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Abstract. When simulating high Reynolds number two-phase flow, boundary layers develop at the

interface, which are much thinner compared to the capillary length-scales that are of interest. Resolving

such an interface layer is expensive and therefore it is often not resolved in a simulation.

Numerically such an underresolved interface layer results in a velocity discontinuity tangential to the

interface. We propose to include such tangential velocity discontinuities in our numerical model. This

results in a sharp two-fluid model for two-phase flow, where only the interface-normal component of the

velocity field is smooth. This condition is implicitly enforced via a new jump condition on the pressure

gradient, which we discretize using a multidimensional variant of the ghost fluid method [6].

Results are shown of breaking waves [2] as well as (breaking) waves impacting a solid wall [3] where

we compare to state-of-the-art methods [3, 4]. We show that our proposed method is able to accurately

simulate high Reynolds number two-phase flow without the need for resolving, or artificially thickening,

of the interface layer.

1 INTRODUCTION

Numerical simulations can facilitate in the understanding of the physics underlying the obeserved vari-

ability in impact pressures during breaking wave impacts [3]. One of the mechanisms deemed responsible

for pressure variability is the development of free surface instabilities at the wave crest. Numerical inves-

tigation of free surface instabilities on a breaking wave crest requires resolving the capillary length scales,

amongst which the Kelvin-Helmholtz length scale1 will be most restrictive. Due to viscous effects, an in-

terface layer will form at the fluid interface, whose thickness2 λBL is estimated to be significantly smaller

than the capillary length scale that we are interested in resolving

λBL

λKH
≈

√

|JuτK |
40

,

where JuτK is the tangential velocity difference accross the interface. To that end we propose to model

the interface layer by letting the velocity field be discontinuous in the interface tangential direction.

In section 2 we describe the continuous model which will be discretized in section 3. Results are shown

1Here λKH denotes the fastest growing wavelength according to linearized potential flow theory.
2This length scale is estimated using the Blasius boundary layer approximation for a single phase flow.
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in section 4 followed by concluding remarks in section 5.

2 MATHEMATICAL MODEL

We consider a d-dimensional domain Ω ⊂ R
d , which is separated by a time-dependent interface I(t)

resulting in a liquid domain Ωl(t) and a gaseous domain Ωg(t). Since the Navier-Stokes equations are

equal for the liquid and gas phase, we state them for the π-phase, where we consider π ∈ {l,g}.

At the interface we define the jump of some function α in the following way

JαK(x) = αg(x)−αl(x) = lim
s→0+

α(x+ sη)− lim
s→0−

α(x+ sη), x ∈ I,

where η denotes the interface normal pointing into the gas phase. Similarly we define the sum as

{{α}}= αg +αl.

2.1 Two-fluid model

We model the two-phase flow using a two-fluid model, where each of the phases is modeled by the

incompressible Navier-Stokes equations, which we write here in conservative form on some arbitrary

and fixed control volume ω ⊂ Ω

d

dt

∫
ωπ

ρπ dV +
∫

∂ωπ\I
ρπuπ

η dS = 0 (1)

d

dt

∫
ωπ

ρπuπ dV +
∫

∂ωπ\I
ρπuπuπ

η dS =
∫

∂ωπ
[(−pπ +ρπg ·x)I+µπSπ] ·η dS,

where ωπ(t) =ω∩Ωπ(t), and ρ, p,g,u,S denote the density, pressure, gravitational acceleration, velocity

and symmetric part of the velocity gradient respectively. The Navier-Stokes equations are supplemented

with appropriate boundary conditions (usually slip) and an evolution equation for the interface

d

dt
x = uπ(x, t), ∀x ∈ I(t), (2)

where the interface motion may thus be modeled by either of the two velocities. The following velocity

jump condition then uniquely determines the interface evolution

JuηK = 0, (3)

where uη = u ·η. Furthermore we impose the Young-Laplace equation on the interface to model the

effect of surface tension (we omit the jump in the diffusive stresses)

JpK =−σκ, (4)

where the interface mean curvature is denoted by κ and σ denotes the surface energy coefficient.

