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Summary. We study a depth-averaged model of gravity-driven mixtures of solid
grains and fluid moving over variable basal surface. The particular application we
are interested in is the numerical description of geophysical flows such as avalanches
and debris flows, which typically contain both solid material and interstitial fluid.
The depth-averaged mass and momentum equations for the solid and fluid compo-
nents form a non-conservative system, where non-conservative terms involving the
derivatives of the unknowns couple together the sets of equations of the two phases.
The system can be shown to be hyperbolic at least when the difference of velocities
of the two constituents is sufficiently small.

We numerically solve the model equations in one dimension by a finite volume
scheme based on a Roe-type Riemann solver. Well-balancing of topography source
terms is obtained via a technique that includes these contributions into the wave
structure of the Riemann solution.

1 Introduction

Geophysical flows such as avalanches and debris flows are gravity-driven gran-
ular masses, typically composed of a mixture of solid grains and interstitial
fluid. Following the pioneering work of Savage and Hutter [SH89], in recent
years great advances have been made in the mathematical and numerical
modeling of these natural processes by means of depth-averaged (thin layer)
models, which are based on the small aspect ratio of typical flows. Early stud-
ies [SH89, SH91], and part of recent literature as well [MCVB+03, PH03],
were limited to dry (one-phase) granular flows. Iverson [Ive97] and Iverson
and Denlinger [ID01] first addressed the need of accounting for interstitial
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fluid effects in the flowing mass, and developed a solid-fluid mixture theory
based on the simplifying assumptions of constant porosity and equality of fluid
and solid velocities. See also later extensions [DI04] and similar approaches
[PWH05]. Making a step forward, Pitman and Le [PL05] have recently pre-
sented a depth-averaged two-phase model for debris flows and avalanches that
contains mass and momentum equations for both the solid and fluid compo-
nent, thus providing equations for porosity and velocity of both phases. How-
ever, in this work the authors propose a numerical method only for a reduced
model that ignores fluid inertial terms.

With the objective of contributing to develop a numerical model describ-
ing accurately the co-existence and the interaction between solid and fluid
constituents, here we study a two-phase granular flow model that follows the
work of [PL05]. The mathematical equations are presented in Section 2, and
in Section 3 we analyze eigenvalues and hyperbolicity. Then, in Section 4, we
illustrate the numerical technique we use to solve the model system, and we
report some numerical results in Section 5. Some prospected work is finally
mentioned in Section 6.

2 Mathematical model

Following Pitman and Le [PL05], we consider a thin layer of a mixture of solid
granular material and fluid moving over a smooth basal surface. Solid and
fluid components are assumed incompressible, with constant specific densities
ρs and ρf < ρs, respectively. Under the shallow flow assumption, depth-
averaged mass and momentum equations for the two phases can be derived
in the following form (here in one dimension):

∂t(ϕh) + ∂x(ϕh vs) = 0 , (1a)

∂t(ϕh vs) + ∂x

(

ϕh v2
s + g

2 (1 − r)ϕh2
)

= −r g
2 ϕ∂xh

2 − g ϕh∂xb+ νxz g(1 − r)ϕh+ rDh (vf − vs), (1b)

∂t((1 − ϕ)h) + ∂x((1 − ϕ)h vf ) = 0 , (1c)

∂t((1 − ϕ)h vf ) + ∂x((1 − ϕ)h v2
f )

= −(1 − ϕ) g
2∂xh

2 − g(1 − ϕ)h ∂xb−Dh (vf − vs) . (1d)

Here h is the flow depth, ϕ the solid volume fraction, vs and vf are the solid
and fluid velocities, respectively, and b(x) represents the bottom topography.
Moreover, D is a drag function, νxz a friction coefficient, g the gravity con-
stant, and r =

ρf

ρs
< 1. The two-phase model (1) is a variant of the Pitman-Le

model [PL05], and it differs from the original work of [PL05] in the description
of the fluid and mixture momentum balance. See [BPMC] for more details. In
particular, contrarily to [PL05], our model has the property of recovering a
conservative equation for the momentum of the mixture, which has the form:
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∂t(ϕhvs + r(1 − ϕ)hvf ) + ∂x

