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S U M M A R Y

Many unresolved questions in geodynamics revolve around the physical behaviour of the

two-phase system of a silicate melt percolating through and interacting with a tectonically

deforming host rock. Well-accepted equations exist to describe the physics of such systems

and several previous studies have successfully implemented various forms of these equations in

numerical models. To date, most such models of magma dynamics have focused on mantle flow

problems and therefore employed viscous creep rheologies suitable to describe the deformation

properties of mantle rock under high temperatures and pressures. However, the use of such

rheologies is not appropriate to model melt extraction above the lithosphere–asthenosphere

boundary, where the mode of deformation of the host rock transitions from ductile viscous

to brittle elasto-plastic. Here, we introduce a novel approach to numerically model magma

dynamics, focusing on the conceptual study of melt extraction from an asthenospheric source

of partial melt through the overlying lithosphere and crust. To this end, we introduce an

adapted set of two-phase flow equations, coupled to a visco-elasto-plastic rheology for both

shear and compaction deformation of the host rock in interaction with the melt phase. We

describe in detail how to implement this physical model into a finite-element code, and then

proceed to evaluate the functionality and potential of this methodology using a series of

conceptual model setups, which demonstrate the modes of melt extraction occurring around

the rheological transition from ductile to brittle host rocks. The models suggest that three

principal regimes of melt extraction emerge: viscous diapirism, viscoplastic decompaction

channels and elasto-plastic dyking. Thus, our model of magma dynamics interacting with

active tectonics of the lithosphere and crust provides a novel framework to further investigate

magmato-tectonic processes such as the formation and geometry of magma chambers and

conduits, as well as the emplacement of plutonic rock complexes.

Key words: Fracture and flow; Dynamics of lithosphere and mantle; Mechanics, theory and

modelling; Rheology: crust and lithosphere; Pluton emplacement.

1 I N T RO D U C T I O N

1.1 The problem of melt ascent through lithosphere

and crust

The physics involved in the ascent of silicate melt from the upper

mantle through the continental lithosphere and crust, as it occurs

mainly along converging plate boundaries, poses a considerable

number of challenges. As a pulse of partial melt formed in the as-

thenosphere rises, it reaches the thermal boundary layer beneath

the lithosphere, where the competence of the host rock gradually

increases, reaching a point where both pervasive melt percolation as

well as viscous diapirism become an inefficient means of melt prop-

agation. As the host rock becomes more competent, the significance

of viscous creep mechanisms is diminished. Thus, if treated with a

purely viscous rheology, melt pulses would stagnate and crystallize

at depth. Under these conditions, it becomes necessary to consider

elasto-plastic modes of melt propagation. Additionally, the effect

of tectonic deformation of the lithosphere and crust on potential

modes of melt extraction is of much interest, as many magmatic

systems on Earth coincide with zones of major tectonic activity.

Moreover, many plutonic bodies as well as volcanic systems occur

at plate boundaries or fault systems, the activity of which coincided

or overlapped with the time of melt migration and magmatic rock

formation (Pitcher 1979; Hollister & Crawford 1986; McCaffrey

1992; Petford & Atherton 1992; Hutton 2011).
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The problem of melt ascent through the lithosphere and crust

involves a great complexity of processes. Conditions from the

asthenosphere up to the Earth’s surface span far over a thousand

degrees of temperature and up to several GPa of pressure variation.

The continental lithosphere, in particular, may be highly hetero-

geneous as it accumulates compositional and structural inhomo-

geneities during its long history. Inclusions of more fusible compo-

sitions in the asthenosphere and lower lithosphere may influence the

style and efficiency of melt production and the onset of melt extrac-

tion (Aharonov et al. 1995, 1997; Kelemen et al. 1997; Spiegelman

et al. 2001; Weatherley & Katz 2012). Structurally weakened rock

left behind by inherited fault systems may localize subsequent cy-

cles of deformation (e.g. Barnes 1994; Corti et al. 2007) and thus

form pathways for the melt to penetrate through more competent

rock layers. Even though such complexities should eventually be

considered when dealing with melt transport through lithosphere

and crust, we will neglect most of these factors here in order to

concentrate on the basic physics of a low-viscosity melt propagat-

ing through a visco-elasto-plastic host rock undergoing a variety of

conditions as they occur on the way from the upper mantle towards

the upper crust.

1.2 Geodynamic two-phase flow

The physics of two-phase flow in the context of geodynamics

have been derived in various studies (e.g. Sleep 1974; McKenzie

1984; Fowler 1985; Scott & Stevenson 1986; Spiegelman 1993a,b;

Bercovici et al. 2001a; Bercovici & Ricard 2003). Most of these for-

mulations are equivalent to each other under certain assumptions

(Bercovici et al. 2001a; Bercovici & Ricard 2003) and are typically

referred to as two-phase flow equations.

Geodynamic two-phase flow is characterized by the interplay of

various competing modes of melt propagation. Porous flow through

a deforming host rock may be localized by channeling instabili-

ties of both mechanical (Stevenson 1989; Richardson 1998; Katz

et al. 2006; Connolly & Podladchikov 2007; Golabek et al. 2008;

Kohlstedt & Holtzman 2009) and chemical nature (Aharonov et al.

1995, 1997; Kelemen et al. 1997; Spiegelman et al. 2001; Weather-

ley & Katz 2012). At low background viscosities, either pervasive

melt transport in a compacting host rock, or advective melt transport

in a convective host rock will govern the style of melt extraction.

Thus, depending mainly on the ratio between shear and compaction

viscosities, either compaction waves (symmetrical or channelized)

or convective diapirism (upwellings driven by the buoyancy of lo-

cally accumulated melt) will be the main feature of melt extraction

(Scott 1988).

Another significant regime transition takes place between duc-

tile flow and brittle fracture. The study of this transition between

viscously flowing and elasto-plastically fracturing modes of melt

ascent and emplacement is an area of long-standing scientific de-

bate, where no consensus has yet been reached as to which process

governs melt extraction and emplacement (Paterson & Fowler 1993;

Menand 2011). To put it in the words of Rubin (1993a), ‘it seems

that the interpretation of existing field observations is [ . . . ] ham-

pered by an inadequate understanding of rock that can undergo both

fracture and flow.’ Therefore, the aim of the methodology proposed

here is to create a physical modelling framework that is able to

directly access all end members of melt extraction and emplace-

ment mechanics, that is, compaction waves and channels, convec-

tive diapirism and brittle fractures, in a fully coupled, self-consistent

continuum approach.

1.3 Previous work

The traditional approach to two-phase flow in partially molten rock

describes viscous creep of the host rock only. Such an approach

is sufficient for simulating processes in the mantle and astheno-

sphere, where the rock viscosity is weakened by high temperatures

and therefore deformation is dominated by viscous creep. Previ-

ous studies that implemented various forms of viscous two-phase

flow into numerical models of magma dynamics have dealt with (i)

the study of the basic modes of melt propagation, such as solitary

waves (Barcilon & Richter 1986; Barcilon & Lovera 1989; Spiegel-

man 1993a,b), (ii) the simulation of melt extraction at midoceanic

ridges (e.g. Scott & Stevenson 1989; Katz 2010) and above sub-

duction zones (Cagnioncle et al. 2007), (iii) the numerical study

of various forms of channelized percolation, such as the shear-

assisted channeling instability (Stevenson 1989; Richardson 1998;

Katz et al. 2006), the reactive melt band instability (Aharonov et al.

1995, 1997; Kelemen et al. 1997; Spiegelman et al. 2001; Weath-

erley & Katz 2012) and the decompaction channeling instability

(Connolly & Podladchikov 2007), or with (iv) the simulation of

liquid iron segregation during core formation of terrestrial planets

(Golabek et al. 2008; Šrámek et al. 2010).

Whereas most studies of computational magma dynamics have

been concerned with the mechanical aspects of porous flow, some

studies have coupled the dynamics of melt transport and host rock

compaction with models of conservation of energy and composition

(Richard et al. 2007; Šrámek et al. 2007; Katz 2008; Dufek &

Bachmann 2010). Such treatments add considerable complexity to

models of magma dynamics. As the main concern of this study is

the expansion of existing two-phase flow models to the full visco-

elasto-plastic deformation of the host rock, we will neglect these

additional complexities for now and continue to address the purely

mechanical aspects of melt propagation.

We note that within the engineering and geomechanics com-

munity, significant progress has been made in understanding the

dynamics of viscoplastic, or elasto-plastic two-phase flow in poly-

crystalline metals and dry rocks (e.g. Loret & Prevost 1991;

Ehlers & Volk 1998; Rubin et al. 2000; Lomov & Robin 2003;

Khoei & Mohammadnejad 2011) and of porous rock containing hy-

drous fluids (e.g. Fournier 1996; Evans 2005; Gessner 2009; Yang

2002). These studies, however, are often based on different PDEs

(e.g. poro-elastic equations) or use complex constitutive laws spe-

cific to engineering materials; thus, it is mostly not straightforward

to apply this knowledge the problems of computational magma dy-

namics.

Within the computational magma dynamics community, only few

studies have taken steps towards the introduction of a fully visco-

elasto-plastic host rock rheology in models of magma dynamics.

Some work has been done on solitary wave propagation in a vis-

coelastic host rock (Connolly & Podladchikov 1998). In a more

recent follow-up study, Connolly & Podladchikov (2007) added a

parametrized implementation of plastic decompaction failure, lead-

ing to the emergence of elongated melt tubes or channels, rather than

spherical two-dimensional solitary waves. Morency et al. (2007)

derived a system of equations that is able to deal with viscoelastic

compaction flow in a host rock undergoing viscoplastic shear defor-

mation. Their study, however, does not deal with magma dynamics

but rather with the percolation of water in sedimentary rocks. Also,

the formulation of plasticity in that study only considers shear frac-

ture of the host rock and omits tensile modes of fracturing.

Melt-bearing tensile fractures, however, represent one of the

most common features of melt propagation found in outcrops of
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magmatic rock formations. Such dykes and sills therefore have

been studied theoretically and experimentally for years (e.g. Mur-

rell 1964a,b; Lister & Kerr 1991; Rubin 1993a,b, 1995; Taisne &

Jaupart 2009). Rozhko et al. (2007) simulated the emergence of

such fluid-filled brittle fractures in an elasto-plastic host rock us-

ing a poro-elastic model approach. Although their study involved

drastic simplification (e.g. constant melt fraction), it is nevertheless

highly relevant in our context, as it demonstrates the possibility of

simulating the essentially discontinuous process of tensile fractur-

ing in a continuum mechanics framework.

1.4 Proposed method

In an effort to extend numerical simulations of magma dynamics

to the fully coupled visco-elasto-plastic two-phase physics, where

both shear and compaction deformation may occur as viscous creep,

elastic strain, plastic failure, or any combined mode of deformation,

we will adapt the standard set of two-phase flow equations to a

suitable form and introduce an appropriate rheology for both shear

and compaction deformation. The resulting set of equations is then

implemented into a finite-element code suitable for simulating melt

extraction under asthenospheric, lithospheric and crustal conditions.

The resulting numerical formulation, as we will show, represents

a straightforward extension of the standard formulation of Stokes

flow used in many geodynamic simulations of mantle or lithosphere

deformation today (Moresi et al. 2003; Gerya & Yuen 2007; Kaus

et al. 2008; May & Moresi 2008; Popov & Sobolev 2008; Kaus

2010).

To test the model and demonstrate its potential, we run a suite

of simulations to explore the various regimes of melt transport that

self-consistently emerge from the visco-elasto-plastic deformation

of the host rock. In a first series of simulations, we impose a small

volume of melt at the lower boundary of a homogenous model

box. While we impose tectonic background deformation through

kinematic boundary conditions on the sides of the box, a constant

fluid pressure condition at the lower boundary serves to continuously

supply melt from below. The dimensions of this problem are chosen

so as to resolve processes on a scale of a few kilometres. Varying the

intrinsic viscosity and the tensile strength of the host rock enables

us to examine a range of conditions found in the asthenosphere,

lithosphere and crust, and crossing the boundary from ductile to

brittle modes of deformation.

In two additional simulations, we extend the model domain to in-

clude a full cross section through a compositionally and structurally

homogeneous lithosphere and crust. An initial volume of melt is

placed below the lithosphere. The model domain is again subject

to tectonic deformation imposed by kinematic side boundaries. As

the viscosity structure on a lithospheric scale is depth-dependent,

the various end member models studied in the first series of sim-

ulations are likely to be found at various depths of the lithosphere

and transitions between modes of deformation are thus expected to

occur in a self-consistent manner.

2 P H Y S I C A L M O D E L

2.1 Basic governing equations

2.1.1 Material fractions

Our formulation of the magma dynamics problem deals with two

material phases: (i) The solid phase—in our context the host rock—

deforming as an incompressible visco-elasto-plastic medium.

Properties of the solid phase are denoted with a subscript ( )s . (ii)

The fluid phase—in our context the silicate melt—deforming as an

incompressible Newtonian fluid. We denote fluid properties with a

subscript ( ) f .

Properties of the phase mixture are defined as averaged over the

fractions of a unit volume occupied by the solid and fluid phase,

expressed in terms of the melt fraction φ, which is defined as the

volume fraction of the fluid phase (silicate melt) per unit volume of

the two-phase mixture. At melt fractions below a certain threshold

in the region of 0.25 ≤ φ ≤ 0.35, the melt fraction corresponds to

the fully saturated porosity of the host rock. Above this disaggrega-

tion threshold, the interconnected, cohesive matrix of the host rock

disaggregates to form a ‘mush’ of solid grains submerged in the

fluid phase, a transition marked by a sharp decrease of mechanical

strength in the system (Renner et al. 2000; Caricchi et al. 2007;

Costa et al. 2009). As two-phase flow beyond the host rock disag-

gregation threshold is an important part of our model, the commonly

used term ‘porosity’ would not be general enough to describe the

fluid volume fraction in all potential states of the two-phase mixture,

and thus we will consistently use the term ‘melt fraction’ instead.

Properties of the two-phase mixture are defined in general for

any property a as

a = (1 − φ) as + φa f , (1)

denoted by an over bar. The phase difference of any property a is

defined as

�a = as − a f . (2)

2.1.2 Mass conservation

The mass conservation of both phases is well known (McKenzie

1984; Bercovici et al. 2001a). Both solid and fluid phases are con-

sidered to be intrinsically incompressible materials, and thus all

compressibility in the model is accounted for by changes in melt

fraction. Density changes are neglected in the mass balance and no

melting or crystallization is allowed to occur. The mass conservation

equations of the fluid and solid phase are

∂φ

∂t
+ ∇ · φv f = 0, (3)

∂ (1 − φ)

∂t
+ ∇ · (1 − φ)vs = 0. (4)

Summing the contribution of both phases results in the total mass

conservation of the two-phase mixture:

∇ · v = 0. (5)

Here, vs, f are the solid and fluid velocity, and v = (1 − φ)vs + φv f

is the bulk velocity. ∂/∂t denotes partial derivatives with respect to

time. Note that the mass conservation of the mixture (eq. 5) becomes

equal to the incompressibility condition of Stokes flow. It is evident

therefore that the deformation of the phase mixture is divergence-

free (incompressible). Conversely, deformation in the solid and fluid

phase is not divergence-free. The divergence of solid and fluid

velocity is, however, not due to intrinsic material compressibility

of the solid and fluid phases, but due to changes in melt fraction

resulting from relative movement of one phase with respect to the

other. Such changes may be caused by compaction/decompaction

of the host rock matrix at lower melt fractions, or by other phase

separation processes like crystal settling at higher melt fractions.
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2.1.3 Momentum conservation

The momentum conservation equations given here are those pro-

posed by Bercovici et al. (2001a), except for the terms related to

surface tensions, which we do not consider here, as they are likely

negligible in the context of this study (Bercovici & Ricard 2003). As

is well known, these equations are equivalent to the two-phase flow

formulation proposed by McKenzie (1984), given a set of assump-

tions that are valid in the limit of magma dynamics (Bercovici &

Ricard 2003). The momentum conservations of the fluid and solid

phases are

∇ · φτ f − ∇φP f − φρ f gẑ + h = 0, (6)

∇ · (1 − φ)τ s − ∇(1 − φ)Ps − (1 − φ)ρs gẑ − h = 0. (7)

By summing the contributions of both phases, we find the total

momentum conservation in the two-phase mixture to be

∇ · τ − ∇ P − ρgẑ = 0. (8)

Here, τ s, f are the solid and fluid deviatoric stress tensors, ρs, f the

solid and fluid densities and ẑ the vector in direction of gravity g.

The equal and opposite interface forces h acting between the phases

are defined as h = c�v + P∗∇φ (Bercovici & Ricard (2003)), with

the viscous drag coefficient c governing interface drag forces pro-

portional to the velocity difference �v, and some interface pressure

P∗ acting on gradients of melt fraction φ. Note that the total mo-

mentum equation (eq. 8) is equal to the momentum equation of

Stokes flow, with τ , P, ρ the total deviatoric stress, total pressure

and total density, defined according to the relation given in eq. (1).

2.1.4 Magma dynamics limit

The eqs (3)–(8) represent a fully symmetrical approach to the con-

tinuum mechanics of a two-phase mixture. In the limit of magma

dynamics, however, we are dealing with strongly asymmetric phase

properties. The special case of a silicate melt interacting with a solid

rock presents us with a situation where η f ≪ ηs , a scenario referred

to as the magma dynamics limit or Darcy limit. Bercovici & Ricard

(2003) give a detailed discussion of this issue, concluding that the

fluid momentum equation (6) reduces to a form where the viscous

drag force is balanced by the excess fluid pressure gradient (note

that in the magma dynamics limit P∗ reduces P f ):

c�v = φ(∇ P f + ρ f gẑ). (9)

Under the same assumption that η f ≪ ηs , a simplified relation is

found for the viscous drag coefficient in the form of c = η f φ
2/kφ ,

depending on fluid viscosity η f and permeability kφ (see Bercovici

et al. 2001a). Substituting this definition into eq. (9) and rearranging

of terms recovers Darcy’s law, defining the phase separation flux q

as

q = −φ�v = −K D(∇ P f + ρ f gẑ), (10)

where the Darcy coefficient is defined as K D = kφ/η f . Details on

the melt fraction-dependence of permeability are discussed below.

2.2 Rheology of the host rock

The rheology of the host rock is a key factor governing both style

and efficiency of melt extraction and emplacement in magmatic sys-

tems. Therefore, employing a realistic rheology for the host rock is

crucial. In contrast to incompressible Stokes flow, not only a rheol-

ogy for deviatoric, or shear deformation needs to be defined, but an

additional flow rule for the volumetric, or compaction deformation

governing changes in melt fraction is required. Both rheologies will

be defined in terms of a constitutive law relating deviatoric and vol-

umetric components of stress to their corresponding components of

strain rate.

2.2.1 Strain rate and stress

The deformation of the solid phase is quantified by the solid strain

rate tensor found from the gradient and divergence of the solid

velocity field. The total strain rate tensor ε̇s is defined as the sum of

its deviatoric and volumetric components:

ε̇s = ε̇′
s +

1

3
υ̇sI =

1

2

(

∇vs + [∇vs]T
)

, (11)

where ε̇′
s is the deviatoric strain rate tensor, υ̇s is the scalar volumet-

ric strain rate and I is the identity matrix of appropriate dimensions.

Volumetric or compaction strain rates are defined equal to the di-

vergence of solid velocity:

υ̇s = ∇ · vs . (12)

Deviatoric or shear strain rates are then derived from eqs (11)

and (12) to be

ε̇′
s =

1

2

(

∇vs + [∇vs]T
)

−
1

3
∇ · vsI. (13)

Shear and compaction deformation lead to the build-up of stress

in the two-phase mixture. Total stress in the mixture is defined as

the sum of the total shear stress τ and the total pressure P (the

volumetric stress), expressed in terms of the contributions of both

material phases (τ s, f , Ps, f ) as

σ = τ + PI

= (1 − φ) τ s + φτ f +
[

(1 − φ) Ps + φP f

]

I. (14)

The sign convention is such that compressive stresses are positive.