We choose to combine the two mass conservation equations (1) in the following way (making use of

|ω|= |ωl|+ |ωg|)
d

dt

∫
ωl

dV +
∫

∂ωl\I
ul ·η dS = 0

∫
∂ω

u ·η dS = 0, (5)
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where the first equation is a volumetric contraint on the evolution equation of the interface, and the

second equation states that the velocity field is divergence free in integral sense (note that this is not per

phase).

2.2 Velocity discontinuities

Note that if µπ = 0 then the velocity field can develop tangential velocity discontinuities JuτK 6= 0 due to

surface tension and/or gravity, where τ ⊥ η is a vector tangent to the interface. If µπ > 0 then the Navier-

Stokes solution will be smooth JuτK = 0, numerically we however do not enforce this, as motivated in

the introduction.

3 NUMERICAL MODEL

The numerical model is implemented in our in-house free surface Navier-Stokes solver ComFLOW

which makes use of local and adaptive mesh refinement [11]. For simplicity in presentation however,

we will assume the mesh to be 2D and rectilinear. The variables are arranged according to an Arakawa

C-grid.

3.1 Notation

The notation used is similar to that of [5]. We denote the set of all cells by C and the set of all faces

by F , where the faces of one particular cell c are denoted by F (c)⊂ F and the cells neighbouring one

particular face f are denoted by C ( f )⊂ C .

Functions p : c 7→ pc ≈ p(xc) live in the function space denoted by C h, where xc is the centroid of the

cell c. Similar definitions hold for F h, with u : f 7→ u f ≈ n f ·u(x f ), where n f is the face normal. The

function α : C ×F → {−1,+1} encodes the orientation of the face normal such that αc, f n f is outward

pointing relative to the cell c. The staggered control volume belonging to some face f is denoted by ω f .

3.2 Interface model

The interface is tracked using a volume of fluid (VoF) method combined with a geometric PLIC recon-

struction.

3.2.1 Representation

The interface is represented using the volume fraction field χ̄l ∈ C h, which is defined as χ̄π
c =

|cπ|
|c| . During

the interface advection step the volume fluxes are computed using a geometric PLIC reconstruction of

the interface: per cell c we find a normal vector ηc and plane constant sc such that

cl = {x ∈ c | ηc · (x−xc)≤ sc }, cg = c\ cl.

Computation of the normal vector is done using either local height functions (LHFs) or the efficient least-

squares VoF interface reconstruction algorithm (ELVIRA) [8] if insufficiently many LHFs are available.

Using the interface reconstructions we then define the staggered volume fractions χ̄π ∈ F h and the phase

domains

χ̄π
f =

|ωπ
f |

|ω f |
, ωπ

f = ω∩Ωπ, Ωπ =
⋃
c∈C

cπ. (6)
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(a) One-fluid model.
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(b) Two-fluid model.

Figure 1: Illustration of the EMFPA flux polygons P
(n)
f (blue). The blue hatched regions correspond to

the liquid volume fluxes and the yellow regions correspond to the liquid domain Ωl,(n).

The face apertures are given by aπ
f =

| f π|
| f | , where f π is the part of the face f which contains the π-phase.

Note that f π is not uniquely defined since the PLIC reconstruction is not continuous accross the faces,

therefore we average the face aperture using the two neighbouring cells c ∈ C ( f ).

For the modeling of surface tension we compute the interface curvature κ ∈ C h using the LHF method

or generalized height function (GHF) method [9] if insufficiently many LHFs are available.

3.2.2 Advection

In case of a single fluid we summarize the interface advection in the following way

χ̄l,(n+1) = χ̄l,(n)−δtDml,(n), δt| f |ml,(n) ≈
∫ t(n+1)

t(n)

∫
f l

uη dS dτ (7)

where D : F h → C h is the discrete divergence operator (see section 3.3.5) and ml,(n) denotes the liquid

volume flux which is approximated using the edge-matched flux polygon advection (EMFPA) method [7].