(

ϕhv2
s + r(1 − ϕ)hv2

f + g
2 (ϕ+ r(1 − ϕ))h2

)

= −g(ϕ+ r(1 − ϕ))h∂xb+ νxzg(1 − r)ϕh . (2)

2.1 Formulation in hs , hf

Let us rewrite our model in terms of the variables hs = ϕh and hf = (1−ϕ)h.
We neglect friction and drag, which will not be considered hereafter. Modeling
of drag will be discussed in [BPMC]. Setting q = (hs, hsvs, hf , hfvf )T, we have
the system

∂tq + ∂xf(q) + s(q, ∂xq) = ψ b(q) , with (3a)

f(q) = (hs vs, hs v
2
s + g

2 h
2
s + g(1−r)

2 hs hf , hf vf , hf v
2
f + g

2 h
2
f )T , (3b)

s(q, ∂xq) = (0, r g hs ∂xhf , 0, g hf ∂xhs)
T , (3c)

and ψ b(q) = − (0, g hs ∂xb, 0, g hf ∂xb)
T
. (3d)

Above, we have put into evidence the conservative portion of the system ∂f(q)
∂x ,

and the non-conservative term s(q, ∂xq). An interesting feature of this formu-
lation of our model in hs, hf is that it shows similarity with the classical
two-layer shallow water model. The only difference is the additional conser-
vative cross term ∂

∂x

(

g
2 (1 − r)hshf

)

in the solid momentum equation of our
two-phase system. Let us finally write system (3) in quasi-linear form. We
have ∂tq +A(q)∂xq = ψ b(q), where

A(q) =













0 1 0 0

−v2
s + ghs + g(1−r)

2 hf 2vs
g(1+r)

2 hs 0

0 0 0 1

ghf 0 −v2
f + ghf 2vf













. (4)

3 Eigenvalue analysis and hyperbolicity

In general, simple explicit expressions of the eigenvalues λk, k = 1, . . . , 4,
of the matrix A of the system can not be found. In the particular case of
equality of solid and fluid velocities, vf = vs ≡ v, the eigenvalues are real and
distinct (ϕ 6= 1), and given by λ1,4 = v∓ a, and λ2,3 = v∓ aβ, where we have
introduced the quantities

a =
√

gh and β =
√

1
2 (1 − ϕ)(1 − r) < 1 . (5)

Other particular cases are: (i) ϕ = 0, for which the eigenvalues are vf ∓ a,

vs ∓ aβ, with β =
√

1−r
2 ; (ii) ϕ = 1, for which we find the two distinct

eigenvalues vs ∓ a and the double eigenvalue vf .
In general, for h > 0, we can state the following result:
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Proposition 1. Matrix A has always at least two real eigenvalues λ1,4, and
moreover, the eigenvalues λk of A, k = 1, . . . , 4, satisfy:

min(vf , vs) − a ≤ λ1 ≤ Re(λ2) ≤ Re(λ3) ≤ λ4 ≤ max(vf , vs) + a , (6)

where Re(·) denotes the real part. Furthermore:

(i) If |vs − vf | ≤ 2aβ or |vs − vf | ≥ 2a then all the eigenvalues are real. If
these inequalities are strictly satisfied, and if ϕ 6= 1, then the eigenvalues
are also distinct, and system (3) is strictly hyperbolic.

(ii)If 2aβ < |vs−vf | < 2a then the internal eigenvalues λ2,3 may be complex.

For the proof we refer to [BPMC].

