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Slow-release candles (SRC) have been developed as a cost-effective 

technology to treat groundwater contaminants by passively delivering oxidants into 

the subsurface over a long time. In this thesis, a numerical model has been 

developed to simulate oxidant release kinetics, transport, and reaction in a field 

scale. Parameters of the model were obtained from a field site with SRC installed. 

Modeling results showed that the radius of influence of oxidants was influenced by 

the relative contribution of reaction and solute transport, and the limited lateral 

spreading could be an issue to restrict the application of SRC.  

Enhanced aeration could increase or decrease the radius of influence of a 

candle, dependent on the incoming contaminant concentration. Enhanced mixing 

due to aeration could reduce the concentration of persulfate adjacent to the candle. It 

can greatly improve the radius of influence when incoming contaminant 

concentration is relatively low. When incoming contaminant concentration is very 

high, it may lead to reduced radius of influence. In the slow-release system design, 

if extra supply of oxidant in a candle was considered and suitable aeration rates was 

designed, the demand of boring and labor work could be greatly reduced by using 



 

 

larger interval distances. In the meantime, the effective duration time could also be 

increased.  

The model developed in this work can be adapted to simulate SRC 

remediation under various field scenarios. It can be a tool to help design and 

optimize the SRC for various oxidant and targeting contaminants. 
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Chapter 1 

 Project Overview and Objectives 

 

1.1. Project Overview 

Environmental Protection Agency (EPA) reported about 294,000 sites required a 

remediation under current polices (EPA, 2014). Among those sites, chlorinated solvents 

and petroleum are worldwide contaminants to threat the groundwater quality. Those 

contaminants are persistent and toxic. Typically, they require at least decades to be 

naturally alleviated and caused serious health problems, including cancers. In addition, 

those contaminants could be widespread as non-aqueous phase liquids (NAPL) sources 

and transported by density effects and groundwater flow.  

In-situ chemical oxidation (ISCO) is a relatively mature technology that injects 

the oxidants into the subsurface and let oxidants to react with NAPLs (Wiesner, Grant, & 

Hutchins, 1996). However, delivering oxidants into the low permeability zone is still a 

challenge for ISCO, and oxidants prefer to go through less resistant area and might 

bypass the target zone. After an ISCO treatment, NAPL may still remain in the low 

permeability zone, and concentration of contaminants would go up again by dissolution 

and diffusion after the remediation (rebound).  

To overcome the shortcomings of ISCO, slow-release candles were 

developed(Christenson, Kambhu, & Comfort, 2012; Kambhu, Comfort, Chokejaroenrat, 
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& Sakulthaew, 2012; Kambhu, Gren, Tang, Comfort, & Harris, 2017; Lee et al., 2008). 

Slow-release candles are made of a mixture of environmental safe material (i.e. wax) and 

oxidants. They can be installed into the low permeability zone, and could semi-passively 

deliver the oxidants to the surrounding area over days to years. For example, Lee 

simulated a slow-release system to release about 1.65 kg permanganate (i.e. a type of 

oxidant) daily over 6.6 years without continuously injection. 

While the efficiency of slow-release candles have been demonstrated in several 

field sites, it is necessary to develop a quantitative approach to evaluate their performance 

under different site conditions. A numerical model that couples oxidant release, transport, 

and reaction would be a powerful tool to evaluate the performance of slow release candle 

and help optimal site design. 

1.2. Objectives 

The objectives of this study was: 

I. To develop a numerical model to simulate oxidant release, transport and 

reaction with contaminants; 

II. To use the model to evaluate the radius of influence of slow-release 

candles under various field scenarios. 

 

1.3. Thesis Organizations 

This thesis consists of 7 Chapters. Following this introduction chapter 1, Chapter 

2 identifies that research need based on a literature review. Chapter 3 describes the field 
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site that provides realistic base parameters for model development. Chapter 4 describes 

the process of developing a sodium persulfate release model. Chapter 5 provides a model 

to simulate sodium persulfate release and transport in a field site with simplified flow 

field. In addition, Chapter 6 couples sodium persulfate release, transport, and reaction to 

predict the radius of influence with/without aeration. Finally, a conclusion is summarized 

and suggestions for future work are provided in Chapter 7. 
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Chapter 2 

 Background and Literature Review 

 

2.1. Introduction  

Groundwater and soil contaminated sites arose a public attention in the 1970s and 

became a worldwide problem because of several disasters, such as the cancer incidence in 

the love canal area. According to Environmental Protection Agency (EPA), there are 

about 294,000 sites required a remediation under current polices (EPA, 2014). In the past, 

those sites were drycleaners, gas stations, military sites, manufacturing sites, which 

discharged gas, detergent and/or other organic solvents into groundwater. Figure 1 

illustrates the number of sites that require remediation owned by different local or federal 

agencies.  
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Based on the toxicity and prevalence of contaminants among those sites, benzene, 

toluene, ethylbenzene, and xylene (BTEX) are a group of the highest priority compounds 

that contaminated the soil and groundwater. BTEX are typically components in gasoline. 

They have low solubility, are less dense than water, and are carcinogenic. The presence 

of BTEX can be persistent and can serve as a long term source that releases a highly toxic 

plume in the contaminated site. EPA sets a maximum contaminant level (MCL) as a limit 

for drinking water quality. For benzene, the MCL is 5 ppb; for toluene, the MCL is 1,000 

ppb; for ethylbenzene, the MCL is 700 ppb; for xylene, the MCL is 10,000 ppb (EPA, 

2017). 

Figure 1. Total number of sites requring a remediation (EPA, 2014) 
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Various remediation technologies were developed to treat these contaminants and 

meet water regulations. Among them, in situ chemical oxidation (ISCO) is a common and 

relative mature technology since 1990s ((Liu, Chen, Wang, Shi, & Shi, 2017; Thepsithar 

& Roberts, 2006; Wiesner, Grant, & Hutchins, 1996)). In ISCO, oxidants are injected 

into the subsurface to react with contaminants, as shown in Figure 2. In many sites, ISCO 

has demonstrated an ability for rapid treatment. For high concentration areas, ISCO 

typically has a moderate cost compared to other remediation techniques. However, the 

cost of ISCO is relatively high for dilute plumes of contaminants, which is a common 

situation in many sites. In addition, ISCO is not very effective to treat contaminants in 

low permeability zones. Injected oxidant solutions tend to transport in higher permeable 

zones, and bypass the lower permeable zones. When contaminants in the low 

permeability zones are not completely treated, rebound (i.e. the process of contaminants 

transported back again after the remediation) commonly occurs.  
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To overcome the disadvantages of ISCO, an innovative technology called slow-

release candle (SRC) has been developed (Ross et al., 2005; Lee et al., 2006, 2007, 2008; 

Christenson et al., 2016; Kambhu et al., 2012; 2017). 

Figure 2. Illustration of ISCO to treat contaminated groundwater 
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2.2. Slow-Release Candle  

SRC takes a passive approach, where a controlled-release oxidant is inserted into 

the subsurface and allowed to dissolve and intercept the contaminant over many years. In 

the SRC, candle is made of a mixture of environmentally safe materials (such as wax) 

and oxidants. Instead of active injection of oxidants, slow-release candles gradually 

deliver the oxidants out of a candle by diffusion (i.e. concentration gradient) and semi-

passively transport the oxidants to the surrounding area by groundwater flow (i.e. 

dispersion, advection, and diffusion). Compared to the traditional ISCO, SRC requires 

less labor, is easier to replace and has higher efficiency in some specific situations such 

as low permeability zones with lower cost. In recent years, various have been devoted to 

study various aspects of SRC technology, including components, formulation, types of 

candles, the types and activation methods of oxidants, release kinetics and release 

simulation, and treatment efficiency in the laboratory experiment and in the field. 

There are two types of SRC: encapsulated systems and matrix systems. In the 

encapsulated system, oxidants are covered by coating materials like a core in a shell; 

while in the matrix system, oxidants are uniformly distributed in the matrix(E. S. Lee & 

Schwartz, 2007b). Although the coating techniques are being rapidly developed, the 

encapsulated system is typically limited by its duration and stability (E. S. Lee & 

Schwartz, 2007b). Here, we mainly focused on review of the research of the matrix 

system. In the matrix system, sodium/potassium permanganate and persulfate are two 

most widely encapsulated oxidants. 
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Bolar wax, piccolyte resin S115, epolene C-16, and paraffin wax are most widely 

used matric materials to encapsulate sodium/potassium permanganate. Release kinetics of 

such candles were extensively studied (M. Christenson, Kambhu, Reece, Comfort, & 

Brunner, 2016; Ross, Murdoch, Freedman, & Siegrist, 2005). Based on batch 

experiments, Ross investigated the release histories of 18 different formulations of 

permanganate SRC(Ross et al., 2005). Kambhu studied the influence of the formulation 

and geometry on the treatment efficiency (Kambhu, Comfort, Chokejaroenrat, & 

Sakulthaew, 2012). For the same formulation, Kambhu also tested the influence of 

geometry size. Based on unpublished data, she found that the release kinetics were very 

sensitive to the radius of a candle, but not to the height of a candle.  

For a certain formulation and geometry, mathematical modeling and laboratory 

experiments were integrated to investigate and predict the release kinetic of oxidants. Lee 

conducted a column test to measure MnO4− release for a 20 day period , which was then 

fitted to a numerical model to obtain a best-matched diffusion coefficient in a rod shaped 

candle(E. S. Lee & Schwartz, 2007a). Based on the diffusion coefficient and basic candle 

parameters (e.g., mass of oxidants, radius and height of a candle), long term slow-release 

of a KMnO4 candle was simulated over 1344 days (~3.7 yrs) which could treat a plume 

by releasing 500 g of MnO4− daily in average. In another similar study, Liang (C. Liang & 

Chen, 2017) measured the release of sodium persulfate candle and modified the 

numerical model by adding porosity into consideration. Based on the simulation, Liang 

found the minimum longevity of a persulfate rod was a function of candle dimensions (C. 