Here the Lagrangian backtracking of the face f , resulting in the flux polygon P
(n)
f = PEMFPA( f ,−δtu(n)),

is according to eq. (2), whereas the enforcement step tries to ensure that (here we consider the volume of

the flux polygon to be signed)

|P(n)
f |= δt| f |u(n).

The volume flux is then given by

δt| f |ml,(n)
f = |P(n)

f ∩Ωl,(n)|,
as shown in fig. 1a.

In case of a velocity discontinuity we modify the original EMFPA method by redefining the flux polygon

as

P
(n)
f = P

l,(n)
f ∪P

g,(n)
f , P

π,(n)
f = PEMFPA( f π,(n),−δtuπ,(n)),

and the volume enforcement step is replaced by

|Pπ,(n)
f |= δt| f |aπ,(n)uπ,(n).
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See also fig. 1b. It can be shown that this is a consistent approximation to the interface advection problem

in the presence of a velocity discontinuity.

3.3 Momentum equations

3.3.1 Convection operator

The convection operator is very similar to that of [4]. This means that we use volume fluxes from the

VoF method to transport momentum, per phase, along with the interface. Our approach differs from that

of [4] in a few ways:

• We use the dimensionally unsplit EMFPA method as the underlying advection method. This is

mainly because dimensional splitting does not combine well with the fact that our divergence

operator depends on the interface configuration (which is updated at each dimensionally split step)

via the face apertures (see section 3.3.5).

• In [4] the liquid and gas velocities are ‘merged’ into a single mass weighted velocity field ū after

each momentum transport step

ū =
{{ρχ̄u}}
{{ρχ̄}} .

We skip this step since we allow the velocity field to be discontinuous.

The resulting advection of some function vπ ∈ F h using the velocity field uπ is denoted by

|ωπ,∗|vπ,(n+1) = |ωπ,(n)|vπ,(n)−δt|ωπ,(n)|Ãπ(uπ,(n))vπ,(n),

note that we write |ωπ,∗| and not |ωπ,(n+1)|, this is because the latter follows from the ‘primary’ volume

fractions χ̄(n+1) ∈ C h according to eq. (6), whereas the former follows from the staggered advection

method. Due to this discrepancy the advection method is not exactly conservative.

3.3.2 Diffusion operator

We use a second order accurate diffusion operator applied to ū with a dynamic viscosity which is based

on weighted harmonic averaging

µ̄ =
{{

χ̄µ−1
}}−1

.

The reason we use the mass weighted velocity field ū for diffusion is that we want our solution with a

velocity discontinuity to converge to the ordinary Navier-Stokes solution (hence without velocity discon-

tinuity) as soon as the interface layer is resolved (δx → 0 or Re → 0).

3.3.3 Gravity

We model gravity according to the following finite volume discretisation

F = {{ρa}}G(g ·xi),

where xi denotes the interface centroid, and reduces to the cell centroid xc if the cell does not contain

an interface. This model can be shown to sharply mimic the global conservation of energy and is well-

balanced with the gradient operator described in section 3.3.6. That is, if the interface is globally linear,
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then ∃p ∈ C h for which

F = {{ρχ̄}}gπ(p).

3.3.4 Time integration

The time integration is split in the following way. First we advect the momentum together with the

interface eq. (7)

|ωπ,∗|ρπuπ,∗ = |ωπ,(n)|ρπuπ,(n)−δt|ωπ,(n)|Ãπ(uπ,(n))
(

ρπuπ,(n)
)

.

Then the diffusion operator and gravity force are integrated in time3

uπ,∗∗ = uπ,∗+
δt

{{ρχ̄}}
[

D̃(2µ̄S̃ū∗)+F(n+1)
]

,

where D̃, S̃ denote the divergence operator and symmetric part of the gradient operator respectively.