In the magma dynamics limit, deviatoric stresses in the fluid phase

τ f may be neglected (Sleep 1974; McKenzie 1984, see detailed

discussion below), and therefore the total shear stress reduces to

τ = (1 − φ) τ s . (15)

2.2.2 The effective stress principle

The principle of effective stress, introduced by Terzaghi (1923,

1943) in soil mechanics, holds that the deformation of a fluid-filled

porous rock is governed by an effective stress depending on the

pressure of the pore fluid:

σ e = σ − P f I. (16)

According to the definition of total stress in the mixture (eq. 14),

the effective stress may be rewritten in terms of shear stress and

pressure as

σ e = τ +
(

P − P f

)

I. (17)

It becomes evident from this expression that fluid pressure has

no influence on shear stresses in the phase mixture, and therefore

the effective stress principle may be fully captured in a new pres-

sure variable, the compaction pressure, governing the volumetric
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deformation of a two-phase medium (Skempton 1960). This com-

paction pressure is then defined as

Pc = P − P f

= (1 − φ) �P. (18)

Although no such compaction pressure variable is proposed in

the original formulation of two-phase flow by McKenzie (1984),

the concept of the pressure difference between the phases sustain-

ing volumetric deformation features prominently in its derivation.

Later, the more general analysis of two-phase physics proposed by

Bercovici et al. (2001a) confirmed that the pressure difference �P

takes the role of governing compaction deformation in the general

case of any two-phase mixture of two incompressible fluids with

general properties (cf. Katz et al. 2007; Morency et al. 2007 for

similar use of compaction pressure).

According to Terzaghi’s principle, the plastic yield strength of

rock is reduced by the presence of a pressured fluid in the pore

space of a rock. Therefore, we define one more pressure variable,

the effective pressure (or effective mean stress) Pe governing the

plastic yield strength of the host rock. The effective pressure is

equal to the compaction pressure Pc, if a minimum critical amount

of fluid phase is present (i.e. a large-scale interconnected pore space

is achieved), but will assume the value of the total pressure P in dry

or unmolten rock (Skempton 1960):

Pe = P − xφ P f , 0 ≤ xφ ≤ 1. (19)

Here, xφ is a parameter indicating when no significant amount

of fluid phase is present (xφ = 0), and when sufficient amounts of

fluid phase are present (xφ = 1) and thus two-phase physics and the

reduction of plastic strength apply.

It follows from this discussion on effective stress and pressure

that at least two independent pressure variables are needed to de-

scribe two-phase physics. Here, we choose fluid pressure P f and

compaction pressure Pc as independent variables featuring in the

final governing equations. Fluid pressure, on the one hand, is a

straightforward choice, as fluid velocities may be found from its

gradient, thus eliminating the need to solve for fluid velocities with

separate equations. The choice of compaction pressure, on the other

hand, is convenient because of its central role in governing volumet-

ric deformation. Note that all other relevant pressure components

may be found from these two quantities (Table 1 summarizes all

pressure components used in this study).

Summarizing the discussion on effective stress, we state that the

stress state in the two-phase mixture is fully characterized in terms

of the total shear stress τ and compaction stress Pc. For these two

components of stress, constitutive laws need to be found, relating

them to shear and compaction strain rates to yield expressions of

the form:

τ ∝ f
(

ε̇′
s

)

; Pc ∝ f (υ̇s) . (20)

As both constitutive laws may be derived in close analogy, we will

first rederive the well-known rheology for shear deformation before

using the same concepts to derive the rheology for compaction

deformation. To simplify notation, we will drop the subscript ( )s on

all rheological parameters (viscosities, elastic moduli, etc.) relating

to the solid phase, as there are no rheological parameters related to

the fluid phase except for fluid viscosity η f and, hence, no ambiguity.

2.2.3 Viscoelastic shear rheology

In order to find the constitutive relation for viscoelastic shear

stresses in the solid matrix, we use a Maxwell body

ε̇′
s,ve =

1

2η
τ s +

1

2G

D̃sτ s

Dt
, (21)

where ε̇′
s,ve is the viscoelastic deviatoric strain rate tensor, τ s the

deviatoric solid stress tensor, η the solid shear viscosity and G the

elastic shear modulus. For the material time derivative of the solid

deviatoric stress tensor, the Jaumann objective derivative is used in

order to account for stress rotation (Bathe 1995):

D̃sτ s

Dt
=

Dsτ s

Dt
− Wτ s + τ s W , (22)

where W = 1
2
(∇vs − [∇vs]T ) is the vorticity tensor and

Ds

Dt
= ∂

∂t
+ vs · ∇ is the general material time derivative of a prop-

erty advected with solid velocity.

For the further construction of our method, it is of some ad-

vantage to discretize the time derivative in eq. (21) at this point

(Schmalholz et al. 2001). Thus, we formulate the stress rate as an

implicit backward finite difference in time, yielding

ε̇′
s,ve =

1

2η
τ s +

1

2G

τ s − τ̃ o
s

�t
, (23)

with τ̃ o denoting the rotated deviatoric stress tensor taken from the

previous time step �t :

τ̃ o
s = τ o

s − (Wτ s − τ s W ) �t . (24)

Note that, as we will adopt an Arbitrary–Lagrangian–Eulerian

marker-in-cell implementation (described below), no local advec-

tion terms (vs · ∇τ s) are included in the statement above; instead,

stress advection will be achieved by storing old stresses τ o
s on

Lagrangian markers that are displaced by the solid velocity field.

Rewriting eq. (23) in terms of deviatoric stress and grouping of

terms yields

τ s =
2

1
η

+ 1
G�t

ε̇′
s,ve +

1

1 + G�t

η

τ̃ o
s , (25)

which in simplified notation becomes the viscoelastic constitutive

law for deviatoric stress:

τ s = 2ηveε̇
′
s,ve + χτ τ̃

o
s , (26)

Table 1. Pressure components.

Symbol Name Expression φ → 0 (1 − φ) → 0

P Bulk pressure P = (1 − φ)Ps + φP f Ps P f

P f Fluid pressure P f = P − Pc Ps P f

Pc Compaction pressure Pc = P − P f = (1 − φ)�P 0 0

Pe Effective pressure Pe = P − xφ P f P 0

Note: Definition of pressure components relevant to our formulation of two-phase physics.

Note that Katz et al. (2007) and similar formulations of the McKenzie (1984) equations define

compaction pressure as Pc = −(ξ + 2/3η)υ̇, a similar, but slightly different definition from

the one in this study (eq. 44).
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featuring two effective rheological parameters, that is, the viscoelas-

ticity ηve (with units of Pa s) and the non-dimensional elastic stress

evolution parameter χτ :

ηve =
1

1
η

+ 1
G�t

, χτ =
1

1 + G�t

η

. (27)

As we neglect the contribution of shear stresses in the fluid phase,

the total shear stress in the two-phase mixture may be described

by multiplying eq. (26) by the volume fraction of the solid phase

(1 − φ):

τ = (1 − φ)
(

2ηveε̇
′
s,ve + χτ τ̃

o
s

)

. (28)

To simplify notation, we incorporate any occurrence of the solid

volume fraction (1 − φ) in any further rheological statements into

the relevant rheological parameters and denote this operation with

the addition of an asterisk. In this case, we define the shear viscoelas-

ticity and shear stress evolution parameter related to the two-phase

mixture as

η∗
ve =

1 − φ
1
η

+ 1
G�t

, χ∗
τ =

1 − φ

1 + G�t

η

, (29)

and thus the constitutive law for total shear stress (eq. 28) is finally

expressed as

τ = 2η∗
veε̇

′
s,ve + χ∗

τ τ̃ o
s . (30)

2.2.4 Viscoelastic compaction rheology

In the following, we proceed to define the viscoelastic constitutive

law relating volumetric stresses to volumetric strain rates. Whereas

McKenzie (1984) employed a viscous constitutive law for com-

paction stresses implied by his definition of the solid stress tensor,

Bercovici et al. (2001a) explicitly state a constitutive relationship

between the rate of change of melt fraction and the pressure differ-

ence between the phases of the form

Dsφ

Dt
= −K0φ (1 − φ)

�P

η0

, (31)

with K0 a constant of order O(1) representing pore geometry, which

we will take as unity here. We find that a constitutive law for vis-

coelastic compaction deformation consistent with eq. (31) may be

formulated in close analogy to the one for deviatoric stress in-

troduced above. Therefore, following the same strategy as in the

previous section, we start to construct a viscoelastic constitutive

law for �P by again assuming a Maxwell body analogue for the

viscoelastic part of volumetric strain rate υ̇s,ve:

υ̇s,ve = −
1

ξ
�P −

1

Kφ

Ds�P

Dt
. (32)

The pressure difference �P is negative where fluid is overpres-

sured with respect to the pressure in the solid phase. ξ is the volu-

metric or compaction viscosity governing viscous compaction flow.

That the viscous part of the proposed expression (first term on the

right-hand side of eq. 32) is equivalent to eq. (31) is confirmed by

dropping the elastic part (second term on right-hand side) from eq.

(32) and substituting 1
(1−φ)

Dsφ

Dt
for υ̇s,ve (a relation that follows from

eq. 4), and η0/φ for ξ . Thus, the compaction flow law proposed by

Bercovici et al. (2001a) is recovered in the purely viscous limit of

the viscoelastic flow law proposed here.

For the elastic part of the constitutive law (second term on the

right-hand side of eq. 32), we assume that all elastic volume changes

are due to changes of melt fraction, with the elastic pore modulus

Kφ governing elastic compaction in response to changes in pressure

difference over time. The assumption of a compressible pore space

in intrinsically incompressible phase materials is commonly used

in poro-elasto-plastic theory (Coussy 2010). Ds/Dt is the mate-

rial derivative (Ds/Dt = ∂/∂t + vs · ∇). Since �P is a scalar, the

material derivative is objective and we are not required to consider

objectivity with respect to rotation (as in eqs 21–22).

The viscoelastic part of the volumetric rheology is constructed

in analogy to its deviatoric counterpart by implicitly discretizing

the time derivative of pressure difference in eq. (32), rewriting

the equation in terms of pressure difference, grouping of terms

and introducing a simplified notation (cf. eqs 23–27 for step-by-

step procedure). As a result, the viscoelastic constitutive law for

compaction stress acting on the solid phase is

�P = −ξveυ̇s,ve + χp�Po, (33)

where �Po is the advected pressure difference of the last discrete

time step. The compaction viscoelasticity ξve and the compaction

stress evolution parameter χp are defined as

ξve =
1

1
ξ

+ 1
Kφ�t

, χp =
1

1 + Kφ�t

ξ

. (34)

As the pressure difference relates to compaction pressure in the

same way as the solid shear stress relates to the total shear stress

(cf. eqs 15 and 18), we multiply eq. (33) by the solid fraction (1 − φ)

to find a constitutive law for compaction stress in the total mixture,

that is, compaction pressure Pc:

Pc = −ξ ∗
veυ̇s,ve + χ∗

p�Po. (35)

The compaction viscoelasticity ξ ∗
ve and the compaction stress

evolution parameter χ∗
p in the two-phase mixture then are defined

as

ξ ∗
ve =

1 − φ
1
ξ

+ 1
Kφ�t

, χ∗
p =

1 − φ

1 + Kφ�t

ξ

. (36)

2.2.5 Shear and tensile plastic failure

The theory of plasticity states that stresses induced by viscoelastic

deformation of the host rock cannot exceed the plastic failure crite-

rion. If viscoelastic stresses reach the maximum permissible stress

state prescribed by the failure envelope, plastic failure occurs. A

commonly used cohesive-frictional failure criterion for the mode-2

shear failure in geodynamic applications is that of Drucker–Prager

plasticity (Paterson & Wong 2005), which is equivalent to the Mohr–

Coulomb criterion in 2-D. In the case of two-phase flow, the depen-

dence of plastic failure on effective pressure (eq. 19) according to

Terzaghi’s principle (Terzaghi 1923, 1943) needs to be considered,

which states that increasing the fluid pressure in rock decreases the

effective confining pressure, thus decreasing the yield strength for

shear failure. Additionally, if effective pressure becomes negative

(fluid is overpressured), tensile failure of the host rock may occur.

The failure criterion for such mode-1 tensile fracturing is given by

Griffith’s criterion (Murrell 1964b). The combined failure criteria

for both shear failure (mode-2 plasticity) and tensile failure (mode-

1 plasticity) may be expressed in terms of the yield shear stress in

the phase mixture τ y as

τ II ≤ τ y =

{

C cos ϕ + Pe sin ϕ for Pe > P∗
e ,

σT − Pe for Pe ≤ P∗
e ,

(37)



1412 T. Keller, D. A. May and B. J. P. Kaus

Figure 1. The combined shear and tensile plastic failure criteria expressed

in terms of the Mohr–Coulomb and Griffith stress envelope, given for three

values of tensile strength σT = C/[2, 4, 8], displayed as the three black lines

splitting of the frictional slope near the origin. Cohesion is C = 40 MPa,

friction angle ϕ = 30◦. Also given are three characteristic stress states,

plotted as Mohr–Coulomb circles for illustration. In green, a stress state

leading to volumetric failure, in blue one leading to tensile fractures and in

red, a stress state leading to shear fractures.

where τ II = (1 − φ)
√

1
2
τi jτi j (Einstein’s summation of repeated in-

dices applies) is the second invariant of shear stress (radius of Mohr–

Coulomb stress circle). Pe is the effective pressure (centre of stress

circle) and P∗
e = C cos ϕ−σT

1−sin ϕ
is the transition pressure where the two

failure stress curves meet. C is the cohesion, ϕ the friction angle

and σT = C/R the tensile strength of the host rock with 2 ≤ R ≤ 8

a parameter specifying the reduction of strength of the host rock

under tensile stress (Cai 2010). Fig. 1 is a plot of the combined

failure criteria. Note that the expression in eq. (37), in 2-D, states

the radius of the maximum permissible stress circle as a function

of its centre point. The yield envelope (black line in Fig. 1) is then

defined as the line enveloping all permissible stress circles defined

by the yield criteria in eq. (37).

The failure envelope not only sets a limit for the maximum per-

missible shear stress, but equally for the maximum permissible fluid

overpressure (or minimum effective pressure Pe). This lower limit

to permissible compaction stress may be expressed in terms of the

yield pressure in the phase mixture Py , which is found by rewriting

the tensile yield criterion in eq. (37) in terms of Pe (bearing in mind

that Pe is equal to compaction pressure Pc where a fluid phase is

present):

Pe = Pc ≥ Py = τ II − σT . (38)

The implementation of the plastic component of shear and com-

paction deformation is achieved by an effective viscosity approach,

where the viscoelastic constitutive law in locations of ongoing plas-

tic failure is modulated by iteratively choosing both an effective

shear η∗
eff and compaction viscosity ξ ∗

eff such as to keep the local

effective stress state (τ , Pc) on the yield surface (τ y, Py) (cf. Moresi

et al. 2003; Kaus 2010).

The deviatoric part of the plastic failure rheology is first dealt

with by restating eq. (30) in terms of second invariants of stress and

strain rate tensors. During plastic failure, the yield shear stress τ y is

substituted for τ II and the full visco-elasto-plastic shear strain rate

ε̇′
s = ε̇′

s,ve + ε̇′
s,pla replaces the purely viscoelastic ones ε̇′

s,ve. The

resulting expression is a scalar (rather than tensorial) representation

of the constitutive law for shear stress, valid where plastic failure

occurs:

τ y = 2η∗
eff ε̇

′
s,II + χ∗

τ τ o
s,II for τ II = τ y . (39)

ε̇′
s,II =

√

1
2
ε̇′

s,i j ε̇
′
s,i j is the second invariant of deviatoric strain rates,

and τ o
s,II is the second invariant of advected deviatoric stresses of

the previous time step. Solving this statement for the effective shear

viscosity η∗
eff yields an expression by which the modified visco-

elasto-plastic viscosity may be found. Note that the effective plastic

viscosity remains equal to the viscoelasticity η∗
ve, where the local

shear stress does not reach the failure criteria:

η∗
eff =

⎧

⎨

⎩

τ y − χ∗
τ τ o

s,II

2ε̇′
s,II

for τ II = τ y,

η∗
ve for τ II < τ y .

(40)

The full visco-elasto-plastic constitutive law for shear stress in

the host rock then becomes

τ = 2η∗
eff ε̇

′
s + χ∗

τ τ̃ o
s . (41)

Although this effective viscosity approach to plasticity does not

introduce an explicit statement for plastic shear strain rates ε̇′
s,pla,

these may be quantified in a post-processing step from the known

values of total (eq. 13) and viscoelastic (eq. 21) shear strain rates as

ε̇′
s,pla = ε̇′

s − ε̇′
s,ve.

Next, the volumetric part of the plastic failure rheology is dealt

with by substituting the compaction yield stress Py for compaction

pressure Pc and the total visco-elasto-plastic compaction strain rate

υ̇s = υ̇s,ve + υ̇s,pla for the purely viscoelastic one υ̇s,ve in eq. (35).

The resulting statement is again valid only where plastic failure

occurs:

Py = −ξ ∗
eff υ̇s + χ∗

p�Po for Pc = Py. (42)

Solving eq. (42) in terms of the effective compaction viscosity

ξ ∗
eff gives an expression, by which the modified visco-elasto-plastic

viscosity may be found. Again, ξ ∗
eff remains equal to the viscoelas-

ticity ξ ∗
ve where the local compaction pressure does not reach the

failure criteria:

ξ ∗
eff =

⎧

⎨

⎩

−
Py − χ∗

p�Po

υ̇s

for Pc = Py,

ξ ∗
ve for Pc > Py .

(43)

The full visco-elasto-plastic constitutive law for compaction

stress in the host rock then becomes

Pc = −ξ ∗
eff υ̇s + χ∗

p�Po. (44)

The plastic compaction strain rates υ̇s,pla may be quantified in a

post-processing step from the known values of total (eq. 12) and

viscoelastic (eq. 32) compaction strain rates as υ̇s,pla = υ̇s − υ̇s,ve.

The use of the effective viscosity approach to plasticity has the

advantage of retaining the same form of the constitutive laws as in

the viscoelastic case. The effect of plastic failure is captured in a

continuum approach by limiting stress states in the model according

to the combined shear and tensile failure criterion. As the numerical

benchmarks and demonstration runs presented below indicate, the

use of this rheology results in the localization of deformation in

zones of shear or tensile failure, wherever stresses increase to the

point of touching the failure envelope.

2.2.6 The viscous, elastic and plastic limits

The proposed constitutive laws for shear and compaction stress

(eqs 41 and 44) describe visco-elasto-plastic deformation of the



Magma dynamics coupled to tectonics 1413

solid phase. To arrive at these constitutive laws, we discretized the

elastic time derivative of stresses with an implicit finite difference

approximation. This yields constitutive laws for viscoelastic shear

and compaction stress, on which a condition of maximum permissi-

ble stress, given by the combined failure criteria for shear and tensile

plastic failure, is imposed. To confirm their validity, the properties

of the two constitutive laws are examined in the three limiting cases

of purely viscous, purely elastic and purely plastic deformation.

Both shear and compaction constitutive laws (eqs 41 and 44)

consist of two terms. The first terms each take the form of a mod-

ified viscous rheology, where the shear and compaction viscosities

are replaced by effective visco-elasto-plastic viscosities (η∗
eff , ξ

∗
eff ).

Additionally, an elastic stress evolution term is introduced to both

constitutive laws, which is governed by the dimensionless shear and

compaction stress evolution parameters χ∗
τ,p .