Liang & Chen, 2017). To optimize the release of a slow-release system, Lee developed a 



11 

 

generalized modeling approach which adjusted solubility of the oxidant, bulk diffusion 

coefficients, or initial loading of oxidant(E. S. Lee & Schwartz, 2007b) to satisfy the 

requirements of specific contaminants and location. Based on the simulation results, Lee 

illustrated a hybrid candle, which consists of an inner matrix system and outer 

encapsulation, which could provide a long-term constant release, with merits of easier 

SRC system design and lower costs compared to a traditional slow-release matrix candle 

(E. S. Lee & Schwartz, 2007b).  

With the promising release rate and predictable longevity, Lee operated pilot scale 

flow tank experiments to characterize the slow-release permanganate barrier system. 

They also conducted a large flow-tank study to determine the efficacy of slow-release 

permanganate barrier system to treat dissolved TCE plume(B. S. Lee et al., 2009; E. S. 

Lee, Woo, et al., 2008). Experiments indicated that the slow-release permanganate barrier 

system was able to provide a persistent permanganate plume in natural sands with soil 

oxidant demands of 3.7-11 g MnO4−/kg and removed 74% of the TCE after three barriers 

for a plume with average concentration of 87 ppb. In addition, Christenson first applied 

the slow-release permanganate candles in the field and successfully reduced TCE 

concentrations to 32%-15% of the initial concentration after the first 15 months of 

treatment. The TCE concentration of site had 89% reduction after 5 years with yearly 

maintenance (M. D. Christenson, Kambhu, & Comfort, 2012; M. Christenson et al., 

2016). 

Comparing with sodium/potassium permanganate, persulfate was a relatively new 

oxidant applied in the ISCO, intending to overcome some limitations of permanganate. 
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Only a limited number of studies are devoted to study slow-release persulfate candles, 

which focus on the reaction kinetics for various contaminants and activation methods in 

the lab scale. Kambhu developed slow-release persulfate candle to treat BTEX and 1,4 

dioxane contaminated water (Kambhu et al., 2012; Kambhu, Gren, Tang, Comfort, & 

Harris, 2017). Liang studied slow-release persulfate candles to treat tertiary-butyl ether 

(MTBE) contaminated groundwater (S. H. Liang, Kao, Kuo, Chen, & Yang, 2011). 

Chokejaroenrat conducted laboratory experiments to use persulfate candles to treat 

methyl orange (Chokejaroenrat et al., 2015). They found persulfate was effective to 

remediate some organic compounds while permanganate might not. In addition, 

persulfate might not decrease hydraulic conductivity by solid oxidant products. 

2.3. Numerical Simulation of Slow-Release Candles for Remediation 

Numerical simulation can be a very efficient and economical method to 

investigate the long term performance of a complicated slow-release system. Lee 

developed a 2-D model to couple oxidant release, transport, and reaction in a in situ 

remediation scenario using the controlled release of permanganate (E. S. Lee, Liu, 

Schwartz, Kim, & Ibaraki, 2008). In this work, advection dispersion was coupled with a 

first order decay reaction. Advection was accounted for by a deterministic particle motion 

approach, and dispersion was accounted for by adding a random component to the 

particle motion. Simulation results matched well with the previous pilot experiment. In 

addition, Lee investigated the lateral spreading needed to fill the gaps of oxidant’s plume. 

He proposed to use doublet wells to overcome the lateral spreading limits, which is a 

cost-effective solution.  
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Although Lee’s model provided a way to further investigate the slow-release 

system with basic physics (i.e. 2D simulation, constant oxidant release, w/o dispersion, 

and constant decay as reaction rate), some over simplifications could lead to bad 

judgments. For instance, the assumption of constant release rate is not realistic, which 

would underestimate the initial treatment and overestimate the later treatment. 

Assumption of a constant decay for the reaction is not applicable to common treatment 

reaction. Various studies have shown that oxidant release rates are not constant, typically 

higher initially and gradually reduced(Kambhu, Comfort, Chokejaroenrat, & Sakulthaew, 

2012; E. S. Lee, Woo, et al., 2008; Roseman & Higuchi, 1970).  In general, a much more 

comprehensive model, considering realistic release kinetics, reactions, and aquifer 

properties is needed to optimize the system design. 
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Chapter 3  

Field Site Description and Analysis 

 

Recently, Airlift Environmental (Lincoln, NE) has installed persulfate candles 

into the Textron site, a field site contaminated with BTEX. Although the eventual 

purpose of the thesis is not to simulate the field site, we analyzed the field site to gather 

realistic site conditions to form the base parameters for model development.  In this 

Chapter, a 3-D soil lithology model was developed by integrating the available well 

boring data. The water table of the site was analyzed based on monitoring data from the 

monitoring wells on the site. Rough estimation of groundwater flow velocity of the site 

was developed based on Darcy’s Law.  

3.1. General Site Information 

The Textron site is located at 2100 Vine Street in Lincoln, NE and encompasses 

approximately 15 acres. This site was an old factory that manufactured products such as 

golf carts and engines over a period of 100 years. Figure 3 presents the general location 

of the Textron site (i.e. the orange irregular pentagon), which is bound by Vine Street on 

the south, Antelope Valley Parkway on the west, the railroad on the north, and 22nd Street 

on the east.  
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A previous investigation by Terracon Consultants, Inc. indicated that the 

groundwater under the site has been contaminated with chlorinated solvents and 

petroleum compounds. Detected petroleum compounds include benzene and hexane. 

Detected VOCs include 1,1-DCE, 1,1-DCA, cis 1,2-DCE, TCE, PCE, vinyl chloride, 

trans 1,2-DCE and 1,1,2,2-PCE. Most of these contaminants were detected in the mid-

east part of the site. Eight monitoring wells were installed in the site to monitor 

contaminant concentration. The locations of the wells are noted in the Figure 4. Figure 4 

is a digitized map developed using AutoCAD.  

Figure 3. Geographic location of the Textron site 
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Figure 4. Site diagram with horizontal borders, eight monitoring wells, and the 

test area. 

 

To evaluate the efficiency of slow release candles developed by Airlift Inc., a 

small area in the top right corner of the site (shown in Figure 4 as a green rectangle) was 

further investigated. BTEX were detected in the test area. Figure 5 provides the 

contaminant concentration distribution map in the test area. As shown in the map, all 

contaminants have higher concentration in the upper-left of the test area. 

21 wells to place the candles were assigned in the upper-left of the test area as 

shown in Figure 6. There were 6 rows of wells with an interval of 3 ft between each row. 
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For each row, there were 3 or 4 wells with 3 ft. interval between two wells. The wells 

were arranged so that the wells in the next row positioned in the middle of two wells in 

the previous row (Figure 6).

 

Figure 5. Main contaminants concentration maps in the test area (provided by 

the Airlift) 
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Figure 6. The treatment grid in the test area. 

 

 

3.2. Lithology Model 

Very little information was available on the soil properties of the site. Soil 

lithology information was first based on the well boring information. As illustrated in 

Figure 4, eight monitoring wells were installed across the site. During the well 
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installation, soil samples for each depth interval from the well boring were visually 

analyzed and classified. A limited soil profile for the monitoring well No. 1 was shown in 

Figure 7 as an example. Vertical soil profiles in eight monitoring wells mainly consist of 

two soil types, i.e. fat clay and fine sand. 

 

Figure 7. Limited soil profile for the monitoring well No. 1 

Because the average depth of eight monitoring wells was about 20 ft below the 

ground surface, the vertical soil profiling was limited to the boring depth. To advance the 
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soil profile information, we need to determine the depth of the bedrock and the soil types 

between the bottom of borehole and the bedrock. According to Soil and Groundwater 

Assessment Report, additional three borings indicated the bedrock was approximately 85 

ft below the ground surface(Terracon Consultants, 2016). To determine the soil types 

below 20 ft of the ground surface, we used the information from a test hole (i.e. No. 2-A-

50) in the Nebraska Statewide Test-hole Database that is the closest to the site 

(Conservation and Survey Division, School of Natural Resources, & University of 

Nebraska, 2017). According to this test hole information, fine sand was the major soil 

type from 20 ft bgs (below ground surface) to 85 ft bgs. We assumed the extended soil 

profiling in the Textron site was same as that in the test hole. 

A three-dimensional solid lithology model was developed using RockWorks 17, a 

widely used software program for creating logs and cross sections, geological models and 

general geology diagrams for the environmental, geotechnical, mining, and petroleum 

industries. Model dimensions were based on the horizontal geometry and the vertical soil 

profiling. The horizontal surface has the maximum dimension of 1100 ft and 1106 ft in 

the x and y direction, respectively. The vertical depth on the z direction was 85 ft. Figure 

8 illustrated the final lithology model of the Textron site developed by Rockworks 17. As 

shown in the Figure 8, the site has a very distinctive two-layer soil lithology. The fat clay 

is located on the top of the fine sand, with an average depth of about 20 ft. The average 

depth of the fine sand layer is 65.5 ft, which is approximately five times of that of the fat 

clay. Each type of soil has its own typical hydraulic conductivities. According to Natural 

Resources Conservation Service, average hydraulic conductivity for fat clay is 9.14 E-7 
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m/s, and that for fine sand is 9.17 × 10−5 m/s (Natural Resources Conservation Service, 

n.d.). These typical values of hydraulic conductivity were associated with soil types in the 

lithology model.  

 

Figure 8. The lithology model of the Textron site. 

  

3.3. Groundwater Level  

To estimate the groundwater level in the test area, we used water level data from 4 

recently installed monitoring wells in the test area together with the eight monitoring 

wells in the larger area. The groundwater level in the whole area was obtained by 

interpolating the 12 monitoring wells using a hybrid of inverse distance and kriging 
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algorithms in RockWorks 17. Figure 9 presented the groundwater table of the Textron 

site in a blue pentagon and that of the test area in a red rectangle. Figure 10 was a closer 

look of the groundwater elevation for the test area. As shown in the Figure 10, the 

groundwater level in the test area is relatively flat at around 87 ft. 

