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SUMMARY 

 

 

In design and simulation of electromagnetic devices, it is essential to model the properties of 

magnetic materials, such as the relation between magnetic flux density B and magnetic field H 

or B-H curve and electromagnetic power losses or core losses with various kinds of magnetic 

field excitations, in order to assess the performance correctly. 

 

The major part of the work is concerned with the modelling of hysteresis loops with alternating 

magnetic field, and core losses with alternating and/or rotating magnetic fields. Various novel 

models are developed. 

 

A critical comparison between various available models of magnetic hysteresis shows that the 

Preisach theory appears to be suitable for practical engineering applications. A new normal 

Preisach model is obtained with the help of a graphical representation of the theory. The new 

model features simple formulation and easy parameter identification. The input data is the 

limiting hysteresis loop. It can provide correct results for a medium or large magnetic field, but 

fails when the hysteresis loop to be predicted is close to the origin of the B-H plane owing to 

some intrinsic defects of the model. These defects are eliminated in a new generalised model, 

which contains a reversible magnetisation component and a magnetisation feed back. The input 

data required by the generalised model are the limiting hysteresis loop and the normal 

magnetisation curve. These can be obtained from either manufacturers' data sheets or from 

simple measurements. Better accuracy is achieved by the generalised model. 

 

New dynamic discrete circuit models with hysteresis, eddy current, and anomalous losses 

included are developed to simulate the performance of magnetic cores in devices with non-

sinusoidal alternating flux. At low frequencies, a simple equivalent circuit model consisting of a 

constant equivalent resistor for eddy current loss, a nonlinear equivalent resistor for anomalous 

loss, and a non-ideal inductor for modelling the hysteresis loop and hysteresis loss is used. This 

model is generalised into a ladder network model for simulation at high frequency by 

subdividing the cross section of the core into a few assumed eddy current paths. All 

parameters of these models can be identified from data sheets provided by manufacturers. 

 

For rotational core loss measurement, a single sheet square specimen tester is developed. The 

precision of two dimensional field strength measurement at the surface of the specimen is 

improved by a novel sandwich H sensing coil arrangement. The relationship between the core 

loss due to the rotational component of magnetic field and the total core loss is clarified using a 

new equation and the arguments are supported by the experimental results. 
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Rotational core losses in grain oriented and non-oriented silicon steel sheets were measured 

using the testers at the University of Technology, Sydney and the Physikalisch-Technische 

Bundesanstalt, Braunschweig, Germany. These measurements provided much useful 

information for both understanding of the loss mechanisms and modelling of the losses. 

 

Similar to the case of alternating core losses, rotational core loss can also be separated into 

rotational hysteresis, eddy current, and anomalous losses. The rotational hysteresis loss is fitted 

by a novel model based on a strong analogy between the retarding torque due to the rotational 

hysteresis loss and the electromagnetic torque in a single phase induction machine. With a 

circular flux density, the rotational eddy current loss is twice as much as the alternating eddy 

current loss. The rotational anomalous loss can be modelled using the same formula as for 

alternating anomalous loss, but the coefficient of rotational anomalous loss is generally a 

function of flux density, and eventually reduces to zero when the material is saturated and all 

domain walls disappear. 

 

Total core losses with an elliptical flux density are predicted from the pure rotational and 

alternating core losses by a new formulation derived from the total core loss formula used in 

rotational core loss measurement. The new model is applicable to hysteresis as well as total 

core losses. Comparisons with experimental data show that this new model is more accurate 

than a linear interpolation between alternating and pure rotational core losses. 

 

Core losses in an AC permanent magnet motor are modelled. The magnetic flux density 

distribution is calculated by a finite element code. Fourier series analysis is used for an 

arbitrary two dimensional rotating flux density. The total core loss is finally calculated by 

summing up all the contributions from different elliptically rotating harmonics of flux density in 

each finite element. The discrepancy between calculated and measured results is about 13%. 
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CHAPTER 1. INTRODUCTION 

 

 

The wide variety of magnetic materials used in construction of electromagnetic devices can be 

rather sharply divided into two groups, the magnetically soft (easy to magnetise and 

demagnetise) and the magnetically hard (hard to magnetise and demagnetise) [1-5]. Soft 

magnetic materials, such as mild steel, silicon iron sheets (electrical steel), amorphous 

materials, nickel-alloys, soft ferrites (ceramic magnetic materials), and garnets, feature in high 

permeability, and are commonly used as cores in power transformers, stator and rotor 

materials for motors and generators, small special-purpose transformers and inductors in 

electronic systems, and microwave system components. On the other hand, hard magnetic 

materials, which have the distinguishing characteristic of high coercivity, are used for 

applications requiring permanent magnets, such as the permanent magnets in loudspeakers, 

pickups, actuators, synchronous machines, brushed and brushless DC motors. 

 

In the design and simulation of electromagnetic devices, it is essential to model the properties 

of magnetic materials with various kinds of magnetic field excitations, such as the relation 

between magnetic flux density B and magnetic field strength H or B-H curve and 

electromagnetic power losses or core losses, in order to assess the performance correctly. For 

some materials, the dependence of B-H curves and core losses on temperature and in some 

cases even magnetostriction need to be considered. 

 

Depending upon the circumstances it may be sufficient to use an empirically derived, lossless, 

but possibly nonlinear, relationship between flux and magnetising current. If the full power of 

the computer is to be applied to an accurate design and/or simulation of nonlinear devices, 

then the model must be extremely faithful to the actual response of the material. The 

development of numerical methods used in the computer aided design and analysis of 

electromagnetic devices in the last a few decades has enabled a more accurate and complete 

representation of the magnetic characteristics to be used to predict effects due to the intrinsic 

nonlinearity of magnetic materials [5-80]. 

 

For example, in power transformer analysis, models of the core based on the B-H 

characteristic have been used to predict phenomena occurring in power systems such as 

ferroresonance and transient voltages and currents, where saturation and hysteresis have a 

significant effect. 
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There has also been a need to represent the characteristics of hard magnetic materials; e.g. for 

the calculation of recoil effects in permanent magnet motors, skin effect in Alcomax, prediction 

of the performance of hysteresis motors, or in the analysis of magnetic-tape or disk recording. 

 

Core losses of magnetic materials also have strong effects on the performance of 

electromagnetic devices. For a specified capacity, less material is required if high quality 

magnetic material of low core loss is used, and hence the size and weight can be reduced. This 

is especially true for high efficiency electrical machines. Besides efficiency, temperature rise in 

permanent magnet machines should be kept at a very low level in order to maintain the 

superior characteristic of modern permanent magnets, such as Neodymium Iron Boron 

(NdFeB). Therefore, core losses need to be precisely calculated in design, but unfortunately, 

the models currently in use are far from being satisfactory, owing to the very complicated 

mechanisms of core losses. Sometimes, the discrepancies are very large. 

 

In devices like single phase transformers and inductors, core losses are caused by the 

alternating magnetic flux, of which only the magnitude varies with time, and they are generally 

attributed to hysteresis and eddy currents. With sinusoidal alternating magnetic flux, the 

hysteresis loss can be empirically determined by the Steinmetz law, and the eddy current loss 

by the classical calculation proportional to the square of the product of frequency and flux 

density magnitude [2-5]. Further studies, however, show that a considerable amount of core 

loss is caused by the motion of magnetic domain walls inside the magnetic material, and is 

known as anomalous loss or excess loss [2,3,5,81-103]. Although the exact mechanisms of 

this extra loss component has not yet been thoroughly understood, the dependence of this loss 

on excitation frequency and magnetic flux density magnitude has been theoretically established 

and corroborated experimentally to be an exponent of 1.5 [94,95,97,99,100]. The alternating 

core loss becomes much more difficult to predict when these devices are used in power 

electronic switching circuits, where the voltages and currents, hence the flux density and field 

strength, are non-sinusoidal [99,100,102,104-108]. 

 

In the simulation of electrical or electronic systems containing nonlinear inductors, 

transformers, and similar devices with alternating magnetic flux, equivalent circuits are 

commonly used [109-118]. In the conventional circuit model of magnetic cores, the 

magnetisation nonlinearity is modelled by an ideal inductor, and the core losses, including the 

hysteresis and eddy current losses, are modelled by a constant equivalent resistor [109-112]. 

The effects of magnetic hysteresis and anomalous loss, however, are not properly 

incorporated in this model. For dynamic modelling, the nonlinear B-H relationship and the 

hysteresis loss dissipated in the core are simulated by mathematical models of magnetic 

hysteresis, such as the Jiles-Atherton model [114] and the Preisach model [115-118], while 
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the eddy current and anomalous losses are accounted for by a constant equivalent resistor and 

a nonlinear equivalent resistor, respectively [115]. At high frequency, however, a ladder 

network can be used for the consideration of skin effect [116-118]. 

 

Moreover, in some parts of multiphase devices, such as the T joints of three phase 

transformers and the yokes of rotating electrical machines, both the magnitude and direction of 

the magnetic flux vary with time, that is the flux has a rotational component. The power loss 

caused by a rotating magnetic flux in magnetic material is referred as rotational core loss. 

Although rotational core loss has been under investigation for quite a long time, the underlying 

mechanisms of rotational core loss are still not completely understood [119-185]. 

 

Rotational core losses in electrical steel sheets with different types of rotating magnetic fluxes 

have been measured by various measuring techniques and instruments since 1889 [119-181], 

when the rotational hysteresis loss was first quantitatively determined by Baily [120]. In 1990, 

the Central Office of the International Electrotechnical Commission (IEC) started preparatory 

work for the standardisation of methods of measurement of rotational power loss [182]. For 

the standardisation, the Magnetic Measurement Techniques Laboratory, Physikalisch-

Technische Bundesanstalt (PTB), Braunschweig, Germany, is currently organising an 

European intercomparison of rotational core loss measurements [186,187]. 

 

Considerable progress has also been achieved in the understanding of loss mechanisms and 

modelling. As for alternating core loss, rotational core loss can also be separated into three 

components due to hysteresis, eddy currents, and domain wall movement [168,179,184]. 

Based on experimental measurements and observations, the ratio of the rotational hysteresis 

loss to the alternating hysteresis loss in different electrical steel sheets has been studied, and the 

mechanisms of rotational hysteresis loss have been discussed in terms of domain wall motion 

and domain rotation [125-127,130,132,147,162,184]. The modelling of rotational hysteresis 

loss, however, is still far from being useful for practical engineering applications. With a purely 

rotational flux, the rotational eddy current loss is twice as much as the alternating eddy current 

loss. The rotational anomalous loss can be modelled using the same formula as for alternating 

anomalous loss, but the coefficient of rotational anomalous loss is generally a function of flux 

density, and eventually reduces to zero when the material is saturated and all domain walls 

disappear. 

 

The rotating magnetic flux in rotating electrical machines is much more complicated. Owing to 

the lack of a proper model and data for rotational core losses, alternating core loss models 

were generally employed [188-191]. Recently, a few researchers included rotational core 
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losses in their calculations of core losses in rotating electrical machines. The discrepancies 

between the calculations and the experiments were from 10% to 20% [192-196]. 

 

The main topic of this dissertation is the development of practical models of magnetic materials 

for computer aided design and analysis of electromagnetic devices. In the development of 

these models, a few rules, which are considered as essential aspects for practical engineering 

applications, have been followed: 

 

(1) The model should be able to describe the magnetic behaviour of the materials to 

sufficient accuracy for engineering design via numerical optimisation; 

 

(2) All model parameters should be obtainable either from the manufacturer's data sheets 

or from some simple measurements; 

 

(3) The resultant equations should be as convenient as possible for numerical 

implementation; 

 

(4) As far as possible, the model should bear some physical background to explain the 

macroscopic phenomena and the underlying mechanisms of magnetic materials. 

 

Chapter 2 discusses the modelling of magnetic hysteresis for practical engineering applications. 

After a critical comparison between various available models of magnetic hysteresis, the 

Preisach model is chosen for further study. 

 

The theory of the normal Preisach model is represented graphically by the Preisach diagrams 

for different magnetisation states. The resultant formulation is very simple. For the convenience 

of application, a new simplified parameter identification method is developed, and the only 

data required for this model is the limiting hysteresis loop. The software implementation is 

illustrated in detail. The model is compared with the experimental data of different magnetic 

materials on major and minor hysteresis loops, hysteresis losses, and normal and incremental 

permeabilities. The calculation and measurement are in substantial agreement for an 

intermediate or large magnetic field, but the discrepancies in the hysteresis loss and the normal 

and incremental permeabilities become very large for a small magnetic field. This is attributed 

to two intrinsic defects of the normal Preisach model. 