3.1 Eigenvectors

The right and left eigenvectors of the matrix A(q) can be easily written in
terms of the eigenvalues λk. Let us assume here hs, hf > 0. Then the right
eigenvectors rk, k = 1, . . . , 4, can be expressed as rk = (1, λk, bk, bkλk)T , with

bk = 2
(λk−vs)2−g(hs+hf (1−r)/2)

g(1+r)hs
=

ghf

(λk−vf )2−ghf
. The left eigenvectors lk of A

can be taken as lk = nk

P ′(λk) , where P (λ) is the characteristic polynomial of A

and nk = (cs,k (λk −2vs), cs,k, cf (λk −2vf ), cf ), with cs,k = (λk −vf )2−ghf

and cf = g (1+r)
2 hs. Here we have normalized the eigenvectors lk so that

L = R−1, where R is the matrix with columns rk, and L the matrix with
rows lk.

4 Numerical solution

We assume hs, hf > 0 during the flow evolution, and that the difference
between solid and fluid velocities is small enough so that the model system
is strictly hyperbolic. We develop a numerical solution method for (3) in the
framework of finite volume schemes based on Riemann solvers.

4.1 A Roe-type scheme

Let us first consider system (3) without topography terms, ∂tq + ∂tf(q) +
s(q, ∂xq) = 0. We numerically solve these equations by employing a Roe-type
[Roe81] method. Following the usual technique, at every time step and at each
interface between left and right states qℓ, qr, we solve a Riemann problem for
a linearized system ∂tq + Â(qℓ, qr)∂xq = 0. The constant coefficient matrix
Â(qℓ, qr) is defined so as to guarantee conservation for the mass of each phase
and for the momentum of the mixture. That is, we need ∆f (p) = Â(p,:)∆q,

for p = 1 and p = 3, and ∆f (2) + r∆f (4) = (Â(2,:) + rÂ(4,:))∆q, where

∆q = qr − qℓ, and ∆f = f(qr) − f(qℓ). This can be satisfied by taking Â as
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the original matrix A(q) evaluated in an average state q̂ = q̂(ĥs, ĥf , v̂s, v̂f ),
where

ĥι =
hι,ℓ + hι,r

2
and v̂ι =

√

hι,ℓ vι,ℓ +
√

hι,r vι,r
√

hι,ℓ +
√

hι,r

, ι = s, f . (7)

4.2 F-wave formulation

The algorithm we employ is formulated in the framework of the wave-
propagation methods of [LeV97]. In particular, we adopt the so-called f-wave
formulation [BLMR02] of these methods, since this approach will be useful to
incorporate topography source terms (see next section).

The f-wave technique is designed for conservative systems, that is sys-
tems endowed with a flux function, and its main idea is to define the struc-
ture of the Riemann solution by decomposing into waves (f-waves) the flux
difference between neighboring cells. Although our system (3) contains the
non-conservative products s(q, ∂xq), we can still employ this approach by
defining locally an approximate flux f̃ consistent with the Roe lineariza-
tion. Here we take f̃(q) = f(q) + (0, r g ĥs hf , 0, g ĥf hs)

T, with ĥs, ĥf as

in (7). Note that ∆f̃ = Â∆q. Then, in our algorithm we project the dif-
ference ∆f̃ = f̃(qr) − f̃(qℓ) onto the eigenvectors r̂k of the Roe matrix,

∆f̃ =
∑4

k=1 ζkr̂k, and we use the f-waves Zk ≡ ζkr̂k with corresponding

speeds λ̂k (eigenvalues of Â) to update cell averages. Second-order correction
terms and limiters are applied to these f-waves. See [LeV97, BLMR02, LeV02]
for details.

4.3 Topography source terms

We now consider system (3) with bottom topography source terms included. A
well known difficulty in the approximation of hyperbolic systems with sources
(e.g. [Bou04]) is the preservation of steady state conditions at the discrete
level, and the efficient modeling of small perturbations from steady states.
In particular, for the system under study we are concerned with the steady
state conditions at rest h + b = const., ϕ = const., vs = vf = 0. To build
a well-balanced scheme, we follow the approach of [BLMR02, LP01, LG04],
which uses the f-wave formulation framework described above. The idea is
to incorporate the effect of bottom topography terms into the Riemannn so-
lution, by taking interface values Ψb

