) that captures the time dependent behaviour [25]. In order to

gauge both the elastic and the viscous energy contributions independently from
each other we also transform the specific heat capacity into a form that contains
the separate scaling functions ge(Θ) and gv(Θ) which are multiplied with the
respective energy contribution, resulting in

c(Θ) = c0 −Θ
∂2ge(Θ)

∂Θ2
W̃ e

iso(C,❊)−Θ
∂2gv(Θ)

∂Θ2
W̃ v

iso(C,Ai) (28)
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These modifications ultimately lead to a thermo-electro-viscoelastic energy func-
tion of the form

Ψ =

[
Θ

Θ0

+ ge(Θ)

]
W̃ e

iso(C,❊) +

[
Θ

Θ0

+ gv(Θ)

]
W̃ v

iso(C,Ai)

−
[
Θ−Θ0

]
M(JΘ)− c0

[
Θ−Θ0 −Θ ln

( Θ

Θ0

)] (29)

4. Numerical examples

In the next sections we will present two benchmark boundary value prob-
lems that are evaluated using an in-house finite element code developed with the
FE library deal.II [3, 4] following the previously described total Lagrangian
approach. For this we will initially present the specification of the energy con-
tribution introduced in the previous chapter. Subsequently we show the results
of the first example problem, the uniaxial loading-unloading of an electro-active
material sample which we have experimentally conducted in our previous works,
cf. Hossain et al. [27]. The second example contains a more complex geome-
try, namely a microfluidic pumping device, and is meant to illustrate both the
capabilities of the proposed thermo-electro-viscoelastic model and the influence
of the field dependent material parameters. The reader should be aware that
especially under the influence of strong electric fields electroactive materials are
prone to localization and multiplicity effects [62] which are not considered in
this contribution.

4.1. Specification of the energy function
Now we will present the specifications for each of the energy contributions

in Equation (29). A simple formulation capturing the thermal expansion can
be found in the literature, e.g.

M(JΘ) = 3ακ
ln(JΘ)

JΘ
, (30)

where κ is the bulk modulus and α is the thermal expansion coefficient. Through-
out the following calculations we assume that α = 20 · 10−6K−1. The value for
κ results from the assumption that the material is nearly incompressible at con-
stant temperature, i.e. the Poisson ratio ν is selected as ν = 0.499. Next we
follow the work of Hossain et al. in [27] and use the free energy function specifi-
cally derived for polymeric materials in order to correctly model the mechanical
material response of an electro-active polymer. For the ground state elasticity, a
micro-mechanically motivated energy is devised which is based on an eight chain
representation of the underlying polymeric structure. The so-called eight-chain
model correctly captures the strain of the network deformation while it requires
only a small number of material parameters, namely the chain segment N and
the isothermal elastic shear modulus µ̃e(❊) which may depend nonlinearly on
the applied electric field. In order to capture the interaction between the elec-
tric field and the mechanical deformation we amend the eight-chain model with
the terms c1[❊ ⊗ ❊] : I and c2[❊ ⊗ ❊] : C, resulting in the elastic part of the
isochoric free energy contribution

W̃ e
iso(F ,❊) = Nµ̃e(❊)

[
γλr + ln

(
γ

sinh(γ)

)]
+ c1[❊⊗❊] : I + c2[❊⊗❊] : C,

(31)
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where c1 and c2 are electro-mechanical coupling parameters. In deriving the
above formulation, the Langevin model for the statistics of an individual chain

with the relative chain stretch λr = λ√
N

=

√
I1

3N
is introduced, where I1 is the

first invariant of the isochoric part of the right Cauchy-Green tensor C. Among
other procedures, the inverse Langevin function γ is approximated here via the

Pade approximation, i.e. γ ≈ λr

3− λ
2

r

1− λ
2

r

[27]. In the context of this contribution

we do not consider the influence of a possible unfolding of the polymer chains
which would lead to a volumetric deformation of the material, the interested
reader is referred to [12]. For the viscous part of the isochoric energy function

W̃ v
iso(C,Ai) we adopt a formulation given by Linder et al. [33], i.e.