If the effective stress state in the two-phase mixture (τ , Pc)

does not reach the failure criteria (τ y, Py), the effective viscosities

(η∗
eff , ξ

∗
eff ) remain equal to the shear and compaction viscoelastici-

ties (η∗
ve, ξ

∗
ve). The magnitudes of these viscoelastic parameters are

governed by the magnitude of shear and compaction viscosities η

and ξ and elastic moduli G and Kφ , and by the size of the time

step under consideration. The timescale for which elastic deforma-

tion is dominant is given by the Maxwell time. The Maxwell time

for shear deformation is tτ = η/G, and for compaction deforma-

tion tp = ξ/Kφ . On timescales larger than these Maxwell times,

deformation is dominated by viscous deformation. Conversely, on

timescales smaller than the Maxwell time, deformation is dom-

inantly elastic. That the correct viscoelastic behaviour is indeed

captured by such a combined viscoelastic rheology follows from

eqs (29) and (36) (see Schmalholz et al. 2001; Kaus & Becker

2006), as

[

η∗
ve, ξ

∗
ve

]

→

{

(1 − φ) [η, ξ ] for �t ≫
[

tτ , tp

]

,

(1 − φ)
[

G�t, Kφ�t
]

for �t ≪
[

tτ , tp

]

,
(45)

and

[

χ∗
τ , χ∗

p

]

→

{

0 for �t ≫
[

tτ , tp

]

,

1 for �t ≪
[

tτ , tp

]

.
(46)

Thus, the constitutive laws recover the purely viscous form, if

the considered time step of deformation is large compared to the

Maxwell time. For typical values of advective time step size and

elastic modulus, this condition is satisfied where the intrinsic host

rock viscosities are low:

τ = (1 − φ) 2ηε̇′
s,

Pc = − (1 − φ) ξ υ̇s .
(47)

Furthermore, the constitutive laws recover the purely elastic form

if the considered time step of deformation is small compared to the

Maxwell time. For typical values of advective time step size and

elastic modulus, this condition is satisfied where the intrinsic host

rock viscosities are high:

τ = (1 − φ)
(

2G�t ε̇′
s + τ̃ o

s

)

,

Pc = (1 − φ)
(

−Kφ�t υ̇s + �Po
)

.
(48)

Note that both the total deformation and stress evolution remain

the same over time, independent of the considered time step.

If the viscoelastic stress evolution leads to effective stress levels in

the two-phase mixture (τ , Pc) that locally reach the failure envelope

(τ y, Py), the effective viscosities (η∗
eff , ξ

∗
eff ) are iteratively reduced

according to eqs (40) and (43), in order to keep the local stress state

constant on the failure criterion. The resulting plastic deformation

typically occurs in strongly localized failure zones and continues

until local stresses are relaxed below the failure criterion again,

at which point plastic failure ceases. The constitutive laws for the

limiting case of pure plastic deformation then reduce to the simple

statements of

τ II = τ y,

Pc = Py .
(49)

It may be argued that the elastic contribution to total deforma-

tion in most geodynamic contexts is insignificant compared to vis-

coplastic effects. Neglecting elasticity in computational models in

geodynamics, however, leads to the numerically challenging situa-

tion where predicted viscous stresses are often far outside the failure

criteria, and to iteratively bring them back to the yield surface poses

problems (Kaus 2010). If elasticity is included, elastic stress evolu-

tion over time constrains the stresses in the model to approach the

failure criteria step-by-step from below, a situation that is much less

challenging for non-linear iterative solution strategies. The inclu-

sion of elasticity thus not only adds to the physical description of

rock deformation, but also helps to stabilize the numerical method,

which was the primary motivation to include it here.

The proposed constitutive laws for shear and compaction stress

are able to deal with all combinations of viscous, elastic and plastic

deformation. A series of benchmark problems demonstrating the

functionality and accuracy of the visco-elasto-plastic rheology and

its implementation are presented in Appendix A2.

2.2.7 Melt-dependence of rheology

It has long been known that melt-bearing rock is weakened by

the presence of even small amounts of melt. We therefore apply

an exponential melt-weakening to the shear viscosity of the solid

phase. This form of melt-weakening was proposed based on theory

and experimental results (Kelemen et al. 1997; Mei et al. 2002;

Simpson et al. 2010a,b) and has since been used by a number

of studies on computational magma dynamics (e.g. Rabinowicz &

Vigneresse 2004; Katz et al. 2006). It effectively captures the rapid

decrease of shear viscosity at low to intermediate melt fractions and

is expressed as

η = η0 exp(−αφφ), (50)

where η0 is the intrinsic (or background) viscosity at zero melt

fraction, which in this study is taken constant at typical values for

Earth’s mantle and crust. The exponential melt-weakening factor

has been experimentally constrained to 25 ≤ αφ ≤ 30 (Mei et al.

2002). A fully consistent formulation of melt-weakened shear vis-

cosity at all levels of melt fractions is discussed by Schmeling et al.

(2012), however, as the shear viscosity for melt fractions larger than

30–50 per cent drops below the minimum cut-off value of 1016 Pa s

necessary for numerical stability (see Section 2.5.3 below), the ex-

ponential weakening law is sufficient to capture melt-weakening of

shear viscosity at melt fractions lower than that.

The compaction viscosity is defined relative to the intrinsic shear

viscosity of the host rock. We use an inverse melt fraction law to

relate the compaction viscosity to the shear viscosity of the host

rock (Takei & Holtzman 2009; Simpson et al. 2010a; Schmeling

et al. 2012):

ξ = η0φ
−p. (51)
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The melt fraction exponent is taken as p = 1 in this study, con-

sistent with theoretical work (Batchelor 1967; Schmeling 2000;

Bercovici et al. 2001b; Simpson et al. 2010a).

The poro-elastic modulus of the host rock quantifies the change

of melt fraction due to changes in compaction pressure over time; it

depends on melt fraction in a way that lets compressible deformation

cease when melt fraction goes to zero:

Kφ = K0φ
−q . (52)

Here, K0 is the reference pore modulus, which typically assumes

values of the order of 1 ≤ K0 ≤ 100GPa. The exponent of its melt

fraction-dependence is taken as q = 1/2, a value found from exper-

iments (Hall 1953; Jalalh 2006a,b). Our formulation of elastic pore

compressibility is equivalent to the form proposed in two previous

numerical studies of viscoelastic two-phase flow in geodynamics

(Connolly & Podladchikov 1998; Morency et al. 2007).

2.3 Final governing equations

We now return to the governing equations of two-phase flow in

order to bring them into a more suitable form.

For the final form of the total momentum equation, we substi-

tute the constitutive law for shear stress (eq. 41) and the sum of

compaction pressure and fluid pressure for the total pressure (eq.

18) into the momentum equation of the two-phase mixture (eq. 8),

yielding an expanded form of the momentum equation:

∇ ·
(

2η∗
eff ε̇

′
s + χ∗

τ τ̃ o
s

)

− ∇ P f − ∇ Pc − ρgẑ = 0. (53)

By substituting the sum of solid velocity and phase separation

flux vs + q for the averaged mixture velocity v into the total mass

conservation equation (eq. 5) and then replacing q by Darcy’s law

according to eq. (10), we expand the total mass conservation to

∇ · vs − ∇ · K D

[

∇ P f + ρ f gẑ
]

= 0. (54)

The constitutive law for compaction deformation still needs to

be incorporated into the final set of governing equations. Therefore,

we choose eq. (44), rewritten in terms of the compaction strain rate

as the third final equation.

υ̇s +
1

ξ ∗
eff

Pc −
χ∗

p

ξ ∗
eff

�Po = 0. (55)

In the absence of melting and crystallization, changes in melt

fraction are due to visco-elasto-plastic volumetric deformation

only. In order to find a constitutive law for melt fraction evolu-

tion over time, we rearrange the solid mass conservation equation

(with υ̇s = ∇ · vs) to yield

Dsφ

Dt
= (1 − φ)υ̇s, (56)

thus relating the visco-elasto-plastic volumetric strain rate to the

evolution of melt fraction over time. Adding eq. (56) as the fourth

of the final governing equations, we now have a complete descrip-

tion of the mechanical aspects of two-phase flow in a visco-elasto-

plastically deforming mantle, lithosphere and crust.

The final set of governing equations consists of four equations: the

expanded total momentum and mass conservation equations for the

two-phase mixture, the compaction equation and the melt evolution

equation. These four equations contain the four unknowns: solid

velocity vs , fluid pressure P f , compaction pressure Pc and melt

fraction φ. After moving terms independent of solution variables

to the right-hand side and replacing strain rates with the respective

derivatives of velocity, the final governing equations become:

∇ ·
[

η∗
eff

(

∇vs + [∇vs]T
)

−
2

3
η∗

eff∇ · vsI

]

− ∇ P f − ∇ Pc

= ρgẑ − ∇ · χ∗
τ τ̃ o

s ; (57)

∇ · vs − ∇ · K D∇ P f = ∇ · K Dρ f gẑ; (58)

∇ · vs +
Pc

ξ ∗
eff

=
χ∗

p�Po

ξ ∗
eff

; (59)

Dsφ

Dt
− (1 − φ)∇ · vs = 0. (60)

As mentioned in Section 1, energy conservation, melting and

crystallization and compositional evolution of the magmatic sys-

tem are not dealt with here. In the future, such an addition to this

physical model could be made without fundamental changes to the

mechanical system of equations proposed above. The inclusion of

such a treatment requires the addition of an equation for the con-

servation of energy in a two-phase system (see Bercovici & Ricard

2003; Šrámek et al. 2007) and one for the conservation of composi-

tion, along with a thermodynamically consistent closure condition

determining melt fraction as a function of temperature, composition

and pressure (Katz 2008).

In the limiting case of purely viscous deformation, these proposed

governing equations are equivalent to previously proposed formu-

lations of geodynamic two-phase flow, most of which are versions

of the formulation introduced by McKenzie (1984). To confirm

the validity of these equations for all possible melt fractions, their

properties need to be considered in two significant limiting case sce-

narios: the zero melt limit and the full melt limit, which we proceed

to do in the following two sections.

2.4 The zero melt limit

The particular form of writing the total momentum and mass con-

servation equations for the two-phase mixture adopted here (eqs 57

and 58) has a distinct advantage. In the zero melt limit (φ = 0), the

equations reduce to the standard form of the single-phase Stokes

equations. If melt fraction goes to zero, the solid velocity vs becomes

equal to the total velocity v and solid shear stress τ s becomes equal

to the total stress τ . Furthermore, the compaction pressure Pc and

its gradient vanish, leaving only one pressure component in the

momentum equation, the fluid pressure P f , which now becomes

equal to the total pressure P (see Table 1). The Darcy coefficient

K D = kφ/η f goes to zero as the permeability goes to zero, can-

celling out the terms in eq. (58) relating to the divergence of phase

separation flux q.

Furthermore, the compaction and melt evolution equations (eqs

59 and 60) both become equal to the Stokes mass conservation or

incompressibility condition and thus become redundant. Thus, the

standard Stokes equations for a single-phase medium

∇ · τ − ∇ P = ρgẑ,

∇ · v = 0,
(61)

are recovered in the zero melt limit, describing the deformation of

the pure solid phase when no fluid phase is present.
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2.5 The full melt limit

Most treatments of two-phase flow in geodynamics since Sleep

(1974) have neglected shear stresses in the fluid phase. As a conse-

quence, the fluid momentum equation may be stated in the form of

Darcy’s law (eq. 10) and the total shear stress tensor is reduced to

the contribution of solid shear stresses (eq. 15). This simplification

is well accepted for two-phase flow at low melt fractions, where

the fluid phase percolates through the pore space of a structurally

coherent solid phase. In the low melt fraction context, the argument

for the validity of this assumption is twofold: (i) due to the inherent

tortuosity of fluid percolation in the intergranular pore space, the

contributions of the fluid shear stress divergence in the momentum

conservation of the fluid phase likely cancel out over a typical vol-

ume considered in the continuum approach; (ii) due to the large

contrast in viscosities, the magnitude of the fluid shear stresses in

the total shear stress tensor is very small compared to the magnitude

of the solid shear stresses, and therefore fluid shear stresses may be

neglected in the total shear stress tensor of the two-phase mixture.

2.5.1 Host rock disaggregation

However, if melt accumulation leads to the disaggregation of the

rock matrix and potentially the emergence of fully molten magma

bodies, these assumptions need to be revisited to ensure the validity

of the proposed governing equations at high melt fractions. As

mentioned previously, at melt fractions above a threshold located

at around 25 per cent, the solid phase starts to disaggregates into a

mush of grains partly or fully submerged in the abundant melt phase.

In this configuration, the grains may still interlock to a certain

degree, and thus the solid phase may continue to sustain some

level of shear stress up to melt fractions of around 60 per cent,

depending on grain size and geometry. Phase separation beyond

the disaggregation threshold occurs by gravitational grain settling,

which is hampered by entrainment of grains in the increasingly

unhindered flow of the accumulating melt phase. The effective solid

shear viscosity decreases drastically at intermediate melt fractions,

until it eventually drops to zero (Schmeling et al. 2012). Thus, the

behaviour of the two-phase mixture at very high melt fractions is

increasingly dominated by the flow of the melt phase, until the few

remaining solid grains become fully entrained in the melt flow.

2.5.2 Permeability

The question is often posed of whether Darcy’s law (eq. 10) is a

valid representation of the fluid momentum conservation at melt

fraction beyond host rock disaggregation and up to the full melt

limit. The answer to this question, among other factors discussed

below, hinges upon the physical understanding of permeability. As

the name suggests, permeability is understood as a property of the

host rock matrix quantifying how efficiently fluids may permeate

through its pore space. The term permeability therefore seems to

imply the presence of a coherent rock matrix. This particular under-

standing of permeability evidently breaks down when the host rock

matrix disaggregates. However, it has been previously argued that

Darcy’s law (eq. 10) is general enough to capture the relative mo-

tion of the components of disaggregated host rock (grains, blocks,

etc.) against the fluid phase flowing around them (Batchelor 1967).

In this case, permeability, interpreted as the obstruction to phase

separation flux exerted by the solid phase on the fluid phase and

vice versa, remains a valid concept. Abe (1995) suggests a modi-

fied permeability law that captures this situation more adequately

by replacing permeability at intermediate and high melt fraction

with a parametrized law representing the obstruction to flow char-

acteristic of ideal Stokes spheres sinking through the melt phase.

Additionally, the effects of surface tension on grains submerged in

melt might have to be considered, as it may reduce the efficiency

of complete separation of grains from melt in a high melt fraction

magma body (Hier-Majumder et al. 2006). For the sake of simplic-

ity, we will here assume a straightforward modification of a standard

melt fraction law for permeability given by the relation

kφ = k0φ
n(1 − φ)m, (62)

with k0 denoting the reference permeability. The melt fraction expo-

nent is set to n = 3, a value representing interconnected disc-shaped

melt pockets along grain boundaries (Faul 1997). The exponent as-

signed to the solid fraction we set to m = 2. The choice to include a

dependence on solid fraction into the permeability law is based on

the concept that a permeability law should reflect the most impor-

tant aspects of two-phase flow at high melt fractions as well as the

more well-established behaviour of porous flow. First, physical con-

sistency demands that drag forces in the zero and full melt limits de-

crease to zero. With a permeability law depending on both melt and

solid fraction, this condition is satisfied. Second, a dependence on

solid fraction should in some way reflect grain size (see discussion

of drag forces in Bercovici et al. 2001a), thus giving a valid reason

to include the square of the solid fraction. Here, we use the solid

fraction as a non-dimensional representation of grain size, capturing

the reduction of drag forces with increasing melt fraction to a good

first order. The resulting material fraction-dependent behaviour of

phase separation flux is given in Fig. 2. The curves are found by

measuring the relative magnitude of phase separation flux q taken

from a series of single time step, purely viscous, homogeneous box

simulations of phase separation performed at various level of melt

fraction. The blue curve gives phase separation flux values resulting

from the permeability law used here, with n = 3 and m = 2, and

the red curve gives phase separation flux values resulting from a

permeability law with n = 3 and m = 1 for comparison (cf. phase

separation flux curve given in Abe 1995). Note that the inclusion of

the solid fraction only significantly affects the permeability law at

melt fraction larger than 70 per cent. In Fig. 2, we additionally mark

the approximate domain boundaries, where the two-phase mixtures

take on the different styles of phase separation discussed above.

2.5.3 Total stress approximation

Moving on to the examination of the system of equations for melt

fraction going to unity, we find that fluid velocity v f becomes equal

to the total velocity v and the fluid shear stress τ f becomes equal to

the total stress τ . The compaction pressure Pc and its gradient vanish

as in the zero melt limit, leaving only one pressure component in the

momentum equation, the fluid pressure P f , which again becomes

equal to the total pressure P (see Table 1). Thus, the total momentum

equation becomes equal to the Stokes momentum equation. With

no fluid phase present, the total mass conservation, the compaction

equation and the melt fraction evolution equation all take the form

of the incompressibility condition, and thus, the standard Stokes

equations for a single-phase medium are recovered again in the full

melt limit (see eq. 61), now describing the deformation of the pure

fluid phase when no solid phase is present.

Returning to the assumption of negligible fluid shear stresses,

we argue that in the definition of the Darcy flux (eq. 10), this

assumption remains valid. The convective flow field of the fluid
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Figure 2. Phase separation flux q as a function of melt fraction. Data points

are relative magnitudes of q measured in the middle of a series of single time

step, homogeneous compaction models run at various melt fractions. High

values of q stand for high-velocity difference between the phases, values of

q going to zero signify ceasing of two-phase flow in favour of single-phase

Stokes flow of the remaining phase. The red curve gives values resulting

from a permeability function with a melt fraction exponent of n = 3 and a

solid fraction exponent of m = 1; the blue curve gives values with n = 3

and m = 2, the values used in simulations here. Domains A–E mark melt

fractions at which the two-phase mixture takes on a different style of phase

separation. In domains A and E, single-phase Stokes flow of the solid and

melt phase is dominant, respectively. In domain B, melt percolates through

an increasingly weakened, but coherent rock matrix. In domain C, the two-

phase mixture becomes a mush of disaggregated grains settling with respect

to melt flow. In domain D, grain settling becomes hampered as remaining

grains are entrained by the melt flow.

phase in partial melt at higher melt fractions may be of a somewhat

lower tortuosity than that of pervasive flow through a low-porosity

matrix rock, yet the contributions of shear stress divergence to the

momentum conservation of the fluid phase likely still average out

over a typical volume considered in the continuum approach. Due

to the low viscosity of silicate melt, the vigorous convective motion

in the melt phase occurs on a time and length scale that may not be

adequately resolved by current numerical methods on a crustal or

lithospheric scale. As, however, a melt-filled dyke, channel or other

magma body larger than a metre in size could be resolved even by

one-phase Stokes flow, two things need to be considered in addition

to the argument of tortuous convective flow. First, the solid stresses

in the walls of such fully molten structures are orders of magnitude

larger than the fluid stresses in the molten body, and thus, the overall

deformation of the system will be governed by the deformation of

the solid. The deformation of the melt itself mainly determines the

efficiency of internal mixing in a magma body, or the rate of flux

through a dyke or channel. Second, the use of real melt viscosities

of the order of 1–1000 Pa s in fully molten bodies of crustal-scale

numerical simulations invariably leads to numerical instabilities in

the velocity solution. Mainly for this numerical reason, a minimum

cut-off viscosity ηcut-off is applied in the total shear stress tensor,

resulting in a high melt fraction approximation of shear stresses in

the two-phase mixture (bearing in mind that towards the full melt

limit ε̇′
s ≈ ε̇′

f ):

τ ≈ 2ηcut-off ε̇
′
s for η∗

eff ≤ ηcut-off . (63)

By imposing this lower cut-off viscosity, small-scale flow features

are effectively filtered out in regions of high melt fraction. A fully

resolved treatment of the fluid phase at high melt fractions was

recently presented by Dufek & Bachmann (2010). Their numerical

models of magma chamber evolution, however, are performed with

a spatial resolution of 0.5 m, on a model scale of tens of metres.

For the problem of melt ascent through lithosphere and crust, spatial

resolution is typically limited to a an element size upwards of 100 m,

and therefore, a lower viscosity cut-off of the order of 1e15 to

1e17 Pa s remains necessary.