 

For more accurate simulation of magnetic hysteresis, a new generalised Preisach model is 

developed by combining the Stoner-Wohlfarth theory, Jiles-Atherton theory, and Vajda-Torre 

theory with the Preisach theory. A reversible magnetisation component and a magnetisation 
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feedback are added to the normal Preisach model. New methods for parameter identification 

are developed. The extra data required is the normal magnetisation curve. The new theory is 

verified with experiments on major and minor hysteresis loops, and the normal and incremental 

permeabilities. 

 

In chapter 3, core losses with non-sinusoidal alternating magnetic flux are studied. New 

dynamic circuit models of magnetic cores for both low and high frequency applications with 

hysteresis, eddy current, and anomalous losses included are developed. For low frequencies, a 

simple equivalent circuit model consisting of a constant equivalent resistor for eddy current 

loss, a nonlinear equivalent resistor for anomalous loss, and a non-ideal inductor for modelling 

the hysteresis loop and hysteresis loss is used. This model is generalised into a ladder network 

model for simulation at high frequencies by subdividing the cross section of the core into a few 

assumed eddy current paths. Methods for parameter identification are given. All the 

parameters of these models can be identified from data sheets provided by manufacturers. The 

theory is verified by experiments on different magnetic materials under non-sinusoidal voltage 

excitations at both low and high frequencies. 

 

In chapter 4, a review of rotational core loss measurement and modelling is represented. 

Measuring techniques of magnetic field strength and flux density, methods for evaluation of 

rotational core losses, and development of measuring apparatus are investigated. Current 

knowledge on the measurement, understanding, and modelling in both electrical steel sheets 

and rotating electrical machines are summarised and discussed. 

 

In chapter 5, a new two dimensional single sheet square specimen tester for rotational core 

loss measurement is described. This tester is capable of measuring core losses with any 

magnetic flux patterns and any flux waveforms. It is fully computerised for control signal 

generation and data acquisition. A novel sandwich two dimensional magnetic field intensity 

sensing coil arrangement is described. This sandwich sensing coil arrangement is superior to 

the conventional surface magnetic field intensity sensing coils. 

 

Rotational core losses of non-oriented silicon steel sheet Lycore-130 with both circular and 

elliptical flux densities at different excitation frequencies were measured with the new 

apparatus. The relationship between the core loss due to the rotational component of magnetic 

field and the total core loss is discussed using a new equation and the arguments are supported 

by the experimental results. 

 

From December 8, 1993 to February 24, 1994, the author was invited to visit PTB as a guest 

scientist for a bilateral collaborative research project on the improvement of rotational core 
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loss measuring techniques. The visit was funded by PTB and Department of Industry, 

Technology and Regional Development (DIARD), Australia. As part of the project, it was 

agreed to carry out an inter-comparison between the testers at PTB and University of 

Technology, Sydney (UTS). This comparison will follow all the regulations used in the 

European Inter-Comparison of Rotational Core Loss Measurements, which is currently 

organised by PTB. The rotational core losses in four specimens of grain oriented (ORSI-100) 

and non-oriented (V270-35A) electrical steel sheets (part of the specimen set used for the 

European inter-comparison) will be used and compared. Core losses of these specimens have 

been measured with various magnetic flux patterns using the tester at PTB, and will be 

reported in chapter 5. Because of insufficient time, however, it has not been possible to 

complete the measurements using the tester at UTS and report the results of the inter-

comparison in this thesis. 

 

In chapter 6, various models of rotational core losses are developed. Firstly, the measured 

rotational core loss of electrical steel Lycore-130 is separated into rotational hysteresis, eddy 

current and anomalous losses by a loss separation procedure similar to the one used for 

alternating core loss separation in chapter 3. 

 

The rotational hysteresis loss is then fitted by a novel model based on a strong analogy 

between the retarding torque due to the rotational hysteresis loss and the electromagnetic 

torque in a single phase induction machine. Possible underlying physics is discussed with the 

help of magnetic domain theory. Rotational hysteresis losses measured by various researchers 

show good agreement with the new model. 

 

Total core losses with an elliptical flux density are predicted from the pure rotational and 

alternating core losses by a new formulation derived from the total core loss formula used in 

rotational core loss measurement. Comparisons with experimental data show that this new 

model is more accurate than a linear interpolation between alternating and pure rotational core 

losses. 

 

Core losses in an AC permanent magnet motor are modelled. The magnetic flux density 

distribution is calculated by a finite element code. Loci of rotating flux density vectors at 

different positions in the stator core are illustrated. Fourier series analysis is used for an 

arbitrary two dimensional rotating flux density. The total core loss is finally calculated by 

summing up all the contributions from different elliptically rotating harmonics of flux density in 

each finite element. The discrepancy between calculated and measured results is about 13%. 
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In chapter 7, the developed models of magnetic hysteresis, alternating and rotational core 

losses, and possible future work are discussed. 

 

Appendix A lists the publications based on the thesis work. 



CHAPTER 2. MODELLING OF MAGNETIC HYSTERESIS 

 

 

2.1 INTRODUCTION 

 

A basic property of any magnetic material is the relation between magnetic flux density B and 

magnetic field strength H, or the B-H loop. During a magnetisation process, the medium 

exchanges energy with the source of the magnetic field. If the medium magnetisation is a single-

valued function of the applied field, then the process is reversible and it conserves energy. In 

this case, the medium stores the energy supplied to it during magnetisation. When the applied 

field is reduced to zero, the medium returns this energy to the source. When the magnetisation 

is a multiple-valued function of the applied field, some energy is dissipated. For a very slow 

variation of magnetic field, this loss is caused by hysteresis, which is defined as the lagging of 

the changes in magnetisation behind the changes in magnetic field. 

 

Although hysteresis of magnetic materials has long been of interest to scientists and engineers, 

significant progress in the understanding and modelling of hysteresis has been achieved in the 

last two decades, when the problem of accurately describing the B versus H or hysteresis 

characteristics of the materials assumed a greater importance, as computer calculations of 

magnetic fields and eddy-currents in nonlinear ferromagnetic materials became more 

sophisticated. 

 

Early investigators in the field of magnetism explained the phenomenon of ferrohysteresis by 

the strong mutual interactions between magnetic moments, and postulated the existence of a 

frictional resistance to a rotation of the "magnetic molecules" [1], an idea which explains the 

most obvious effects of magnetic hysteresis. It was realised later that the frictional force is due 

to pinning of domain walls by defect sites inside the solid, which causes an opposing force to 

resist any changes in magnetisation [3,5,19]. 

 

When a magnetic field is applied to a solid, the magnetic domains less inclined to the applied 

field will expand while the others shrink. The motion of a domain wall occurs in two steps. 

Firstly, for a small increment of the applied field, the domain wall motion occurs in the form of 

reversible domain wall bowing, because of the pinning of the domain wall by a defect site 

inside the solid. Secondly, when the applied field is sufficient to get the domain wall away from 

the pinning site, the domain wall will take an irreversible jump to a new pinning site. This is 

known as a Barkhausen jump [3]. 
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Another mechanism which gives rise to hysteresis is caused by magnetocrystalline anisotropy 

[5]. Ferromagnetic materials with higher anisotropy have greater hysteresis. In an anisotropic 

solid certain crystallographic axes are favoured by the magnetic moments which will prefer to 

lie along these directions as this leads to a lower energy. The magnetic moments can be 

dislodged from the direction they are occupying by application of a magnetic field but when 

this occurs they jump to crystallographically equivalent axes which are closer to the field 

direction, and hence lower energy. This results in discontinuous and irreversible rotation of the 

magnetic moments which leads to a kind of switching action. 

 

Early attempts to model hysteresis started from fitting equations to actual magnetisation data, 

but no single satisfactory equation has been developed to describe the processes involved in 

this [3]. Power series [6-8], rational polynomials [9-12] and some other analytical expressions 

[13-15] have been used as the usual approaches to the empirical curve fitting method. A 

recent application of the rational function method was made by Rivas, Zamarro, Martin and 

Pereira [16] in 1981, in which families of major hysteresis loops were generated and the 

results showed good agreement with experimental data. Such approaches can be accurate in 

the representation of some part of B-H curves, but would not be able to describe all 

processes of magnetisation, since they usually do not bear any theoretical basis. 

 

With better understanding of magnetic hysteresis various models of hysteresis have been 

developed based on a theoretical approach to the problem. In 1948, Stoner-Wohlfarth [17] 

postulated a theory based on the rotation of the magnetic moments of single-domain particles 

with respect to their easy axes. This model does not account for the interaction between 

domains, however, and as a result, it does not describe nonsymmetrical minor loops. In 1990, 

Atherton and Beattie [18] suggested a modification to incorporate particle interaction into the 

Stoner-Wohlfarth model by the addition of a mean field term, but numerical implementation 

and experimental verification of the theory was not reported. 

 

Another competing mathematical description is the Preisach model [22-41]. This was 

developed in 1935 but has received general attention only within the last two decades. It 

assumes that each of the domains possesses an individual rectangular hysteresis loop, of which 

the positive and negative transition points for each domain are different, and the interaction 

between domains can be introduced by assuming local fields acting on the domains. Even 

though the Preisach model is based on such simple assumptions, it gives valuable results that 

are in agreement with experiments on different magnetic materials [42-46], and all the various 

types of hysteresis curves, including minor hysteresis loops, can readily be generated by 

considering a distribution of these domains. 
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In recent years, the Preisach model has been greatly improved and generalised to represent 

dynamic hysteresis [41,47], which accounts for the influence of the rate of variation of 

magnetic field strength on branching, and magnetisation-dependent hysteresis [41,48-50,53-

59], which assumes that the magnetisation for a given field strength depends on both the 

previous magnetic history and the current value of magnetisation. It has also been generalised 

to represent vector hysteresis of two and three dimensions [41,60-67], which takes into 

account rotational hysteresis, i.e. the hysteresis when the direction of the applied magnetic field 

varies in space. According to Mayergoyz [41] the generalised Preisach model can deal with 

hysteresis phenomena of any physical nature. 

 

In 1970, based on the fact that a trajectory of flux linkage vs. current is uniquely determined 

by the last point at which the time derivative of flux linkage changes sign, Chua and Stromsmoe 

worked out a lumped circuit model for nonlinear inductors exhibiting hysteresis loops [73], 

which included a restoring function and a dissipating function, and further generalised the 

model to include static hysteresis. This model exhibits many important hysteretic properties 

commonly observed in practice. According to the study of Saito, Hayano, Yamamura, and 

Tsuya [74], both the Preisach and Chua type models can be derived from a common picture 

illustrating the magnetic field reversals in a magnetisation process. 

 

In 1986, an interesting differential equation model of hysteresis in ferromagnetically soft 

magnetic materials was derived by Coleman and Hodgdon [68,69], and was further 

generalised to describe rate dependent magnetisation process by Hodgdon [70,71]. 

Agreement with experimental data was achieved in simulations of an RLC circuit containing a 

ferromagnetic core [72]. This model is simple to understand and to implement, but it requires a 

numerical integration, which lowers the speed of computation, and the identification of model 

parameters is particularly empirical, since they are very sensitive to experimental errors [44]. 

 

Also in 1986, Jiles and Atherton developed a theory based on the inhibition of domain wall 

motion by pinning sites (i.e. inclusions, voids, crystal boundaries, and lattice defects) [5,19]. 

This theory is most helpful for describing the behaviour of materials in which domain motion is 

the primary hysteresis mechanism, while the practical application to magnetic field analysis is 

handicapped by the difficulty of parameter identification, despite the fact that the methods to 

calculate the parameters of this model from a set of experimental magnetisation measurements 

were developed later by Jiles and Thoelke [5,20,21]. 

 

In 1991, Hayano, Namiki, and Saito derived a Chua type model based on a simple bar-like 

domain-wall model, and showed that the Hodgdon model [70] mentioned above was one of 

the Chua type models [75]. 
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Recently, hysteresis models based on micromagnetic approaches [76-79] have been 

proposed, but they generally require too much computing power to be useful for calculating 

hysteresis curves for bulk ferromagnetic materials. 