W̃ v
iso,i(C,Ai,❊) =

s∑

i=1

1

2
µ̃v
i (❊)[[Ai : C − 3]− ln(det(Ai))], (32)

where µ̃v
i (❊) is the isothermal viscous shear modulus that may also depend

nonlinearly on the electric field. For the internal variables Ai, a thermody-
namically consistent evolution equation needs to be formulated. Exploring the
micro-mechanical roots of relaxation mechanisms of polymeric materials, Linder
and co-workers propose a finite strain linear evolution law, which was initially
introduced by Lubliner [35], that reads

Ȧi =
1

τ̃i(❊)

[
C

−1

−Ai

]
. (33)

We assume that the relaxation times τ̃i(❊) may be influenced by the presence
of an electric field but are otherwise temperature independent as suggested by
Dippel et al. [14].
Throughout the following calculations the formulation for the field dependent
material parameters each consist of a respective ground state contribution and
a coupling contribution that depends quadratically on the electric field, i.e.

µ̃e(❊) = µe + µe[❊⊗❊] : I,

µ̃v
i (❊) = µv

i + µv
i [❊⊗❊] : I,

τ̃i(❊) = τi + τ i[❊⊗❊] : I.

(34)

The selected ground state values of the material parameters are listed in Table 1.
The mechanical material parameters are taken from [27] and correspond to the
dielectric polymer VHB 4910, while the electro-mechanical coupling parameters
are the same as in [1]. The remaining material parameters not presented in
Table 1 are given in the context of the following examples.

4.2. Parameter study

In the first example a rectangular specimen with the dimensions 10 mm
(width) x 100 mm (length) and a thickness of 1mm of electro-active material
is put under a pure mechanical uniaxial loading-unloading deformations. The
sample is initially stretched in one direction with a constant strain rate of λ̇ =
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µe c1 c2 N µv
1 µv

2 µv
3 µv

4

13.65 1.00 1.763 · 10−9 11.76 · 105 181.17 55.53 10.5915 19.733
− − − − τ1 τ2 τ3 τ4
− − − − 0.055 5.172 1.6 · 10−6 96.769

Table 1: Various material constants used in the computations.
µ
e and µ

v

i
in N/mm2, τi in s, c1 and c2 in N/V2

0.02s−1 until a maximum strain of 300 % is reached. Subsequently the stretch
of the material is released at the same strain rate. During the loading and
unloading processes, the two directions perpendicular to the loading direction
are free to move, see Fig 1 (a). This deformation results in a hysteresis curve
of the applied force due to the viscoelastic nature of the elastomeric material.
Now this example will be simulated to examine the influence of an electric
field and a change of the overall temperature on the material behaviors. To
distinguish between the influence of the two non-mechanical fields (electric and
temperature) on the material response we will initially examine the isothermal
electro-mechanical problem before considering a temperature change.

4.2.1. Electro-mechanical loading case

In addition to the prescribed mechanical stretch, a constant electric potential
difference in the thickness direction of the sample is applied which induces an
electric field perpendicular to the mechanical stretch direction. In order to
characterize the material behaviour we will plot the force that is required to
achieve a specific stretch of the sample.

• Field independent material parameters

Figure 1(b) depicts the case where the relevant material parameters are
independent of the electric field, i.e. µe = 0, µv

i = 0 and τ i = 0.