2.6 Numerical implementation

Here, we give a short overview over the numerical implementation

of the methodology derived above. For the details of the implemen-

tation, including the discretized form of the governing equations,

along with a set of benchmark problems to demonstrate the func-

tionality and accuracy of the methodology, the readers are referred

to the Appendix.

The simulation code employs an Arbitrary–Lagrangian–Eulerian

primitive variable approach on a deformable, structured quadrilat-

eral finite-element mesh with a marker-based advection scheme.

Linear and elementwise constant shape and test functions are used

to formulate the equations in the weak form and discretize them on

a finite-element mesh.

The system of equations derived above is nonlinear in terms of

melt fraction and solid velocity, where nonlinearities are introduced

in the form of melt fraction-dependent material properties, and

through the two plastically weakened effective viscosities. There-

fore, the solution strategy for each time step involves an iterative

solver method to treat the nonlinearities, where each iteration con-

sists of a direct solve of eqs (57)–(59) as a linear system of equations

for the solution variables of solid velocity, fluid pressure and com-

paction pressure, followed by an update of the current melt fraction

and all nonlinear material properties (i.e. permeability, elastic pore

modulus, effective shear and compaction viscosities) according to

the current velocity–pressure solution and melt fraction. More de-

tails on the nonlinear solver are given in Appendix A1.

As the melt evolution over time (eq. 56) is treated as an ex-

plicit update, the time derivative is discretized using a second-order

Crank–Nicolson scheme, to yield:

φi+1 = φo +
1

2

[

(1 − φo) υ̇o
s +
(

1 − φi
)

υ̇ i
]

�t, (64)

where superscript ( )o refers to properties retrieved from the previous

time step and superscript ( )i refers to properties retrieved from the

ith non-linear iteration.

Material properties are advected with either solid or fluid ve-

locity, depending on which material phase they are derived from.

Note that although melt fraction is related to the melt phase, we

choose a form of the solid mass conservation equation (eq. 60) to

track the time evolution of the melt fraction, and therefore, the melt
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fraction is advected with solid velocity. Advection is implemented

into the code by using a marker-in-cell approach, where all advected

properties are interpolated onto one of two sets of marker particles

(one set of markers for each material phase), which are then moved

with their respective velocity field (Gerya & Yuen 2007). The main

advantage of utilizing markers for advection is that with appropri-

ate interpolation functions from numerical grid to marker, it may

reduce the numerical diffusion typically associated with grid-based

advection schemes. However, the large number of marker particles

needed for accurate results renders this method fairly expensive in

terms of memory, and interpolation methods need to be formulated

efficiently. Details about the advection scheme and the interpolation

method used in our code are provided in the Appendix.

The overall workflow of the code may be outlined by the following

sequence:

1. Pre-processing and initialization of all variables and material

properties.

2. Start main time-stepping loop.

a. Solve system of equations for velocity–pressure solution and

update melt fraction.

i. Update nonlinear material properties according to current so-

lution guess.

ii. Assemble coefficient matrix and right-hand side of linear sys-

tem of equations.

iii. Check non-linear residual of current solution guess.

iv. Proceed with steps iv to vi if convergence criterion is not

achieved.

v. Solve linear system of equations (using Matlab’s ‘backslash’

direct solver).

vi. Update melt fraction according to current solid velocity di-

vergence.

vii. Check time step according to courant criterion and adapt if

necessary.

viii. Go to step i for next non-linear iteration.

b. Advect free surface if specified and adapt finite-element mesh

accordingly.

c. Advect properties of host rock and melt phase on marker fields.

d. Check time and loop back to step a for next time step if desired.

3. Post-processing and visualization.

In order to obtain an efficient finite-element implementation,

able to deal with several hundred thousand degrees of freedom, a

MILAMIN-style vectorization is used to speed up the assembly of

the global stiffness matrix (Dabrowski et al. 2008).

3 N U M E R I C A L R E S U LT S

3.1 Model setup

In this section, we demonstrate the effects of the proposed visco-

elasto-plastic rheology on the mode and efficiency of melt extraction

by running a suite of numerical simulations on a simple model

setup. See Table 2 for all relevant model parameter values chosen

to represent a silicate melt ascending through a homogeneous host

rock. Fig. 3 displays the initial melt distribution used in all runs, a

Gaussian melt pulse located in the middle of the lower boundary

with an amplitude of 20 per cent melt fraction, surrounded by un-

molten host rock.

To simulate a progression from asthenospheric conditions (weak,

ductile host rock) towards crustal conditions (competent, brittle

Table 2. Model parameters.

Symbol Name Unit Value

D Box depth km 4

W Box width km 6

ρs Host rock density kg m−3 3000

ρ f Melt density kg m−3 2500

k0 Reference permeability m2 1e − 8

η f Fluid viscosity Pa s 10

η0 Reference solid viscosity Pa s 1e + 18 − 1e + 23

G Shear modulus GPa 50

K0 Ref. pore modulus GPa 5

C Cohesion MPa 40

ϕ Friction angle ◦ 30

αφ Melt weakening factor − 27

ε̇BG background strain rate s−1 1e − 15

φcrit critical melt fraction per cent 1e − 3

Note: Model parameter values used for all simulation runs, if not specified

otherwise in the text. Values are chosen to represent generic host rock and

silicate melt properties in the context of mantle melt percolating through a

continental lithosphere and crust.

Figure 3. Initial melt distribution for suite of rheological demonstration

runs, consisting of a 2-D Gaussian pulse with amplitude of 20 per cent

against a homogeneous background of 0 per cent melt fraction. The red

bar underneath the lower boundary indicates the area where a constant

lithostatic boundary condition is applied on the fluid pressure, mimicking

a reservoir of melt in pressure equilibrium with the host rock beneath the

model. An extensional normal velocity, corresponding to a constant strain

rate of ε̇BG = 1e − 15 s−1, is imposed on the side boundaries, along with a

zero tangential stress boundary condition. The top boundary is held stress-

free.

host rock), a series of runs with increasing reference viscosity of

the lithospheric host rock η0 are employed. In addition, we also vary

the tensile strength σT of the rock phase (see Fig. 1 for the meaning

of σT in relation to plastic failure) in order to study different onset

levels of volumetric plastic yielding, a feature relevant to the mode

and efficiency of melt transport.

Field evidence suggests that major plutonic rock complexes are

often closely associated with zones of tectonic activity (Pitcher

1979; Pelletier et al. 1989; McCaffrey 1992; Petford & Atherton

1992). In order to include the effects of regional tectonic stresses,

kinematic boundary conditions are applied on the side boundaries

(constant strain rate). Apart from this uniform background strain

rate, the boundaries are shear stress free on the side and the bottom

boundaries and stress free on the top. For the moment, we limit our

focus on extensional tectonics. The direction of least compressive

stress for a pure shear extensional stress field is horizontal, and
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Table 3. Simulation runs.

Run ID η0 [Pa s] σT

d118r[2,4,8] 1e + 18 C/[2, 4, 8]

d119r[2,4,8] 1e + 19 C/[2, 4, 8]

d120r[2,4,8] 1e + 20 C/[2, 4, 8]

d121r[2,4,8] 1e + 21 C/[2, 4, 8]

d122r[2,4,8] 1e + 22 C/[2, 4, 8]

d123r[2,4,8] 1e + 23 C/[2, 4, 8]

Note: List of model runs presented in Section 3 (Re-

sults). Given are the choice of intrinsic host rock

viscosity η0 and tensile rock strength σT in relation

to cohesion C = 40 MPa for each run.

thus, extensional boundary conditions likely produce subvertical

melt extraction features propagating upwards from the initial melt

pulse, along the direction normal to the least compressive stress.

On the lower boundary, underlying the initial melt pulse, a re-

gion of constant lithostatic fluid pressure is imposed, thus simu-

lating ongoing melt supply at the lower boundary (displayed as

a red bar in Fig. 3). On the top boundary, a surface pressure of

50 MPa is added, equivalent to around 1.5–2 km of rock overburden,

thereby increasing the confining pressure governing the frictional

yield strength, without otherwise influencing the dynamics of the

simulation. This condition serves to adjust the onset of shear plastic-

ity for brittle modes of deformation, representing conditions within

the upper crust. Runs at lower background viscosity, representing

lower crustal or asthenospheric conditions, are not affected by the

increased confining pressure.

All simulations are run in a rectangular 2-D box of 360×240

elements (347 400 degrees of freedom, 2.76 million markers), re-

sulting in a spatial resolution of 16.6 m over a model depth of 4 km.

Each simulation typically runs to a total of 500–1500 time steps,

taking up to 128 hr to complete on a single AMD Opteron node of

the Brutus cluster in Zurich. All model parameters employed in the

simulations presented in this section are listed in Table 3.

We find that at least three distinct regimes of melt extraction

emerge, involving both fracture and flow of the host rock. These

three regimes are best characterized by their primary feature of

melt transport, which are melt diapirs, decompaction channels and

tensile fractures, forming in this sequence with increasing viscos-

ity of the host rock. We will now discuss the results in terms of

three criteria, which we will assess with the following questions:

(i) Geometry: is there a characteristic shape, size and orientation

of melt transport features and are they of a distributed or localized

nature? (ii) Deformation: What is the dominant style of deformation

(viscous, elastic and plastic)? Is the flow field characterized by con-

vection, compaction or fracturing? (iii) Efficiency: Are there melt

transport features that are more efficient in extracting melt from the

source than others, and on which property of the system does this

difference depend?

3.2 Melt diapirism

The first regime of melt transport emerges at low host rock vis-

cosities of η0 ≤ 1e + 20 Pa s, values that are typical for the as-

thenospheric mantle. The characteristic melt transport feature in

this regime is a melt diapir: a local upwelling characterized by con-

vective flow driven by the buoyancy of accumulated melt, by which

melt is transported away from the source region. Fig. 4 displays

three snapshots of the run d118r2, the results of which are rep-

resentative of this regime (η0 = 1e + 18 Pa s, σT = 2 = 20 MPa,

see Movies S1 and S2 for animated time evolution), giving the

melt fraction (left), along with the volumetric strain rate field (right

column of panels) at three points of time during the simulation.

Overlaying the melt fraction and volumetric strain rate plots are ar-

rows of melt velocity and solid velocity, respectively. For improved

clarity of observation, velocity arrows are plotted after subtracting

the extensional pure shear component of the velocity fields imposed

by the kinematic boundaries.

3.2.1 Geometry of melt diapirs

The dominant feature of melt transport in this regime approximates

the shape of a Stokes sphere, rising vertically through the ductile

host rock. In Fig. 4, we identify three stages of diapir evolution,

which are incipient compaction wave formation, followed by diapir

growth, and finally, diapir ascent. In the initial stage (top panels),

melt collects in an approximately spherical, distributed peak charac-

teristic of two-dimensional compaction waves (Scott & Stevenson

1984; Scott 1988).

In a second stage (middle panels), with more melt supplied from

the source region imposed on the lower boundary, the incipient

compaction wave takes on the characteristics of a more sharply

bounded magma body with up to 100 per cent melt content. At this

stage, however, the diapir remains stationary at the lower boundary,

as it grows in size and melt content by percolation from below. In

a third stage, the diapir reaches a stable radius, detaches from the

boundary and rises up in an approximately constant spherical shape

with constant melt content.

The initial volume of melt is given by a 2-D Gaussian imposed

on an otherwise zero melt fraction domain. The Gaussian remains

non-zero across the domain, yet the melt fraction at some point

drops below 10−3 which we choose as the cut-off level for two-

phase physics to apply (see detailed discussion in Appendix A4).

Permeability is therefore non-zero everywhere as well, although it

is cut-off at 10−19 m2 in our simulations to ensure stability of the

Q1Q1 elements. Therefore, the injected melt may permeate into

the parts of the domain where the initial melt fraction is below

10−3, although that permeable flow is very slow and thus easily

overtaken by convective motion at low rock viscosities, or other

modes of deformation at later stages (see subsequent sections). In

this context, the mode of two-phase flow with the originally imposed

melt volume can thus be classified within the one observed in 2-

D compaction waves in contrast to convective flow observed in

the diapirism mode. As such, length scales of the upwelling below

depend on the compaction length scale.

In a partially molten region of the asthenosphere, melt is likely

to collect into spherical solitary waves, if the melt source region is

larger than the characteristic length scale of melt percolation, given

by the compaction length δc (McKenzie 1985)

δc =
√

K Dξ ∗. (65)

Melt extraction by percolation is driven mainly by the buoyancy

contrast between solid and fluid phases, characterized by a charac-

teristic fluid overpressure pc

pc = �ρgδc, (66)

and a characteristic percolation velocity wc

wc = K D�ρg. (67)
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Figure 4. Snapshots of run d118r2 (η0 = 1e + 18 Pa s, σT = 20 MPa) resulting in melt diapirism, displaying melt fraction in per cent (left) overlaid with melt

velocity arrows, and volumetric strain rate scaled by background strain rate (right) overlaid with solid velocity arrows. Both velocity fields are reduced by the

pure shear extensional component. Velocity arrows are scaled with relative magnitude.

The related compaction flow of the rock matrix is characterized

by a compaction velocity scale vc, given by

vc =
�ρgδ2

c

ξ ∗ . (68)

The rise of a fully molten diapir of radius R, however, is char-

acterized by the velocity of a Stokes sphere uc, which, apart from

some geometric constant, is given by the relation

uc ∼
�ρgR2

η∗ . (69)

It follows from eqs (65) and (69) that both the compaction length

δc and the diapir radius R are related to the host rock viscosity η.

Therefore, with an increase in background viscosity, we expect to

find larger melt diapirs forming from larger incipient compaction

waves, and building up higher fluid overpressure along the way.

Comparing the outcome of the three runs d118r2, d119r2 and d120r2

with increasing background viscosities from 1e+18 to 1e+20 Pa s

in Fig. 5 demonstrates that the diapir radius and the maximum fluid

overpressures indeed both increase with increasing host rock viscos-

ity. Here, the theory suggests that both diapir radius and magnitude

of overpressure should scale with the square root of the viscosity.

In the runs presented in Fig. 5, however, this theoretical prediction

cannot be directly verified, probably because factors such as locally

variable compaction length and interaction with model boundaries

obscure the situation.

3.2.2 Deformation in melt diapirism regime

Examining the relative magnitude of the viscous, elastic and plastic

components of deformation reveals that low viscosity runs, in which

diapirs are formed, are entirely dominated by viscous deformation.

A convective flow pattern forming around the diapir in both phase

velocities (see velocity arrows in Fig. 4) is characteristic of the melt

diapirism regime. With ongoing melt supply from the lower bound-

ary, the melt fraction inside the diapir increases beyond the host

disaggregation threshold, creating a magma body of melt fractions

of up to 100 per cent, constituting the head of the diapir. As the

diapirs increase in size with increasing background viscosity, some

small-scale downwellings, driven by differences in solid fraction,

start dropping from the roof of the magma body (Fig. 5). This pro-

cess is triggered when small-scale internal convection is faster than

the overall rise of the diapir. We assume that a more inhomogeneous

model setup would favour the onset of such small-scale convection,

as it is driven by perturbations in the melt fraction distribution,
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Figure 5. Snapshots of simulations d118r2 (top), d119r2 (middle) and d120r2 (bottom), taken at the time when the melt diapir has reached a stable radius.

Displayed are melt fractions in per cent (left), overlaid with arrows of melt velocity as in Fig. 4, and compaction pressure Pc in MPa (right), negative values

correspond to melt overpressure, minimum value of Pc measured over the model time is given for each simulation.

which here only derive from fluctuations due to limited numerical

accuracy along the relatively sharp upper boundary of the diapir.

Neither shear nor tensile plastic failure are relevant in runs

d118r2, d119r2 and d120r2 (Fig. 5), as stress states in these runs

remain below the failure criteria. A minimum magnitude of com-

paction pressure of around −3.5 MPa is reached in the run d118r2,

which is only about 20 per cent the magnitude of the tensile strength

of the rock (σT = 20 MPa). A decrease of tensile rock strength to

values of 10 and 5 MPa (runs d118r4 and d118r8) still does not lead

to any plastic failure. Shear failure of the host rock is not observed

either, as the magnitude of deviatoric stresses here remains below

1 MPa. For runs with rock viscosities of η0 ≤ 1e20 Pa s and lower

tensile yield strength (d119r8, d120r4 and d120r8, see summary

Fig. 13 for the outcome of these runs), the increased magnitude of

fluid overpressure reaches the limit set by the tensile yield strength,

and thus volumetric plastic failure sets in. As a consequence, the

style of melt transport transitions into a next regime, as discussed

in Section 3.3.

3.2.3 Efficiency of melt extraction by diapirism

In these runs, a competition between melt transport by compaction

waves and by convective diapirism is observed. Although early melt

accumulation occurs in a mode characteristic of compaction wave

(i.e. dominated by percolation), once the diapir has grown to a

certain radius, the upwards speed of the diapir exceeds the speed

of melt percolation. Consequently, the diapir detaches from the

boundary and rises through the model domain, with the surrounding

host rock undergoing convective flow to accommodate the rise of

the melt diapir. The stable radius of a diapir is reached when the

characteristic speed of convective rise of the diapir, uc (eq. 69),

exceeds the characteristic speed of percolation, wc (eq. 67), feeding

the diapir from below. Thus, setting the two characteristic velocity

scales as equal and solving for the diapir radius yields an expression

for the stable radius of melt diapirism similar to the compaction

length:

R =
√

K Dη∗. (70)

We do not observe any runs, where two-dimensional compaction

waves prevail over melt diapirism. First, this is due to the fact that

melt fraction drops to zero away from the initial melt volume and

thus the compaction length drops to zero, and compaction of the

host rock ceases. Second, the melt-dependent shear viscosity law

causes convective flow to be more efficient than compaction flow.

Scott (1988) shows that the ratio rη between shear viscosity η∗

and compaction viscosity ξ ∗ determines the competition between
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Figure 6. Snapshots of run d121r4 (η0 = 1e + 21 Pa s, σT = 10 MPa) resulting in decompaction channeling. Visualization as in Fig. 4.

melt transport by compaction waves and convective diapirism. This

ratio is also implied by comparing the characteristic velocity for

compaction vc (eq. 68) and convection uc (eq. 69), if the diapir radius

is of the order of the compaction length. Here, in the dominantly

viscous region of the parameter space, this ratio takes the form of

rη = η∗/ξ ∗ = φ exp
(

−αφφ
)

, (71)

resulting in values two orders of magnitude below unity, indicating

that convective transport will prevail at all levels of melt fraction.

The highest values of rη (0.001–0.013) are attained at melt fraction

of 1–20 per cent, which may explain why the initial stages of diapir

formation show some characteristic of compaction wave formation,

even though no long-term propagation of a compaction wave is

observed later on during the model runs.

3.3 Decompaction channeling

The second regime of tectonically coupled melt extraction emerges

at intermediate host rock viscosities of 1e + 20 Pa s ≤ η0 ≤ 1e +
22 Pa s, values found around the lithosphere–asthenosphere bound-

ary (LAB) or in ductile regions of the lower crust. The regime is ob-

served to set in as the compaction pressure Pc reaches the magnitude

of the tensile strength of rock σT at low shear stresses. The char-

acteristic melt transport features in this regime are elongated bands

of localized volumetric deformation, referred to as decompaction

channels. Along these features, melt is accumulated and transported

away from the source region. Fig. 6 displays three snapshots of

a run representative of this regime (d121r4, η0 = 1e + 21 Pa s,

σT = C/4 = 10 MPa, see Movies S3 and S4 for animated time

evolution).