 

Based on the strong macroscopic analogy between the elastohysteresis and the magnetic 

hysteresis, Favier, Guelin, and Cammarano proposed a model of the magnetisation of 

magnetic materials using a phenomenological elastohysteresis theory [80]. This model involves 

judicious choice of the thermodynamic potential function and empirical estimation of 

parameters. So far, the modelling of magnetisation of any practical magnetic material has not 

been reported in the literature, using this method. 

 

In summary, the analytical expressions used in curve fitting approaches are simple and 

accurate as long as only the major loops are concerned, but they are not able to describe the 

minor loops correctly for the lack of physical background [44]. The Jiles-Atherton model and 

the Stoner-Wohlfarth model are strongly related with the underlying physical principles, but 

they both have the demerits of difficult parameter identification and low accuracy in minor loop 

simulations. The Hodgdon model and the Chua type models are easy to understand and 

implement, while the parameter identification is more or less empirical, and the accuracy in 

minor loop modelling is lower than the Preisach model, from comparison with experimental 

data [44]. The Preisach model appears to be one of the most promising candidates for 

practical engineering applications. It is strongly related with the mechanisms of magnetic 

hysteresis, and can describe various macroscopic hysteretic phenomena. It may be argued that 

the Preisach model is not simple to understand, nor to implement: the experimental data 

needed are very numerous and delicate to interpolate and the control of the memorised turning 

or reversal points must also be done properly, but the final formula is rather simple to 

compute. It requires only "plus" and "minus" operators, and the results fit the experimental 

behaviour of different magnetic materials [44-46]. 

 

In order to determine the magnetic domain distribution function in the Preisach model a set of 

first and second order transition curves are required [41]. At present, this is difficult, since for 

practical engineering applications of the model, it is generally desired that all parameters are 

obtainable either from standard experimental data provided by manufacturers of magnetic 

materials, or from simple experimental measurements readily performed by users, such as the 

limiting hysteresis loop and the normal magnetisation curve. 

 

In this chapter, new methods are developed to enable Preisach models of magnetic hysteresis 

to be obtained and used for engineering applications. 
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In section 2.2, the Preisach theory of magnetic hysteresis is explained graphically with the 

Preisach diagrams for various magnetisation states. With the help of these Preisach diagrams, 

the magnetisation for a given field strength is expressed in terms of the magnetisation of the last 

reversal point and the area integration of the elementary magnetic dipole distribution function 

over a right triangle bounded by the magnetic field strength of the last reversal point and the 

given magnetic field strength on the Preisach diagram. This area integration is related to the 

limiting hysteresis loop, and hence the determination of the distribution function itself is 

avoided. 

 

Aspects of the numerical implementation of the new normal Preisach model are illustrated in 

detail, and theoretical predictions are compared with measured hysteresis loops, hysteresis 

losses, and permeabilities (normal and incremental) of different magnetic materials. It is 

suggested that errors at low values of field strength are due to intrinsic properties of the normal 

Preisach model, such as zero initial susceptibility and congruent minor loops. 

 

Section 2.3 presents a new generalised Preisach model. A new combination of the Stoner-

Wohlfarth theory, Jiles-Atherton theory, and Vajda-Torre theory of magnetic hysteresis with 

the normal Preisach model leads to a new model which includes reversible and irreversible 

magnetisation components and a new nonlinear magnetisation feedback. Parameter 

identification requires only the normal magnetisation curve and the limiting hysteresis loop. 

Experimental verification shows enhanced accuracy. 
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2.2 NORMAL PREISACH MODEL OF HYSTERESIS 

 

2.2.1 General Theory 

 

The Preisach theory describes the hysteresis of a magnetic material via an infinite set of 

magnetic dipoles, which have rectangular elementary hysteresis loops of different switching 

values of magnetic field strength (α,β), as shown in Fig.2-1(a), where α and β  are the 

magnetic field strength in the increasingly positive and negative directions respectively. The 

magnetisation M and flux density B induced by the applied magnetic field H are expressed as 

 

  ∫
S

d(H)d),(=M βαγβαµ αβ  

     ∫∫
−

−
SS

d)d,(d)d,(=
+

βαβαµβαβαµ     (2.1) 

 

and 

 

  B = µo(H+M)        (2.2) 

 

where S is the triangular region Hsat ≥ α ≥ β  ≥ −Hsat on the (α,β) plane shown in Fig.2-1(b) 

(known as the Preisach diagram), Hsat the saturation magnetic field strength, µ(α,β) the 

distribution function of the dipoles, µ(α,β)=0 if (α,β)∉S, γαβ(H)=1 on S+, γαβ(H)=−1 on 

S−, and µo the permeability of a vacuum. 
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  (a)           (b) 

 

Fig.2-1  (a) Rectangular hysteresis loop of dipoles, and (b) Preisach diagram 
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Because of the symmetry of major hysteresis loops, we have 

 

  µ(α,β) = µ(−β ,−α)       (2.3) 

 

The interface between S+ and S− is determined by the history and the present state of 

magnetisation, as will be illustrated further in section 2.2.2. 

 

 

2.2.2 Magnetisation Process and Preisach Diagrams 

 

(1) The initial unmagnetised state 

 

In the unmagnetised state, the origin O in Fig.2-2(a), the number of positively switched dipoles 

equals the number of negatively switched dipoles. Therefore, 

 

  ∫∫
−

−
SS

d)d,(d)d,(=M
+

βαβαµβαβαµ  

      = 0         (2.4) 

 

The corresponding Preisach diagram is shown in Fig.2-2(b). 

 

 

(2) On the initial magnetisation curve 

 

When a magnetic material is magnetised from the initial unmagnetised state, it follows the initial 

magnetisation curve, as depicted by curve O-P1 in Fig.2-2(a). According to the Preisach 

diagram shown in Fig.2-2(c), the induced magnetisation can be calculated by 

 

  ( ) ∫∫
−

−
SS

i d)d,(d)d,(=HM
+

βαβαµβαβαµ  

             ∫
∆ABC

d)d,(= βαβαµ  

             = T(H,−H)       (2.5) 

 

where 

 

  ∫ ∫
α

β

α

µβα
y

y)dxdy(x,=),T(  
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              ∫ ∫
α

β β

µ
x

y)dydx(x,=       (2.6) 

 

is the area integration over the right triangle of vertex (α,β), T(α,α)=0, and the subscript i 

denotes the initial M-H curve. Substituting (2.3) into (2.6) yields 

 

  T(α,β)=T(−β,−α)       (2.7) 

 

 

(3) On the downward trajectory of the limiting loop 

 

After reaching the positive saturation, the magnetic field strength H decreases, and the 

magnetisation M will vary following the downward trajectory, as illustrated by curve P2-P3 in 

Fig.2-2(a). The Preisach diagram is shown accordingly in Fig.2-2(d). The magnetisation can 

then be calculated by 

 

  ∫∫
−

−
SS

d d)d,( d)d,(=(H)M
+

βαβαµβαβαµ  

             = Mi(Hsat) − 2T(Hsat,H)     (2.8) 

 

where the subscript d denotes the downward trajectory of the limiting loop. 

 

 

(4) On the upward trajectory of the limiting loop 

 

Similarly after reaching negative saturation, the magnetic field strength H increases, and the 

magnetisation M varies along the upward trajectory, as illustrated by curve P4-P5 in Fig.2-

2(a). The corresponding Preisach diagram is depicted in Fig.2-2(e), and the magnetisation is 

calculated as 

 

  ∫∫
−

−
SS

u d)d,( d)d,(=(H)M
+

βαβαµβαβαµ  

             = −Mi(Hsat) + 2T(H,−Hsat)     (2.9) 

 

where the subscript u denotes the upward trajectory of the limiting loop. 
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   (d)      (e) 
 
  Fig.2-2 Magnetisation states and corresponding Preisach diagrams  
   (a) Initial magnetisation curve and limiting loop; 
   (b) Preisach diagram of unmagnetised state; 
   (c) Preisach diagram when magnetised along the initial magnetisation curve; 
   (d) Preisach diagram on the downward trajectory of the limiting loop; 
   (e) Preisach diagram on the upward  trajectory of the limiting loop. 
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(5) General situation 

 

For the general situation of the Preisach diagram as shown in Fig.2-3(a), where the operating 

point of magnetisation process is on a downward trajectory after n reversal points, the 

magnetisation can be similarly derived as 

 

  M(H) = M(Hn) − 2T(Hn,H)      (2.10) 

 

while for the case of Preisach diagram shown in Fig.2-3(b), where the operating point of 

magnetisation process is on an upward trajectory after n reversal points, the magnetisation can 

then be calculated by 

 

  M(H) = M(Hn) + 2T(H,Hn)      (2.11) 

 

where Hn is the magnetic field strength of the n-th (last) reversal point, and M(Hn) is the 

corresponding magnetisation. 
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   Fig.2-3 Preisach diagram for general situations after n reversals  
    (a) on a downward trajectory, and  
    (b) on an upward trajectory 
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2.2.3 Parameter Identification 

 

From the description of magnetisation process by Preisach diagrams in section 2.2.2, it can be 

seen that the magnetisation for a given magnetic field strength can be related to the previous 

magnetisation history (previous reversal points, or local extrema of magnetisation) and the area 

integration of the distribution function of the elementary magnetic dipoles over a right triangle 

bounded by the current value and the last reversal point of magnetic field strength. Therefore, 

the only parameter to be identified is T(α,β), where Hsat ≥ α ≥ β  ≥ −Hsat. 

 

The function T(α,β) can be related to the limiting hysteresis loop, using the principle of 

superposition, as shown in Fig.2-4. Analytically, it can be written as 

 

  ∫ ∫
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Fig.2-4  Relationship between T(α,β) and limiting loop data 

 

 

In order to circumvent the difficulty of determining the distribution function µ(α,β), a simple 

function transform is used to separate the dependence of the distribution function on the 

variables α and β  as follows: 

 

Let 

 

  µ(α,β) = mA(α) mB(β)      (2.13) 
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Because 

 

  µ(α,β) = µ(−β ,−α)  

             = mA(−β) mB(−α)      (2.14) 

 

therefore, the functions employed in the transform can be related as 

 

  mA(α) = mB(−α)       (2.15) 

 

and 

 

  mB(β) = mA(−β)       (2.16) 

 

Then, (2.12) can be further written as 

 

  ∫∫
−

− sat

sat

H

A

H

B
du (x)dxm(y)dym+

2

)(M)(M
=),T(

α

ββαβα  

              = 
M ( )  M ( )

2
 u dα β−
 + F(α)F(-β)    (2.17) 

 

where 

 

  )dx(xm=)F(
satH

A∫
α

α        (2.18) 

 

Again, by superposition of the Preisach diagrams in Figs.2-2(c)-(e), when H≥0, Md(H), 

Mu(H), and Mi(H) can also be expressed in terms of F(H) and F(−H) as following 

 

  ∫∫
−

−
H

H
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H

H

Aiu

sat

sat

)d(m)d(m(H)M=(H)M ββαα  

             = Mi(H) − [F(H)]2      (2.19) 

 

  Md(H) = Mu(H) + 2F(H)F(−H)     (2.20) 

 

and 
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            ∫∫
−−

H

H

B

H

H

A )d(m)d(m= ββαα  

            = [F(-H) − F(H)]2      (2.21) 

 

Notice that µ(α,β)=0 when (α,β)∉S. 

 

Therefore, 

 

  F( ) =
M ( ) M ( )

2 M ( )
d u

d

α α α
α

−
 (α ≥ 0)     (2.22) 

 

or, 

 

  F( ) = M ( )dα α−   (α < 0)     (2.23) 

 

 

2.2.4 Software Implementation 

 

From the analysis in sections 2.2.2 and 2.2.3, it can be seen that the magnetisation M for a 

given magnetic field strength H in a magnetic material can be determined by (2.5) if the 

operating point is on the initial curve, or by (2.10) if the operating point is on a downward 

trajectory, or by (2.11) if the operating point is on an upward trajectory. The corresponding 

flux density B can then be obtained by (2.2). The data required by (2.5), (2.10), and (2.11) 

are M(Hn), the magnetisation of the last reversal point, and T(α,β), the area integration of the 

distribution function of the elementary magnetic dipoles over a right triangle with vertex (α,β) 

in the half plane Hsat ≥ α ≥ β  ≥ −Hsat, where α=H and β=−H in (2.5), α=Hn and β=H in 

(2.10), and α=H and β=Hn in (2.11). M(Hn) can be obtained by recording the magnetisation 

history of the material, and T(α,β) can be calculated by (2.17), (2.22), and (2.23) from the 

limiting hysteresis loop of the material. Therefore, the distribution function of the assumed 

magnetic dipoles µ(α,β) and its area integration are not required in the software 

implementation of the normal Preisach model of hysteresis. This makes the normal Preisach 

model more useful for engineering applications. Fig.2-5 illustrates the flow chart of the 

program. 