∆φ

λ̇

(a) A rectangular sample with appropriate
boundary conditions
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(b) Force-stretch relation for electric field in-
dependent material parameters

Figure 1: Geometric setup of the sample (a) and material response for an electro-mechanical
load with material parameters that do not depend on the electric field (b)
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It is clearly visible from Figure 1(b) that even a considerably strong elec-
tric field only has a minor influence on the material response. As the
material parameters are assumed to be independent of the electric field,
their effect on the applied force is only due to the deformation of the
electro-active material which is significantly smaller than the prescribed
mechanical deformation. Furthermore, the figure reveals that the influ-
ence of the electric field decreases when the sample is stretched which
might be counterintuitive as the prescribed mechanical stretch leads to a
thinner sample in the thickness direction. For a constant potential differ-
ence in the thickness direction this thinner sample results in an increased
electric field. Nonetheless its effect on the necessary force reduces because
the resulting stretch that is induced does not increase linearly with the
electric field as does the prescribed mechanical stretch. This results in a
decreased difference in the applied force between the purely mechanical
and the electro-mechanical case. Lastly we can see that the form of the
hysteresis does not change significantly with the application of an electric
potential difference but the curve is rather displaced slightly.

• Field dependent elastic shear modulus

In a next step, we assume that the isothermal elastic shear modulus
µ̃e(❊) depends quadratically on the electric field while the other mate-
rial parameters are kept independent from the applied electric field, i.e.
µe = ±0.1 · 10−8 N/(Vmm)2, µv

i = 0 and τ i = 0. This assumption yields
two possibilities, i.e. the electric field leads to a stiffening of the material,
when µe > 0, and a softening of the material, when µe < 0. In the absence
of appropriate experimental evidence, the base value for the shear mod-
ulus µe is taken from literature, e.g. Bustamante [10]. The evaluation of
this parameter is however a primary aim of our forthcoming experimental
works. The resulting material response for the case when µe < 0 is de-
picted in the left plot of Figure 2, while for µe > 0, the result is presented
in the right plot of Figure 2.

In contrast to the previous case of field independent material parameters,
in the current situation the difference in the results is clearly visible which
can be explained by the fact that the electric field now has two different
effects on the material. On the one hand, there is still a deformation of
the material due to the induced electric field. On the other hand, the
stiffness of the material is altered when an electric field is applied as the
shear modulus changes. This leads to a much more distinct effect even at
smaller values of the electric field compared to the previous case. For a
negative value of µe that corresponds to a softening of the material, we
can see that the applied forces decrease, whereas the value increases for
a positive value of µe. More importantly though it can be seen that the
influence of the electric field is increased with a larger value of the pre-
scribed mechanical stretch. As mentioned before the mechanical stretch
in one direction of the sample leads to a decrease in the perpendicular
directions which consequently results in an increase of the electric field
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Figure 2: Material response for an electro-mechanical load with an isothermal elastic shear
modulus µ̃(❊) that depends quadratically on the electric field

as the potential difference in thickness direction is kept constant. As the
softening of the material is assumed quadratically to the electric field, the
increased stretch leads to a more pronounced effect which even influences
the shape of the loading-unloading hysteresis loop. For the case when the
material softens the opening of the hysteresis loop is much wider, i.e. the
point at which the force becomes zero is at a much earlier state of the
unloading process. In contrast, for a stiffening effect by the electric field
we can see that the force vanishes at a later point of the unloading process
and therefore the opening of the hysteresis loop becomes smaller.

• Field dependent viscous shear moduli

Similar to the elastic case discussed earlier, a quadratic field dependency
of the electric field on the viscous shear moduli is assumed. Due to the
lack of experimental data we select the same value for all viscous shear
moduli, i.e. µv

i = ±0.1·10−8 N/(Vmm)2, which is equal to the one we have
selected for the softening parameter µe in the previous case. However, the
elastic shear modulus and the relaxation time are assumed to be electric
field independent, i.e. µe = 0, τ i = 0. Similar to the elastic modulus, it
can be assumed that the electric field either decreases (left plot in Figure
3) or increases the viscous shear moduli (right plot in Figure 3). The
values for µv

i are given in Table 1.