3.3.1 Geometry of decompaction channels

In Fig. 6, we observe melt transport features that are clearly dif-

ferent from the melt diapirs discussed above. An area of partial

melt now extends upwards from the initial melt pulse. This area

is initially bounded on both sides by two subvertical zones of lo-

calized volumetric deformation and melt accumulation, angled at

around 20◦ towards the vertical (Fig. 6, top panels). Further along

the simulation, a more strongly localized band of melt accumulation

forms along the upper boundary of the area of partial melt (Fig. 6,

middle panels). Both ends of this decompaction channel propagate

diagonally upwards into the melt-free host rock. At first, this up-

per decompaction band is not stationary, but travels upwards as the

zone of partial melt extends further into the host rock. Later in the

simulation run, however, this bowl-shaped melt channel begins to

stagnate in a final position, while both ends of the channel continue

to extend outwards into the host rock (Fig. 6, bottom panels). At

this stage, melt fraction is increased to more than 30 per cent along

the channel, compared to values of around 15 per cent in the zone

of partial melt below. Note that decompaction channels are only

observed inside, or at the boundary of partially molten areas.
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These channelized features of melt transport form as a conse-

quence of volumetric failure of the host rock matrix, caused by

high fluid overpressure at low shear stress (τII < |Pc|), as illustrated

by a representative stress circle in the Fig. 1 (green circle). In this

simulation (d121r4), the magnitude of the extensional background

stress field caused by the kinematic boundary conditions has a mag-

nitude of 2 MPa, while fluid overpressures reach values of up to

10 MPa. The two subvertical melt bands are observed to form at

steep angles of about 70◦ to the direction of least compressive stress

above the initial melt pulse. The bowl-shaped orientation of the final

channel dominating the later stages of the simulation is formed as

the direction of least compressive stress is deflected outwards as

the flow field interacts with the stress-free condition imposed on

the surface. More systematic tests need to be performed to deter-

mine the exact nature of how decompaction channels align with

principal stress directions. However, some first tests reveal that for

compressive kinematic boundary conditions, the angles of initially

emerging decompaction channels that are not yet interacting with

the free surface are subhorizontal rather than subvertical.

The localization of compaction deformation emerging here as a

consequence of volumetric failure may be quantified in terms of the

volumetric plastic yield ratio rpla, which is the ratio of the minimum

compaction pressure Py given by the failure criterion (eq. 38) over

the predicted viscous compaction pressure,

rpla =
Py

−ξ ∗υ̇s

, (72)

neglecting elastic effects, as the elastic contribution to total defor-

mation is small. The effective compaction viscosity may then be

expressed depending on the plastic yield ratio as ξ ∗
eff = ξ ∗rpla. Re-

placing ξ ∗ by ξ ∗
eff in the definition of the compaction length (eq. 65)

yields the characteristic length scale associated with decompaction

failure δc,pla to be (Connolly & Podladchikov 2007)

δc,pla = δc

√
rpla. (73)

The ratio rpla typically takes values of 1e−1 to 1e−3, depending

on the background viscosity and local strain rates, and thus the

characteristic width of visco-elasto-plastic decompaction channels

may be orders of magnitude below the viscous compaction length.

In their study of decompaction channeling, Connolly & Podlad-

chikov (2007) used a constant value of rpla to weaken compaction

viscosity where fluid overpressure occurred. This simplification,

along with a two-phase model neglecting shear stresses in the host

rock, lead to the emergence of vertical decompaction tubes of con-

stant width (due to constant rpla), rather than angled channels, as

they are observed here. This comparison additionally confirms our

interpretation that decompaction channels align with the stress field.

Other runs, where decompaction channels emerge are d119r8,

where a low tensile rock strength enable volumetric failure at a

viscosity as low as 1e19 Pa s, d120r4, where a set of diagonal de-

compaction channels form on top an already well-developed melt

diapir, d120r8, d121r8 and d122r2, where two subvertical decom-

paction bands propagate upwards until a new regime emerges from

top of the decompaction channels, leading to a melt-bearing tensile

fracture propagating ahead of the channels (see summary Fig. 13

for a summary).

3.3.2 Deformation in decompaction channeling regime

From the solid and fluid velocity fields (arrows in Fig. 6), it is ev-

ident that melt is generally extracted upwards, percolating through

the area of partial melt above the initial melt pulse. The pattern

of percolation, however, is not distributed homogeneously, but the

melt flow is rather concentrated inside the decompaction channels,

as seen by the melt velocity vectors aligning with the direction of

channel propagation. Inside the areas of melt percolation, the de-

formation of the host rock consists of a downwards compaction

flow. Outside the partially molten zone, host rock deformation ac-

commodates the additional melt volume by outwards and upwards

flow directions. As the upper, bowl-shaped decompaction channel

becomes stationary towards the end of the simulation, we observe a

strong increase of vertical uplift of the host rock above the forming

melt band, caused by a strongly extensional volumetric deforma-

tion perpendicular to the melt band. The reasons for uplift in an

otherwise extensional environment are that the rates of uplift are

much larger than the extension velocity. Additionally, some shear

deformation is observed along each decompaction channel as solid

velocity arrows change both magnitude and direction across each

channel.

To further characterize the style of deformation in the decom-

paction channeling regime, snapshots of the viscous, elastic and

plastic components of both shear and compaction deformation in

the run d121r4 are displayed in Fig. 7. Viscous deformation (top

panels) is observed to be active in the area of the initial melt pulse,

where viscous diapirism is ongoing, although relatively slowly.

Other viscous deformation, especially in the shear domain, is con-

centrated within the decompaction bands, facilitated by the melt-

weakening of shear viscosity cause by melt accumulating in the

channels.

As expected, amplitudes of the elastic component of deformation

(middle panels) are small compared to viscous and plastic ones.

Most elastic deformation is concentrated in the propagating tips

of decompaction channels, where shear stress and fluid overpres-

sure accumulate until the effective stress state reaches the failure

criterion. In both volumetric and deviatoric strain rates, a strongly

localized band of plastic deformation is observed along the top of

the partial melt zone, indicative of the strong opening component

facilitated by volumetric plastic failure.

The combined pattern of deformation is one of bands or channels

of localized viscoplastic decompaction deformation, the propaga-

tion of which into undeformed host rock is aided by elasticity. De-

compaction channels are observed to be mobile, both propagating

outwards from their tips and moving through the host rock along

their whole length in the style of strongly asymmetrical compaction

waves. Once enough melt is accumulated and stress directions re-

main favourable, a travelling decompaction band may become sta-

tionary. We note again that decompaction channels generally emerge

inside or along the boundary of a partially molten area and may be

fed by low melt fraction percolation along much of their length, thus

potentially channeling low degree partial melt away from a larger

melt region.

3.3.3 Efficiency of melt extraction by decompaction channels

The enhanced efficiency of melt transport relative to diapirism is

manifest from the fact that the decompaction channels form and

propagate ahead of the incipient diapir forming at the bottom of

the box. Viscous percolation occurs on the characteristic timescale

set by the characteristic percolation velocity (eq. 67) and the com-

paction length (eq. 65):

tc =
δc

wc

. (74)
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Figure 7. Viscous, elastic and plastic components of deformation from a snapshot of run d121r4 (η0 = 1e + 21 Pa s, σT = 10 MPa), displaying compaction

strain rate components (left) and shear strain rate components (right).

In the case of decompaction failure, the timescale of percolation

is reduced proportional to the plastic reduction in compaction length

given in eq. (73) (Connolly & Podladchikov 2007)

tc,pla = tc

√
rpla, (75)

and thus the efficiency of melt extraction again depends on the

square root of the plastic yield ratio rpla.

As it is evident that melt transport in the decompaction channel-

ing regime is facilitated by localized melt percolation in a compact-

ing host rock, the competition between compaction and convection

needs to be re-examined in the case of volumetric failure. As in-

troduced above (eq. 71), the ratio rη between shear and compaction

viscosity gives a measure of the relative efficiency of melt propa-

gation by advective transport along a convecting host rock against

pervasive transport in a compacting host rock. Once decompaction

failure sets in the plastically modified viscosity ratio rη,pla becomes

rη,pla = rη/rpla. (76)

The meaning of this relation is that an increase in volumetric

failure (smaller rpla), the viscosity ratio rη,pla assumes higher values,

indicating that the relative efficiency of compaction over convection

is increased. This simple analysis explains how the increased effi-

ciency of pervasive melt transport comes about under conditions

where purely viscous compaction without weakening by decom-

paction plasticity would be highly inefficient.

3.4 Tensile failure

The third regime of tectonically coupled melt extraction emerges

at high host rock viscosities of η0 ≥ 1e + 22 Pa s, values that are

found in relatively cool regions of the lithosphere and crust, es-

pecially the upper crust. This regime is observed to set in as the

shear stress τ II reaches the magnitude of the tensile yield strength

σT at compaction pressures Pc close to zero. The dominant features

of melt extraction in this regime are subvertical, sharply localized

zones of deformation, in which melt is transported away from the

source region. These features are a continuum representation of

tensile fractures; in this case melt-bearing dykes. Fig. 8 displays

two snapshots of the run d122r4, the results of which are represen-

tative of this regime (η0 = 1e + 22 Pa s, σT = C/4 = 10 MPa, see

Movies S5 and S6 for animated time evolution).

3.4.1 Geometry of tensile fractures

The features of melt transport found in this regime are a set of

narrow, subvertical deformation zones propagating upwards from

the initial melt pulse. If these features are indeed to be identified

as tensile fractures or dykes, they should align perpendicular to

the direction of least compressive stress. As the pure shear exten-

sional stress field caused by the kinematic side boundaries is slightly

perturbed by the presence of the melt source in the middle of the

lower boundary, the orientation of the two fractures in Fig. 8, with
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Figure 8. Snapshots of run d122r4 (η0 = 1e + 22 Pa s, σT = 10 MPa) resulting in tensile fracturing. Visualization as in Fig. 4.

a slight deviation from the vertical, pointing radially away from

the initial melt pulse, supports the hypothesis that these are, in

fact, tensile fractures. Additionally, preliminary tests revealed that

if compressive kinematic boundary conditions are applied instead,

tensile fractures extend horizontally away from an initial melt pulse,

which is again the direction perpendicular to the least compressive

stress.

Furthermore, the width of these fractures typically extends over

no more than one or two elements of the finite-element mesh, a

characteristic shared by brittle plastic shear fractures in computa-

tional continuum mechanics. If numerical resolution is increased,

the orientation of brittle fractures remains the same, but the num-

ber of parallel fractures is increased, while each individual fracture

again localizes down to the grid level (Buiter et al. 2006). Prelimi-

nary high-resolution tests reveal that the same is true for the tensile

fractures observed here. This property of brittle plasticity in com-

putational continuum mechanics implies that brittle fractures are

not resolved numerically on their characteristic length scale, which

from field geology and rock physics is known to be as small as a

few millimetres.

Tensile fractures in Fig. 8 are observed to propagate into melt-

free rock, while continually being infiltrated by melt from below.

While dykes in nature are discrete fractures completely filled by

melt, the simulated tensile fractures here only accumulate a rather

low melt fraction of 10–25 per cent. We interpret this result in the

light of numerical resolution. As the characteristic width of a tensile

fracture is below the spatial resolution of the numerical method, the

volumetric strain rate obtained on the available numerical resolution

is underestimated by the ratio of the grid spacing towards the real

width of a fracture. The following example should serve to illustrate

this point: If a real fracture is narrower than the numerical element

size by a factor of 100, the volumetric strain rate measured on the

numerical grid would be smaller than the actual value by a factor of

100 as well, and thus, the evolution of melt content in the simulated

dyke is underestimated by the same factor. While there are means

by which this underestimation of melt transport by dykes simulated

on a regular continuum grid could be corrected (e.g. increasing

permeability as a function of plastic yielding, parametrized increase

of volumetric strain rates inside dykes, etc.), we have made no such

attempts here, but simply observed the features that self-consistently

arise from the visco-elasto-plastic rheology.

3.4.2 Deformation in tensile failure regime

Closer examination of the melt velocity (arrows in Fig. 8) reveals

that melt is extracted upwards inside the dykes. All melt extraction

is limited to the narrow zones of volumetric deformation visible

in Fig. 8, meaning that no pervasive melt transport occurs outside

these fractures. The flow field of the host rock conversely displays

a 180◦ change of horizontal velocity across the width of a single

finite element, while the vertical velocity component remains mostly

unchanged across the fracture. This flow signature constitutes the

closest possible continuum approximation of the discontinuous flow

field caused by a brittle fracture.

Fig. 9 displays the viscous, elastic and plastic components of

shear and compaction deformation during the propagation of tensile

fractures in the simulation d122r2. Viscous compaction deformation

(top left panel) is active mainly in the area of the initial melt pulse,

albeit only at a small relative amplitude. Viscous shear deformation

(top right panel), however, is mainly active at the trailing ends of

both dykes, where the most melt has been accumulated. Once again,

viscous shear deformation is concentrated by the melt-weakening

of the solid shear viscosity, as observed in the decompaction chan-

neling regime above.

Elastic volumetric deformation (middle left panel) has a small

relative amplitude and is somewhat erratically distributed along the

fracture zones, probably an artefact of the numerical grid resolution.

A more consistent pattern, however, is observed in the partially

molten area of the initial melt pulse, where a set of subvertical

bands of elastic compaction strain rate is found. Observing these
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Figure 9. Viscous, elastic and plastic components of deformation from a snapshot of run d122r4 (η0 = 1e + 22 Pa s, σT = 10 MPa), displaying compaction

strain rate components (left) and shear strain rate components (right).

bands through their time evolution (Movies S5 and S6) reveals

that they are mobile, travelling through the partially molten area

at a characteristic wave length and speed. Thus, these features are

identified with the mobile decompaction bands observed in the

previous regime. Elastic shear deformation (middle right panel) is

concentrated to the propagating tip of each fracture, where elastic

stress concentration facilitates the propagation of the crack tip.

Not surprisingly, plastic deformation accounts for the major part

of deformation associated with tensile fractures (bottom panels).

Note that the plastic shear strain rates are found at approximately

half the amplitude of the plastic volumetric component, a ratio that

is predicted by plasticity theory for an opening fracture (effective

dilatancy angle of 90◦) (Vermeer & De Borst 1984). The decom-

paction bands found in the partially molten area at the root of the

dykes are clearly visible in the plastic strain rate fields, as expected

from observation above.

Other runs at solid viscosities of 1.e+22 Pa s or higher that are

similarly dominated by tensile fractures as the preferred mode of

melt transport include d122r2/8 (see summary Fig. 13 for the final

outcome of these runs) and d123r2/4/8 (see Fig. 10 for results of

d123r4, representative of the three runs at 1e+23 Pa s). The only

additional features observed at viscosities greater than 1.e+22 are

normal faults that emerge where shear stresses outside the partially

molten regions of the model box reach stresses high enough to

cause shear failure. Fig. 10 gives two snapshots of the run d123r4,

showing melt fraction with melt velocity arrows (left column of

panels) and solid shear strain rates with solid velocity arrows (right

column of panels). Initially, three vertical dykes are observed to

emerge from the melt source (best visible in the strain rate field,

upper right panel). In the first snapshot, the two outer dykes are

connected at their tip to a set of conjugated normal faults, whereas

the middle is not connected to any shear fractures. Later, in the

second snapshot, the two outer dykes have ceased to propagate,

whereas the middle dyke is still active and is now, in turn, con-

nected to a pair of normal faults. These observations are relevant

as they demonstrate the vital connection between magmatism and

tectonics. Magmatic structures always constitute weak zones in the

fabric of the lithosphere and crust, thus providing stress inhomo-

geneities on which brittle fractures preferentially nucleate. On the

other hand, this close connection between magmatism and brittle

tectonics serves to explain why many areas of magmatic activity are

found in close proximity of major fault systems.

3.4.3 Efficiency of melt extraction by tensile fractures

Crack propagation in nature may be recorded on the timescale of

earthquakes, and thus constitutes the fastest known process of melt

extraction. However, the transported volumes of melt in dykes are

relatively small, as dykes found in the geological record are typically

reported at width to length ratios of 1e−2 to 1e−4 (Rubin 1995).
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Figure 10. Snapshots of run d123r4 (η0 = 1e + 23 Pa s, σT = 10 MPa) resulting in tensile and shear fracturing. Visualization as in Fig. 4.

Still, melt flow in a tensile fracture is very efficient, as the pure melt

phase has a very low viscosity and may thus move at high speed

through a tensile fracture once it is opened.

As we assess the efficiency of melt extraction by dyking, the

question arises how properties like the width, speed of propagation

and the accumulated melt content of the dykes simulated here are

to be interpreted. As discussed above, the dyke width is limited to

the element size of the numerical grid. Simulated dykes propagate

at speeds of the order of centimetres per year, depending on model

properties such as the solid shear viscosity and shear modulus,

the permeability and fluid viscosity and the amplitude of imposed

extension. Melt fractions accumulated inside the dykes reach val-

ues of around 25 per cent in this suite of simulations. Comparing

these findings to the theoretical and observational characteristics of

melt-bearing tensile fractures, we note that the simulated dykes are

much wider, slower in propagation and lower in melt content. All of

these limitations are bound up with the spatial resolution available

to numerical models on a geodynamically relevant scale. However,

despite these limitations, dyking is the most efficient feature of

melt transport in all simulation runs at high viscosities. Where ten-

sile fractures emerge, they consistently propagate with significantly

higher speed than all other modes of melt transport and thus cre-

ate conduits for melt extraction even under the mechanically most

competent conditions in the host rock.

3.5 Numerical models of melt ascent from asthenosphere

to crust

Having sampled host rock conditions from ductile to brittle crustal

levels in a simple setup, we now proceed to two additional sim-

ulations on a lithospheric scale in order to see how the observed

modes of melt transport discussed above self-consistently emerge

and interact as melt is extracted from the LAB to the upper crust.

To this end, we construct a model setup representing a continental

lithosphere and crust with background viscosity profiles established

from two different thermal profiles. Note that temperature advection

or diffusion is not treated here, but a realistic geotherm obtained

from a standard half-space cooling model is used to constrain the

initial viscosity profile of the model runs.

The model box has dimensions of 160 × 240 km and con-

sists of three layers: 20 km of upper crust with a density of

ρUC = 2500 kg m−3, followed by 20 km of lower crust with a den-

sity of ρLC = 2700 kg m−3and a mantle lithosphere with a density

of ρML = 3000 kg m−3. With a melt density of ρ f = 2600 kg m−3,

a reversal of density contrast at the lower to upper crust bound-

ary is achieved. The depth profiles of intrinsic rock viscosity are

calculated from the geotherm using an Arrhenius law, with slightly

varying pre-exponential factor and activation energy to reflect lower

strength of crustal rocks with respect to the mantle. The resulting

strength profiles of a thermally younger and a thermally older litho-

sphere are given in Figs 11 and 12, respectively. As initial melt

fraction distribution, a circular region with a diameter of 12 km and

a melt content of 80 per cent is imposed at the lower boundary. The

reference permeability is set to k0 = 1e − 7 m2 and the extensional

kinematic boundary condition is given by a background strain rate

of ε̇BG = −5e − 15 s−1. The constant fluid pressure boundary con-

dition is switched off and thus pressure boundaries are zero flux on

all sides. All other model parameters are as listed in Table 2.

To provide a seed for plastic shear and tensile failure to nucleate,

random noise is added to both friction angle (maximum amplitude

of 1◦) and cohesion (maximum amplitude of 0.2 MPa). Plastic shear

strain rates are integrated over time and a linear weakening of the

friction angle proportional to accumulated plastic strain is added to

the method in order to provide a damage memory, by which plastic

faults constitute tectonic weak zones, even after they are no longer

active.

Snapshots of melt fraction and shear strain rate of runs with a

thermally younger, and thus mechanically weaker, and a thermally
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Figure 11. Snapshots of whole-lithosphere run with a thermally younger lithosphere, displaying the strength profile of lithosphere and crust with depth (left),

melt fractions (per cent) with melt velocity arrows (middle) and shear strain rates relative to background strain rate (right). The applied density structure is

such that the depth of neutral buoyancy is at 20 km.

Figure 12. Snapshots of whole-lithosphere run with a thermally older lithosphere. Visualization as in Fig. 11.

older, and mechanically stronger, lithosphere are given in Figs 11

and 12 (see Movies S7–S10 for animated time evolutions of these

results). In both runs, most of the melt transport features described

above emerge and interact self-consistently over the range of host

rock conditions found from the LAB to the surface. We do not

observe any melt diapirism here, as the initial melt volumes are

placed directly on the LAB, where viscosities are already higher

than values for which diapirism would be the preferred mode of

melt transport.