 

Figure 9. Groundwater table for the Textron site. 
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Figure 10. Groundwater table for the Test area. 

 

3.4. Groundwater Velocity 

Groundwater velocity is an essential and critical parameter for site 

characterization. Here we used AutoCAD Civil 3D and Excel to provide a rough 

estimation of groundwater velocity. A brief summary of Darcy velocity calculation 

procedure was presented below. 
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Figure 11. Groundwater surface (blue colored numbers denote the locations used 

for groundwater velocity calculation) 

First, the groundwater elevation contour map from August 19, 2015, in the 

Terracon report was inserted into AutoCAD Civil 3D (Terracon Consultants, 2016). As 

shown in Figure 11, the area of analysis was noted by a light yellow polygon. Polylines 

were then drawn to match with existing contours, and values of groundwater elevation 

were assigned to each contour curve. Using the ‘create a surface’ function in AutoCAD 

Civil 3D, a groundwater surface can be created. A 3D view of the groundwater surface is 

provided in Figure 12. On this surface, location and water head data for each point can be 
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easily obtainable. New contours with smaller intervals were generated with higher 

accuracy.  

 

Figure 12. 3D Groundwater surface 

Groundwater flow velocity estimation was focused on a smaller target zone in the 

upper right part of the site, where groundwater level contours are well established. 

Sixteen locations were chosen to calculate Darcy velocity in the target zone. The 

direction of groundwater velocity, which is perpendicular to water level contours, were 

denoted in the Figure 11 using blue arrows and numbers.  

According to Darcy’s law as expressed in Eq. 1, groundwater velocity is 

proportional to water head gradient along the travel distance. 

 q =  −K
ΔhΔx     (Eq. 1) 
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Where, q is the Darcy velocity (m/s); K is the hydraulic conductivity (m/s); Δh is 

the head difference (m); Δx is the distance difference (m). 

At each calculation point, head gradient was estimated as the ratio of head 

difference of two adjacent equipotential lines and the distance between them. According 

to the site characterization, fat sand was found in the target zone. Therefore, a hydraulic 

conductivity of 5 m/day was used based on the recommendation from Natural Resources 

Conservation Service (Natural Resources Conservation Service, n.d.). Based on the 

calculation, groundwater flow was generally very uniform. Darcy velocities at the sixteen 

locations of calculation are in the range of 0.260 – 0.262 ft/day. The average Darcy 

velocity in the target zone is around 0.2619 ft/day. Assuming a porosity of 0.3, the actual 

groundwater velocity of the site is about 0.87 ft/day.  
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Chapter 4 

 Quantifying Sodium Persulfate Release Kinetics 

 

4.1. Conceptual Model 

A sodium persulfate candle is a mixture of wax and sodium persulfate powder. 

The concentration of the sodium persulfate in the candle is much higher than the 

solubility of sodium persulfate in the water. In the flowing water system, the sodium 

persulfate candle gradually delivers sodium persulfate into water and keeps its original 

shape. Dissolution-diffusion is the main driving mechanism to release the sodium 

persulfate from the candle since various flowrates in the outside of candles result in 

similar longevity (Liang & Chen, 2017)  

Assuming the sodium persulfate distributes homogeneously in the candle, and the 

diffusion coefficient is a constant; an analytical model developed by Roseman and 

Higuchi can be adapted to quantify the release kinetics of sodium persulfate (Roseman & 

Higuchi, 1970). A hypothetical diagram for the matrix-boundary diffusion model is 

shown in the Figure 13.  
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Figure 13. Hypothetical diagram for the matrix-boundary diffusion model for the release 

of SPS from the sodium persulfate candle. 

 

From: Characterization of a Sodium Persulfate Sustained Release Rod for in Situ 

Chemical Oxidation Groundwater Remediation 

 

In Figure 13, the shaded area represents the sodium persulfate saturated zone and 

the blank area represents depletion zone of sodium persulfate. Initially, the candle is fully 

sodium persulfate saturated and has a radius of r0. When sodium persulfate gradually 

diffused through the candle, the radius of saturated zone (i.e. r) decreases until it reaches 

zero when all sodium persulfate is depleted. Assuming that the sodium persulfate in the 



33 

 

bulk fluid will be moved instantly due to advection, dispersion and reaction, the 

concentration of the sodium persulfate is zero (i.e.Cb = 0) at r = ra. 

The rate of sodium persulfate across the surface area of the cylinder is given by 

Fick’s law,  

dMdt = 2πrhDe dCdr     (Eq. 2) 

Where M is the mass of sodium persulfate depleted (g); t is the duration of the depletion 

(day); h is the height of the candle (cm); r is the radius of the saturated zone (cm); De is 

the effective diffusion coefficient (cm2/day); C is the concentration of sodium persulfate 

in the aqueous phase (g/cm3). 

When Eq.2 satisfies boundary conditions, C =  Cs at r = r and C =  C0 at r = r0 

from Figure 13, the solution is: 

DeCstA =  
r22 ln

rr0 + 
14 (r02 − r2)    (Eq. 3) 

 

and 

M = πhA(r02 − r2)     (Eq. 4) 

Where Cs is the solubility of sodium persulfate in the water at 20 °C (556 g/L); r0 is the 

initial radius of a candle (cm); A is the concentration of the persulfate in the matrix 

(g/cm3).  
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Combining Eq.3 and Eq.4 yields a plot about accumulative mass of sodium 

persulfate over time. Release rate is then available by mass differences over small time 

periods. 

4.2. Analyzing Lab and Field Data to Predict the Release Rate of Sodium 

Persulfate in the Field 

 

4.2.1. Lab Data  

To quantify persulfate release rates, Kambhu conducted a laboratory experiment 

with sodium persulfate candles(Kambhu, Comfort, Chokejaroenrat, & Sakulthaew, 

2012). 0.5-inch diameter candles were submerged in 250-mL flasks containing 200 mL 

water. Sub-samples via pipette were collected intensively at the beginning and cursorily 

until the end and colormetrically analyzed. Accumulative mass of sodium persulfate over 

time data was recorded (Figure 14).  

Roseman model (Eqs 3 and 4) was used fit the laboratory data by adjusting the 

effective diffusion coefficient (De). The criteria of fitting include (1) minimize the 

difference between simulated and measured mass release over time; and (2) minimize the 

difference between simulated and measured life time of the candle.  
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Figure 14. Cumulative Sodium persulfate mass release from lab experiment and 

simulations with different effective diffusion coefficient 
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Figure 15. Predicted lifetime of lab candles with different diffusion coefficient 
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an effective diffusion coefficient of 2.4 × 10−8 cm2/s provides reasonably match (i.e. R2 

= 0.9729) with both time series mass release data and the lifetime of candle.  

4.2.2. Scaling from Lab to Field 

Lab release data was obtained using 0.5-inch diameter candles with lengths of 1 

inch. The sodium persulfate candle in the field was 1-inch diameter and 12 inch long. In 

the field, sodium persulfate candles and iron candles were packed on top of each other in 

candle casings, as shown in Figure 16. One inch long of iron candles were packed 

between every feet of persulfate candles. In a casing of 5 feet long, 53 inches of 

persulfate candles and 5 inches of iron candles were packed. Candles are located at 10 

feet from the bottom of the casing, and the top casing is empty.  

For simplification, we assumed persulfate is instantaneously fully activated by the 

iron and all candles are represented as a big candle. In converting the lab data to field 

data, we assume that diffusion coefficient obtained from the lab data was remained the 

same in the field. Eq.3 and Eq.4 with field candle characteristics (i.e. radius of the candle, 

mass of sodium persulfate, and height of the candle) yields the accumulative mass of 

sodium persulfate over time. Predicted release rate in the field is then available by mass 

differences over small time periods （Figure 17）. Assuming the release rate per surface 

area is same for the big candle and one field-size candle, the release rate over a big candle 

is then quantified. 
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Figure 16. Diagram of field candles' settlement (provided by Airlift)  
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Figure 17. Simulated sodium persulfate release rate over time with an effective 

diffusion coefficient of 2.4 × 10−8 𝑐𝑐𝑐𝑐2/𝑠𝑠 
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and approximately every month until the remaining lifetime of the candles. Figure 18 

shows the remaining mass of candles each time as shown in yellow and a comparison 

with their initial mass as shown in blue.   

 

Figure 18. Sodium persulfate mass left in the Textron site over time (provided by 

Airlift) 

0

50

100

150

200

250

2 Weeks 1 Month 2 Months 3 Months 4 Months 5 Months

A
m

t.
 P

e
rs

u
lf

a
te

 P
e

r 
C

a
n

d
le

 (
g

)

Time



41 

 

 

Figure 19. Simulated remaining mass of sodium persulfate over time with 

effective diffusion coefficient of 7.1 × 10−8 cm/s and field data 
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0.9738) with field observation for both time series remaining mass data and the lifetime of 

candle.  

 

Figure 20. Simulated remaining mass of sodium persulfate over time based on 

lab data and field data 
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reality and the simulated release rates are always much smaller than the field release rate 

on the time serious. The difference of release rate and longevity might be caused by the 

assumption that the effective diffusion coefficient of a 0.5-inch diameter candle is same 

as that of a 1.0-inch diameter candle and the complexity of the real site such as reaction 

and changing flow conditions over time. In addition, there was a potential influence from 

the tortuosity. Compared to a 0.5-inch diameter candle, 1-inch diameter candle has more 

available pore space (i.e. pathways) to deliver the oxidant. Lengthened potential 

pathways increase the delivering time and affect the release rate correspondingly.  

Figure 19 and Figure 20 represents the simulated data based on the field 

observation has better fit with the field data than that based on the lab data. In the 

meantime, the simulated data based on the field observation provides reasonable 

prediction points on the time series. All in all, we decided to use the simulated release 

rate based on the field data. 
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Chapter 5  

Modeling Sodium Persulfate Release under Different Subsurface Flow 

Conditions 

 

5.1. Model Description 

To understand sodium persulfate release, transport, and reactions in the field site, 

we first develop a model to simulate sodium persulfate release and transport in a field site 

with simplified flow field. To build this physical-based model, COMSOL Multiphysics 

5.3, a widely used finite element based simulation software provided by COMSOL 

Incorporation, is used. COMSOL was used for simulating electromagnetics, structural & 

acoustics, fluid & heat, and chemical physical systems. 