 

The input data are the data table of the limiting hysteresis loop, and the specified magnetic field 

strength H for simulation. Because limiting loops are symmetric, it is only required to input data 

of Md(H) and Mu(H) for H≥0. For Md(H) and Mu(H) when H<0, the symmetric conditions 

Md(H)=Mu(−H) and Mu(H)=Md(−H) are imposed. 
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record the magnetization history

B = µo( H + M )

Normal Preisach Model

 

 

Fig.2-5  Flow chart of the normal Preisach model subroutine 

 

 

A stack is used to keep the information of the magnetisation history, including the values of the 

magnetisation and magnetic field strength of each reversal point (local extremum), and can be 

either initialised empty for starting from the initial curve or preset with a given history of 

magnetisation before the routine is invoked for the first time. In checking the stack, the 

specified H is compared with the stack elements. A pair of reversal points is popped out of the 

stack whenever the specified H exceeds the value of the previous reversal point on the same 
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trajectory kept in the stack. This is to wipe out a completed minor loop since it will no longer 

have any effect on the future state of magnetisation. 

 

The trajectory on which the operating point resides can be determined by comparing the 

specified H with the top element of the stack, which is pushed in at the end of the last 

calculation of the operating point. If the stack is empty, the operating point is on the initial 

magnetisation curve, since there is no reversal point kept in the stack above the current 

operating point. 

 

To further illustrate how the record of the magnetisation history is kept in the stack and 

updated according to the current operating point, let us consider a practical magnetisation 

process with a pair of minor loops on a major loop, as shown in Fig.2-6(a). These minor 

loops are caused by two pairs of extra small reversals (local extrema) in the waveform of 

magnetic field strength, as shown in Fig.2-6(b), where the flux density waveform consists of a 

primary fundamental component plus a small third harmonic component. 

 

Figs.2-7(a)-(f) illustrate the Preisach diagrams and the elements of the stack for recording the 

magnetisation history corresponding to the time instants (or operating points) a,b,c,d,e, and f in 

Fig.2-6, respectively. 

 

 

-1.5

-1

-0.5

0

0.5

1

1.5

-200 -100 0 100 200

B (T)

H (A/m)

a

b
c

d

e

f

 

(a) 

 



Chapter 2.  Modelling of Magnetic Hysteresis 

23 

Time (s)

-200

-150

-100

-50

0

50

100

150

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

1.5
H(t)

B(t)

a

b c

d

e f

H (A/m) B (T)

 

(b) 

 
 Fig.2-6 A practical magnetisation process with a pair of minor loops on a major loop 
  (a) measured hysteresis loop, and (b) B and H waveforms. 
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  Fig.2-7 Preisach diagrams and the stack elements corresponding to  
   time instants a,b,c,d,e, and f as illustrated in Fig.2-6 

 

 

The initial contents of the stack depends on the initial state of the material undergoing the 

magnetisation process. Generally, the unmagnetised initial state (empty stack) is assumed at the 

beginning of the simulation. At time instant a (Fig.2-7(a)), the magnetic field strength reaches 

the maximum along the initial magnetisation curve, and the operating point (Ha,Ma) is kept in 

the stack afterwards. After reversal point a, the magnetic field strength decreases, and the 

magnetisation process follows the downward trajectory of the major hysteresis loop until time 

instant b when the field strength starts increasing. After the magnetisation Mb for the given field 

strength Hb is evaluated by the Preisach model, the operating point (Hb,Mb) is pushed into the 

stack (Fig.2-7(b)). The magnetisation process then follows the upward trajectory of the minor 

loop. At time instant c, the applied magnetic field reaches another local extremum (or reversal 

point). The operating point (Hc,Mc) is again pushed into the stack after the calculation of the 

magnetisation (Fig.2-7(c)). After reversal point c, the magnetisation process follows the 

downward trajectory of the minor loop until the applied field strength is equal to or smaller 

than Hb, when the minor loop has been completed and the tip points of the minor loop 

(Hb,Mb) and (Hc,Mc) are popped out of stack. The magnetisation process then proceeds 

along the downward trajectory of the major loop again. At time instant d, the applied field 

reaches the minimum, the tip point (Hd,Md) is kept together with (Ha,Ma) for the other half of 

the cycle (Fig.2-7(d)-(f)). When the applied magnetic field reaches the maximum point a again 

after a complete cycle of magnetisation, the major loop is completed and wiped out. Tip point 

(Ha,Ma) is reset into the stack after the calculation of the flux density (Fig.2-7(a)). 
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2.2.5 Comparisons with Experiments 

 

2.2.5.1 Experimental Method 

 

Fig.2-8 illustrates the experimental set-up for the measurements of hysteresis loops using 

annular ring samples. Two coils of the equal number of turns were wound on the ring sample. 

The primary coil was used for excitation, and the secondary for the pick-up of flux density 

signal. For the sampling of magnetic field strength, a calibrated resistor R1=1.17 Ω was used. 

The calibration of the resistor was performed by Dr. R. Day, Commonwealth Scientific and 

Industrial Research Organisation (CSIRO), National Measurement Laboratory, Lindfield. The 

excitation voltage was supplied by a power amplifier Australian Monitor AM1600. The 

bandwidth of this power amplifier is 5 Hz - 90 kHz, and the output power is 470 W with an 8 

Ω resistive load and 810 W with a 4 Ω resistive load. A differential amplifier was used for 

feedback control so that the emf waveform followed the specified signal from the function 

generator. The differential amplifier was designed and constructed by Mr. B. Kalan, CSIRO, 

Division of Applied Physics, Lindfield. The function generator used was a Hewlett Packard 

HP3314A. For measurements of major hysteresis loops at a very low frequency, feedback 

control of waveform is not necessary, but for measurements of hysteresis loops with local 

reversal points or minor loops, it is required so as to control the sizes and positions of the 

minor loops. For data acquisition, an Analogic Data Precision 6000 signal processing system 

was used. The collected data were stored in ASCII data files and processed later by a C-

code program written by the author for hysteresis loops and losses. 

 

 

 

Fig.2-8  Experimental set-up for measuring hysteresis loops 
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The magnetic field strength H was calculated from the excitation current in the primary coil 

(which was measured from the voltage across the resistor R1), by 

 

  H(t) =
Ni

l
s

m

( )t
        (2.24) 

 

where N is the number of turns of the excitation coil, is the excitation current, and lm the mean 

length of the annular ring sample (
Outer diameter  Inner diameter

Mean diameter

−
 of the ring not sufficient 

to cause distortion of results due to saturation near the inner diameter). 

 

The flux density B was calculated by time integration of the voltage signal across the secondary 

coil since the current in this coil was zero, by 

 

  ∫ (t)dtV
NA

1
=B(t) L        (2.25) 

 

where A is the effective cross sectional area of the ring sample, VL the terminal voltage of the 

secondary coil. 

 

Hysteresis loss is defined as the area enclosed by the hysteresis loop and can be calculated by 

 

  ∫
T

0m

h dt
dt

dB
H

T

1
=P

ρ
       (2.26) 

 

where T=1/f is the time period, f the frequency of magnetisation, and ρm the mass density of 

the material. 

 

This system can also be used for alternating core loss measurements at different frequencies 

using ring samples. Then, the magnetic field strength calculated by (2.24) is the value at the 

surface of the sample. The flux density calculated by (2.25) gives the average value over the 

cross sectional area, and the power loss obtained by (2.26) is the total alternating core loss 

[197], including hysteresis, eddy current, and anomalous losses, as will be discussed in chapter 

3, section 3.2.2.3. 
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2.2.5.2 Comparison of Major and Minor loops  

 of Non-Oriented Silicon Steel Lycore-140 

 

Hysteresis loops of a ring sample (wire cut and no further heat treatment) of non-oriented 

silicon steel Lycore-140 0.35 mm lamination were simulated and compared with the measured 

loops using an annular ring sample. The dimensions of the sample and the parameters of the 

excitation and flux density coils are listed in Table 2-1. 

 

 

          Table 2-1  Dimensions and coil parameters of Lycore-140 ring sample 

Quantity Value 

Outer diameter (mm) 36.48 

Inner diameter (mm) 28.96 

Total thickness (mm), (15×0.35 mm sheets) 5.45 

Stacking factor 0.98 

Mass density (kg/m3) 7650 

Resistivity of lamination sheet (Ωm) 0.5×10−6 

Number of turns of coils 53 

Coil resistance (Ω) 0.48 

 

 

Fig.2-9 shows the largest major hysteresis loop of Lycore-140 measured on the annular ring 

sample with a sinusoidal flux density at 0.5 Hz using the system outlined in section 2.2.5.1. The 

corresponding specific hysteresis loss is 4.22×10−2 W/kg/Hz. This loop was used as the input 

data of the limiting loop in the simulation although the very deep saturation was not reached. 

 

Fig.2-10(a) compares the measured and calculated major hysteresis loops, where the 

measured results were obtained under the same condition as that for the limiting loop. Fig.2-

10(b) plots the simulated initial curve together with the measured normal magnetisation curve, 

which consists of the tip points of major loops. In the Preisach simulation, as illustrated in 

section 2.2.4 by the software implementation, the initial curve was assumed to be the same as 

the normal magnetisation curve, and whenever the stack for keeping the magnetisation history 

was empty (or all previous reversal points were wiped out) the magnetisation process was 

assumed to follow the initial magnetisation curve. This is approximately correct. 
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  Fig.2-9 The measured limiting hysteresis loop of Lycore-140 
   used as the input data in the Preisach modelling 
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  Fig.2-10 Preisach modelling of hysteresis of silicon steel Lycore-140 
   (a) major hysteresis loops, and (b) initial magnetisation curve 

 

 

The calculated and measured hysteresis losses corresponding to the major hysteresis loops 

plotted in Fig.2-10(a) are listed in Table 2-2, where Bm and Hm are the magnitudes of the flux 

density and field strength of the major hysteresis loops. For the hysteresis loops of flux density 

magnitudes larger than 0.7 T, the percentage errors on hysteresis loss are equal to or less than 

about 10%. For smaller loops, the discrepancy between the calculated and the measured 

hysteresis losses increases rapidly, partly due to the rapid decrease of the hysteresis loss, but 

the calculated and measured hysteresis loops are still very close as can be seen in Fig.2-10(a). 

 

 

 

 Table 2-2  Comparison of calculated and measured hysteresis losses of Lycore-140 ring sample 

Loop No. � � � � 

Bm (T) 1.22 0.92 0.69 0.24 

Hm (A/m) 276 123 81 43 

Ph(Test) (W/kg/Hz) 2.83×10−2 1.57×10−2 8.62×10−3 1.56×10−3 

Ph(Cal.) (W/kg/Hz) 2.62×10−2 1.53×10−2 9.69×10−3 2.13×10−3 

Error (%) −7.42 −2.55 +12.41 +36.54 
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The theory has also been compared with the experimental results for minor loops. Fig.2-11 

depicts the calculated and measured hysteresis loops of Lycore-140 on the annular ring 

sample when the flux density consists of a primary fundamental component (1 Hz) plus a third 

harmonic component (3 Hz). A pair of minor loops were caused by the third harmonic 

component in the flux density waveform. This increases the total hysteresis loss. For a peak 

flux density of 1.08 T, the measured hysteresis loss was 2.13×10−2 (W/kg/Hz), and the 

calculated hysteresis loss is 2.25×10−2 (W/kg/Hz). The error on hysteresis loss is 5.55%. 
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 Fig.2-11 Preisach modelling of hysteresis loop of Lycore-140 with a flux density consisting  
  of a primary fundamental component and a third harmonic component 

 

 

2.2.5.3 Comparison of Major Loops of Soft Ferrite N47 

 

Another test was carried out on a Siemens/Matsushita N47 soft ferrite toroid with a pure 

sinusoidal voltage excitation across the primary coil. Table 2-3 lists the dimensions and 

parameters of the ring sample and the excitation and flux density coils. 