In both runs, the circular melt volume first penetrates the LAB by

means of a process not present in the runs presented above. Here,

a layer of overlaying host rock along the top boundary of the melt

pulse is weakened by the infiltration of overpressured melt, leading

to volumetric failure and causing the weakened layer to delami-

nate into the magma body below. This interaction of an advancing

percolation front with volumetric failure by melt overpressure and

subsequent delamination of the resulting layer of crystal mush was

not observed earlier. This particular mode of deformation requires

melt overpressures of amplitudes reaching the tensile strength of

rock (here σT = 10 MPa) to occur in a low-viscosity host rock. Yet,

because a magma body of sufficiently large dimension is present,

delamination of the weakened rock into the magma body occurs

on a timescale similar to the advancement of the percolation front.

The resulting magma body takes the shape of a funnel (most likely

tube-like in 3-D), narrowing towards the top as a function of the

increasing background viscosity (best visible in Fig. 12, top panels).

As host rock viscosities rise to 1e+21 Pas, the first major regime

transition takes place, as channels of localized volumetric defor-

mation propagate diagonally away from the main magma body.

Although spatial resolution renders the distinction more difficult,

we identify these features as decompaction channels, recognized by

their orientation and deformation pattern. In the simulation with a

weaker lithosphere, two decompaction channels form above the

initial magma body. As they provide a weak zone in the host
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rock, a return flow pattern sets in, causing the lower lithosphere

to flow down and in towards the initial magma body, while large

volumes of melt are moved up and outwards into the widening

channels, up to the point where two new magma bodies are es-

tablished further up and on either side of the initial melt volume

(Fig. 11, top panels). However, the further model evolution shows

that only one of these magma bodies is able to propagate further

up towards the lower crust. Interestingly, a large portion of the

melt trapped in the inactive secondary channel is eventually forced

back by regional tectonic deformation and diverted into the primary

channel.

The second major regime transition occurs, where the imposed

viscosity profile causes a steep increase in mechanical strength up

to the point of brittle strength levels (see strength profiles in Figs 11

and 12). As expected, melt-bearing tensile fractures emerge. Unlike

in other runs presented above (d122r4, d123r4), the orientation of

these fractures is often not vertical, as expected from the regional

extension applied at the side boundaries. Instead, tensile fractures

preferentially form along the weak zones created by pre-existing

shear faults, a behaviour known from geological observation (Rubin

1995). As overpressured melt propagates along pre-existing shear

faults, the walls of the fault are forced apart and the previous pattern

of shear deformation along the fault is changed into an extensional

flow perpendicular to the fault plane. This process, best visible in

Fig. 12 (top panels), illustrates that even though dykes in these mod-

els are limited to the available spatial resolution, the geometry of

tensile fractures is self-consistently determined by material proper-

ties and local stress conditions and, in the long-term evolution, such

fractures evolve into wider conduits for melt extraction through the

mechanically most competent parts of the lithosphere.

As melt eventually reaches the upper crust in both simulations,

the buoyancy contrast between solid and melt phase is inverted and

thus further melt ascent is mostly prohibited. As a consequence, melt

accumulates in the weak lower layer of the upper crust, forming a

magma body of up to 100 per cent melt content. In the simulation

with the weaker strength profile, the shape of this final magma

chamber is that of a laccolith fed from a feeder zone at one end

(Fig. 11, bottom panels), a geometry that incidentally bears some

resemblance to the Torres del Paine plutonic rock complex, although

it occurs at a larger depth in this simulation (e.g. Leuthold et al.

2012).

The geometry of the upper crustal magma body in the second

simulation consists of two roughly elliptical magma bodies linked by

a diagonal conduit of similar dimensions (Fig. 12, lower panels). In

both runs, some melt transport above the depth of neutral buoyancy

is observed. In fact, even though the geometry of the upper crustal

magma bodies is quite different, both runs feature a single, vertical

dyke propagating from the uppermost magma body upwards to the

surface, where eruption would occur. These results demonstrate

that the depth of neutral buoyancy is not the primary control of the

emplacement level of a magma body. Instead, it is the integrated

buoyancy contrast of the interconnected column of melt through

the lithosphere and crust, combined with the forcing imposed by

regional tectonic stress that governs the depth of emplacement or

the ultimate eruption of a magmatic system.

These numerical results of melt ascent from the asthenosphere

to the upper crust again need to be understood with the caveat that

no thermal and chemical coupling of magmatism is included. Nev-

ertheless, they demonstrate the potential of the proposed method

to investigate open questions of melt extraction and magma em-

placement tectonics under a wide variety of conditions found in a

continental lithosphere and crust.

4 D I S C U S S I O N

4.1 Melt transport in a visco-elasto-plastic host rock

These numerical results demonstrate that the implementation of

a visco-elasto-plastic rheology in two-phase flow simulations may

result in at least three distinct modes of melt transport under geody-

namically relevant host rock conditions. Whereas melt diapirism

generally occurs at low viscosities, decompaction channels are

formed at intermediate viscosities, and tensile fractures emerge at

high viscosities. The results also indicate that the proposed method-

ology provides an opportunity to address some of the open issues

related to melt extraction through lithosphere and crust, as it is able

to simulate melt extraction through host rock undergoing both frac-

ture and flow, a feature previously inaccessible to computational

models of magma dynamics.

The aim of this study was to introduce a visco-elasto-plastic

two-phase rheology and demonstrate its potential for the compu-

tational study of melt transport through the lithosphere and crust.

The three observed regimes of tectonically coupled melt transport

that self-consistently emerged from a suite of simple numerical

problems have been characterized in a preliminary way, as a full

discussion of particularly the plastic features of melt transport goes

beyond the scope of this study and would require a much more

comprehensive coverage of the relevant parameter space. Still,

these observations allow some preliminary discussion of impli-

cations these findings might have for the understanding of how

magmatic system evolve coupled to the rock conditions and tec-

tonic deformation of a continental lithosphere. In the following,

we will summarize our analysis of the three regimes of melt trans-

port described above, discuss some of the implications with respect

to magmatic systems and review the limitations of the numerical

method.

4.1.1 Melt transport by diapirism

Summarizing the findings on melt diapirism, we note that melt ex-

traction under mechanically weak asthenospheric conditions (lower

than 1.e+20 Pa s) is dominated by viscous diapirism constituted by

local upwellings driven by the buoyancy of accumulated melt. As

no crystallization is considered here, quantitative aspects of these

results need to be interpreted with caution. Only at very low host

rock viscosities will enough heat be advected for a diapir to keep

a stable melt content over the timescale of vertical transport. Nev-

ertheless, the combination of melt accumulation by incipient com-

paction wave formation and subsequent melt ascent by diapirism

is in our simulations the dominant process by which melt from a

wider region of partial melting in the asthenosphere is collected and

brought upwards towards the LAB. Melt thus arrives at the LAB in

discrete pulses of high melt fraction rather than in a continuous per-

colative flux, providing an important constraint for possible initial

conditions for further models investigating melt extraction through

the lithosphere.

Most likely, the composition of melt collected in a diapir closely

reflects the degree of melting of the asthenospheric source of par-

tial melt the diapir is derived from. During the rise of a melt diapir,

little equilibration with surrounding rock material is expected to

occur and convection dominates over compaction. As any inherited

or newly crystallized grain assemblage is entrained along the con-

vective flow, rather then being removed from the remaining melt,

not much magmatic differentiation may be expected to occur during

melt transport by diapirism.
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4.1.2 Melt transport by decompaction channeling

From our findings on decompaction channeling, we conclude that

melt extraction in rock of intermediate mechanical strength, as it is

found in the relatively high-temperature parts of the lithosphere and

lower crust (1.e+20 to 1.e+22 Pa s), is dominantly facilitated by

decompaction channeling. From the observations presented above,

we arrive at a definition of decompaction channels as elongated

bands of channelized melt percolation in a compacting host rock,

characterized by volumetric failure due to fluid overpressure, and

aligned at steep angles with respect to the least compressive stress

direction.

So far, we have not addressed the question of the physical pro-

cess that underlies volumetric, or decompaction failure. As this

process occurs at low levels of shear stress and in areas of melt

percolation, we propose that the volumetric deformation is ac-

commodated mainly by the opening of grain boundaries, forced

apart by the presence of an overpressured melt. This interpreta-

tion is in line with previous theoretical considerations (Connolly &

Podladchikov 1998, 2007; Ricard & Bercovici 2003). Conceptu-

ally, the nature of these channels is thought of not as a brittle,

macroscopic mode of plastic failure of the host rock, but rather

as a distributed microscopic failure mode manifesting along grain

boundaries in an area of partially molten rock under fluid overpres-

sure. Connolly & Podladchikov (2007) argue that this type of failure

should lead to an overall viscoplastic compaction flow characterized

by a weakening of the effective compaction viscosity under fluid

overpressure, which coincides with our observations.

Furthermore, our numerical results demonstrate that decom-

paction bands may travel through the host rock as a kind of elongated

visco-elasto-plastic compaction wave, driven by shear stresses in

the matrix rather than buoyancy alone. Although the physical origin

of this process cannot be inferred from our models, these decom-

paction bands may be conceptually related to the so-called vug

waves, a concept proposed by Phipps Morgan & Holtzmann (2005)

in order to explain melt band formation in a deforming host rock.

The connection between decompaction channeling and melt band

formation certainly deserves more attention. The volumetric failure

described here effectively behaves as a power-law viscous rheology

with a very high stress exponent, a condition that, according to

the analysis of Katz et al. (2006), favours increased growth rates

of melt bands in a partially molten rock under shear deformation.

Also, the melt bands observed in analogue simple shear experiments

form at angles of 55◦–70◦ to the least compressive stress direction

(Holtzman 2003). We find that decompaction channels grow at sim-

ilar angles in our simulations.

For now, with the conclusive physical interpretation of these fea-

tures left to be determined, localized melt percolation by volumetric

failure of the host rock and the subsequent formation of decom-

paction channels is identified as the likely process, by which melt

may penetrate the thermal boundary layer of the LAB and ascend

into the mechanically stronger lithosphere.

The flow patterns observed in the decompaction channeling

regime lead to an efficient phase separation and, by implication, to

strong magmatic differentiation. Pervasive flow of melt through the

compacting solid phase likely leads to a higher degree of chemical

equilibration with the host rock than convective transport of whole

magma bodies by melt diapirism. Additionally, if crystallization

occurs, forming crystals would follow the downwards compaction

flow of the solid, whereas the remaining melt would continually

be removed, causing fractional crystallization of magmas as they

penetrate into the lower lithosphere.

4.1.3 Melt transport by tensile fracturing

The numerical results demonstrate that melt extraction in rock

of high mechanical strength, as it found in the relatively low-

temperature parts of the lithosphere and crust (viscosity greater

than 1.e+22 Pa s), is dominantly facilitated by the opening of melt-

bearing tensile fractures. Such dykes in our simulations are clearly

distinct from decompaction channels by the following four phe-

nomenological criteria. (i) Width: Tensile fractures have a natural

length scale far below the numerically available spatial resolution,

and therefore dykes in our simulations always localize down to the

width of a single element. Conversely, even narrow decompaction

channels are more diffuse features than tensile cracks, assuming

a width of at least several elements, even at low grid resolutions.

(ii) Position: Simulated tensile fractures are always found to be sta-

tionary features, whereas decompaction bands mostly move through

the rock matrix until they finally assume a fixed location, where

they develop into stationary melt channels. Even stationary decom-

paction channels are easily distinguished from tensile fractures, as

the former generally occur inside or along the boundary of a par-

tially molten area, whereas tensile fractures protrude from a melt

source into melt-free rock. (iii) Orientation: We find that tensile frac-

tures form perpendicular to the least compressive stress direction,

whereas decompaction channels form at angles of around 70◦. Even

when dykes propagate along pre-existing shear faults, the pattern

of deformation indicates that the local stress field has been locally

rotated in such a way that the dyke again is positioned normal to the

least compressive stress. (iv) Stress conditions: Tensile fracturing is

only observed as shear stresses in the mixture approach the magni-

tude of tensile rock strength, whereas volumetric failure leading to

decompaction channeling occurs at lower levels of shear stress, but

higher levels of fluid overpressure.

In the first suite of simulations above, dykes are observed to

propagate relatively quickly into the host rock, but to transport

rather low volumes of melt through it. If, on the other hand, a dyke is

established, local extension is ongoing and enough melt is available

from below, a tensile fracture may be used by larger volumes of

melt and even crystal-bearing magma as a conduit, thus allowing

large volumes of magma to ascend rapidly through the widening

conduit. The two simulations of melt extraction from the LAB to

the upper crust demonstrate that our method is able to capture this

process of how initially narrow dykes widen to provide conduits for

large-scale melt extraction.

4.1.4 Summary of melt transport regimes

Fig. 13 summarizes the findings on the three regimes of tectonically

coupled melt transport as a function of tensile strength and intrinsic

viscosity of the host rock. For clarity of visualization, a background

colour is assigned to each of the three regimes of melt transport.

The red background colour in Fig. 13 indicates the stability field of

melt diapirism (A), the stability field of decompaction channeling

(B) is coloured in yellow, and the one of tensile fracturing (C) in

blue. The characteristic flow pattern of each mode of melt transport

is depicted in the three panels at the bottom of Fig. 13.

4.1.5 Regime transitions

We find from the numerical results that the first regime bound-

ary from diapirism to decompaction channeling occurs where fluid

overpressure reaches the magnitude of tensile rock strength at

shear stresses close to zero. Setting the characteristic pressure scale
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Figure 13. Summary of model results as a function of host rock viscosity and tensile rock strength. Regions of the parameter space are coloured in red where

(A) melt diapirism is dominant, yellow where (B) decompaction channeling is observed and blue where (C) tensile fracturing emerges. Transitions from one

regime to the next occur (1) where fluid overpressure reaches the magnitude of tensile rock strength at low shear stresses (eq. 77), and (2) where shear stresses

reach the magnitude of tensile rock strength at high fluid pressure (eq. 78). Three panels at the bottom, marked (A), (B) and (C), give characteristic flow

patterns taken from representative runs of each regime, with dark blue arrows for the host rock, and red arrows for melt. A contour line encircles regions of

melt content over 5 per cent.

pc = �ρgδc equal to the tensile rock strength and solving for the

intrinsic rock viscosity η0 (contained in the definition of compaction

length) reveals that the level of viscosity at which volumetric fail-

ure may emerge, with given values for other material properties, is

proportional to the square of the tensile rock strength σT :

η0 =
φ

(1 − φ)

(

σT

�ρg

)2

K −1
D . (77)

The second regime boundary between decompaction channels

and tensile fractures occurs as shear stresses increase to the mag-

nitude of tensile rock strength at fluid pressures equal to the total

pressure. Setting the shear stress induced by the kinematic boundary

condition (2η∗ε̇BG) equal to σT and again solving for the intrinsic

solid viscosity η0 reveals that the level of viscosity necessary to

excite tensile failure at given values for other material properties is

a linear function of the tensile rock strength σT :

η0 =
exp
(

αφφ
)

(1 − φ)

σT

2ε̇BG

. (78)

The two lines forming the boundaries between regimes in Fig. 13

are found by evaluating eqs (77) and (78) at a melt fraction of

1 per cent (other property values as in Table 2) and plotting the

resulting lines in log-log space. The emergence of the three melt

transport regimes in the numerical results stands in excellent agree-

ment with the predicted regime boundaries.
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4.3 Model limitations

The main limitations of the proposed methodology are related to

numerical resolution. The physics of tectonically coupled melt ex-

traction involves processes spanning length scales of millimetres to

hundreds of kilometres and timescales spanning seconds to millions

of years. Any modelling approach needs to be limited to a certain

bandwidth of processes, as no simulation framework is able to con-

sider all relevant scales simultaneously. The method adopted here

consists of an approach to simulate magma dynamics as a contin-

uum process at spatial scales of hundreds of metres to hundreds of

kilometres, over timescales of hundreds to millions of years. Typical

rates of deformation therefore should remain below values of a few

metres per year. This focus leads to a choice of model resolutions

that render it necessary to filter out smaller scale processes, as, for

example, small-scale mixing in a magma chamber.

There are two aspects of our method where such limitations apply:

First, a lower cut-off viscosity is needed to ensure that length scales

of simulated flow features remain larger than the grid spacing, and

thus, numerical instabilities are avoided.

Second, fractures cannot localize below the scale of one grid

spacing. Both limitations are common to numerical models of geo-

dynamic processes and cannot be circumvented in any straightfor-

ward manner. In general, however, the characteristics of the features

of melt transport described in this study should not be greatly in-

fluenced by our choice of model resolution, as long as it is kept

in mind that both speed and complexity of flow features in re-

gions of very high melt fraction upwards of 60 per cent are likely

underestimated, and that tensile and shear fractures may only lo-

calize to grid level and thus efficiency of melt transport by dyking

is likely underestimated. However, even with these limitations, the

spontaneous and self-consistent emergence of melt-bearing tensile

fracturing presents an interesting opportunity for the computational

study of magma dynamics in a host rock that may undergo both

fracture and flow.

In this study, we focussed on two-dimensional simulations with

moderate numerical resolutions. We employed direct solvers in

combination with a fixed point iteration method to deal with non-

linearities. If one wishes to solve the same set of equations in three

dimensions at sufficiently large resolutions, efficient (multigrid) it-

erative methods need to be tested, which is likely to be challenging.

Furthermore, adaptive mesh refinement methods could prove help-

ful to better resolve the tensile dykes in our models.

Another model limitation relates to the fact that the proposed

methodology concentrates on the mechanical side of magma dy-

namics in lithosphere and crust, thereby neglecting the thermal and

chemical evolution that a magmatic system would undergo. The

fundamental regimes of melt transport described here are expected

to equally apply to fully coupled thermochemical simulations of

magma dynamics, even though a greater wealth of possible features

is expected to be uncovered, as many feedbacks between composi-

tion, temperature, pressure and stress will modify the style of melt

transport.

5 C O N C LU S I O N S

In this study, we described how to include visco-elasto-plastic con-

stitutive laws for both shear and compaction deformation in an oth-

erwise standard numerical model of two-phase magma dynamics

and discussed how to solve it numerically in two dimensions. The

proposed formulation is found able to capture the most important

modes of melt extraction that are to be expected in a tectonically

active lithosphere and crust. Three regimes of melt transport emerge

in sequence and sometimes overlap, as the intrinsic viscosity of the

host rock increases with decreasing temperatures from the astheno-

sphere towards the surface. These regimes are (i) melt diapirism,

(ii) decompaction channeling and (iii) tensile failure. However, to

physically quantify the detailed properties of each of these deforma-

tion regimes, a more thorough investigation of the model parameter

space and choice of boundary conditions is required. In particular,

the regime of decompaction channeling deserves further investiga-

tion, as the underlying physics are not yet fully understood.

The main strength of the proposed approach is the ability to

simulate magma dynamics in a host rock undergoing both fracture

and flow within a self-consistent physical framework. This study

mainly aimed at introducing the visco-elasto-plastic two-phase rhe-

ology and demonstrating its potential. The proposed formulation

of the two-phase flow equations and their numerical implementa-

tion has been developed using operators and techniques utilized

in standard finite-element Stokes flow discretizations. The evident

similarity between these two types of computational problems sug-

gests that much of the experience gained from Stokes flow mod-

elling of lithosphere deformation may straightforwardly be applied

to tackle tectonically coupled magma dynamics problems in the fu-

ture. Moreover, coupling such models with energy conservation and

magmatic evolution will allow to address various open problems in

the field of igneous rock formation.
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A P P E N D I X A : N U M E R I C A L M E T H O D

A.1 Implementation of governing equations

To find a suitable implementation of the conservation eqs (57)–(59),

we follow a similar strategy as is used for implementing variable

viscosity Stokes flow in finite-element modelling (Zienkiewicz et al.