ℓ,r of the topography source term ψb(q)

and by including contributions Ψb
ℓ,r ∆x into the wave splitting that we have

defined for the solution of the homogeneous system. We now decompose
∆f̃ − Ψb

ℓ,r ∆x =
∑4

k=1 ζk r̂k. The interface source term Ψb
ℓ,r must be defined

so that the discrete steady state condition ∆f̃/∆x = Ψb
ℓ,r holds whenever

initial Riemann data correspond to equilibrium, that is (h + b)ℓ = (h + b)r,
ϕℓ = ϕr, vs,ℓ = vs,r = vf,ℓ = vf,r = 0. To satisfy this requirement we take

Ψb
ℓ,r∆x = (0, gĥs∆b, 0, gĥf∆b)

T, with ∆b = br − bℓ.
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5 A numerical test: perturbation of a steady state

We have implemented our algorithm by using the basic Fortran 77 routines
of the clawpack software [LeV]. Let us mention that, since explicit formulas

for the λ̂ks are not available, the external eigenvalues λ̂1,4 are computed nu-

merically through Newton’s iteration method. The internal eigenvalues λ̂2,3

can be then found analytically.
We present here the results of a numerical experiment that is an extension

of LeVeque’s classical test [LeV98] for (one-phase) shallow water equations
with bottom topography. In this problem we observe the behavior of a small
perturbation of steady state conditions at rest over a bottom topography
defined by b(x) = 0.25(cos(π(x− 0.5)/0.1) + 1) if x ∈ (0.4, 0.6), and b(x) = 0
otherwise. Initially, we take a small perturbation of the flow depth h and of
the solid volume fraction ϕ: h(x, 0) = h0 + h̃ and ϕ(x, 0) = ϕ0 − ϕ̃ for x ∈
(−0.6,−0.5), with h0 = 1, ϕ0 = 0.6, and h̃ = ϕ̃ = 10−3. The computational
domain is [−0.9, 1.1], and free flow boundary conditions are used. Moreover,
we take r = 1/2 and g = 1. We compute the solution with 100 grid cells and
compare it with a fine grid reference solution obtained with 1000 grid cells.
Second order corrections are used to achieve high resolution.

In Figure 1 we display results at four different times for h+ b and ϕ (top
and bottom subplot of each subfigure, respectively). The bold line over the x-
interval [0.4, 0.6] in the plots of h+b indicates the region of the domain where
b(x) 6= 0. As we can observe from the first couple of plots (subfig. (a)), the ini-
tial perturbation splits into four waves. These are approximately linear waves
propagating at the characteristic speeds corresponding to the background
state, that is ±

√
gh0 for the external waves, and ±

√

g
2h0(1 − ϕ0)(1 − r) for

the internal ones. Let us remark that in this problem ϕ appears to vary only
across the internal waves as a consequence of the initial conditions, for which
in particular vs = vf . The second couple of plots of h+ b and ϕ (subfig. (b))
shows the time at which the right-going external wave has just passed over
the obstacle at the bottom, and it has been partially reflected. Similarly, the
third couple of plots (subfig. (c)) shows when the right-going internal wave
has now moved past the hump and has produced a reflected wave. At this
time the reflected wave generated by the external wave has left the domain
from the left boundary, after passing through the incoming internal wave.
The last plots (subfig. (d)) show the situation in which all the waves have ex-
ited from the domain, except the disturbance produced by the internal wave,
which will eventually leave from the left boundary. No spurious disturbances
are observed in this test.

6 Prospected work

We have presented a numerical model of grain-fluid mixtures over variable
topography. This is only a first stage towards the development of a model
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Fig. 1. Numerical test of Section 5. Solution for h+b and ϕ (top and bottom subplot
of each subfigure). Circles: solution computed with 100 grid cells; continuous line:
reference solution with 1000 grid cells.

applicable to realistic geophysical flows. The primary issue on which we are
currently focusing our research efforts is preservation of positivity of the flow
depth (h ≥ 0), to be able to handle interfaces between flow fronts and bed
dry states. Planned work includes also the extension of the model to arbitrary
complex topography, and implementation of a two-dimensional scheme.
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