This chapter describes the basic equations used in the simulation and analyzes the 

release of sodium persulfate under two subsurface flow conditions without aeration: I) 

Fine sand and clay media only; II) two layers with fine sand and clay media on top of the 

sand and gravel media. 

5.1.1. Geometry 

The simulation area was defined based on the simplified geometry of the Test 

area. As illustrated in Figure 21, the site is 52 ft long, 38 ft wide, and 72.4 ft deep. 

According to the field settlements, twenty-one big candles were placed in the North West 

corner of the domain. Figure 22 demonstrates the detailed arrangements of candles in 

blue points and four monitoring wells in red points. Groundwater flow direction is 
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assumed to be from north to south. A constant horizontal water table, which is 10 ft from 

the surface, is used in this simulation. The water table was defined based on limited field 

monitoring data. 

 

     

Figure 21. Basic geometry of the model 

Flow 

Directions 
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Figure 22. Candles placements in the Textron test area (provided by Airlift) 

 

5.1.2. Governing Equations, Boundary and Initial Conditions 

Advection and dispersion are the main driven mechanisms for persulfate release 

and transport, which can be described by a general mass balance equation (Eq.5). 

∂ci∂t + ∇(−𝐃𝐃∇ci) + 𝐮𝐮∇ci =  Ri +  Si    (Eq. 5) 

D = De + 𝐮𝐮α       (Eq. 6) 

Where ci is the concentration of species i (mol/m3); t is the simulation time (day); D is the 

mechanical dispersion coefficient (m2/s); u is the velocity vector (m/s); Ri is the reaction 
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rate of species i (mol/m3/s); Si is the source/sink term of species i (mol/m3/s); De is the 

diffusion coefficient in porous media (m2/s); α is the dispersivity (m). 

The release of persulfate from the candle was incorporated by defining a release 

flux of each big candle based on the release data described in the chapter 4. Because 

diffusion, dispersion, and advection are the main transport mechanisms in this case, the 

flux equation can be expressed as: 

𝐍𝐍𝐢𝐢 =  (−𝐃𝐃ci) + 𝐮𝐮ci    (Eq. 7) 

Where 𝐍𝐍𝐢𝐢 is the flux vector (mol/m2/s). 𝐍𝐍𝐢𝐢 is determined by dividing the release 

rate (g/day) obtained in Chapter 4 by the molar mass of 238.03 g/mol and the surface area 

of small candle (i.e. 0.0243 m2). Because the release rate quickly reached a very sharp 

maximum during a very short period (i.e. 0.45 minutes), the numerical simulation had 

difficulty with convergence. In order to avoid this problem, an averaged release rate of 

18.18 g/day was used during the first 1.525 day. This average release rate was calculated 

by considering the same amount of mass release during this period of time. Considering 

the longevity of the candle (i.e. 153 days), an approximation during the first 1.525 day 

should not have big impact on the final results. In the meantime, a step function starting 

from 0 and reaching 1 at 0.1 day multiplies the release rate and makes a smooth transition 

from zero to the maximum of the release rate. With these two adjustments, the numerical 

model was able to converge. Figure 23 illustrates the flux vector developed by the release 

rate. After 0.1 day, there is a smooth transition from zero to the maximum flux. The 

maximum flux lasted 1.425 days after it reached the peak. For the remaining time, flux 
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data was not adjusted and gradually decreased to zero until the end of the longevity of a 

candle. 

 

Figure 23. Flux vector yields from the release rate of the sodium persulfate 

 

To respect the physics, inflow, outflow, no flux and flux boundary conditions 

were used. No flux boundary condition is a boundary where no mass flux flows in or out 

and it was assigned at the top and bottom surfaces as water could not pass the water table 

and the bedrock. Literally, inflow and outflow boundary conditions means the inlet and 
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outlet boundary where species could come in or out, respectively. As illustrated in Figure 

21, the out surface, which is perpendicular to the groundwater flow direction and first 

encounters the water, was assigned as an inflow boundary. The remaining surfaces were 

assigned as outflow boundary conditions.  

We assumed that the whole domain does not have any species (i.e. concentrations 

equal to zero) at time zero. After that, sodium persulfate was released from the candle 

and spread in the domain. 

5.1.3. Mesh and Solver Settings 

The mesh of the model was tetrahedral and predefined as extra fine. Boundary 

layers mesh was utilized to refine the mesh around the candles. There were 1292442 

elements in the domain with average element quality of 0.6551. 

To model the real time release and transport of sodium persulfate, the simulation 

was time dependent. In the time-dependent solver, implicit BDF time stepping method, 

generalized minimum residual (GMRES) iterative linear system solver, and Newton’s 

nonlinear method with constant damping factor of 0.9 were used.  

5.2. Simulation Scenarios and Results 

According to the Soil and Groundwater Assessment Report provided by Terracon 

Consultants Incorporation, the major soil type in the test area of the Textron site are clay 

and fine sand. Persulfate release and transport were simulated in two aquifer scenarios, 

one homogenous aquifer with fine sand and clay and two-layer aquifer containing sand 

and clay on the top of the sand and gravel(Terracon Consultants, 2016).  
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5.2.1. Homogenous Aquifer with Fine Sand and Clay 

5.2.1.1. Basic parameter setup  

Natural Recourses Conservation Service provided a typical value of hydraulic 

conductivity for the fine sand as 9.174 × 10−5 m/s(Natural Resources Conservation 

Service, n.d.). In the meantime, Gelhar et al. reported that a similar site to the test area 

with “medium to fine sand interspersed with clay and silt”, had a hydraulic conductivity 

of 5.1 × 10−4 m/s, effective porosity of 25%, dispersivity of 0.6 m, and velocity of 0.05 

m/day (Gelhar, Welty, & Rehfeldt, 1992). The site is 6 m long, which is at the same scale 

as the width of the test area (i.e. 6.71 m). Therefore, basic parameters of the reported site, 

including groundwater velocity, dispersivity, and effective porosity, were adopted in this 

study.  

5.2.1.2. Results 

5.2.1.2.1. The Release of Sodium Persulfate over Time 

Figure 24 presents a transverse cross section of simulated concentration 

distributions of sodium persulfate released (mol/m3) from first row of candles at 20, 40, 

100, 153 days. Again, those candles lasted 153 days. Figure 25 presents a closer look to 

the concentration of sodium persulfate over the length of the line.   As shown in Figure 

24, concentration of persulfate was the highest at the location adjacent to candles, and 

then gradually decreased as further away from the candle. From 20 day to 153 day, the 

overall persulfate concentration in the area was decreasing with time. A closer look at 

Figure 25 indicated that the concentration of sodium persulfate quickly increased to a 
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very high value from the beginning to day 1, then gradually reduced after that. At day 1, 

the highest concentration reached around 6.5 mol/m3.  

 

 

T = 20 days T = 40 days 

T = 100 days 
T =153days 

Figure 24. Simulated concentration of sodium persulfate from first row of candles at 20, 

40, 100, 153 days (flow direction is out of the paper) 
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Figure 25. Concentration of sodium persulfate over first row of candles at various 

time 

The sharp increase of concentration before day 1 and the gradual decrease of 

concentration after that were consistent with the release rate and relevant transport 

processes such as advection and dispersion. Because the flow velocity and dispersivity 

were constant, the accumulation/depletion of sodium persulfate depended on the 

magnitude of the release. As illustrated in Figure 23, the flux delivering the sodium 

persulfate into the surrounding area of candles quickly reached its maximum during the 

first 1.525 days and gradually diminished until the end of a candle. Initially there was no 

sodium persulfate in the site, the concentration of the sodium persulfate sharply increased 
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because the release rate was much higher than dispersion and advection. After that, the 

concentration of sodium persulfate decreased because the release rate was decreased so 

that dispersion and advection were able to transport more persulfate away than the 

amount of released. 

 

T = 20 days T = 40 days 

T = 100 days T =153days 

Figure 26. Simulated concentration of sodium persulfate from first 

column of candles at 20, 40, 100, 153 days (flow direction is from the 

right to left) 
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Figure 27. Concentration of sodium persulfate over first column of candles at 

various time 

Figure 26 presents a longitudinal cross section of simulated concentration 

distributions of sodium persulfate released (mol/m3) from first column of candles at 20, 

40, 100, 153 days. Figure 27 presents a closer look to the concentration of sodium 

persulfate over the length of the line. As shown in Figure 26, initially, the highest 

concentration occurred at the location adjacent to candles and the concentration reduced 

with the distance from candles. From 20 days to 153 days, the center of the mass moved 
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down stream. Overall concentration at the downstream of candles increased with time 

while the concentration in the remaining positions decreased with time. A closer look at 

Figure 27 indicates that the highest concentration moved to the downstream of the 

candles after 80 days. In the meanwhile, the value of the maximum concentration 

decreased to 5 mol/m3. 

The movement of the center of the mass was consistent with the groundwater 

flow direction. The sodium persulfate released from the upstream candles were carried by 

the advection, dispersion, and diffusion to downstream, so that the concentration of 

persulfate in the downstream increased. During 80 to 120 days, the release rate from 

candles was smaller than the advection and dispersion and the center of the mass already 

passed through candles, so that the location of the maximum concentration moved 

downstream.  

5.2.1.2.2. The Radius of Influence  

To analyze the radius of influence of candles on the transverse direction 

with/without previous mass accumulation, two candles were chosen. Figure 28 

demonstrates the location of two candles. The first one was on the right of the first row. 