 

Fig.2-12 depicts the largest major hysteresis loop measured with a sinusoidal flux density at 1 

Hz using the testing system described in section 2.2.5.1. This loop was used as the limiting 

loop in the simulation. The corresponding specific hysteresis loss is 4.30 W/kg/Hz. 
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         Table 2-3  Dimensions and parameters of N47 soft ferrite  
            R16 toroid core and windings 

Quantity Value 

Outer diameter of the core (mm) 16.33 

Inner diameter of the core (mm) 8.94 

Thickness of the core (mm) 6.63 

Resistivity of the core (Ωm) 4.00 

Number of turns of each coil 20 

Wire diameter of the coils (mm) 0.20 

Winding resistance (Ω) 0.23 
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Fig.2-12  The limiting hysteresis loop of soft ferrite N47 

 

 

The measured and predicted B-H loops and initial magnetisation curves at 1 Hz are shown in 

Figs.2-13(a) and (b), respectively. The corresponding hysteresis losses are listed in Table 2-4. 

The error between the calculated and measured hysteresis losses is small when the hysteresis 

loop is close to the limiting loop, but increases when the magnitude of the peak flux density is 

smaller than about 1/2 of the saturation flux density. This is consistent with the results observed 

on non-oriented silicon steel Lycore-140, as reported in the previous section. 

 

 



Chapter 2.  Modelling of Magnetic Hysteresis 

33 

 

 

 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-400 -300 -200 -100 0 100 200 300 400

B (T)

H (A/m)

Measured

Calculated

�
�

�

�

 

(a) 

 

 

0

0.1

0.2

0.3

0.4

0 200 400 600 800

B (T)

H (A/m)

Measured

Calculated

 

(b) 

 

  Fig.2-13 Preisach modelling of hysteresis of N47 soft ferrite core 
   (a) major hysteresis loops, and (b) initial magnetisation curve 
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 Table 2-4  Comparison of calculated and measured hysteresis losses of N47 ring sample 

Loop No. � � � � 

Bm (T) 0.291 0.258 0.186 0.134 

Hm (A/m) 283 180 103 72 

Ph(Test) (W/kg/Hz) 4.77×10−3 3.99×10−2 1.31×10−3 4.73×10−4 

Ph(Cal.) (W/kg/Hz) 4.98×10−3 4.02×10−3 1.34×10−3 7.06×10−4 

Error (%) 4.40 0.75 +2.29 +49.17 

 

 

2.2.5.4 Comparison of Major and DC Biased Incremental Loops of Mild Steel 

 

The normal Preisach model has been used to simulate the major and DC biased incremental 

hysteresis loops of a solid mild steel ring specimen, EN1A grade 4 (B.S. 970) of chemical 

composition C 0.11%, S 0.25%, Mn 1.15%, measured by Ramsden in 1972 [198]. Table 2-

5 lists the dimensions and parameters of the specimen and the flux and magnetising coils. 

 

 

  Table 2-5  Details of the specimen (from [198]) 

Quantity Value 

Outside diameter (cm) 18.97 

Inside diameter (cm) 17.01 

Thickness (cm) 1.004 

Mean diameter (cm) 17.99 

Mean magnetic path length (cm) 56.5 

Cross-sectional area (cm2) 0.791 

Surface area (cm2) 178.5 

Volume (cm3) 44.8 

Number of turns of flux coil 1320 

Number of turns of magnetising coil 2040 

 

 

The major loops were measured by the uniformly-varying flux method, in which the 

magnetisation current is varied in such a way as to keep dB/dt constant, i.e. a uniform rate of 

change of flux density, and the biased loops by the slowly-varying flux method, in which the 

magnetising current is changed slowly. The circuits for measuring the major loops and the DC 

biased incremental loops are illustrated in Fig.2-14. 
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(a) 
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 Fig.2-14 Circuits for measuring hysteresis loops (from [198]) 
  (a) uniformly-varying flux method, and (b) slowly-varying flux method 
  A1 Mazzetti and Soardo power amplifier 
  A2 Burr Brown model 3010 chopper stabilised operational amplifier (low drift) 
  A3,A4 Burr Brown model 3071 chopper stabilised operational amplifier 
   (low drift, low noise) 
  A5 Burr Brown model 3061 instrumentation amplifier 
  B1 Mazzetti and Soardo bistable 
  D.V.M. Solartron digital voltmeter LM1402 
  XY Houston Instrument model HR 92 X-Y recorder 
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Fig.2-15 is the limiting hysteresis loop used as the input data in the simulation. The measured 

and predicted major hysteresis loops are compared in Fig.2-16(a), while Fig.2-16(b) plots 

together the predicted initial magnetisation curve and the measured normal magnetisation 

curve. 
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Fig.2-15  Limiting hysteresis loop of the ring specimen of mild steel (after [198]) 

 

 

 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-5000 -3000 -1000 1000 3000 5000

H (A/m)

B (T)

Calculated

Measured

 

(a) 

 



Chapter 2.  Modelling of Magnetic Hysteresis 

37 

0

0.5

1

1.5

2

0 5000 10000 15000 20000

B (T)

H (A/m)

Measured

Calculated

 

(b) 
 

   Fig.2-16 Preisach modelling of mild steel (measured data from [198]) 
    (a) major hysteresis loops, and  
    (b) initial magnetisation curve 

 

 

The incremental hysteresis loops were simulated in the same way as they were measured. In 

the simulation of each incremental loop, the magnetic field strength was first increased from 

zero to Hb+H∆, where Hb was the biasing magnetic field strength and H∆ was the incremental 

magnetic field strength. The magnetisation process followed the initial magnetisation curve 

(curve segment O-a in Fig.2-17). The magnetic field strength was then reduced slowly, and 

the magnetisation process was performed along the downward trajectory of the incremental 

loop (curve segment a-b in Fig.2-17) until the next reversal point H=Hb−H∆. After this 

reversal point, the magnetisation process followed the upward trajectory of the incremental 

loop (curve b-a in Fig.2-17) until the loop was completed when H=Hb+H∆ again. 

 

Fig.2-18(a) shows the incremental loops on the normal magnetisation curve recorded by a XY 

plotter using the slowly-varying flux method [198] for a biasing field strength Hb=900 A/m, 

and a range of incremental magnetic field strength H∆=100, 250, 500, 1000, 1500, and 2500 

A/m, and Fig.2-18(b) depicts the predicted incremental loops. The measured and simulated 

incremental loops are similar. 

 

Comparisons are also performed on the normal and incremental permeabilities. The 

incremental permeability is defined as 
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  µ
µ∆

∆

∆

=
1 B

Ho

        (2.27) 

 

for a given biasing field strength Hb, where B∆ is the magnitude of incremental flux density 

corresponding to the incremental magnetic field strength H∆, as illustrated in Fig.2-17 [198]. 

When Hb=0, the incremental permeability µ∆ reduces to the normal relative permeability 

µ
µr =
1 B

Ho

. 
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Fig.2-17  An incremental loop for a given biasing field strength 

 

 

 

Fig.2-19 compares the calculated and measured incremental permeabilities for a range of DC 

biasing field strengths Hb=0, 112, 225, 450, 900, 1800, 3600, 7200, and 9000 A/m. Fig.2-

19(a) plots the permeability in a linear scale. The calculation and measurement are in 

substantial agreement, but a large discrepancy occurs when the biasing field is small. To have a 

clearer view of the discrepancy, the permeability is replotted again to a logarithmic scale as 

shown in Fig.2-19(b). It is found that the normal Preisach model fails in predicting the normal 

and incremental permeabilities for Hb ≤ 225 A/m and H∆ ≤ 300 A/m. The possible cause of 

this phenomenon is discussed in the next section. 
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 Fig.2-18 Preisach modelling of incremental loops on the normal magnetisation curve  
  of mild steel, (a) measured loops (after [198]), and (b) predicted loops 
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  Fig.2-19 Comparison of calculated and measured incremental permeabilities 
   for different biasing magnetic field strengths 

 

 

2.2.6 Intrinsic Defects of the Normal Preisach Model 

 

From the experimental verification of the Preisach theory, it can be seen that the normal 

Preisach model can predict correctly most major and minor hysteresis loops, but the model 

fails when it is used to predict the hysteresis loss and the normal and incremental permeabilities 
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of small loops far away from the limiting hysteresis loop. This may be attributed to some 

intrinsic defects of the model. 

 

 

2.2.6.1 Zero Initial Magnetic Susceptibility 

 

One of the intrinsic properties of the normal Preisach model, that is contrary to experimental 

observations is that the initial susceptibility (defined as the susceptibility of the initial 

magnetisation curve at the origin) predicted by the model is zero, as pointed out by various 

researchers [30,51,52]. This can also be shown mathematically. From (2.21), the initial 

susceptibility can be calculated as 

 

  χ io
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 −−−−    (2.28) 

 

At the origin, when H=0, functions F(−H) and F(H) and their derivatives can be calculated 

from (2.22) and (2.23) as following 
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Notice that 

 

  Mu(0) = −Md(0) 
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and 

 

  
dM (H)

dH
=

dM (H)

dH
d

H =0

u

H=0

 

 

for a symmetric limiting hysteresis loop. 

 

Therefore, the initial susceptibility 

 

  χio = 0         (2.31) 

 

and the initial permeability is µo. 

 

The effect of the zero initial susceptibility is that the predicted initial magnetisation curve is 

lower than the actual one for a small magnetic field strength. This in turn causes a large 

discrepancy in predicting major loops when the amplitude of the magnetic field strength is 

small. This can be illustrated by plotting the predicted and measured initial magnetisation 

curves of Fig.2-16 into a larger scale over a range from 0 to 2000 A/m in Fig.2-20. This is 

also believed to be the reason why the predicted normal and incremental permeabilities in 

Fig.2-19 are much smaller than the experimental data when Hb and H∆ are small. 
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Fig.2-20  A larger scale view of predicted and measured initial magnetisation curves in Fig.2-16 
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This zero initial susceptibility may be attributed to the fact that the reversible magnetisation 

process is not properly accounted for by the rectangular hysteresis loop of the elementary 

magnetic dipoles shown in Fig.2-1(a). This rectangular hysteresis loop can describe the 

irreversible magnetisation process correctly by a switching of magnetisation, but the 

magnetisation is assumed constant (γαβ(H)=−1 or +1) before a switching point (α or β) has 

been reached. This is untrue. As discussed in section 2.1, before a domain wall breaks away 

from a pinning site to make a Barkhausen jump (or an elementary dipole in the normal 

Preisach model switches to an opposite direction of magnetisation), the domain wall movement 

takes place in the form of domain wall bowing. This domain wall bowing effect contributes a 

reversible component to the over all magnetisation. 

 

To have the reversible magnetisation component accounted for properly, the elementary 

hysteresis loop of the normal Preisach model should be modified to allow the variation of 

magnetisation before a switching point is reached. This is done in section 2.3 in a generalised 

Preisach model. 

 

 

2.2.6.2  Congruent Minor Loops 

 

Congruency is another intrinsic property of the normal Preisach model, that does not agree 

with observed behaviour [29,32,41,48,49,53-59]. The normal Preisach model predicts that 

minor loops are identical or congruent if they are aligned vertically in the B-H plane (have the 

same Hb and H∆). 

 

Fig.2-21(a) illustrates two identical minor loops (� and �) predicted by the normal Preisach 

model for a given Hb and H∆. Figs.2-21(b)-(i) are the Preisach diagrams corresponding to the 

magnetisation process along curve O-a-b-a-c-d-e-d shown in Fig.2-21(a). 

 

When predicted by the normal Preisach model, the vertical position of a minor loop is 

determined by the flux density of the last reversal point, while the shape and size are 

determined by the area integration over a right triangle bounded by the magnetic field strength 

of the last reversal point and the current field strength in the corresponding Preisach diagram. 

The calculation of the downward trajectory of minor loop � (segment a-b in Fig.2-21(a)) is 

shown graphically in Figs.2-21(c)-(d). For an applied field strength H<H2, the variation of flux 

density can be calculated by (2.10) as 
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  Fig.2-21 Congruent minor loops predicted by the normal Preisach model 
   (a)  minor loops, and (b) - (i) Preisach diagrams corresponding to  
   the magnetisation process O-a-b-a-c-d-e-d shown in (a) 

 

 

  ( )( ) ( )( )22ooa1d HM+HHM+H=BB µµ −−  

                ( ) H),T(H2HH= 2o2o µµ −−     (2.32) 

 

where B1d is the flux density on the downward trajectory of loop � for a given H, and Ba is 

the flux density at point a (last reversal point) in Fig.2-21(a). 