When compared to the previous case we can see that the effect of the field
dependency on the loading curve is similar, as the difference between the
force for the purely mechanical loading case and the electro-mechanical
loading case increases with an increased value of the prescribed mechan-
ical stretch. Furthermore the softening parameter µv

i also has a similar
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Figure 3: Material response for an electro-mechanical load with isothermal viscous shear
modulus µ̃

v

i
(❊) that depend quadratically on the electric field

influence on the maximum value of the applied force, i.e. for µv
i < 0

the value is decreased whereas the maximum force increases for µv
i > 0.

On the other hand, the effect on the unloading curve is exactly opposite,
namely that the hysteresis becomes smaller when the shear moduli are
decreased and vice versa.

• Field dependent relaxation times

Finally, the effect of the applied electric field on the relaxation times is
tested. The elastic and the viscous shear moduli are assumed to be in-
dependent of the electric field, i.e. µe = 0, µv

i = 0. The absolute values
for τ i presented in Table 2 are selected in such a way that the relaxation
times do not become smaller than zero for the applied field strengths.

|τ1| |τ2| |τ3| |τ4|
0.1 · 10−8 0.1 · 10−6 0.1 · 10−12 0.5 · 10−5

Table 2: Selected values for τ i in s/V2

As before we will examine the fact that the effect of electric field either
causes decrease (left plot in Figure 4) or increase of the relaxation times
(right plot in Figure 3).

When we examine the influence of the electric field on the loading curve
we observe an effect that is similar to the previous case which means the
viscous shear moduli are field dependent. A decrease in the relaxation
time leads to a decrease in the maximum force whereas an increase in
the relaxation time increases the applied force. However the effect on
the unloading curve differs from the previous case as the opening of the
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Figure 4: Material response for an electro-mechanical load with relaxation times τ̃i that
depends quadratically on the electric field

hysteresis is decreased for both an increase and a decrease of the relaxation
times, i.e. in both cases the point at which the applied force vanishes is
later if an electric field is applied when compared to a purely mechanical
loading.

4.2.2. Thermo-mechanical loading case

In this section, the influence of an overall temperature increase (decrease) of
the test sample will be investigated. To distinguish the temperature effect from
the electric field, we will concentrate, at first, on the thermo-mechanical loading
case without a potential difference.

• Linear scaling of the isothermal energy contributions

Initially the formulation proposed in our previous publications [36, 37]

will be used, i.e. the isothermal energy contributions W̃ e
iso and W̃ v

iso from
Equation (29) are scaled linearly with the temperature field. Thus the
scaling functions ge(Θ) and gv(Θ) are set to zero. The resulting material
response for the loading-unloading test is plotted in Figure 5 for the case
that the temperature of the sample is equal to the reference temperature
of 293 K and a temperature increase of +50 K and +100 K.

It can be seen that the temperature increase leads to an increase in the
applied force meaning that the material becomes stiffer when the tempera-
ture is increased which corresponds to the behavior described for example
in the work of Treloar [50]. Furthermore, the opening of the hysteresis
does not change when the temperature is altered as both the elastic and
the viscous energy contributions are scaled equally. In general the material
parameters are nonlinear functions of the temperature [46, 41]. Therefore,
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Figure 5: Material response for a thermo-mechanical load with a linear scaling of Ψ(F ,❊,Θ)

we will now change the scaling of the energy function using two possible
formulations available in the literature, i.e. at first scale the elastic shear
modulus [5] and then scale the viscous shear moduli [29]. Since both ap-
proaches provided in the literature [5, 29] assume the relaxation times τi
to be independent of the temperature, we follow the assumption in our
examples.

• Nonlinear scaling of the elastic isothermal energy contributions

Next the concept proposed by Behnke et. al [5] is adapted where only
the elastic energy contribution is scaled with the temperature whereas the
viscous energy contribution is kept temperature independent. Thus for the
scaling functions ge(Θ) and gv(Θ), the following expressions are assumed

ge(Θ) = −
Θ[tanh(b[Θ−Θ0])]

3

Θ0 + a
and gv(Θ) = 1−

Θ

Θ0

. (35)

The adapted values for the material parameters are a = 69.84 K and
b = 0.196 K−1 from [5] which lead to the material response depicted in
Figure 6.