The second one was on the downstream of the first one and located on the fifth row. 
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Figure 29 presents the radius of influence of a candle on the right of the first and 

fifth row in the transverse direction. Here, the radius of influence was defined as the 

distance of a certain concentration value (i.e. 1 mM, 5 mM, and 10 mM) from the center 

of the candle in the transverse direction. For all concentrations examined on the first row, 

the radius of influence increased at the early time range. After that, the radius of 

influence reduced with time. In addition, the decrease rate of the radius of influence was 

much smaller than the increase rate. As expected, smaller concentration influence further 

and lasted longer. For example, the radius of influence for 1 mM reached as high as 35 

cm in the transverse direction at day 21. The maximum radium of influence for 5 mM 

was only 10 cm at a very early stage.  

Figure 28. Locations of analyzed candles on the top view of domain 



58 

 

 

The radius of influence in the fifth row was same as that of the first row at the 

early stage. After that, the radius of influence in the fifth row for each concentration 

deviated from that of the first row due to the arrival of sodium persulfate from the 

upstream. For 1 mM concentration, the radius of influence kept increase until a new peak 

of 0.843 m at day 90, which was almost 2.5 times further than the 1 mM radius of 

influence in the first row. For 5 mM concentration, the sodium persulfate mass from the 
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Figure 29. The radius of influence of a candle on the right of the first and fifth 

row in the transverse direction over time 
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upstream sustained the radius of influence from decreasing to a trend of increase, such 

that the maximum radius of influence in the fifth row remained as high as 0.1 m until day 

53. Finally, sodium persulfate concentration from upstream was not as high as 10 mM 

when it reached the fifth row. Because no influence from upstream for 10 mM, the radius 

of influence in the fifth row was same as that in the first row for the whole time period. 

  

5.2.2. Two-Layer Aquifer 

To evaluate the influence of aquifer heterogeneity on the release of sodium 

persulfate, simulation was conducted on a two-layer aquifer. Same as the Textron site, the 

top layer was composed of fine sand and clay with a thickness of 6.94 ft. The bottom 

layer was composed of sand and gravel with a thickness of 65.49 ft. The thickness of 

each layer was determined from the average thickness of the soil lithology model 

developed in Chapter 3. Figure 30 represents the geometry of two-layer model. Ten feet 

long big candles extended from the top of the first layer to 3.06 ft into the second layer.  
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Figure 30. Geometry of the two-layer model 

 

 

Parameters of aquifer materials were obtained from a similar site published by 

Gelhar et al. (Gelhar et al., 1992). For the fine sand and clay layer, dispersivity was 0.6 

m; velocity was 0.05 m/day; effective porosity was 25%. For the sand and gravel aquifer 

the hydraulic conductivity was 6.5 × 10−3 m/s; dispersivity was 6.9 m; the velocity was 

18 m/day; the effective porosity was 14% (Gelhar et al., 1992). 

5.2.2.1. Results 

Two cross-sectional views of the results are provided: I) four big candles in the 

first row on the transverse direction, and II) three big candles in the first column on the 

longitudinal direction. 

Flow Directions 
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Figure 31 represents simulated concentration of sodium persulfate released 

(mol/m3) from first row of candles at 20, 40, 100, 153 days. Figure 33 and Figure 32 

provided a closer look at the concentration over the length in the top and bottom layer, 

respectively. On the top layer, the trend of sodium persulfate release is just same as in the 

homogeneous aquifer. The sodium persulfate concentration was quickly increased to a 

very high value and then gradually reduced. The concentration of sodium persulfate in 

the sand and gravel layer was much smaller than that in the fine sand and clay layer. For 

example, the maximum concentration in the top layer at day 1 was around 32 mM, which 

was over 100 times that in the bottom layer as 0.0285 mM. The significantly lower 

persulfate concentration in the bottom layer is due to much higher velocity in this layer, 

which efficiently flushed the mass of sodium persulfate away as soon it released. The 

flow velocity in the second layer is 18 m/day, which is 360 times higher than the velocity 

in the top layer. 

Figure 34 presents the concentration distribution along the longitudinal direction 

of the flow for the first column of the candles. Again, as for the homogeneous aquifer, the 

same accumulation of persulfate mass in the downstream due to contribution from 

upstream was observed for the top layer. Furthermore, the center of spread moved 

quicker in the bottom layer than that in the top layer as the vast magnitude difference of 

the groundwater velocity. 

The striking difference of persulfate concentration in the two-layer aquifer has 

significant implication on the implementation of slow-release candle technology on a 

field site. Because a reasonable influence radius was formed in the sand and clay aquifer, 
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persulfate concentration in the sand and gravel aquifer is too low to achieve any 

contaminant removal if contaminant exists. Therefore, slow-release candle may not be 

suitable for aquifer with very high hydraulic conductivity.  

 

 

 

T = 20 days T = 40 days 

T = 100 days T =153days 

Figure 31. Simulated concentration of sodium persulfate from first row of 

candles at 20, 40, 100, 153 days in the two-layer model (flow direction is out of 

the paper) 
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Figure 32. Concentration of sodium persulfate over first row of candles at various 

time in the bottom layer 
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Figure 33. Concentration of sodium persulfate over first row of candles at 

various time in the top layer 



65 

 

  

 

5.3. Conclusion  

To understand sodium persulfate release and transport in the field site, COMSOL 

Multiphysics 5.3 was used to develop a model under two scenarios: I) Homogeneous fine 

T = 20 days T = 40 days 

T = 100 

 
T =153days 

Figure 34. Simulated concentration of sodium persulfate from first column of 

candles at 20, 40, 100, 153 days in the two-layer model (flow direction is from 

the right to left) 
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sand and clay aquifer; II) two layer aquifer with fine sand and clay media on top of the 

sand and gravel media. 

Simulated results from both conditions were consistent with basic theories and 

expectations. For the concentration distribution, the relative contribution of advection and 

the release rate of the sodium persulfate from a candle determined the 

accumulation/depletion of sodium persulfate. In the sand and clay aquifer, sodium 

persulfate was able to accumulate around the candle and the concentration of it proved its 

capability to remove the contaminants in the aqueous phase based on the basic 

stoichiometry. In the sand and gravel aquifer, groundwater velocity played a dominant 

role in the distribution of sodium persulfate. When sodium persulfate was released out, it 

would be immediately flushed away and leave almost nothing for the remediation. That 

indicated controlled release candle might not be suitable for high flow rate area like the 

sand and gravel aquifer. However, contaminants typically retained in the low 

permeability zone in the nature, we might not need to apply this technology in the high 

flow rate area.  

For the radius of influence in the sand and clay aquifer, higher the required 

concentration of the sodium persulfate, smaller the radius of influence was. If 1 mM was 

the basic concentration requirement for the remediation, 0.66 m was the minimum radius 

of influence except the initial phase and the spacing of candles of 0.91 m was big enough 

to capture the incoming contaminants (i.e. 0. 66 m × 2 = 1.32 m > 0.91 m). In the 

meanwhile, increasing the spacing of the later rows or decreasing the amount of sodium 

persulfate in the candle was suggested in the economical wise consideration. If the 



67 

 

amount of sodium persulfate was same, the spacing could be change to 2.64 m (i.e. 

0.66 m × 4 = 2.64 m) instead of 0.91 m with the present of next row to fix the gap. 

Based on that, implication of controlled release candles were applicable in the field. For 

the sand and clay aquifer, the radius of influence was not considerate as mentioned 

before.  

Finally, the performance of two-layer model demonstrated the capacity to handle 

wide range of soil properties where field site properties locate. The model is ready to be 

associated with aeration or reaction in the further steps. 
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Chapter 6 

 Modeling Remediation Using Sodium Persulfate Candles 

 

6.1. Model Description 

In this chapter, a model coupled with reaction in the field-scale was developed. In 

the model, transient persulfate release, transport and reactions with benzene under the 

flow condition in the field site were simulated. A space-dependent reaction module in 

COMSOL Multiphysics 5.3 was used to simulate reaction. This chapter first describes 

basic reactions used in the simulation, and then analyzes the efficacy/radius of influence 

of sodium persulfate under different remediation scenarios. 

 

6.1.1. Modeling Domain 

In this chapter, the simulation domain focuses on the North-West corner of the 

original site where candles were installed (Figure 35). The simulation domain is 38 ft 

long, 14.76 ft wide, and 22.97 ft deep. Twenty-one big candles were placed in the same 

arrangement as implemented in the Textron site (Chapter 3). Contaminated groundwater 

flow direction was assumed to be from north to south. A constant horizontal water table, 

which was 10 ft below the ground surface, was accounted as the top surface of the 

simulation domain. The water table was defined based on the limited field monitoring 

data. Coupling reactions in a transport model led to a sharp increase on the computational 

demand. In order to make the computational time feasible, candles were simulated as line 

sources. The actual diameter of a candle 1 inch, which is only 1/177 of the width of the 
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field (14.76 ft). The details of the candle geometry should not impact overall simulation 

results.  

 

 

6.1.2. Governing Equations, Boundary and Initial Conditions 

Persulfate release, transport, and reaction can be described by the advection-

dispersion –reaction equation (Eq.5 – 7): 

Flow Directions 

Figure 35. Basic geometry of the model 
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 ∂ci∂t + ∇(−𝐃𝐃∇ci) + 𝐮𝐮∇ci =  Ri +  Si   (Eq. 5) 

D = De + 𝐮𝐮α      (Eq. 6) 𝐍𝐍𝐢𝐢 =  (−𝐃𝐃ci) + 𝐮𝐮ci     (Eq. 7) 

Where ci is the concentration of species i (mol/m3); t is the simulation time (day); 

D is the mechanical dispersion coefficient (m2/s); u is the velocity vector (m/s); Ri is the 

reaction rate of species i (mol/m3/s); Si is the source/sink term of species i (mol/m3/s); De 

is the diffusion coefficient in porous media (m2/s); α is the dispersivity (m); Ni is the flux 

vector (mol/m2/s). 

Different from the models in Chapter 5, Ri, reaction rate of species i, is calculated 

based on the reaction kinetics, as detailed below. Persulfate candles were simulated as 

mass line sources for reactive transport. Sodium persulfate release rate, in the unit of 

mol/m/s, was determined by dividing the small candle mass release rate(g/day) obtained 

in Chapter 4 by the molar mass of sodium persulfate (238.03 g/mol) and the length of 

small candle(i.e. 0.3048m). To avoid the converge problem, similar methods (i.e. early 

stage average and smooth function) applied in Chapter 5 were utilized to develop the 
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source strength. 