Finally the divergence constraint eq. (5) must be imposed, which is done via a pressure correction step

uπ,(n+1) = uπ,∗∗−δtgπ(p), gπ(p)≈ 1

ρπ
n f · (∇pπ)(x f ),

for some pressure gradient gπ(p). We can now also impose the jump condition eq. (3), since this condi-

tion can be written in terms of a jump condition on the pressure gradient

η f · (Ju(n+1)) f = 0 ⇒ η f · (Jg(p)) f = δt−1η f · (Ju∗∗) f , (8)

where (Ju) f ≈ JuK(x f ) denotes the jump interpolant (see section 3.3.7) and η f is an approximate inter-

face normal located at x f . Hence the pressure gradient gπ(p) should incorporate two jump conditions at

the interface: the Young-Laplace equation eq. (4) as well as the newly introduced pressure gradient jump

condition eq. (8).

3.3.5 Divergence operator

The one-fluid divergence operator D is given by

|c|(Du)c = ∑
f∈F (c)

| f |αc, f u f ≈
∫

∂c
u ·n dS.

At the interface two velocity fields exist, and we therefore modify the divergence operator using the

cut-cell method (CCM) [10].

|c|(D{{au}})c ≈
∫

∂cl\I
ul ·n dS+

∫
∂cg\I

ug ·n dS =
∫

∂c
u ·n dS,

where | f |{{au}} f = | f l|ul
f + | f g|ug

f is the total flux through the face f , see also fig. 2.

3For low-Reynolds number flow we use the implicit midpoint rule for the time integration of diffusion.
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f l
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Figure 2: Illustration of the CCM. Each face is split

into its liquid and gaseous part f = f l ∪ f g. The

yellow region corresponds to the liquid domain.
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Figure 3: Illustration of the GFM. The pressure val-

ues denoted by p̃ are ‘ghost’ pressures and not actu-

ally part of the solution. Here xi = xc+rl
f (xc′ −xc).

3.3.6 Gradient operator

In the interior of each of the fluid domains the gradient operator G is simply the negative adjoint of the

divergence operator

|ω f |(Gp) f =−|ω f |(DT p) f =−| f | ∑
f∈F (c)

αc, f pc ≈ n f · (∇p)(x f ).

At the interface we need to modify the gradient to take the two jump conditions into account. Here we

use the ghost fluid method (GFM) [6], which results in

gπ(p) =
1

{{ρr}} [Gp+ JpKGχ+ Jg(p)K ρ̂π] , (9)

where χc ∈ {0,1} is the liquid indicator and rπ ∈ [0,1] is the fraction of the line connecting xc to xc′

which is covered in the π-phase, see also fig. 3. Moreover we define

ρ̂π =

{

−ρgrg π = l

ρlrl π = g
,

such that Jρ̂K = {{ρr}} and {{ρrρ̂}}= 0. We let r = χ̄ such that momentum is conserved if JpK = 0

∑
f∈F

|ω f |n f {{ρχ̄g(p)}} f = ∑
f∈F

|ω f |n f

[

(Gp) f + Jg(p)K f

{{ρχ̄ρ̂}}
{{ρχ̄}} f

]

= 0.

3.3.7 The gradient jump

The GFM eq. (9) requires the face normal component of the gradient jump, Jg(p)K f , to be known.

However, the jump condition eq. (8) specifies the interface normal component of the gradient jump,

rather than the face normal component of the gradient jump, which are in general unequal (unless the

interface and face normals coincide: η f =±n f ). Hence Jg(p)K f is not known a priori, and therefore we

include it as an unknown in the pressure Poisson problem, and define it via the imposition of eq. (8).

For imposing eq. (8) we need the jump interpolant J. We let the jump interpolant (in 2D on a rectilinear

mesh) be given by

(Ju) f = n f JuK f +
1

|F ⊥
I ( f )| ∑

f̂∈F ⊥
I ( f )

n f̂ JuK f̂ ,

7



Ronald A. Remmerswaal and Arthur E.P. Veldman

f

η f

f̂3

f̂2f̂1

Figure 4: Example jump interpolant for a face f

with

∣

∣

∣

η f ·n f̂

η f ·n f

∣

∣

∣
≤ 1. Here F ⊥

I ( f ) = { f̂1, f̂2, f̂3}.

f

η f

f̂gf̂l

Figure 5: Example jump interpolant for a face f

with

∣

∣

∣

η f ·n f̂

η f ·n f

∣

∣

∣
> 1.

where F ⊥
I ( f ) ⊂ F contains the faces f̂ neighbouring f whose normal n f̂ is perpendicular to n f and

whose corresponding staggered control volume ω f̂ contains both phases, so χ̄π
f̂
> 0 for π = {l,g}. Hence

the jump in the direction perpendicular to n f is defined as the average of the available jumps neighbouring

the face f , see also fig. 4. We refer to the usage of GFM with our proposed multi dimensional jump

interpolant J as the multi dimensional GFM (MDGFM).