 

The calculation of the downward trajectory of minor loop � (segment e-d in Fig.2-21(a)) is 

illustrated in Figs.2-21(h)-(i). For an applied field strength H<H2, the variation of flux density 

can be calculated by (2.10) as 
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  ( )( ) ( )( )22ooe2d HM+HHM+H=BB µµ −−  

                ( ) H),T(H2HH= 2o2o µµ −−     (2.33) 

 

where B2d is the flux density on the downward trajectory of loop � for a given H, and Be is 

the flux density at point e (last reversal point) in Fig.2-21(a). 

 

Hence, for any given H<H2, we have 

 

  B B = B B1d a 2 d e− −        (2.34) 

 

that is, the downward trajectory of minor loop � is identical to that of minor loop �, although 

the vertical positions of these two minor loops are different. 

 

Similarly, from Figs.2-21(d)-(e) and (g)-(h), it can also be shown that the upward trajectories 

of the two minor loops are the same, using (2.11). 

 

Therefore, the two minor loops are congruent. The incremental permeability of the two minor 

loops for a given Hb and H∆ is 

 

  µ
µ Η∆

∆

∆

=
B

o

 

       
( )

12

12

HH

H,H2T
+1=

−
       (2.35) 

 

where H∆ = (H2−H1)/2, B∆ = (Be−Bd)/2, and Bd is the flux density at point d in Fig.2-21(a). 

 

By comparing the Preisach diagrams shown in Figs.2-21(c)-(e) for minor loop � with those 

shown in Figs.2-21(g)-(i) for minor loop �, it can be seen that the congruency of these two 

minor loops is due to the fact that the distribution function of the elementary magnetic dipoles is 

independent of the previous and current magnetisation states and hence, the area integrations 

of the distribution function, which gives the incremental magnetisation for a given incremental 

field strength, for both minor loops are performed over the same right triangle (∆ABC in 

Figs.2-21(e) and (h)). 

 

Errors, though small, will be caused by this congruency property when the normal Preisach 

model is used to predict minor hysteresis loops and incremental permeabilities. 

 

To relax this congruency property, the distribution function of the elementary dipoles must be 

made dependent on the magnetisation state such that the minor loops determined by the area 
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integrations of the distribution function over the same triangle will be different if they have 

different magnetisation histories. For this purpose, two types of magnetisation dependent 

Preisach models have been proposed by Mayergoyz, Torre, and other researchers: the 

product model [29,32,49,53,54,56,58,59] and the moving model [41,48-57,59]. 

 

 

2.2.7 Magnetisation Dependent Preisach Models 

 

2.2.7.1 Product Model 

 

In the product model, the magnetisation predicted by the normal Preisach model is modified 

by a magnetisation dependent modifying function S(N), where N is the magnetisation 

predicted by the normal Preisach diagram, as illustrated by the block diagram shown in Fig.2-

22. 

 

 

H NNormal Preisach

Model

Modifying

Function S(N)

M

 

 

Fig.2-22  Block diagram representing the product model (after [49]) 

 

 

The modifying function S(N) is defined such that [29,32,49,53,58,59] 

 

  ∫−

R(M)

dM
=(M)S 1        (2.36) 

 

where R(M) is a non-congruency function. 

 

Then 

 

  M = S(N)        (2.37) 

 

The non-congruency function R(M) is an even function and may take a simple form such as 

[29,32] 

 

  R(M) = 1 M2−        (2.38) 
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Hence S(N) is an odd function which has properties such as 

 

  S( ) = Ms−∞ −         (2.39) 

 

and 

 

  S(+ ) = Ms∞         (2.40) 

 

where Ms is the saturation magnetisation. 

 

The vertically aligned minor loops of the same Hb and H∆ are predicted non-congruent by the 

product model. The product model has the property of nonlinear-congruency as determined 

by the non-congruency function R(M) [49], that is, the congruent minor loops are distributed 

by a nonlinear function. 

 

 

2.2.7.2 Moving Model 

 

The moving model relaxes the congruency property of the normal Preisach model using a 

magnetisation feedback as shown in Fig.2-23, where K is a constant feedback coefficient 

[41,48-57,59]. 
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+

+
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H M

 

 

Fig.2-23  Block diagram representing the moving model (after [49]) 

 

 

In numerical calculation, the magnetic field strengths in the increasingly positive and negative 

directions α and β  are replaced by α+KM and β+KM respectively. The resultant 

magnetisation M is then solved iteratively. 
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Using the magnetisation feedback, the moving model replaces the congruency property of the 

normal Preisach model with the skew-congruency property, by which the minor loops 

connected by lines of slope −1/K are congruent, as illustrated in Fig.2-24. According to the 

study of Vajda and Torre [55,59], the skew-congruency property agrees better with the 

experimental data obtained for a variety of commercial recording media than the nonlinear-

congruency property of the product model. Unfortunately, applications of this model to 

electrical steel sheets were not found in the literature. 

 

 
M

HO

Slope = 1/K−

 

 

Fig.2-24  Skew-congruency of the moving Preisach model (after [49]) 

 

 

2.3 GENERALISED PREISACH MODEL 

 

2.3.1 Formulation 

 

In order to obtain a complete description of magnetic hysteresis, as discussed in section 

2.2.6.1, the reversible component of magnetisation must be included in the model. Fig.2-25(a) 

shows an elementary hysteresis loop proposed by Vajda and Torre [50,51,52,55], which 

consists of both the irreversible switching action (Fig.2-25(b)) and the reversible variation 

(Fig.2-25(c)) of magnetisation process. As a matter of fact, this elementary loop has long been 

adopted in the development of various models of magnetic hysteresis, such as the Stoner-

Wohlfarth model [17,18], and the Jiles-Atherton model [5,19-21]. 

 

For the relaxation of the congruency property of the normal Preisach model, the idea of the 

moving model is employed since it agrees better with experiments than the product model 

[55,59]. To make it more general, a novel nonlinear magnetisation feedback is used. 
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  Fig.2-25 Elementary hysteresis loop for generalised Preisach model 
   (a) elementary hysteresis loop 
   (b) irreversible magnetisation component, and 
   (c) reversible magnetisation component. 

 

 

Therefore, the magnetisation M and flux density B for a given applied magnetic field strength H 

can be expressed as 

 

  M(H) = M (H + f(M)) +M (H + f(M))irr rev     (2.41) 

 

and 

 

  B = (H + M(H))oµ        (2.42) 

 

where Mirr(H+f(M)) and Mrev(H+f(M)) are the irreversible and reversible magnetisation 

components, which are functions of both the applied field strength and the magnetisation, and 

f(M) is a nonlinear feedback function, which accounts for the effect of magnetisation on the 

distribution function of the elementary magnetic dipoles. 

 

The irreversible component of magnetisation can be calculated by the normal Preisach model 

represented in section 2.2, since the irreversible switching action can be correctly accounted 

for by the rectangular elementary hysteresis loop, shown in Fig.2-25(b). 

 

The reversible component of magnetisation, however, requires more consideration. An 

exponential function was used by Torre and Vajda [50-52,55]. As pointed out in section 2.1, 

however, there is not a single analytic function which fits the magnetisation characteristics of 

different magnetic materials. For describing the magnetisation process in terms of the reversible 

and irreversible domain wall motions, the theory of the Jiles-Atherton model [5,19-21] is most 

helpful. According to this theory, the reversible component of magnetisation is proportional to 
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the difference of the anhysteretic magnetisation and the irreversible magnetisation component, 

namely 

 

  ( )irranhrev MMC=M −        (2.43) 

 

where C is a constant, and Manh is the anhysteretic magnetisation, which is defined as the 

magnetisation without hysteresis or when all the pinning sites in the material are removed. 

 

Substituting (2.43) into (2.41), one obtains 

 

  M(H) = M (H + f(M)) +C M (H + f(M)) M (H + f(M))irr anh irr−  

             = (1 C)M (H + f(M))+ CM (H + f(M))irr anh−    (2.44) 

 

Defining S=1−C as the squareness of the elementary loop as shown in Figs.2-25(a) and (b) 

yields the magnetisation for a given applied magnetic field strength as following 

 

  M(H) = SM (H + f(M))+ (1 S)M (H + f(M))irr anh−    (2.45) 

 

Fig.2-26 gives a graphical expression of the generalised Preisach model, where  

 

  H = H + f(M)eff        (2.46) 

 

is the effective magnetic field strength when the feedback of magnetisation is considered, and 

 

  K(M) =
f(M)

M
  (K(0)=0)     (2.47) 

 

is a nonlinear feedback coefficient. 

 

 

2.3.2 The Anhysteretic Magnetisation Curve 

 

Hysteretic magnetisation represents processes where magnetic domains are in a local minimum 

energy configuration, while the anhysteretic magnetisation curve of a magnetic material 

represents the global minimum energy configuration. Experimentally, it can be measured by 

superimposing an AC field whose amplitude decays slowly from saturation to zero on a DC 

field at each point. 
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Fig.2-26  Block diagram representing the generalised Preisach model 

 

 

In their model of hysteresis, Jiles and Atherton [5,19-21] used a modified Langevin function 

 

  





 −








H

a

a

H
cothM=(H)M sanh      (2.48) 

 

where Ms is the saturation magnetisation and a is a parameter with dimensions of magnetic 

field strength which characterises the shape of the anhysteretic magnetisation curve, as the 

expression of the anhysteretic magnetisation curve. The general validity of this expression for 

different magnetic materials, however, was not found in the literature. 

 

In 1987, Atherton, et al [30] proposed the calculation of anhysteretic magnetisation curves 

using the normal Preisach model by simulating the procedure of experimental measurement. It 

was found that the calculated anhysteretic magnetisation was dependent on the decreasing 

procedure of the superimposed AC magnetic field. 

 

Fig.2-27 illustrates schematically two methods of reducing the superimposed AC field strength 

to zero in five steps. The reduction of field strength in each step is (Hsat−HDC)/5. Figs.2-

27(a),(c), and (e) illustrate the first method. In this method, the initial magnitude of the 

superimposed AC field is Hsat−HDC and it is reduced by (Hsat−HDC)/5 when the 

magnetisation process is reversed after an upward trajectory as shown by 1,2,...,5 in Fig.2-

27(c) and (e). This method gives a lower value of anhysteretic magnetisation (Manh
− in Fig.2-

27(a)). 
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   (e)      (f) 

 Fig.2-27 Prediction of anhysteretic magnetisation curve using the normal Preisach model 
  (a) and (b) magnetisation processes, 
  (c) and (d) variations of magnetic field strength with time, and 
  (e) and (f) corresponding Preisach diagrams, 
  for the lower and upper values of anhysteretic magnetisation, respectively. 
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The second method, as illustrated in Figs.2-17(b), (d), and (f), the magnitude of the 

superimposed AC field also starts from Hsat−HDC, but it is reduced when the magnetisation 

process is reversed after a downward trajectory as indicated by 1,2,...,5 in Figs.2-27(d) and 

(f). A higher value (Manh
+ in Fig.2-27(b)) is obtained by this method. 

 

From Figs.2-27(e) and (f), it can be found that the calculated anhysteretic magnetisation also 

depends on the number of steps in which the superimposed AC field is reduced to zero. When 

the number of steps approaches infinity, both the higher and lower values obtained by the 

different field reduction methods converge to the same answer. When a limited number of 

steps is used, more accurate results can be obtained by averaging the two values of 

anhysteretic magnetisation predicted by these two methods. 

 

Figs.2-28(a) and (b) depict the calculated anhysteretic magnetisation curves of the mild steel 

ring sample mentioned in section 2.2.5.4, using the normal Preisach model when the 

superimposed AC field was reduced to zero in 100 and 500 steps respectively. With the 

increase of the number of steps, the difference between the higher and lower values decreases. 