 

 

Figure 36 illustrated the source strength of sodium persulfate over time developed 

by the release rate. After 0.1 day, there is a smooth transition from zero to the maximum 

flux, which lasted for 1.425 days. After that, mass flux gradually decreased to zero until 

the end of the longevity of a candle. 

Additional boundary conditions including inflow, outflow, no flux boundary 

conditions were used in the model. No flux boundary condition is a boundary condition 

to consider no mass flux flows in or out of the boundary. No flux boundary condition was 

Figure 36. Source strength of sodium persulfate over time 
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assigned at the top and bottom surfaces because water could not pass the water table and 

the bedrock. Inflow and outflow boundary conditions assume that species could come in 

or out of the boundary. , respectively. As illustrated in Figure 35, the upstream surface, 

which was perpendicular to the groundwater flow, was assigned as an inflow boundary. 

We assumed there was an unknown source zone of benzene in the upstream, and a 

constant benzene concentration boundary condition was assigned at the upstream surface. 

The remaining surfaces were assigned as outflow boundary conditions. We also assumed 

that the whole domain was initially homogeneously contaminated by benzene (i.e. 

constant concentration of benzene and zero concentration of other species). After that, 

sodium persulfate was released from the candle, fully activated, spread and reacted with 

benzene in the domain. 

6.1.3. Determination of Reaction Rates 

Activation of persulfate was demonstrated to be a much more efficient way to 

treat contaminants than persulfate itself. Activation is a process to transform persulfate 

(𝑆𝑆2𝑂𝑂82−) into sulfate radical(SO42−), which has higher oxidation-reduction potential in 

the presence of activator. Zero-valent iron (𝐹𝐹𝐹𝐹0) was a source to slowly release activator 

(𝐹𝐹𝐹𝐹2+) and the activation process with persulfate can be expressed as(Hussain, Zhang, 

Huang, & Du, 2012): 

 𝐹𝐹𝐹𝐹0 + 2𝑆𝑆2𝑂𝑂82− →  𝐹𝐹𝐹𝐹2+ + 2SO42− + 2SO42−  (Eq. 8) 

𝐹𝐹𝐹𝐹2+ + 𝑆𝑆2𝑂𝑂82− → 𝐹𝐹𝐹𝐹3+ + SO42− + SO42−   (Eq. 9) 
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The reaction between sulfate radical and benzene is complicated and could be site 

dependent. In this work, we used degradation rates quantified by the laboratory 

experiments. Kambhu and co-workers (Kambhu, Comfor t, Chokejaroenrat, & 

Sakulthaew, 2012) conducted a series of experiments to measure the degradation of 

benzene by persulfate and zero-valent iron. Figure 37 and Figure 38 illustrated 

experimental data for benzene (0.5 and 1 mM initial concentration) reaction with 

persulfate and zero valent iron. Figure 39 presents 0.1 mM benzene degradation with 

aged persulfate candle. As shown in the figure, a first-order reaction was able to 

sufficiently simulate the degradation of benzene for both new and aged candles with 𝑅𝑅2 ≥ 0.9781. The reaction rate constants of benzene in Figure 37, Figure 38, and Figure 

39 were in the range of 2 × 10−5 s-1 to 7 × 10−5 s-1 with the average of 3.8 × 10−5 s-1. 

In the transport model, a first order reaction was used to simulate benzene degradation. 

The reaction rate of benzene was assigned as 3 × 10−5 s-1 multiplied by the concentration 

of benzene (mM) as shown in Eq. 10. 

 𝑅𝑅𝑖𝑖(molm3∙s) = 3 × 10−5 (𝑠𝑠−1) ∙ 𝑐𝑐𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚3 )        (Eq. 10) 

Liu proposed several pathways for the oxidation of benzene by sulfate radical and 

each pathway consumed only one sulfate radical(Liu et al., 2016). We assumed the 

natural oxidant demands of soil was negligible and all sulfate radicals were consumed by 

benzene. Based on that and Eq. 8-9, the stoichiometry of persulfate, sulfate radical, 

benzene was assumed as 1:1:1. Therefore, the reaction rate for persulfate was same in the 

magnitude as that for benzene in the reaction model, but with a negative sign. 
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Figure 37. Benzene concentrations (Co = 0.5 mM) over time with new and 

48-hr aged persulfate and zero-valent iron candles 
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Figure 38. Benzene concentrations (Co = 1 mM) over time with new and 48-hr 

aged persulfate and zero-valent iron candles 
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6.1.4. Mesh and Solver Settings 

The mesh of the model was tetrahedral and predefined as finer. There were 23143 

elements in the domain with average element quality of 0.6646. 

To model the real time release, transport, and reaction of sodium persulfate, the 

simulation was time dependent. In the time-dependent solver, implicit BDF time stepping 
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Figure 39. Benzene concentrations (Co = 0.1 mM) over time with 48-hr aged 

persulfate and zero-valent iron candles 
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method, generalized minimum residual (GMRES) iterative linear system solver, and 

Newton’s nonlinear method with constant damping factor of 0.9 were used. Before the 

optimization of mesh and solver settings, each model typical consumed 2 weeks to 

complete a simulation on a computer and only one simulation was capable run in the 

same time. After the optimization, typically computation time for a simulation was 

around 3 days in the range of 1 day to 2 weeks. 

6.2. Simulation Scenarios 

A basic set of simulation was conducted to investigate the influence of reaction on 

the radius of influence under three incoming concentration of benzene. We hypothesize 

the influential radius of persulfate is dependent on the concentration of contaminants in 

the field. A series of three incoming concentration, i.e. 0.02 mM, 1 mM, and 5 mM, was 

chosen. Particularly on the Textron site, the concentration of benzene was measured as 

around 0.02 mM in the area of slow-release candle implementation.  

The second set of simulation was conducted to investigate the influence of 

groundwater flow velocity on the radius of influence under reaction condition. In this set 

of simulation, groundwater velocity was reduced to 1/10 of the groundwater velocity in 

the basic set of simulation. The same series of incoming benzene concentration, i.e. 0.02 

mM, 1 mM, and 5 mM, was simulated.  

The third set of simulation aimed to investigate the effect of increased mixing on 

the radius of influence due to aeration. In order to achieve better mixing and spreading, 

an aerator was installed at the bottom of the candle to blow air bubble and create a well-

mixed flow condition surrounding the candle. Kambhu has conducted sand tank 
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experiments to evaluate the influence of aeration rates on the mixing. In that experiment, 

a permanganate candle with 6 inches high and 0.5 in diameter was installed in a tank 

filled with fine sand. As shown in Figure 40, when air flow rate increased from 3 mL/min 

to 5.3 mL/min, the transverse spreading of the permanganate increased from 7.5 cm to 

10.2 cm at the location of candle after 24 hours of the release.  

 

Figure 40. Influence of air rate on the lateral spreading 

While a rigorous numerical model is still under development, a simplified 

approach was used to take into account the additional mixing created by aeration. 

Particularly, we assume that the aeration processes created additional mixing around the 

candle, which can be described by an enhanced dispersion in the area. To quantify a 
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dispersion enhance factor, we first examine the laboratory experiments conducted by 

Kambhu in Figure 40. For the release of a unit amount of solute in a two dimensional 

domain, the concentration distribution can be estimated as:  

𝐶𝐶(𝑥𝑥,𝑦𝑦, 𝑡𝑡) =
14𝜋𝜋𝜋𝜋(𝐷𝐷𝐿𝐿𝐷𝐷𝑇𝑇)0.5 exp �− (𝑥𝑥−𝑣𝑣𝜋𝜋)24𝐷𝐷𝐿𝐿𝜋𝜋 − 𝑦𝑦24𝐷𝐷𝑇𝑇𝜋𝜋�   (Eq. 11) 

 

Where, 𝐶𝐶(𝑥𝑥,𝑦𝑦, 𝑡𝑡) is the concentration at a point (x, y) at time t; 𝐷𝐷𝐿𝐿 is the 

coefficient of longitudinal hydrodynamic dispersion (m2/s); 𝐷𝐷𝑇𝑇 is the coefficient of 

transverse hydrodynamic dispersion (m2/s); 𝑣𝑣 is the average linear velocity (m/s). 

The standard deviation of concentration distribution started from the source can 

be described as:  

𝜎𝜎𝑦𝑦 = �2𝐷𝐷𝑇𝑇𝑡𝑡     (Eq. 12) 

Assuming that plume dimension measured by the pictures in Figure 40 accounted 

for 95% of the mass, which related to two standard deviation away from the center. 

Based on equation 12, a transverse dispersion coefficient can be estimated as 8.07 ×

10−9 m2/s and 1.15 × 10−9 m2/s for aeration rates of 3 mL/min and 5.3 mL/min, 

respectively. Typically, transverse dispersion is assumed to be 1/10 of the longitudinal 

dispersion. Therefore, under a groundwater flow velocity of about 3.94 × 10−6 m/s in 

the experiment, the longitudinal dispersivity values around the candle in the tank were 

estimated as 0.02 m and 0.038 m for aeration rates of 3 mL/min and 5.3 mL/min, 

respectively. The dispersivity measured by a tracer test conducted in the same tank using 
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same type of sand, however, was about 0.005m. Therefore, it is estimated that the 

aeration rate of 3 mL/min led to about 4 times higher mixing in the longitudinal direction 

in the area adjacent to the candle.  

In this set of simulation, we increased the dispersivity to reflect the mixing 

created by the candle. Particularly, the longitudinal dispersivity of 1.2 m is used, which is 

4 times of the original dispersivity used in the basic setting. Because the aerator created a 

well-mixed area surrounding the candle, it is reasonable to assume that the mixing in the 

transverse direction is now same as in the longitudinal direction, instead of typically 

assumed 1/10 of the longitudinal dispersivity. Therefore, a transverse dispersivity of 1.2 

m is used.  