Due to the selected material parameters the influence of the temperature
is much more pronounced for this scaling, thus in Figure 6 we present the
material response for a temperature change of ∆Θ = 5 K and ∆Θ = 10
K. More importantly though a temperature increase leads to softening of
the material and therefore to a decrease of the applied force. Furthermore
the form of the hysteresis changes as well, as we can see that the point
at which the force vanishes for the unloading procedure is reached at an
earlier state.

• Nonlinear scaling of the viscous isothermal energy contributions

Finally we adapt the approach advocated by Johlitz et. al [29]. In contrast
to the previous one the elastic energy contribution is now temperature
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Figure 6: Material response for a thermo-mechanical load with a nonlinear scaling of the
elastic shear modulus

independent whereas the viscous temperature contribution is scaled by a
nonlinear function. The scaling functions ge(Θ) and gv(Θ) take the form

ge(Θ) = 1−
Θ

Θ0

and gv(Θ) = −
Θ

Θ0

+ exp(c(1− (Θ/Θ0))), (36)

where the non-dimensional material parameter c = 55 is adapted from
[29]. Figure 7 presents the resulting material response.
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Figure 7: Material response for a thermo-mechanical load with a nonlinear scaling of the
viscous shear moduli

The value for material parameter c leads to a thermal sensitivity of the
material that is comparable to the one of the previous case. As before
the material softens when the temperature is increased thus resulting in
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a decrease of the applied force. However the scaling of the viscous shear
moduli leads to narrowing of the hysteresis when the temperature is in-
creased meaning that the material looses its viscous behavior at higher
temperatures.

4.3. Microfluidic pumping device

In the second example, a cylindrical microfluidic pumping device is simulated
with the proposed modelling framework. Figure 8(a) shows a sketch of a cross
section of half of the pump. This example was already presented in [38] for a
purely elastic case. We will now investigate the influence of a time dependent
material behavior on its functionality. The concept for this pump is based on the
work presented in [44] and consists of two diaphragm actuators that perform
a bulging motion when an electric field is applied in the thickness direction.
Such a device has the potential to be used, for example, as an implant for the
micro injection of drugs [60]. The unimorph diaphragm actuators each consists
of a layer of electro-active material that is sandwiched between two compliant
electrodes. One side of this arrangement is covered with an additional layer of
electro-passive material. Upon stimulation by an electric field in the thickness
direction the active material is compressed in the direction of the applied electric
field which leads to an extension in the perpendicular directions. As the electro-
passive layer does not undergo a similar extension, the actuator is forced into a
bulging motion.

electro-passive

material

electro-active

material

+

-

+

-

(a) Geometric setup (b) Finite element mesh

Figure 8: Geometric setup of the pump (a) and finite-element mesh of one eighth of the pump
(b)

The pumping device consists of a thick walled circular cylinder of electro active
material with a hight of 80 µm, an internal radius of 460 µm and a wall thickness
of 40 µm. The top and the bottom of the cylinder are sealed by a unimorph di-
aphragm actuator with an overall thickness of 40 µm. Furthermore the cylinder
has two holes with a radius of 50 µm on two opposing sides for fluid inflow and
outflow. As the geometry and the applied loading are symmetric we reduce the
finite element model to one eighth of the pump including a part of the connec-
tion channel as depicted in Figure 8(b). Thus symmetry boundary conditions
are prescribed on the cut surfaces of the model. Furthermore throughout the
calculations in this section, the temperature on the internal surfaces of the pump
is varied, resembling the case that a fluid with temperature different from the
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surrounding reference temperature is being pumped. This results in a tempera-
ture gradient over the material thickness allowing us to investigate the effect of
the temperature on the functionality of the device. The electric field that acti-
vates the displacement of the pump is induced by a potential difference between
the top and bottom surface of the unimorph diaphragm actuator. Additionally
it is assumed that the channel is rigidly connected to the exterior. Hence its
displacement is constrained. Initially we investigate the behavior of the pump
by performing a creep test. For the thermo-electro-viscoelastic problem at hand
this means that we increase the applied electric potential difference over a ramp
up time and subsequently hold the voltage fixed in order to characterize the
resulting creep of the material. In Figure 9 a plot of one half of the deformed
pump for the case is shown where the temperature of the internal surface is
increased by +50 K.