 

Fig.2-29 is the anhysteretic magnetisation curve of the mild steel ring sample calculated when 

the superimposed AC field was reduced to zero in 1000 steps. This curve will be used in the 

generalised Preisach modelling for the mild steel ring sample. 
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 Fig.2-28 Calculated anhysteretic magnetisation curves of mild steel using the normal Preisach  
  model, when the superimposed field is reduced to zero in (a) 100, and (b) 500 steps. 
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 Fig.2-29 Anhysteretic magnetisation curve of mild steel calculated by the normal Preisach  
  model when the superimposed AC field is reduced to zero in 1000 steps 

 

 

2.3.3 Parameter Identification 

 

The parameters to be identified are the squareness of the elementary hysteresis loop S and the 

nonlinear feedback coefficient K(M). The methods of identification and the information 

required are studied in this section. 
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2.3.3.1 The Squareness 

 

When the generalised Preisach model (2.45) is used to predict the initial magnetisation curve, 

the susceptibility can be calculated as 
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Hence, 
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At the origin, when H=0, Mi=0, the magnetisation feedback function f(Mi)=0, and hence 

Heff=0, while the derivative of the feedback function against the initial magnetisation 

df(M )

dM
= K(0) = 0i

i M =0i

. Because the irreversible magnetisation component Mirr(Heff) is 

predicted by the normal Preisach model, we have 
dM (H )

dH
= 0irr eff

eff H =0eff

, as discussed in 

section 2.2.6.1. From (2.50), the initial susceptibility can then be written as 

 

  χ io
i

H=0

=
dM (H)

dH
 

       = (1 S)
dM (H )

dH
anh eff

eff H =0eff

−  

       = (1 S) ano− χ        (2.51) 

 

Therefore, the squareness of the elementary hysteresis loop 

 

  S = 1 io

ano

−
χ
χ

        (2.52) 
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where χano
anh eff

eff H =0

=
dM (H )

dH
eff

 is the gradient or susceptibility of the anhysteretic 

magnetisation curve at the origin. 

 

For the mild steel ring sample mentioned in section 2.2.5.4, the initial susceptibility obtained 

from the measured normal magnetisation curve [198] (Preisach modelling assumes the initial 

magnetisation curve identical to the normal magnetisation curve) is χ io = 315, and the gradient 

or susceptibility of the anhysteretic magnetisation curve, shown in Fig.2-29, at the origin is 

χano =12113. Therefore, by (2.52), the squareness S = 0.97. 

 

 

2.3.3.2 The Magnetisation Feedback Coefficient 

 

Strictly speaking, a great amount of information from various minor loops at different positions 

is required in order to identify the magnetisation feedback coefficient since it is introduced into 

the model to account for the dependence of the distribution function of magnetic dipoles on the 

previous and current magnetisation states of the material. This is, however, inconvenient for 

both the identification of the coefficient and the practical application of the model. In 1991, 

Oti, Vajda, and Torre [48] proposed an approximate identification method from the 

susceptibility on major loops to deduce a constant feedback coefficient, but the determination 

of the feedback coefficient from the experimental data was very much empirical and 

inaccurate. 

 

Because of the simplicity of the method, their idea is adapted here to determine the nonlinear 

feedback coefficient in the generalised Preisach model from the measured initial magnetisation 

curve. 

 

On an initial magnetisation curve, the susceptibility can be approximately calculated as 

 

  χ i
i=

dM (H)

dH
 

       ≈ − −M (H) M (H H)

H
i i ∆

∆
      (2.53) 

 

Let f(M ) = Hi ∆ , and we have 

 

  χ i
i i i

i

M (H) M (H f(M ))

f (M )
≈

− −
      (2.54) 

or 
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  f (M )
M (H) M (H f(M ))

i
i i i

i

≈
− −

χ
     (2.55) 

 

When the generalised Preisach model is used to simulate the initial magnetisation curve, it is 

expected to agree with the experimental data, that is 

 

  M (H) = SM (H +f(M )) + (1 S)M (H + f(M ))i irr i anh i−  

              = M (H)i(Test )        (2.56) 

 

where Mi(Test)(H) is the measured initial magnetisation curve. 

 

The second term in the numerator of (2.55) 

 

  M (H f(M )) = SM (H) +(1 S)M (H)i i irr anh− −     (2.57) 

 

stands for the initial magnetisation curve calculated when the magnetisation feedback is absent. 

 

Fig.2-30 explains graphically the principle of this identification method for the magnetisation 

feedback function. 

 

 

Calculated by generalised Preisach model

when magnetisation feedback is absent

O

H

M

H

∆ H = f(Mi)

Slope = χ
i

M i (H−f(Mi))

M i (Test)(H)
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M i (H)

M i(H−∆ H)

 

 

Fig.2-30  Graphical explanation of identification method for magnetisation feedback function 
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Physically, the feedback is introduced to account for the effect of domain interaction on the 

distribution function of the elementary dipoles or domains. It may be expected to have the 

following properties: 

 

(1) It is an odd function of magnetisation, i.e. the effect of domain interaction is reversed if 

the over all magnetisation is reversed; 

 

(2) It increases with the magnetisation and reaches a maximum in the region where the 

magnetisation process is dominated by domain expansion and shrinking; 

 

(3) It dies out when the material is saturated and all domain walls disappear. 

 

Finally, the feedback coefficient can be obtained by 

 

  K(M) =
f(M )

M
i

i

 

 

            ≈
− −M (H) M (H f(M ))

M
i i i

i iχ
     (2.58) 

 

Fig.2-31 illustrates the inferred profile of the magnetisation feedback coefficient for the mild 

steel ring sample mentioned in section 2.2.5.4. As can be seen from the plot, the profile 

deduced from the experimental data is jerky. Especially, when the sample is close to 

saturation, the deduced feedback coefficient jumps up and down because of the very small 

susceptibility. For the convenience of simulation, the curve is smoothed piecewisely by least 

square curve fitting using a straight line 

 

 K(M) = 2.94 10 M8× −   (0 M 2.19 10  A / m)4≤ < ×   (2.59) 

 

and a combination of a straight line and an exponential curve 

 

 ( ) 411M108.560.187114 101.3+M108.11e M108.11+105.15=K(M)
6 −−×−−− ××−××

−

 

     (2.19 10  A / m M )4× ≤ < ∞    (2.60) 
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  Fig.2-31 New nonlinear feedback coefficient of magnetisation for mild steel 
   (Previous authors used a constant value which would be approximately  

   0.5×10−4 for mild steel) 

 

 

2.3.4 Software Implementation 

 

Fig.2-32 illustrates the flow chart of the subroutine for the generalised Preisach model. The 

input data required in the calculation are the limiting hysteresis loop (required by the normal 

Preisach model) with the upward and downward trajectories in Mu(H) and Md(H) 

respectively, the anhysteretic magnetisation curve Manh(H), the squareness S, the nonlinear 

feedback coefficient K(M), a relaxation coefficient c, which is to be used in the solution of the 

nonlinear equation (2.45) for the resultant magnetisation by the successive relaxation method, 

and the convergence precision ε. These input data are transferred from the main program, and 

hence are not indicated in the flow chart of the subroutine. 

 

In the calculation, the irreversible magnetisation component is calculated by the normal 

Preisach model. The anhysteretic magnetisation for a given field strength is obtained from the 

corresponding data table using a second order interpolation while the nonlinear feedback 

coefficient for a magnetisation is calculated by (2.59) and (2.60). The resultant magnetisation is 

obtained by solving the nonlinear equation (2.45) using the successive relaxation method. As a 

convergence criterion, the per unit variation of the magnetisation is adopted, namely 

 

  
M M

M
o

o

− ≤ ε         (2.61) 
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where M is the current value of magnetisation and Mo the old value of magnetisation obtained 

by the last iteration. After each iteration, if the convergence criterion is not satisfied, the 

magnetisation for the feedback is then modified by 

 

  M ' = M + c(M M )o o o−       (2.62) 

 

where Mo' is the new value of the magnetisation used in the calculation of Heff. In the flow 

chart, the new value Mo' is stored in Mo after the modification. 

 

 

START

Check the stack which records the

magnetization history, and clear the

reversal points of field strength

Yes

No

smaller than the specified H

Mn is obtained from the stack

Push H and M into the stack to
record the magnetization history

RETURN

B = µo( H + M )

H eff = H + K(Mn) Mn

effFind M anh (H ) from data table

Calculate effM irr(H ) using the

normal Preisach model in Fig.2-5

M = effM irr(H )S + effManh (H )(1-S)

M o

M M o−
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M o = M o + c (M − M o )

H eff = H + K( M o M o)

 
 

Fig.2-32  Flow chart of the subroutine for the generalised Preisach model 
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2.3.5 Verification 

 

The experimental data of the mild steel ring sample mentioned in section 2.2.5.4 are again used 

here for the examination of the generalised Preisach model. The limiting hysteresis loop shown 

in Fig.2-15 was used as the input data for the normal Preisach model. The squareness and the 

magnetisation feedback coefficient are reported in sections 2.3.3.1 and 2.3.3.2, respectively. 

The relaxation coefficient used in the successive solution was 0.5, and the convergence 

accuracy was 10−5. 

 

 

2.3.5.1 Non-Congruent Minor Loops 

 

A numerical experiment was conducted on the prediction of minor loops with the same Hb and 

H∆. Fig.2-33(a) shows two different minor loops (� and �) with the same horizontal 

positions, and Fig.2-33(b) plots together the minor loops predicted by the normal and the 

generalised Preisach models. It can be seen that the congruency property of the normal 

Preisach model, as discussed in section 2.2.6.2, has been relaxed by the magnetisation 

feedback. Because the magnetisation feedback coefficient depends on the magnetisation state, 

the skew-congruency that the generalised Preisach model possesses is nonlinear, which is 

different from the skew-congruency property possessed by the moving model [55,59] 

(discussed in section 2.2.7.2), in which the magnetisation feedback coefficient is a constant. 
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(b) 
 Fig.2-33 Verification of non-congruency property of the generalised Preisach model  
  for minor loops with same Hb and H∆. 
  (a) Non-congruent minor loops predicted by the generalised Preisach model 
  (b) Comparison of minor loops predicted by the normal and generalised  
        Preisach models  

 

 

2.3.5.2 Major Loops 

 

The major loops predicted by the normal and the generalised Preisach models are shown in 

Fig.2-34 together with the measured loop. The generalised Preisach model prediction is more 

accurate than the normal model. 
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Fig.2-34  Comparison of measured and predicted major loops 
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2.3.5.3 Normal and Incremental Permeabilities 

 

Finally, the generalised Preisach model was used to calculate the incremental permeabilities 

measured at different DC biasing magnetic field strengths. Figs.2-35(a) and (b) plot the 

measured and predicted permeabilities together in linear and logarithmic scales respectively. 

Much better agreement between the prediction and the measurement is shown. 

 

 
Incremental Permeability

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Measured

Calculated

Hb = 0 A/m

112

225

450

900

1800

3600

5400 7200 9000

Incremental Field Strength (A/m)H∆  
(a) 

 

Incremental Permeability

10

1 10 10 10 10

10
4

103

102

2 3 4

Measured

Calculated

Hb =  0   A/m
112
225

450

900

1800
3600
5400
7200
9000

Incremental Field Strength (A/m)H∆  
(b) 

  Fig.2-35 Normal and incremental permeabilities of mild steel  
   plotted in (a) linear, and (b) logarithmic scales 
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2.4 CONCLUSION 

 

Among various models of magnetic hysteresis, the Preisach model appears to be the most 

promising one for practical engineering applications. It is strongly related to the mechanisms of 

magnetic hysteresis, and can describe various macroscopic hysteretic phenomena. The final 

formulation is very simple for numerical implementation. The only difficulty is that it requires 

numerous experimental data of the first and second order transition curves for the identification 

of the elementary dipole distribution function. 

 

In section 2.2, a new formulation of the normal Preisach model was derived based on a 

graphical description of the Preisach theory of magnetic hysteresis. With the help of the 

Preisach diagrams for the limiting hysteresis loop, the difficulty of identifying the elementary 

dipole distribution function was circumvented. The new parameter identification method 

requires only the limiting hysteresis loop as the input data. Therefore, the normal Preisach 

model developed here is much more suitable for practical engineering applications. 

 

An experimental verification of the new normal Preisach model was given in section 2.2.5 

using major and minor hysteresis loops, hysteresis losses, initial magnetisation curves, and 

normal and incremental permeabilities of different magnetic materials. The comparison showed 

that the normal Preisach model can provide correct results, but that errors occur when the 

hysteresis loop to be predicted is close to the origin of the B-H plane. It was suggested in 

section 2.2.6 that the discrepancies could be traced to intrinsic defects of the model, such as 

zero initial susceptibility and congruent minor loops. 

 

To eliminate these incorrect properties of the normal Preisach model, a new generalised 

Preisach model was developed in section 2.3 by combining elements of the Stoner-Wohlfarth 

theory, Jiles-Atherton theory, and Vajda-Torre theory of magnetic hysteresis with the Preisach 

theory. A new nonlinear magnetisation feedback was used in the generalised model. The extra 

data required by the generalised Preisach model is the normal magnetisation curve, which is 

readily available from manufacturers' data sheets or simple measurements. 