Once eq. (8) is imposed using the previously introduced jump interpolant, we can directly express

Jg(p)K f in terms of the neighbouring jumps

Jg(p)K f +
1

|F ⊥
I ( f )| ∑

f̂∈F ⊥
I ( f )

η f ·n f̂

η f ·n f

Jg(p)K f̂ = δt−1
η f · (Ju∗∗) f

η f ·n f

.

The ratio
η f ·n f̂

η f ·n f
is problematic as the denominator tends to zero when the interface normal becomes

perpendicular to the face normal. If the ratio exceeds one in absolute sense then we do not impose eq. (8)

but instead interpolate the jump Jg(p)K from neighbouring pressure gradients

Jg(p)K f = g(p) f̂g
−g(p) f̂l

,

where f̂π are neighbouring faces whose normal equals that of f , as shown in fig. 5.

The extended pressure Poisson problem can now be written as: find p ∈ C h,Jg(p)K ∈ F h
I such that















D{{ag(p)}}c = δt−1D{{au∗∗}}c c ∈ C

η f · (Jg(p)) f = δt−1η f · (Ju∗∗) f f ∈ FI for which |η f ·n f | ≥
√

1
2

Jg(p)K f = g(p) f̂g
−g(p) f̂l

f ∈ FI for which |η f ·n f |<
√

1
2

,

where FI is the set of faces for which the corresponding staggered control volume contains both phases.

Due to the use of the CCM for the divergence operator, it is guaranteed that the right-hand side of the

pressure equation is in the image of the Laplace operator, hence a unique (up to a constant) pressure

exists.
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Figure 6: The velocity magnitude (clipped to |u|2 ∈ [0,1]) at t/T σ = 0.3,0.4,0.5 for h/λ = 1/256.

4 RESULTS

4.1 Inviscid Kelvin-Helmholtz instability

In order to isolate the treatment of the velocity discontinuity we consider the simulation of an inviscid

Kelvin-Helmholtz instability. We let the initial interface profile be given by

η(x,0) = η̂(0)cos(kx), k =
2π

λ
= 1, η̂(0) = 10−2,

where the domain, which is periodic in the x-direction, is given by Ω = [0,λ]× [−1.5λ,1.5λ] with slip

boundary conditions applied to the top and bottom walls. The initial velocity field is given by ug = δU/2,

ul =−δU/2 and the corresponding Weber number is given by

We =
ρδU2λ

σ
= 20.

According to linear potential flow theory the interface will be unstable if We > 4π and therefore this

initial condition will initially result in exponential growth of the interface amplitude η̂.

In fig. 6 we show the evolution of the velocity magnitude where the time has been nondimensionalized

using the capillary time scale T σ =

√

2ρλ3

σ .

Figures 7 and 8 show convergence to a reference solution which was computed using the author’s imple-

mentation of the boundary integral method (BIM) described in [1] (therein refered to as Method III).

4.2 Third-order Stokes wave

We consider the simulation of a third-order Stokes wave, for details about the initial conditions and

domain size, see [2]. Contrary to [2] we do not initialize the velocity field in the gas phase, hence ug = 0

at t = 0. The density ratio is given by ρg/ρl ≈ 1.17 · 10−3. In the notation of [2], we let the Reynolds

and Bond number be given by Re = 4 · 104 and Bo = 103 resulting in ‘easy to resolve’ interface layers

and interface length scales. Hence this type of wave is appropriate for testing whether our model will

converge to the desired Navier-Stokes solution for a sufficiently fine mesh. For a steepness of ε = 0.55

the initial condition results in a plunging breaker. In fig. 9 we show an example simulation using our

proposed two-fluid model. Here time has been nondimensionalized in terms of the wave period T g = 2π√
gk

.