Figure 9: Plot of one half of the deformed pump. The color mapping represents the temper-
ature distribution throughout the model

The thermo-electro-viscoelastic problem is simulated in 100 time steps. In the
first 50 time steps, the electric potential difference is linearly increased to a
maximum value of 40 kV whereas in the next 50 time steps the voltage is kept
constant. The electro-active part of the pump consists of the same thermo-
electro-viscoelastic material as in the previous example while the passive layer
is assumed to be made of a material with the same thermo-mechanical properties
but missing the electric coupling, i.e. the passive layer will change its material
parameters due to the temperature but it will neither deform nor experience a
change in the material properties due to an applied electric field. This constel-
lation could be the case when the electro-active material consists of a polymer
matrix filled with electro-active particles whereas the passive material is made
of the same polymer without the particles. We distinguish between two cases:
(i) the material parameters do not depend on the electric field and only show
a linear dependency on the temperature, i.e. the scaling functions ge(Θ) and
gv(Θ) in Equation (29) vanish. In the second case (ii), the elastic shear mod-
ulus depends linearly on the electric field and the viscous shear moduli show a
dependence in the form that is presented in Equation (36).

• Simulation of the relaxation behavior

Figure 10 shows the displacement of the middle point of the internal top
surface of the pump over time for the cases when the electric field is applied
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over 10 s or 100 s. Additionally the temperature on the internal surface of
the pump is either decreased or increased from the reference temperature
of 293 K. The left plot in Figure 10 presents the case (i) whereas the right
plot shows the dependency as in the case (ii).
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Figure 10: Deformation of the middle point of the internal top surface of the pump over time

In general both plots in Figure 10 show three phases in which the pump is
deformed. Initially in the absence of an electric field, the displacement of
the pump is only due to the temperature change. That means an increase
of the temperature leads to an expansion of the material resulting in a
negative displacement at the start of the calculation whereas a decrease
of the temperature results in a contraction of the material. When the
electric potential difference is increased during the ramp up time of either
10 seconds (red lines) or 100 seconds (black lines) the displacement shows
a nonlinear behavior. Finally in the third phase the electric potential
difference is kept constant so that the deformation during this phase is
due to the creep of the material. The right plot in Figure 10 depicts
case (ii) in which the elastic shear modulus of the part of the pumping
device that consists of electro-active material depends quadratically on the
applied electric field. When we compare the deformation for the isothermal
loading between the cases (i) and (ii) it is visible that the deformation does
not change. This is due to the electrically non-active part of the pumping
device that does not change its material properties when an electric field
is applied. As its stiffness remains unchanged the resulting displacement
does not change either.

Now we concentrate on the influence of the temperature on the material
response. As is showed in the previous example the thermal effects in
the case (i) in which the material exhibits a linear dependency on the
temperature is significantly smaller than in the case (ii). Therefore in the
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first case a temperature change of ±50 K is selected, whereas in the second
case, the temperature is changed by ±5 K. This results in an effect of the
temperature with a comparable magnitude for both cases. We can see in
the left plot of Figure 10 that in the case (i) the deformation of the pump is
larger when the temperature is decreased. The plot shows that the initial
difference in the displacement due to the thermal expansion is canceled
out when the electric field strength increases. At the end of the holding
time we can see that, compared to the isothermal case, the displacement
increases when the temperature is decreased whereas the displacement
decreases for an increased temperature. In contrast, the material shows
the opposite behavior in case (ii) as depicted in the right plot of Figure
10. When the internal surface of the pump is heated up the displacement
increases as the material is softened whereas the material stiffens when
internal surfaces of the pump are cooled down, resulting in a decrease in
the deformation of the pump.