2005). First, eqs (57)–(59) are rewritten in a simplified matrix–

vector form in terms of the solution variables to give
⎡

⎢

⎢

⎣

BT DB −G −G

−GT −GT KDG 0

−GT 0 −C

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

vs

P f

Pc

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

ρgẑ − BT χ∗
τ τ̃ o

s

GT KDρ f gẑ

−Cχ∗
p�Po

⎤

⎥

⎥

⎦

,

(A1)

with the volumetric rheological constant defined as C = 1/ξ ∗
eff , and

using the following relation for the deviatoric stress tensor

τ = DBvs + χ∗
τ τ̃ o

s , (A2)

where the operator B is used to obtain strain rates from the velocity

field

B =

⎡

⎢

⎢

⎣

∂x 0

0 ∂y

∂y ∂x

⎤

⎥

⎥

⎦

. (A3)

For shorter notation, we use ∂x to denote a partial derivative with

respect to coordinate x. G is the gradient operator defined as

G =

[

∂x

∂y

]

. (A4)

The constitutive tensor for deviatoric stresses D contains the effec-

tive shear viscosity of the solid phase:

D = η∗
eff

⎡

⎢

⎢

⎣

4
/

3 −2
/

3 0

−2
/

3 4
/

3 0

0 0 1

⎤

⎥

⎥

⎦

. (A5)

The Darcy tensor KD contains the Darcy coefficients K D,i j (x, y) =
kφ/η f in direction of coordinates, which in this study are kept

isotropic, but could theoretically describe an anisotropic perme-

ability structure:

KD =

[

K D,xx K D,xy

K D,yx K D,yy

]

. (A6)

In a second step, the problem is discretized on a rectangular

finite-element mesh. Solid velocity and fluid pressure are approxi-

mated on Q1 elements with their respective linear shape functions

Nv = [N1 N1 N2 N2 N3 N3 N4 N4] and N f = [N1 N2 N3 N4], whereas

compaction pressure is defined as piecewise constant on P0 elements

with shape functions Np = 1. After reformulating the equations in

the weak form, we arrive at the following expression (see below for

the detailed finite-element formulation of each submatrix)

⎡

⎢

⎢

⎣

VV VF VC

VFT FF 0

VCT 0 CC

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

⌣
vs

⌣
p f

⌣
pc

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

rv

r f

rc

⎤

⎥

⎥

⎦

, (A7)

which are compactly expressed as

Lx = r. (A8)

Here, L is the global stiffness matrix, x is the solution vector con-

taining the discretized solution variables
⌣
vs ,

⌣
p f and

⌣
pc, and r the

right-hand-side vector containing all forcing terms. The coefficient

matrices VV, VF and VC contain coefficients related to solid de-

viatoric stress divergence and gradients of fluid and compaction

pressure, respectively. The matrix FF contains coefficients related

to the divergence of the Darcy flux and CC contains coefficients

related to compaction/decompaction rheology of the host rock.The

coefficient matrices arising from the finite-element discretization

take the following form:

VV =
∫

V

⌣

BT D
⌣

BdV , FF = −
∫

V

⌣

GT
f KD

⌣

G f dV ,

VF = −
∫

V

⌣

GvN f dV , CC = −
∫

V

NT
p NpCdV ,

VC = −
∫

V

⌣

GvNcdV , (A9)

where
⌣

B,
⌣

Gv and
⌣

G f are the discretized counterparts of the strain rate

and gradient operators introduced above (eqs A1–A4), containing

suitably arranged derivatives of the linear shape functions:

⌣

B =

⎡

⎢

⎢

⎣

∂x N1 0 ∂x N2 0 ∂x N3 0 ∂x N4 0

0 ∂y N1 0 ∂y N2 0 ∂y N3 0 ∂y N4

∂y N1 ∂x N1 ∂y N2 ∂x N2 ∂y N3 ∂x N3 ∂y N4 ∂x N4

⎤

⎥

⎥

⎦

,

⌣

Gv=
[

∂x N1 ∂y N1 ∂x N2 ∂y N2 ∂x N3 ∂y N3 ∂x N4 ∂y N4

]

,

⌣

G f =

[

∂x N1 ∂x N2 ∂x N3 ∂x N4

∂y N1 ∂y N2 ∂y N3 ∂y N4

]

. (A10)

And finally, the components of the right-hand-side vector r are

defined as

rv =
∫

V

NT
v

[

ρgẑ −
⌣

BT χ∗
τ

⌣

τ̃o
s

]

dV ,

r f =
∫

V

⌣

GT
f KDρ f gẑdV ,

rc = −
∫

V

NT
c Cχ∗

p�
⌣
podV , (A11)

where
⌣

τ̃o
s and �

⌣
po denote the discrete stresses and pressure dif-

ferences obtained from the previous time step, resulting from the

elastic stress rates that are discretized in order to derive the rheolog-

ical constitutive laws (eqs 23–27 and 33). The coefficients related to

solid velocity divergence in the mass conservation and compaction

equation can, due to the symmetry of the finite element formulation,
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be expressed as the transpose matrices of the two pressure gradi-

ents, VFT and VCT . Therefore, since VV, FF and CC each are

symmetric (provided that the boundary conditions are set properly),

the matrix L is symmetric. Note that the formulation of the gov-

erning equations enables the discrete form of these equations to be

symmetric. Combining this symmetric property, together with the

fact that the bulk mass conservation and compaction equations (un-

like the incompressible Stokes mass conservation) have non-zero

diagonals, we expect to be able to exploit solution strategies which

have been developed to solve variable viscosity Stokes problems.

In this implementation, we solve the linear system of govern-

ing equations using Matlab’s ‘backslash’ direct solver. Some of the

coefficients in these equations, however, are nonlinear. The nonlin-

earity is caused by plasticity-related and melt-fraction-dependent

material properties, those being both effective viscosities, perme-

ability, pore modulus and bulk density. Therefore, we employ a

defect correction, fixed point iteration scheme (Picard) to solve

the system of nonlinear equations. During each nonlinear iteration,

nonlinear material properties in the submatrices VV, FF and CC

are updated to the current solution and the system is solved again

to update the solution. These nonlinear iterations are repeated until

the nonlinear residuals of the solution are decreased below a given

limit. The iteration procedure for solving the governing equations

is executed in the following sequence of steps (i and k denote the

current iterative step and time step, respectively).

1. Assemble the global stiffness matrix and right-hand-side vec-

tor using the values of nonlinear material properties from previous

time step (or initial condition at first time step): L(xk−1), r(xk−1).

2. Solve the full system as an initial solution guess for the non-

linear solve,

xi = L
(

xk−1
)

\r
(

xk−1
)

. (A12)

3. Enter nonlinear iteration loop:

a. Update the nonlinear material properties according to the cur-

rent solution and re-assemble global stiffness matrix and right-hand-

side vector L(xi ), r(xi ).

b. Compute the nonlinear residual vector f(xi ) of the current

guess using the updated global stiffness matrix and right-hand-side

vector. Use the norm of residuals normalized by the norm of the

right-hand side ( f i ) to monitor convergence of nonlinear iterations:

f
(

xi
)

= L
(

xi
)

xi − r
(

xi
)

, f i =
∥

∥f
(

xi
)
∥

∥

∥

∥r (xi )
∥

∥

. (A13)

c. Compute iterative update for current solution:

dx
(

xi
)

= L
(

xi
)

\ − f
(

xi
)

. (A14)

d. Update the current guess of solution using computed iterative

update:

xi+1 = L
(

xi
)

+ dx
(

xi
)

. (A15)

e. Repeat steps a to d until converged and f i ≤ fcrit.

Generally, the convergence of these iterations is very well-

behaved with up to one order of magnitude reduction of the non-

linear residuals per iterative update. There are, however, a number

of issues concerning convergence of the nonlinear iterations espe-

cially relating to plasticity, and some other measures are required

to optimize the performance of the code; all of these are outlined in

more detail below.

A.2 Matrix scaling

Rather than using non-dimensionalized equations, a strategy oth-

erwise common in numerical modelling of magma dynamics

(Barcilon & Lovera 1989; Spiegelman 1993b), we use the dimen-

sional form of the two-phase problem in our simulation code. The

main advantage of a non-dimensional approach would be to ex-

tract non-dimensional numbers from the set of equations that help

to understand how physical processes are balanced against each

other. However, we prefer to separate this useful step of additional

analysis from the simulation of the actual physics, as it renders it

more straightforward to relate input or output parameter values to

physical quantities of interest (May & Moresi 2008).

Due to large variations in magnitude of some material proper-

ties (i.e. viscosity and permeability), the coefficients in the global

stiffness matrix L may vary by up to 10 orders of magnitude. Such

a matrix configuration is not optimal for use in a direct solver like

Matlab’s ‘backslash’. To improve solution stability and solver speed,

a scaling of the linear problem is applied with the use of a diago-

nal scaling matrix � (Pelletier et al. 1989). The scaled problem is

expressed as

x̂ = �L�\�r, x=�x̂, (A16)

where x̂ is the scaled solution vector resulting from the scaled

linear solve. The scaling matrix � is a diagonal matrix containing

elementwise scaling factors λel
v, f,c on its diagonal. One possible

choice of finding these scaling factors is related to the diagonal

coefficients of the unscaled global stiffness matrix itself:

� =
1

√
|L|

I. (A17)

This choice leads to the diagonal entries of the scaling matrix to

be of order O(1). Scaling the linear problem may result in a solver

speed-up of up to 400 per cent with Matlab’s ‘backslash’ function,

which is due to the fact that Matlab chooses a more efficient factor-

ization based on the properties of the coefficient matrix.

A.3 Solver stabilization

As mentioned above, we use quadrilateral brick elements to dis-

cretize the two-phase problems. We chose a first-order element

type, primarily because it is the least expensive in terms of memory

requirements and solver time. We use linear Q1 shape functions for

solid velocity and fluid pressure. The linear shape functions facili-

tate the retrieval of strain rates and stresses from the solid velocity

gradients, as well as Darcy flux and fluid velocities from the fluid

pressure gradient. Compaction pressure mainly relates to rheology

and is therefore defined as piecewise constant on P0 elements, as

are all rheological parameters.

However, in the limit of zero melt fraction, the system of equa-

tions reduces to a Stokes flow problem (see Section 2.4.2) dis-

cretized on Q1Q1 elements. This element type is not LBB-stable

for a Stokes problem, and thus it will be susceptible to instabilities

in form of oscillating pressure solutions. Such instabilities mostly

occur in regions of the model, where the compaction length drops

below the resolution of the finite-element mesh due to a very small

or zero melt fraction.

One of the standard strategies used to stabilize the Q1Q1 Stokes

problem is the use of a Laplacian term, introducing a small amount

of diffusivity on the pressure field discretized on Q1 elements (El-

man et al. 2005). Such a term is naturally included in our set of

equations arising from the divergence of Darcy flux in the bulk
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mass conservation equation (eq. 58). In regions, where melt frac-

tion goes to zero, we therefore introduce a non-zero, lower cut-off

to the permeability field to ensure that the stabilizing effect of this

term on the fluid pressure field stays effective. A cut-off value of

1.e − 20 ≤ kcut-off ≤ 1.e − 18 is used in this study, depending on

the grid resolution.

A second instability linked to the use of linear elements is the

occurrence of checkerboard oscillations in the compaction pressure

field, especially around sharply localized zones of deformation due

to brittle plasticity. This instability may be avoided by applying

a small amount of smoothing to the quantities related to plastic

yielding, such as differential strain rates and compaction pressure.

The smoothing is accomplished by an operation representing an

averaging over adjacent elements. For a general property a on the

ith element of the jth row of the regular element mesh (with i, j

denoting the element indices of the regular mesh), we obtain the

smoothed field
⌢
a with the following relation:

⌢
ai, j = (1 − γ ) ai, j + γ

(

ai−1, j + ai+1, j + ai, j−1 + ai, j+1

)

. (A18)

The smoothing parameter is chosen as 0.01 ≤ γ ≤ 0.1. Do-

ing so does not qualitatively alter the solution, but renders it

slightly smoother by limiting solution variability from one element

to the next. We apply this smoothing to compaction pressure as

well as deviatoric and volumetric strain rate fields, and use these

smoothed values to update nonlinear material properties (see end of

Section A1.1).

As mentioned above, convergence of the nonlinear iterations is

typically very well-behaved. However, testing the code for various

geodynamically relevant setups, we find two major issues leading to

poor convergence of the nonlinear solver. The first occurs, when few

elements, usually located at sharp edges of brittle fracture zones,

go in and out of plastic yielding from one iteration to the next. This

oscillatory behaviour manifests itself in alternatively weakening and

strengthening the effective viscosity of those elements concerned.

To avoid this instability, we apply a rheological damping parameter

αrheo used to update deviatoric and volumetric viscosities from one

iterative step to the next as

[

η∗
eff , ξ

∗
eff

]i+1 =
(

[

η∗
eff , ξ

∗
eff

]i+1
)αrheo

(

[

η∗
eff , ξ

∗
eff

]i
)1−αrheo

. (A19)

The second issue is related to plastic yielding representing a hor-

izontal cut-off in a stress–strain rate diagram. Around the cut-off

corner, where the yield criterion intersects the viscoelastic stress

curve, the nonlinear iterations are most susceptible to such oscilla-

tions. To avoid the issues related to a sharp cut-off corner, we may

calculate each visco-elasto-plastic effective viscosity (η∗
eff , ξ

∗
eff ) in

a way that it fits the stress–strain rate curve asymptotically, thus

avoiding the corner. These alternative plastic yield viscosities in-

troduce a small amount of additional weakening of material under

stress conditions just prior to reaching the yield stress. We use the

parameter 0 < βrheo < 1 to weight between the viscosities repre-

senting a cut-off or asymptotical stress curve, so as to avoid the

corner effect with as little additional pre-plastic yielding as possi-

ble. We calculate the effective visco-elasto-plastic viscosities in the

following way:

[

η∗
eff , ξ

∗
eff

]cut-off = min
([

η∗
ve, ξ

∗
ve

]

,
[

η∗
eff , ξ

∗
eff

])

,

[

η∗
eff , ξ

∗
eff

]asympt =
1

1

[η∗
ve,ξ

∗
ve]

+ 1

[η∗
eff ,ξ

∗
eff ]

,

[

η∗
eff , ξ

∗
eff

]

=
(

[

η∗
eff , ξ

∗
eff

]cut-off
)βrheo

(

[

η∗
eff , ξ

∗
eff

]asympt
)1−βrheo

. (A20)

A.4 Limits of two-phase flow

In the presence of deep melt (pore space not interconnected to the

surface), the effective pressure generally varies around zero, thus

reducing plastic strength of the host rock to around cohesion. In

regions with very small fluid fraction, the assumption of an inter-

connected pore space sustaining any significant influence on plastic

rock strength becomes invalid. Therefore, we choose to fix com-

paction pressure to zero and set the effective pressure to equal the

total pressure, where φ < φcrit and introduce a parameter xφ indi-

cating the presence of fluid phase beyond the critical melt fraction

necessary for two-phase flow physics to become effective:

xφ =

{

0 for φ < φcrit,

1 for φ ≥ φcrit.
(A21)

The parameter xφ indicates where two-phase flow is active (i.e.

effective pressure is equal to compaction pressure, shear plasticity

is weakened, tensile plasticity is enabled) or inactive (i.e. effective

pressure is equal to total pressure, compaction pressure is held at

zero, shear plasticity is frictional, tensile plasticity is switched off,

kφ = kcut-off). The appropriate value to use for critical melt fraction

probably depends on the grain size and geometry of the host rock

as well as the viscosity of the melt (φcrit ∼ K D). For reasons of

simplicity, however, we use a constant critical melt fraction value

of φcrit = 0.1 per cent.

Additionally, in order to prevent extreme values for melt-fraction-

dependent properties where either fluid or solid fractions go to zero,

we cut off melt and solid fraction at 1.e−6 and 1.e−2, respectively,

wherever they go into the computation of any material-fraction-

dependent properties. For all other situations, we still let material

fractions go from 0 to 1.

A.5 Marker-in-cell advection

For the marker-in-cell advection scheme employed in this study,

material properties are generally defined on two sets of Lagrangian

marker particles, one each for properties of the host rock and of the

silicate melt phase. Each set of marker particles is then advected

with the respective velocity field. To update the material properties

according to the current solution variables, these are interpolated to

the marker particles after each solve. Material properties are only

interpolated to elements or nodes when required to evaluate the

weak form associated with the finite-element discretization.

Solid velocities and fluid pressures are defined on linear shape

functions and are thus consistently interpolated from nodes to mark-

ers using these shape functions. The nodal coordinates of each el-

ement are used to perform an inverse coordinate transformation

determining the local (or natural) coordinates ξ of each marker

within a given element. The four linear shape functions may now

be evaluated at the marker’s local coordinates Ni (ξm). Now, a sim-

ple operation will yield the interpolated property value am at each

marker’s location as

am =
∑

i

Ni (ξm)ai , (A22)

with ai the nodal values, and Ni are the corresponding linear shape

functions evaluated at local coordinates of marker m.

For the inverse interpolation, summing marker contributions am

found around each node means that the sum contains shape functions

that are evaluated in different local coordinate frames of the four

elements surrounding each node. To take into account that elements

might be slightly deformed in case of a free surface or kinematic
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boundary conditions, each contribution needs to be weighted by the

volume of each element, �Vel, leading to the following expression

for marker to node interpolation:

ai =

∑

m

am Ni (ξm) �Vel

∑

m

Ni (ξm) �Vel

. (A23)

Element properties (i.e. compaction pressure, melt fraction and all

material properties like density, permeability, viscosity, etc.) are

defined piecewise constant over an element, which leads to a slightly

different interpolation procedure. The shape functions for element

properties are defined as unity; therefore, the interpolation from

elements to marker particles is a simple matter of copying element

properties (ael) to all markers located within an element:

am = ael. (A24)

The inverse interpolation from marker to elements is accom-

plished similarly to eq. (A23), only that the element volumes cancel

out, as the sum of marker properties is assembled in one element

only at one time:

ael =

∑

m

am

nel

, (A25)

with nel denoting the total number of marker particles found in an

element.

It has been found that using a harmonic averaging scheme to in-

terpolate viscosity from markers to elements leads to more accurate

results in the presence of large-viscosity contrasts (Deubelbeiss &

Kaus 2008). We applied the same logic to the permeability field as

well, as it may also vary over orders of magnitude, and thus use the

following relation for interpolations of viscosity and permeability

from markers to elements:

ael =
nel

∑

m

1
/

am

. (A26)

In order to ensure an accurate time evolution, we update time-

dependent properties on markers incrementally as

am (t + �t) = am (t) + [ael (t + �t) − ael (t)] , (A27)

where each marker property is updated with the incremental change

the property ael has experienced during the current time step. Such

incremental updates coupled with strongly variable velocity fields

may lead to artificial heterogeneities in the marker values. These

may be avoided by applying a small amount of subgrid diffusion

to such marker fields (Gerya & Yuen 2003), accomplished by the

following operation:

am = (1 − κsub) am + κsuba (xm) , (A28)

with a(xm) being the property value fully interpolated from nodes to

marker position. The subgrid diffusion coefficient is chosen at small

values of 0.001 ≤ κsub ≤ 0.1. Incremental time updates combined

with subgrid diffusion are applied to compaction pressure Pc and

solid deviatoric stresses τ s (both time-dependent due to elastic stress

build-up), and melt fraction φ.

A final issue to consider when employing a marker-in-cell advec-

tion scheme in two-phase flow is that both solid and fluid velocity

fields are divergent, thus accumulating marker particles in regions of

υ̇s < 0, and creating gaps in the marker distribution where υ̇s > 0.

We have introduced a particle reseeding algorithm in our code to

ensure that the marker distribution remains approximately uniform.

If the number of markers per element differs from the initial value

by more than 25 per cent, a new set of evenly distributed markers

is inserted into the element under consideration. Marker proper-

ties of newly inserted particles are copied from the nearest particle

presently located in that element. After this reseeding operation, the

original markers in the element under treatment are discarded.