In fig. 10 we show the convergence of the interface profile at three time instances as well as the con-

vergence of the tangential velocity jump JuτK to zero. This shows that our two-fluid model essentially

reduces to the one-fluid model once the interface layer is resolved.

9



Ronald A. Remmerswaal and Arthur E.P. Veldman

−0.2

−0.1

0

0.1

0.2

x/λ

y/
λ

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

x/λ

Ju
τ
K
/
δU

Figure 7: Example of the interface profile (top) and vor-

tex sheet strength JuτK (bottom) for the Kelvin-Helmholtz

problem using h/λ = 1/512. The solid lines correspond

to the approximate solution using our proposed method

whereas the markers correspond to the BIM solution.

10−2.5 10−2
10−4
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|(Ω
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h
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Ω
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Figure 8: Area of the symmetric differ-

ence of the approximate liquid domain

compared to the BI solution. The blue,

red and yellow lines correspond to t/T σ =
0.3,0.4 and 0.5 respectively.

Figure 9: Vorticity (clipped to

ωy ∈ [−100,100]) and interface

profile on time instances t/T g ≈
0.20,0.36, . . . ,0.84. Here h/λ =
2−10 (using AMR).

14th World

F.
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Figure 10: Convergence of the interface profile (at t/T g ≈
0.36,0.52,0.68) and tangential velocity discontinuity (at t/T g ≈
0.52) for h/λ = 2−l , where l = 9,10,11 (using AMR) correspond-

ing to blue, red and yellow respectively. The dashed and solid lines

correspond to the one- and two-fluid model respectively.
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(a) One-fluid model, l = 3. (b) One-fluid model, l = 6. (c) Two-fluid model, l = 3.

Figure 11: The velocity magnitude (clipped to |u| ∈ [0,15] and zoomed in at [3,6]× [5,8]) resulting

from a large gas-pocket impact at t = 1.62. The refinement level l refers to an interface resolution of

h = 2−(2+l). The markers correspond to the interface profile resulting from the one-fluid model with

l = 6.

4.3 Large gas-pocket impact

Finally we consider a high Reynolds number test case for which resolving the interface layer is too

expensive. We simulate a smoothed dam break which results in a large gas-pocket impact [3]. The fluids

(water and air) are initially at rest with the following interface profile

y = 7.6+3.6tanh(0.44(x−15.5)),

on a domain given by Ω = [0,20]× [0,12]\E, where E is an ellipse centered at 0 with radii given by 18

and 2.8 respectively.

In fig. 11 we show close-ups of the velocity magnitude as well as the interface profile at t = 1.62 for the

one- and two-fluid model4. Here we use a resolution of h = 2−(2+l) where l = 3 denotes the maximum

level of refinements (we refine at the interface as well as in regions of high vorticity). For reference we

also include a more accurate solution resulting from the one-fluid model with l = 6.

We find that both the one- and two-fluid model yield an accurate interface profile. The one-fluid model

however results in an artificially thick interface layer which is not present in the two-fluid model. Further

research into how this affects the development of free surface instabilities is however still needed.

5 DISCUSSION

We have proposed a sharp two-fluid model for two-phase flow in which underresolved interface layers are

modeled by a tangential velocity discontinuity. The numerical model is based on novel generalizations

of state-of-the-art numerical methods for the one-fluid model. We demonstrate that the resulting model is

able to simulate inviscid (Kelvin-Helmholtz), viscous (Stokes-3 wave) as well as high-Reynolds number

(large gas-pocket impact) two-phase flow problems at high accuracy.

4We picked an early time before impact such that it is still relatively easy to obtain a (nearly) resolved solution.
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We will use the proposed model for the simulation of breaking wave impacts and in particular will study

the development of free surface instabilities before impact. For future work we suggest the inclusion

of compressibility as well as phase-change, the latter of which can sharply be taken into account by

including a mass flux through the interface in the CCM divergence operator.
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