• Simulation of pumping cycles

Next the simulation is performed for a number of pumping cycles over a
specific time period. For a complete cycle, the applied potential difference
is initially increased until the maximum value of 40 kV is reached and
subsequently, without holding time, the voltage is decreased back to zero.
Both plots in Figure 11 depict the displacement of the middle point on
the internal surface of the top of the pump for three (black lines) and
six pumping cycles (blue lines). The dashed lines show the case when
the temperature on the internal surfaces of the pump is increased, i.e.
∆Θ > 0K. As in the previous examples, the sensitivity towards thermal
changes in the cases (i) and (ii) is significantly different. Therefore in
the first case we prescribe a temperature increase of 50 K whereas in
the second example, the temperature is increased by 5 K. As before the
left plot shows the displacement for the case (i) in which the material
parameters exhibit a linear temperature dependency and are insensitive
to the electric field, whereas in the right plot case (ii) is depicted in which
the viscous shear moduli depend non-linearly on the temperature and the
elastic shear modulus is quadratically connected to the electric field.

Due to the viscoelastic material behavior it is evident that the maximum
and the minimum displacement of the pump in each cycle depends on
the application time of the electric field. When the number of cycles is
increased it is clearly visible that the maximum displacement is reduced
whereas the remaining deformation after the electric field is decreased to
zero becomes larger. Thus the overall amplitude of the pumping motion
is reduced when the number of cycles is increased. Furthermore it can be
seen that during the first cycles the pumping amplitude is shifted until a
steady deformation level is reached.

When we concentrate on the influence of the temperature a similar be-
havior as in the previous example can be observed. Prior to the applied
electric field there is a negative displacement due to the thermal expansion
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Figure 11: Deformation of the middle point of the internal top surface of the pump over time

of the material. This is more pronounced in the left plot, as the tempera-
ture change is 50 K whereas it is only 5 K in the right plot. In case (i) the
material becomes stiffer due to the increased temperature, which cancels
out the difference in the displacement until the maximum of the applied
electric field is reached. When the electric potential difference is reduced
to zero the remaining displacement once again is solely due to the ther-
mal expansion leading to a more pronounced displacement of the pump
at the end of each cycle. In the case (ii) the behavior is reverse. Due to
the smaller temperature change, the initial displacement that stems from
thermal expansion is much smaller. However, when the pump deforms due
to the applied electric field we see that the displacement at the maximum
value of the electric field is significantly larger with a temperature gradient
when compared to the isothermal case. This is explained by the softening
of the material due to the applied electric field.

5. Conclusion and outlook

Electro-active polymers show a great potential for the development of new
and innovative technologies that make them special and interesting materials.
In this contribution we present a thermo-electro-viscoelastic material model that
can be used for the simulation of EAPs. A special focus is put on analyzing
the dependency of the material parameters on the applied electric field and the
temperature distribution. The developed model is further characterized numer-
ically by a parameter study analyzing the influence of the non-mechanical fields
on the material response. Furthermore the model capabilities are demonstrated
by an application relevant example. In our future work we will use the insight
gathered in the parameter study to replicate the material response from real-
istic electro-mechanical experiments. Eventually, our aim is to incorporate a
temperature change into the experiments as well as to completely connect our
model with experimental data.
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Highlights

• A mathematical framework for thermo-electro-viscoelasticity is presented

• We take into account a possible field-dependence of the relevant material param-

eters

• The work includes the numerical discretization of the balance laws for the FEM

• A number of example problems are presented
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