6.3. Results 

6.3.1 Basic Set 

Figure 41 presents a top view of the simulated sodium persulfate concentration 

distribution at days 40, 80, 120, and 153 when no benzene is present. In comparison, 

Figure 42, 43, and 44 represent a top view of the simulated sodium persulfate and 

benzene concentration distributions (mol/m3) at days 40, 80, 120, and 153 under different 

initial and incoming benzene concentration (i.e. 0 mM, 0.02 mM, 1 mM, and 5 mM). In 

all the conditions, sodium persulfate gradually released from the candles. Carried by the 

groundwater flow, the center of the sodium persulfate plume moved towards the 

downstream of the flow. Correspondingly, benzene was removed via the reaction with 

sodium persulfate.  



81 

 

As shown in Figure 41-44, the maximum concentration of persulfate decreased 

with the increase of initial and incoming benzene concentration. For example, the 

maximum concentration were around 6.5 mM, 6.4 mM, 6.1 mM, and 2 mM at 153 days 

under 0 mM, 0.02 mM, 1 mM, and 5 mM benzene, respectively. In addition, increased 

initial and incoming concentration of benzene decreased the distribution area of 

persulfate in both longitudinal and transverse directions. For example, persulfate plume at 

153 days almost reached the entire domain with 0.02 mM benzene while it spread only 

1/6 of the domain with 5 mM benzene. The change of the maximum persulfate 

concentration and the distribution area were consistent with the benzene concentration, 

relevant reaction and transport processes. Because the flow velocity and dispersivity were 

constant, the accumulation/depletion of sodium persulfate depended on the magnitude of 

the reaction. Persulfate and benzene reaction was simulated as a first order reaction (i.e. 

Eqs. 10), where the reaction rate was linked with the concentration of benzene. An 

increased concentration of benzene led to increased reaction rate, more sodium persulfate 

consumption, and reduced mass of persulfate left in the field. 
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Figure 41. Concentration of sodium persulfate at day 40, 80, 120, and 153 

without benzene (flow direction is from top to the bottom) 

T = 40 days T = 80 days 

T = 120 

 

T = 153 
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Figure 42. Basic set: First row shows concentration of persulfate at day 40, 80, 

120, and 153 with 0.02 mM initial and incoming concentration of benzene. 

Second row shows concentration of benzene at days 40, 80, 120, and 153 (flow 

direction is from top to the bottom) 

T= 40 

days 
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days 
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Figure 43. Basic set: First row shows concentration of persulfate at day 40, 80, 

120, and 153 with 1 mM initial and incoming concentration of benzene. Second 

row shows concentration of benzene at days 40, 80, 120, and 153 (flow direction 

is from top to the bottom) 
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days 

T= 80 days 

T= 10 days T= 80 days T= 153 
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T= 40 
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Figure 44. Basic set: First row shows simulated concentration of persulfate at day 

40, 80, 120, and 153 with 5 mM initial and incoming concentration of benzene. 

Second row shows concentration of benzene at days 40, 80, 120, and 153 (flow 

direction is from top to the bottom) 
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Figure 45 and Figure 46 present radius of influence of a candle on the right most 

position of the first and fifth rows, respectively. Here, the radius of influence was defined 

as the distance between the center of candle and the location that sodium persulfate 

concentration is 1 mM in the transverse direction. Various examined concentrations have 

different results about radius of influence. However, the trend of change is predictable. 

To better analyze the data in this chapter, an arbitrary number, 1 mM, was chosen. As 

expected, the radius of influence reduced with increase of concentration of benzene. 

Under the smaller concentration of benzene, less amount of persulfate released from 

candle was consumed; therefore, it can be transported further in the domain. For example, 

the radius of influence on the first row with 0.02 mM benzene reached as high as 35 cm 

in the transverse direction around day 20. The maximum radium of influence on the first 

row with 1 mM was only 10.8 cm at day 10. When the benzene concentration was 5 mM, 

all persulfate released from the candle was consumed right away.  

In the first row (Figure 45), the radius of influence for the candle in the first row 

always sharply reached a maximum and then quickly reduced. For initial benzene 

concentrations of 0, 0.02 mM, and 1 mM, some persulfate that was not consumed by 

benzene in the first several rows moved downstream. Therefore, the radius of influence 

of the candle showed a longer increasing trend before it started to reduce and more 

benzene downstream can be removed. As shown in Figure 46, until 150 days, the 

concentration of persulfate is higher than 1 mM within 0.45 m away from the candle 

when incoming benzene concentration is 0.02 mM. For the incoming benzene 

concentration of 1 mM, the highest radius of influence is 0.36 m after 60 days in the fifth 
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row. Considering a distance of about 1 meter between two candles, there is a gap between 

the two candles that has a persulfate concentration lower than 1 mM.  For initial benzene 

concentration of 5 mM, however, all persulfate was consumed as soon as it was released. 

Therefore, the persulfate concentration is lower than 1 mM everywhere between the two 

candles in the fifth row. This analysis indicated that the effectiveness of candle based on 

the current position strategy is dependent on the incoming contaminant concentration.  
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Figure 45. Basic set: The radius of influence of a candle on the right of the first 

row in the transverse direction over time via various concentration of benzene 
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Figure 46. Basic set: The radius of influence of a candle on the right of the fifth 

row in the transverse direction over time via various concentration of benzene 
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6.3.2 Reduced Velocity Scenarios 

Figure 47, Figure 48, and Figure 49 present a top view of simulated sodium 

persulfate and benzene concentration distributions (mol/m3) under a lower groundwater 

(1/10 of the basic set), at days 40, 80, 120, and 153 with different initial and incoming 

benzene concentration (i.e. 0.02 mM, 1 mM, and 5 mM). As expected, increased 

concentration of benzene consumed more released persulfate, and led to reduced 

persulfate concentration in the field. Due to the reduced groundwater velocity, the plumes 

of persulfate did not move towards downstream as fast as the basic set of simulation 

(Figure 42, 43, and 44). In addition, we observed that the sodium persulfate plume at day 

153 reached the upstream boundary and removed incoming 0.02 mM benzene (Figure 

47). The concentration of persulfate moved to the adjacent upstream of the field was due 

to the dispersion effect, which is relatively more important under 10 times lower 

groundwater velocity. However, the amount of persulfate dispersed to the upstream was 

not able to remove the incoming benzene with a 5 mM initial concentration (Figure 49).  

Figure 50 presents the radius of influence of a candle on the right of the first row 

in the transverse direction over time under various benzene concentrations for both the 

basic set and the reduced velocity set. For each examined benzene concentration, the 

radius of influence on the first row was higher under the lower velocity than that in the 

basic set. Particularly for the scenario with 5 mM incoming benzene concentration, the 

radius of influence was zero under the basic set. Under the lower velocity condition, the 

radius of influence reached as high as 0.2 m after about 20 day when incoming benzene 

concentration was 5 mM. This is consistent with the magnitude of the groundwater 
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velocity. Decreased groundwater velocity reduced the mass of persulfate carried by the 

advection and enhanced the lateral spreading. Correspondingly, the radius of influences 

were constantly increasing until 150 days of the implementation for scenarios with lower 

incoming concentrations of 0.02 mM and 1 mM, indicating that the all areas between 

candles in the first row kept a higher than 1 mM persulfate concentration. Obviously, the 

slow-release system was a more efficient and economic-wisely way to treat the 

contaminants in the low-permeable zone.  

Figure 51 represents the radius of influence of a candle on the right of the fifth 

row in the transverse direction over time via various concentration of benzene for both 

the basic and reduced velocity sets. As explained previously, the radius of influence on 

the fifth row was expected to be higher than that of the first row due to the accumulation 

of the amount of persulfate not consumed by benzene from upstream. The radius of 

influence of the candle in the fifth row was higher than that in the basic set with 1 or 5 

mM incoming benzene concentration. However, it is smaller than the basic set with 0.02 

mM incoming benzene concentration up until 130 days. That is because it would take 

longer for extra amount of unconsumed benzene to move downstream under lower 

velocity conditions.  
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Figure 47. Velocity set: First row shows concentration of persulfate at 

days 40, 80, 120, and 153 with 0.02 mM initial and incoming concentration of 

benzene. Second row shows concentration of benzene at day 40, 80, 120, and 

153 (flow direction is from top to the bottom) 

T= 40 days T= 120 days T= 153 days T= 80 days 

T= 40 days T= 120 days T= 153 days T= 80 days 
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Figure 48. Velocity set: First row shows concentration of persulfate at 

days 40, 80, 120, and 153 with 1 mM initial and incoming concentration of 

benzene. Second row shows concentration of benzene at day 40, 80, 120, and 

153 (flow direction is from top to the bottom) 

T= 40 days T= 120 days T= 153 days T= 80 days 

T= 40 days T= 120 days T= 153 days T= 80 days 
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Figure 49. Velocity set: First row shows concentration of persulfate at 

days 40, 80, 120, and 153 with 5 mM initial and incoming concentration of 

benzene. Second row shows concentration of benzene at day 40, 80, 120, and 

153 (flow direction is from top to the bottom) 

T= 40 days T= 120 days T= 153 days T= 80 days 

T= 40 days T= 120 days T= 153 days T= 80 days 
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Figure 50. Velocity & Basic set: The radius of influence of a candle on the 

right of the first row in the transverse direction over time via various 

concentration of benzene 
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Figure 51. Velocity & Basic set: The radius of influence of a candle on the 

right of the fifth row in the transverse direction over time via various 

concentration of benzene 
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6.3.3 Enhanced Aeration Scenarios 

Figure 52 and Figure 53 present a top view of sodium persulfate and benzene 

concentration distributions at days 40, 80, 120, and 153 under enhanced aeration 

condition with different initial and incoming concentration of benzene (i.e. 0.02 mM and 

1 mM). As expected, increased concentration of benzene consumed more released 

persulfate, and led to reduced persulfate concentration in the field. In this set, the mixing 

due to aeration was simulated by an increased dispersion coefficient in both longitudinal 

and transverse directions. As a result, sodium persulfate quickly mixed with water 

adjacent to the candles as soon as they were released. Compared with the basic set 

(Figure 42, and 43), sodium persulfate is much better dispersed with lower concentration 

in the area. In the basic set (Figure 42, 43, and 44), the maximum concentrations were 

around 6.4 mM, 6.1 mM, and 2 mM at 153 days under 0.02 mM, 1 mM, and 5 mM 

benzene, respectively. In the enhanced aeration set, the maximum concentrations were 

3.8 mM, 2.5 mM. In addition, due to enhanced dispersion/mixing, a small amount of 

persulfate dispersed to the upstream boundary, which was able to remove incoming 

benzene at the boundary when concentration is 0.02 mM. 