The complete sequence of operations performed to accomplish

marker-in-cell advection after a completed solver cycle during a

given time step is outlined here:

1. Update material properties and solution variable fields on

markers according to the shape functions on which they are dis-

cretized (eqs A22 and A24). Time-dependent fields are updated

incrementally according to eq. (A27).

2. Move two sets of marker particles according to the solid and

fluid velocity field, respectively, to obtain new location of each

marker in global coordinates xm . We employ a 4th-order Runge–

Kutta scheme to ensure accuracy of advective transport.

3. Identify which markers are located in each element after ad-

vection. This is accomplished efficiently through a closest point

algorithm provided by Matlab Central (Tagliasacchi 2008).

4. Calculate local coordinates of each marker particle ξm inside

an element with nodal coordinates xi by solving the inverse of the

nonlinear equation describing the element geometry

xm =
∑

i

Ni (ξm)xi . (A29)

Eq. (A29) is solved by employing a Picard iterative procedure.

5. Interpolate material properties and solution variable fields

back to elements and nodes.

6. Check number of markers per element after advection.

Add/delete markers where necessary.

7. Apply subgrid diffusion according to eq. (A28) to time-

dependent properties.

8. Correct time-dependent marker fields for potential inaccura-

cies introduced by either adding/deleting markers or applying sub-

grid diffusion, using a correction �ael found by comparing interpo-

lated values on elements before to interpolated values on elements

after adding/deleting and/or subgrid diffusion:

�ael =

⎛

⎝

∑

m

am

nel

⎞

⎠

before

−

⎛

⎝

∑

m

am

nel

⎞

⎠

after

,

⌢
am = am + �ael. (A30)

The resulting advection scheme is both robust and accurate and

avoids numerical diffusion that is inevitable with most grid-based

advection schemes. The only drawback here is the large number of

markers (16–25 particles per element) needed to achieve adequate

resolution. However, if appropriate infrastructure is available, the

marker treatment may nevertheless be done efficiently. In the case

of this study, the factor limiting computational speed is the direct

solver, using up to five times more CPU-time per time step than the

marker-in-cell treatment.

A P P E N D I X B : C O D E B E N C H M A R K S

B.1 Rayleigh–Taylor benchmarks

The methodology presented above reduces to the standard Stokes

flow problem in the absence of any melt phase. In typical appli-

cations of melt extraction from the upper mantle through litho-

sphere and crust, up to 90 per cent of the model domain may
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Figure B1. Relative growth rate q plotted against aspect ratio λ/H for

a two-layer compositional RT-instability. Blue lines indicate analytical so-

lutions, red circles mark numerical results of individual runs at viscosity

contrasts between the two layers of ηupper/ηlower = 100 (uppermost curve),

ηupper/ηlower = 10 (middle curve) and ηupper/ηlower = 1 (lowermost curve).

remain unmolten for the duration of the simulation. Therefore, we

need to ensure that the numerical results for unmolten material

reproduce some common features of Stokes flow, such as compo-

sitional Rayleigh–Taylor (RT) instabilities. Here, we present two

benchmark problems employing a two-layer compositional model

(layer 2 on top of layer 1) with an inverse density difference of

�ρc = ρupper − ρlower (lower density layer below) and a small si-

nusoidal initial amplitude perturbation that will give rise to a RT

instability.

B.1.1 RT growth rate spectrum benchmark

For a two-layer instability with small-amplitude perturbation, the

initial growth rate is known analytically (Ramberg 1981). Plotting

this growth rate at various wave length λ of initial perturbation rela-

tive to the model box thickness H results in a RT growth rate spec-

trum, revealing a maximum growth rate corresponding to a certain

wave length. Such a growth rate depends on a number of parameters,

notably the viscosity contrast between the two layers. For a model

box of depth H , a layer thickness of H/2, a constant density dif-

ference �ρc, a viscosity contrast of ηupper/ηlower = [1, 10, 100] and

an initial amplitude perturbation of a = a0 cos 2π/λ with a0 ≪ H

a very small amplitude, the growth rate spectrum given in Fig. B1

is obtained, run at a numerical resolution of 160×80 elements. The

numerical data fit the analytical spectrum very well for all three

viscosity contrasts we considered.

B.1.2 Van Keken benchmark

This next benchmark problem (Van Keken et al. 1997) again em-

ploys a two-layer compositional RT-instability. Rather than focusing

on initial growth rates, this benchmark deals with the long-term evo-

lution of an isoviscous compositional overturn problem and thus will

above all test the accuracy of the marker-in-cell advection scheme

over long-time evolutions. The initial setup features a model box of

depth H , a buoyant bottom layer of thickness H/5, an aspect ratio

Figure B2. (a) Compositional field of Van Keken convection benchmark

after non-dimensional model time t = 1500; (b) root-mean-square velocity

evolution with time of the same benchmark run, with peak velocities reached

at t = 211, in agreement with the benchmark results.

of ra = 0.9142 (set to this value as it corresponds to the maximum

growth rate of a RT-instability of given geometry), a density contrast

�ρc, an isoviscous rheology (η2/η1 = 1) and an initial amplitude of

a = 0.02H sin π/ra . This simulation was performed using a mesh

of 200×200 elements containing 25 markers per element. Markers

are advected with a 4th-order Runge–Kutta scheme along the solid

velocity field.

The results at non-dimensional model time of 1500 are given

along with the evolution of rms velocity over time in Fig. B2.

The peak velocity occurs at a non-dimensional time of t = 211.

Please refer to the original paper of Van Keken et al. (1997) for a

comparison of these results. Both the timing of the layer overturn

as well as the shape of the resulting flow patterns compares well

with results presented in the original paper, leading us to conclude

that the advection scheme in our code is able to accurately advect

material properties in problems with large total deformation.

B.2 Visco-elasto-plastic benchmarks

An important feature of visco-elasto-plastic Stokes flow of litho-

sphere and crust is the interplay of viscous, elastic and plastic modes

of deformation. To demonstrate the functionality of the visco-elasto-

plastic rheology, we present three benchmark problems testing vis-

coelastic deviatoric stress build-up and plastic shear failure.
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Figure B3. Viscoelastic stress evolution with time under pure shear de-

formation. The black line gives analytical stress solution, the dark green

horizontal line indicates the plastic failure criterion, red circles mark nu-

merical results for a run without plastic failure rheology and blue circles

mark results of a run with plastic failure switched on.

B.2.1 Visco-elasto-plastic evolution of shear stress

In a homogeneous 0-D numerical experiment under pure shear im-

posed by constant strain rate side boundaries (ε̇′
BG), the stress due to

viscoelastic deviatoric deformation in the model box should evolve

according to the relation τ II = 2ηε̇′
BG[1 − exp(−Gt/η)]. If plastic

shear failure is considered as well, the deviatoric stress will be lim-

ited by the given failure criterion τ II ≤ σy . We have performed two

such 0-D tests, the first one allowing only the viscous and elastic

modes of deformation, whereas in the second test plastic shear fail-

ure is considered as well. The numerical results depicted in Fig. B3

show exact agreement with the analytically predicted stress curve;

therefore, we are confident that the visco-elasto-plastic stress evo-

lution is reproduced accurately by our rheological implementation.

B.2.2 Visco-elasto-plastic evolution of compaction stress

Similarly, in a homogeneous 0-D numerical experiment under

volumetric expansion imposed by constant strain rate boundaries

(υ̇BG), the compaction due to viscoelastic volumetric deforma-

tion in the model box should evolve according to the relation

Pc = −(1 − φ)ξ υ̇BG[1 − exp(−Kφ t/ξ )]. If plastic shear failure is

considered as well, the compaction pressure will be limited by the

given failure criterion Pc ≥ Py . We have performed two such 0-

D tests, the first one allowing only the viscous and elastic modes

of deformation, whereas in the second test plastic shear failure

is considered as well. The numerical results depicted in Fig. B4

again show exact agreement with the analytically predicted pres-

sure curve, which illustrates that the visco-elasto-plastic pressure

evolution is implemented accurately as well.

B.2.3 Viscoelastic bending beam

For this next benchmark problem, we employ an initial composi-

tional field representing a dominantly elastic beam, fixed to, and

protruding horizontally from the left wall of the model box. Sur-

rounding the elastic beam is a viscous, but inelastic fluid. All

boundaries are free slip, except for the left wall, which is set

to no slip in order to keep the bending beam fixed to the wall.

The beam has a higher density than the surrounding fluid and

Figure B4. Viscoelastic pressure evolution with time under constant volu-

metric expansion. The black line gives analytical pressure solution, the dark

green horizontal line indicates the plastic failure criterion, red circles mark

numerical results for a run without plastic failure rheology and blue circles

mark results of a run with plastic failure included. Note that the positive

slope of the viscoelastic pressure curve is due to the steadily increasing melt

fraction caused by the imposed constant matrix expansion.

thus will bend down elastically driven by gravity. After the beam

has accumulated some elastic strain through bending down, we

switch off gravity. If the stress evolution is implemented accu-

rately, the elastic beam should now, free from the pull of gravity,

move upwards again and restore its initial position. We run this

setup twice, with constant density difference and constant prop-

erties of the fluid (�ρc = 500 kg m−3, ηfluid = 1e + 18 Pa s and

Gfluid = 1e + 11 Pa), while varying the viscosity of the bending

beam (first run ηbeam = 1e + 24 Pa s, Gbeam = 1e + 10 Pa; second

run ηbeam = 5e + 22 Pa s, same shear modulus). This choice of

parameters leads to a Maxwell time tm = 0.32 yr for the back-

ground fluid and Maxwell times of tm = 3.2 Myr (first run) and

tm = 0.16 Myr (second run), meaning that the deformation in this

benchmark problem, which occurs on a timescale of thousands to

a million years, will lead to dominantly viscous deformation in

the fluid, and dominantly elastic behaviour of the beam in the first

run, and mixed viscoelastic deformation of the beam in the second

run. The numerical resolution used was 300×200 elements, with

16 markers per elements for stress advection.

Two time frames of each run, given in Fig. B5, demonstrate how,

after gravity is switched off at 50 kyr model time, the dominantly

elastic beam of the first run recovers all elastic deformation and

thus returns to its initial position. The mixed viscoelastic beam of

the second run, however, only recovers part of the total deforma-

tion. These results demonstrate how the viscoelastic rheology may

represent both purely elastic deformation, as well as intermediate

combinations of restorable elastic strain and non-restorable viscous

flow.

B.2.4 Visco-elasto-plastic shear bands

Plastic shear failure under pure shear extension or compression

leads to the formation shear bands at characteristic angles. A homo-

geneous 2-D test setup with a small, circular weak inclusion in the

middle should produce shear bands with an angle of around 60◦ rela-

tive to the horizontal direction under extension, whereas shear bands

at an angle of around 30◦ are to be expected under compression.
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Figure B5. Two time frames of two benchmark runs featuring (a) a dominantly elastic beam (red colour, η = 1e + 24 Pa s, G = 1e + 10 Pa, tm = 3.2 Myr),

and (b) a mixed viscoelastic beam (red colour, η = 5e + 22 Pa s, G = 1e + 10 Pa, tm = 0.16 Myr), each bending inside a box of viscous fluid (blue colours),

given at time of maximum deformation (panels to the left) and after full relaxation, after gravity was switched off (panels to the right). Black line indicates the

initial level of the beam for reference. As expected, the elastic beam fully recovers, whereas the viscoelastic beam only partly recovers.

Fig. B6 displays the results of this test, run on a mesh of 240×120 el-

ements, at a reference viscosity of η0 = 1e + 23 Pa s, a shear mod-

ulus of G = 10 GPa, a cohesion of C = 100 MPa, a friction angle

of ϕ = 30◦ and a background strain rate of ε̇′ = ±1e − 14 s−1. The

results demonstrate that our implementation of viscoelastic stress

build-up to plastic failure leads to the formation of shear bands at the

correct characteristic angles under both extension and compression.

B.3 Solitary wave benchmark

A well-known feature of geodynamic two-phase flow equations such

as the ones used in our code is the emergence of melt fraction insta-

bilities in the form of solitary waves. These have been studied both

analytically (Scott & Stevenson 1984; Barcilon & Richter 1986) and

numerically (Barcilon & Lovera 1989; Spiegelman 1993b; Con-

nolly & Podladchikov 1998) in the context of magma dynamics.

Solitary waves thus serve as an apt benchmark problem for nu-

merical codes of magma migration (Simpson & Spiegelman 2011;

Richard et al. 2012). We perform runs on a pseudo-1-D profile of

uniform background melt fraction with depth, perturbed by a dis-

crete representation of a 1-D solitary wave solution. If our numerical

implementation is accurate, this initial wave with relative amplitude

Aφ should propagate upwards at constant non-dimensional speed

of c = 2Aφ + 1 without changing shape. Note, however, that this

analytical solution is valid for the small melt fraction limit only.

We employ a series of runs at various resolutions in space and

time. The 2-D finite-element mesh is used as a pseudo-1-D section

Figure B6. Results of two benchmark runs testing the emergence of char-

acteristic angled shear bands under (a) pure shear extensional and (b) pure

shear compressional boundary conditions. Displayed are deviatoric differ-

ential strain rates relative to background strain rate of ε̇BG = 1e − 14 s−1

in logarithmic scaled.
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by keeping the number of elements in horizontal direction constant

at nx = 4. Vertical resolution is varied as multiples by two of the

coarsest grid with nz = 100. The depth of the modelled profile is

D = 200δ0, with δ0 being the compaction length at background

melt fraction of 0.1 per cent. Other material parameters are chosen

to represent conditions in a partially molten upper mantle at very

low melt fractions. Deviatoric and volumetric solid viscosities are

held equal and constant at 1.e20 Pa s, fluid viscosity is 100 Pa s and

permeability at background melt fraction is 5.e−18 m−2, with a

melt fraction exponent in the permeability law of n = 3.

To quantify the accuracy of the solution, three measures arise

naturally from the problem set: (i) the shape of the solitary wave

should be conserved; (ii) the shape of the compaction pressure

anomaly linked to the solitary wave should be conserved; (iii) the

speed of wave propagation should be constant. To determine all

three quantities, we need to find the phase shift �, defined as the

difference between the analytically predicted and the numerically

computed z-coordinate of the wave peak with time (Simpson &

Spiegelman 2011). In the following, we will denote numerically

computed quantities with a curled over bar. The phase shift is given

by

� = z p − z̃ p. (B1)

The numerical phase speed may subsequently be found from the

relationship

c̃ = c −
�

t
. (B2)

We measure the relative error of the phase speed as

ec =
∣

∣

∣

∣

c̃

c
− 1

∣

∣

∣

∣

. (B3)

The preservation of the shape of melt fraction and compaction

pressure fields is quantified by computing the root-mean-square er-

ror of the melt fraction and compaction pressure solution normalized

by their respective peak amplitude as

e f =
∥

∥

[

φ̃ (z) − φ0 (z − �)
]/

Aφ

∥

∥

2√
nz

,

ep =
∥

∥

[

P̃c (z) − P0
c (z − �)

]/

Ap

∥

∥

2√
nz

. (B4)

The numerical resolution is chosen relative to the compaction

length at background melt fraction so that hz = [1/2, 1, 2, 4]δ0.

The simulations of each spatial resolution are run with different time

step lengths. Time steps are chosen as multiples of the courant step

for the appropriate phase speed c so that �t = [1/4, 1/2, 1, 2]δ0/c

with resulting courant numbers CLF = c/hz = [1/8 , 1/4 , 1/2 , 1].

The models were run long enough for the solitary wave to travel a

distance at least four times greater than its wave length.

Fig. B7 displays the shape of the numerically computed solitary

wave along with the compaction pressure anomaly after it had trav-

elled approximately three times its own wave length. The analytical

solution is shown for comparison (black line). Two numerical solu-

tions are presented in this figure, one computed with a first-order

accurate time evolution for melt fraction (backward finite difference

in time, blue line), and another one computed with the second-order

accurate time evolution used in all other computations in this study

(Crank–Nicholson scheme in time, see eq. 64, red line). It is evi-

dent that the first-order accurate melt fraction evolution leads to a

strongly diffused wave peak. The second-order melt fraction evolu-

Figure B7. Melt fraction (top panel) and compaction pressure (lower panel)

plotted against vertical coordinate for the solitary wave benchmark. Black

lines give analytical solution for 1-D solitary wave, blue curves indicate

numerical results obtained with a first-order accurate (backward finite dif-

ference) time discretization for melt fraction evolution, red curves indicate

numerical results obtained with a second-order accurate (Crank–Nicholson

scheme) time discretization for melt fraction evolution.

Figure B8. Results of spatial convergence test, plotting errors of compaction

pressure solution relative to 1-D analytical solution (blue asterisks) and

relative to 2-D high-resolution numerical solution (red asterisks), plotted

against grid resolution relative to background compaction length h/δ0. Black

line gives a quadratic convergence trend as reference.

tion, however, retains the shape of the solitary wave very well, but

propagates slightly slower than the analytical solution.

Comparing the error in the initial pressure solution in runs with

increasing spatial resolution reveals that the accuracy at first con-

verges almost quadratically with increasing resolution, but then

saturates at a level of around 2.e−3 (Fig. B8). Further convergence

of the numerical solution cannot be expected, as the solitary wave

solution used as a benchmark is in reality the solution of slightly

simplified system of equations, whereas our code solves the full

equations of two-phase flow. If we compare the same error mea-

surement to a very high-resolution numerical solution, the quadratic

convergence is perfect, demonstrating the coherent functionality of

the solver.

Comparing the error in the shape of the solitary wave and the

compaction pressure field at a given time towards the end of each
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Figure B9. Results of temporal convergence test, giving errors of melt

fraction and compaction pressure solution obtained with a first-order ac-

curate time discretization (red and blue asterisks), and melt fraction and

compaction pressure errors obtained with a second-order accurate time dis-

cretization, plotting against distance a solitary wave travels per time step

relative to background compaction length c�t/δ0. Black lines give a linear

and a quadratic convergence trends as reference.

run, we find that the time-dependent solution converges quadrati-

cally with smaller time step size runs employing the second-order

melt fraction evolution scheme, and linearly for runs employing the

first-order melt fraction evolution scheme (Fig. B9).

The results of this suite of benchmarks sufficiently demonstrate

the functionality and accuracy of the code developed in this study.

Moreover, it is evidently advisable to only use second-order melt

fraction evolution (eq. 64), as the time-dependent error of melt

fraction propagation would be considerable otherwise.
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Movie S1. Animation of melt fraction and melt velocity arrows of

run d118r2 (melt diapirism). Colours and scaling the same as in
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Movie S2. Animation of volumetric strain rate and solid velocity

arrows of run d118r2 (melt diapirism). Colours and scaling the same

as in Fig. 4.

Movie S3. Animation of melt fraction and melt velocity arrows

of run d121r4 (decompaction channeling). Colours and scaling the

same as in Fig. 6.

Movie S4. Animation of volumetric strain rate and solid velocity ar-

rows of run d121r4 (decompaction channeling). Colours and scaling

the same as in Fig. 6.

Movie S5. Animation of melt fraction and melt velocity arrows of

run d122r4 (tensile fracturing). Colours and scaling the same as in

Fig. 8.

Movie S6. Animation of volumetric strain rate and solid velocity

arrows of run d122r4 (tensile fracturing). Colours and scaling the

same as in Fig. 8.

Movie S7. Animation of melt fraction and melt velocity arrows of

melt extraction through a thermally younger lithosphere. Colours

and scaling the same as in Fig. 11.

Movie S8. Animation of shear strain rate and solid velocity arrows

of melt extraction through a thermally younger lithosphere. Colours

and scaling the same as in Fig. 11.

Movie S9. Animation of melt fraction and melt velocity arrows of

melt extraction through a thermally older lithosphere. Colours and

scaling the same as in Fig. 12.

Movie S10. Animation of shear strain rate and solid velocity arrows

of melt extraction through a thermally older lithosphere. Colours

and scaling the same as in Fig. 12 (http://gji.oxfordjournals.org/

lookup/suppl/doi:10.1093/gji/ggt306/-/DC1).
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