Figure 54 presents the radius of influence of a candle on the right of the first row 

in the transverse direction over time via various concentration of benzene under both the 

basic and the aeration sets. Surprisingly, the radius of influence for 1 mM incoming 

benzene concentration under the aeration scenario was zero from the beginning to the end 

of simulation. This indicates that the concentration of persulfate was constantly lower 

than 1 mM in the transverse direction of the candle. As soon as persulfate was released 
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from the candle, it reacted with benzene in the field. Due to the enhanced mixing, the 

persulfate concentration was lower than the basic set. After reacting with 1 mM 

concentration benzene, the concentration of persulfate was reduced to less than 1 mM. 

Therefore, the radius of influence, by its definition, was reduced to zero. For 0.02 mM 

incoming benzene concentration in the aeration set, removal of the benzene did not 

consume as much of persulfate. The radius of influence on the first row extended out of 

the simulation domain, or at least 1.15 m, which was at least 3 times higher than that in 

the basic set (i.e. 0.33 m). It took about 110 days for the radius of influence reduce to 

zero, corresponding to 90 days for the basic set under the same incoming benzene 

concentration.  

Figure 55 presents the radius of influence of a candle on the right of the fifth row 

in the transverse direction over time via various concentration of benzene under both the 

basic and the aeration sets. As explained previously, the radius of influence on the fifth 

row was expected to be higher than that of the first row due to the accumulation of the 

amount of persulfate not consumed by benzene from upstream. For an instance, after 

about 10 days of operation, the radius of influence in the fifth row for 0.02 mM benzene 

in the aeration set were generally extended out of the domain, or at least 1.15 m, which 

was at least 1.67 times bigger than that in the basic set (i.e. 0.33 m). It is important to 

point out that, the aeration resulted in lower concentration in the area. When incoming 

benzene concentration is relatively high (e.g. 1 mM), reacting with benzene will further 

reduce the concentration of persulfate, which could lead to a delay of persulfate mass 

accumulation in the fifth row and a decrease of the influential radius. For example, it took 
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about 20 more days to establish the radius of influence in the fifth row, and the radius of 

influence lasted only until about 100 days. After that, the concentration of persulfate 

adjacent to the candle in the fifth row reduced to less than 1 mM. In comparison, the 

radius of influence in the fifth row lasted for about 150 days in the basic set with 1 mM 

incoming benzene concentration. 
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Figure 52. Aeration set: First row shows concentration of persulfate at 

day 40, 80, 120, and 153 with 0.02 mM initial and incoming concentration of 

benzene. Second row shows concentration of benzene at day 40, 80, 120, and 

153 (flow direction is from top to the bottom) 

T= 40 days T= 120 days T= 153 days T= 80 days 

T= 40 days T= 120 days T= 153 days T= 80 days 
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Figure 53. Aeration set: First row shows concentration of persulfate at 

day 40, 80, 120, and 153 with 0.02 mM initial and incoming concentration of 

benzene. Second row shows concentration of benzene at day 40, 80, 120, and 

153 (flow direction is from top to the bottom) 

T= 40 days T= 120 days T= 153 days T= 80 days 

T= 40 days T= 120 days T= 153 days T= 80 days 
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Figure 54. Aeration & Basic set: The radius of influence of a candle on the 

right of the first row in the transverse direction over time via various 

concentration of benzene. Dash lines meant the connection had artificial data 

point where the radius of influence was zero or its maximum was out of the 

simulation domain. 
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Figure 55. Aeration & Basic set: The radius of influence of a candle on the 

right of the first row in the transverse direction over time via various 

concentration of benzene. Dash lines meant the connection had artificial data 

point where the radius of influence was zero or its maximum was out of the 

simulation domain. 
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6.4. Conclusion  

To understand sodium persulfate release and transport in the field site, COMSOL 

Multiphysics 5.3 was used to develop a model under three scenarios: I) three incoming 

concentrations of benzene; II) 10 times slower groundwater velocity scenarios; III) 

enhanced aeration scenarios. 

Simulation results from all conditions were consistent with basic theories and 

expectations. The relative contribution of reaction and transport processes (i.e. advection 

and dispersion) determined the accumulation/depletion of sodium persulfate. In the basic 

set with various incoming concentrations, the reaction between persulfate and incoming 

benzene largely determined the mass and distribution of persulfate in the field. However, 

in the groundwater velocity set and the aeration set, advection and dispersion played a 

dominant role. In the reduced velocity set, the radius of influence of a candle was higher 

than the basic set, and they kept relatively constant at a high value for both 0.02 mM and 

1 mM benzene. This indicates that it is possible to optimize the system to use less rows of 

candles and/or increase the distance between candles in the low permeability zone. In the 

comparison with basic and aeration sets, enhanced aeration could increase or decrease the 

radius of influence of a candle, dependent on the incoming contaminant concentration. 

When incoming contaminant concentration is not very high, enhanced aeration greatly 

increased the radius of influences, so that distances between the candles can be increased. 

When incoming contaminant concentration is very high, enhanced aeration rate could 

reduce the concentration of the persulfate, and reduce the radius of influences. Double 

checking the sufficient mass left for later spreading was a key to determine the 
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remediation efficacy or control the aeration rate in a suitable range. In the slow-release 

system design, if extra supply of oxidant in a candle was considered and suitable aeration 

rates was designed, the demand of boring and labor work could be greatly reduced by 

using larger interval distances. The effective duration time could also be increased. 

To apply this model to offer rough spacing suggestions in a new site, initial and 

incoming contaminants concentration, groundwater velocity, and air flow rate were the 

key factors. Based on the contaminants concentration and stoichiometry of oxidants and 

contaminants, required mass of oxidants could be calculated. If we coupled that with 

typical diffusion coefficient of a candle, release model could yield optimized release rate. 

After inputting release rates and remaining key factors in COMSOL, radius of influence 

could be obtained to optimize the slow-release candles design. 
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Chapter 7 

 Summary and Conclusions 

 

Although Lee’s model (Lee, Liu, Schwartz, Kim, & Ibaraki, 2008) provided a 

way to investigate the slow-release system with basic physics (i.e. 2D simulation, 

constant oxidant release, w/o dispersion, and constant decay as reaction rate), some over 

simplifications could lead to bad judgments. In this work, a much more comprehensive 

model, considering realistic release kinetics, reactions, aquifer properties, and/or aeration 

was developed using COMSOL Multiphysics 5.3.  

Following main tasks were accomplished in this thesis: 

I. Developed an approach to simulate realistic release kinetics of sodium 

persulfate in the field; 

II. Incorporated benzene and sodium persulfate reaction with the transport 

model ; 

III. Evaluated the influence of aquifer properties (i.e. sand and clay and sand 

and gravel media) on the radius of influence of slow-release persulfate 

candles; 

IV. Evaluated the influence of concentration of contaminants in the field on 

radius of influence of slow-release persulfate candles; 

V. Evaluated the influence of groundwater velocity on radius of influence of 

slow-release persulfate candles; 
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VI. Evaluated the influence of aeration on radius of influence of slow-release 

persulfate candles. 

Simulated results from both conditions were consistent with basic theories and 

expectations. Correspondingly, there were seven conclusions and suggestions: 

I. In the sand and gravel aquifer with high groundwater velocity, sodium 

persulfate would be quickly flushed away immediately after release, which 

leaves almost nothing for remediation. That indicates that controlled 

release candles are not suitable for aquifer with high flow rate, such as 

sand and gravel aquifer; 

II. For the radius of influence in the sand and clay aquifer, higher the required 

concentration of the sodium persulfate, smaller the radius of influence 

was. 

III. When the spacing between a row is smaller than required radius of 

influence, increasing the spacing of the later rows or decreasing the 

amount of sodium persulfate in the candle was suggested in the 

economical wise consideration; 

IV. In the basic set with various incoming concentrations, the reaction 

between persulfate and incoming benzene largely determined the mass and 

distribution of persulfate in the field; 

V. In the reduced velocity set, the radius of influence of a candle was higher 

than the basic set, and they kept relatively constant at a high value for both 

0.02 mM and 1 mM benzene. This indicates that it is possible to optimize 
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the system to use less rows of candles and/or increase the distance 

between candles in the low permeability zone; 

VI. In the comparison with basic and aeration sets, enhanced aeration could 

increase or decrease the radius of influence of a candle, dependent on the 

incoming contaminant concentration. Double checking the sufficient mass 

left for lateral spreading was a key to determine the remediation efficacy 

or control the aeration rate in a suitable range. 

VII. In the slow-release system design, if extra supply of oxidant in a candle 

was considered and suitable aeration rates was designed, the demand of 

boring and labor work could be greatly reduced by using larger interval 

distances. The effective duration time could also be increased. 

Finally, the performance of remediation model demonstrated the capacity to 

handle wide ranges of soil properties in the field. Based on the easy setting of the reaction 

module, this model is able to be adapted to design the slow-release system for various 

oxidants and targeting contaminants. In the future, rigorous numerical modeling of 

aeration should be incorporated to more accurately evaluate the influence of aeration for 

a complex design. More advanced release kinetic model based on the formula and 

positions of components should be incorporated to simulate the persulfate release 

kinetics. Finally, the model should be validated using well-controlled field site 

experiments.  
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