 

Verifications using minor loops of same Hb and H∆, major loops, and normal and incremental 

permeabilities showed that the new generalised Preisach model gives better accuracy than the 

normal Preisach model. 

 

Further work is required on development of vector magnetic hysteresis models, i.e. the B-H 

relation when the magnetic field has a rotational component. Although the Preisach model has 
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been extended to cover rotational hysteresis [72-79], the method for parameter identification 

is impractical for engineering applications, and experimental verification was not reported. 



CHAPTER 3. DYNAMIC CIRCUIT MODEL OF  

   MAGNETIC CORES 

 

 

3.1 INTRODUCTION 

 

This chapter concerns the core losses of inductors, transformers, and similar devices with 

purely alternating magnetic flux. The core losses of devices where the flux has a rotational 

component will be considered later. 

 

In steady state with sinusoidal and/or non-sinusoidal excitations, the total alternating core loss 

can generally be separated into hysteresis, eddy current, and anomalous losses [3,81-103]. 

The Steinmetz law is commonly used for the calculation of hysteresis loss without minor loops 

[3,90,92,98]. When minor loops appear, the total hysteresis loss can be corrected by 

multiplying a correction factor based on the amplitudes of minor loops [104-106]. With a non-

sinusoidal magnetic flux, the eddy current loss is normally calculated by summing up the 

contributions from all harmonics [99,100,104-108], while the anomalous loss, which is caused 

by the effects of magnetic domain wall movement, can only be calculated by integrating the 

time derivative waveform of flux density [99,100]. 

 

Dynamic modelling of magnetic cores, however, has long been a difficult task owing to the 

non-linear characteristics of magnetic materials and the complicated mechanisms of core 

losses. Accurate prediction of the instantaneous B-H operating point is important because 

magnetic cores are often excited with non-sinusoidal waveforms and at high frequency. It 

would be useful if a simple but accurate magnetic core model could be developed for both low 

and high frequency applications. The model should be simple to use, easy to formulate, based 

on data supplied by manufacturers and/or obtained from simple measurements, and able to 

predict all types of core losses, including hysteresis, eddy current, and anomalous losses, to a 

good degree of accuracy. In order to satisfy these criteria, a circuit model of magnetic cores is 

preferred because of its simplicity and time efficiency in simulation. 

 

The conventional core model, which consists of a resistor, standing for the core loss, including 

the hysteresis and eddy current losses, in parallel or in series with an ideal inductor, which is 

assumed lossless, standing for the magnetisation, has been widely used in the circuit modelling 

of inductors and transformers [109-112]. This core model, however, does not account for 

effects of non-linear magnetisation, hysteresis, and anomalous loss, and hence, is not 

appropriate to be used for dynamic simulation. 
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A sampled data model has been used to simulate power electronic circuits containing non-

linear inductances [113], but unfortunately, only a non-linear magnetisation curve without 

hysteresis was used in the model. To account for magnetic hysteresis, PSPICE [114] 

incorporates the Jiles-Atherton model of hysteresis to model non-linear magnetic cores in 

transient circuit analysis, but the core loss is not included. Besides, the parameters, such as the 

pinning energy per unit volume, of the Jiles-Atherton model are not convenient to identify. 

 

Among different hysteresis modelling methods, as discussed in chapter 2, the normal Preisach 

model seems to be a practical and easy-to-use technique because it can be readily 

implemented using a simple graphical approach without the use of the complicated 

mathematics in the full Preisach theory. Details of such a graphical approach were illustrated in 

chapter 2. 

 

The modelling of core loss needs more investigation. For dynamic simulation, the steady state 

models mentioned above can not be adopted directly. Firstly, the B-H relationship and the 

hysteresis loss should be determined by the hysteresis model, instead of the normal 

magnetisation curve and the Steinmetz law. Secondly, the eddy current and anomalous losses 

should be calculated instantaneously. O'Kelly [199,200] studied flux penetration and losses in 

a steel plate with nonsinusoidal magnetisation using an exponential model for hysteresis and a 

multilayer approach for eddy currents. Burais [201] and Naidu [202] calculated the core loss 

in thin laminations with hysteresis and eddy current losses included using the Preisach model 

for hysteresis and the finite element method and finite differential method, respectively, for 

eddy currents. However, the anomalous loss can not be calculated by these methods. 

 

In this chapter, dynamic circuit models of magnetic cores for low and high frequency operation 

are developed, discussed, and verified with experiments. All components of core loss are 

considered. 

 

Section 3.2 presents a dynamic circuit model of laminated magnetic cores for low frequency 

operation. In this circuit model, eddy current loss is modelled by a constant resistor and 

anomalous loss by a non-linear resistor, while a non-ideal inductor is used to account for the 

effects of hysteresis and magnetisation. The normal Preisach model of hysteresis outlined in 

chapter 2 is used to trace the trajectory of magnetisation. A recently developed discrete 

transform technique [203-205] is applied to the model for easy and quick numerical solution 

of non-linear state equations. The model is compared with experiments on a laminated annular 

ring of non-oriented electrical steel Lycore-140 under sinusoidal and square wave voltage 

excitations at 100 Hz. Skin effect, models of eddy current loss, and computing time and 

precision are discussed. 
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Section 3.3 generalises the above circuit model for high frequency operation. The cross 

section of a solid core or laminated core at high frequency can be divided into a few slices 

according to the size of the core and the excitation frequency. A ladder network model is 

developed to account for the skin effect. This model reduces to the simple one outlined in 

section 3.2 when only one stage of the ladder network is used. A comparison with 

measurements on a laminated annular ring of Lycore-140 under square wave 1 kHz voltage 

excitation and on a Siemens/Matsushita N47 soft ferrite R16 toroid core under 100 kHz 

square wave voltage excitation is made. The results show that this model is suitable for 

engineering applications. 

 

 

3.2 A DYNAMIC CIRCUIT MODEL OF LAMINATED CORES 

 

3.2.1 Dynamic Circuit Model 

 

The total energy dissipated in a magnetic core can be separated into hysteresis loss Ph, eddy 

current loss Pe, and anomalous loss Pa [3,81-103]. For dynamic calculations, the eddy current 

and anomalous losses can be represented by two resistors, Re and Ra, respectively, as shown 

in Fig.3-1, but it is not adequate to define an equivalent resistor for hysteresis loss, since it can 

not be explicitly related to the instantaneous flux density. The hysteresis loss per cycle is 

defined as the area enclosed by the hysteresis loop for a whole cycle of extremely low 

frequency excitation, and the loss is incorporated in the model by a non-ideal inductor L(i), 

which includes both the hysteresis and the core non-linearity. The circuit equations can be 

written as 

 

  V = R i +Vs w s L        (3.1) 

  V =
d

dt
= L(i)

di

dt
L

Lλ
       (3.2) 

  i =
V

R
e

L

e

        (3.3) 

  i =
V

R
a

L

a

        (3.4) 

  i = i + i + is e a L         (3.5) 

 

where Rw is the resistance of the excitation coil, λ is the flux linkage of the coil, and 

L(i) =
d

diL

λ
 the differential inductance. 
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Fig.3-1  Dynamic equivalent circuit of a magnetic core 

 

 

For computer simulation, a discrete circuit model can be readily derived using the TLM-based 

discrete transform technique [203-205]. The TLM discrete transform technique expresses 
di

dt
 

as 
di

dt
 = VU = ZUi+2VU

i, where ZU = 2/Tp, Tp the propagation time (which equals the time 

step used in the numerical solution), VU
i is the incident voltage pulse used in the TLM method, 

and VU is equal to the magnitude of di/dt or numerically the voltage across an inductor of 1 

Henry with the same di/dt. Equation (3.2) can be rewritten as 

 

  VL = L(i) (ZUiL+2VU
i)       (3.6) 

 

Therefore, the discrete form of the dynamic circuit model of magnetic cores can be readily 

obtained as depicted in Fig.3-2. 

 

With the help of the TLM discrete transform technique, the circuit equations have been 

reduced from a non-linear differential equation system to a non-linear algebraic equation 

system, which can be solved iteratively. In iterations, 

 

  VU(m) = ZU(m)iL(m)+2VU
i
(m)      (3.7) 

 

and 

 

  VU
i
(m+1) = VU

i
(m) - VU(m)      (3.8) 

 

where the bracketed subscript (m) denotes the m-th iteration. 
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Fig.3-2  Discrete core model 

 

 

 

3.2.2 Core Losses and Circuit Parameters  

 

3.2.2.1 Core Losses in the Equivalent Circuit 

 

The energy of the model should be conserved, when all sources of loss are considered. The 

total average power fed into the core can be obtained by multiplying the instantaneous voltage 

VL(t) with the instantaneous current is(t) and then averaging over a cycle, i.e. 

 

  ∫∫
T

0

LeaL

T

0

sL )dti+i+(iV
T

1
=dtiV

T

1
 

         ∫∫∫
T

0

L

T

0

2

aa

T

0

2

ee dt
dt

d
i

T

1
+dtiR

T

1
+dtiR

T

1
=

λ
   (3.9) 

 

The first and the second terms on the right hand side of (3.9) represent the power losses 

dissipated in the equivalent resistors for the eddy current loss and the anomalous loss, while 

the last term gives the hysteresis loss when hysteresis is considered in the flux linkage 

calculation. 
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3.2.2.2 Equivalent Resistors  

 

According to the classical calculation for thin laminations, the instantaneous eddy current loss 

 

  mm

2

ee Al
dt

dB
C=(t)P ρ







      (3.10) 

 

where Ce is the eddy current loss coefficient, B the instantaneous flux density, ρm the mass 

density, A the cross sectional area, and lm the mean length of the flux path in the core. Hence, 

the equivalent eddy current resistance 

 

  R =
V (t)

P (t)
e

L
2

e

 

       =
N A

C  l

2

e m mρ
        (3.11) 

 

where N is the number of turns of the excitation coil wound on the core, and it is assumed that 

λ=NAB, so V = NA
dB

dt
L . 

 

The anomalous loss is generally considered to be caused by the motion of domain walls. In 

addition to the eddy currents generated in the vicinity of the moving walls [81], anomalous 

hysteresis loss is caused by the wall interaction with lattice inhomogeneities [95]. The 

dependence 

 

  P (t) = C
dB

dt
Ala a

3/2

m mρ       (3.12) 

 

where Ca is a constant coefficient, has been corroborated experimentally [95,99,101], and 

will be assumed here. Thus 

 

  R =
V (t)

P (t)
a

L
2

a

 

       =
N

C  l
A V (t)

3/ 2

a m m

Lρ
      (3.13) 

 

Here, Ra is a non-linear resistor. 
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3.2.2.3 Identification of Loss Coefficients 

 

The loss coefficients, Ce and Ca, are identified experimentally by the classical alternating core 

loss separation procedure [82,92,101] from the loss curves obtained either from the 

manufacturers' data sheets or by measurements with a sinusoidal flux density. 

 

The experimental set-up for measuring hysteresis loops and losses presented in chapter 2, 

section 2.2.5.1 can also be used here for alternating core loss measurement. The alternating 

core loss can be calculated from the measured excitation current is(t) and induced emf VL(t) 

by 

 

  ∫
T

0

sLc (t)dt(t)iV
T

1
=P  

       ∫
T

0

s
m dt

dt

dB
H

T

Al
=        (3.14) 

 

where 
dB

dt
=

V (t)

NA
L , Hs=Nis(t)/lm is the surface magnetic field strength, and ∫

T

0

s dt
dt

dB
H  is the 

area enclosed by the B-Hs loop. At a very low frequency, eddy currents can be ignored and 

(3.14) gives pure hysteresis loss. 

 

In the measurement, the flux density waveform should be kept sinusoidal, as required by the 

international standard of alternating core loss measurement [208]. This can be done by a 

negative feedback of the voltage across the secondary coil (flux density coil) on the ring 

sample, as illustrated in Fig.2-8. Therefore, loss contributions from higher harmonics of flux 

density, such as hysteresis losses due to minor loops and higher harmonic eddy current losses, 

are excluded, and accurate loss separation can be achieved. 

 

Fig.3-3 shows the alternating core losses of Lycore-140 0.35mm sheet (wire cut and no 

further heat treatment) measured using an annular ring sample with a sinusoidal flux density at 

different frequencies. The dimensions and parameters of the annular ring sample and the 

excitation and flux density coils were given in section 2.2.5.2, Table 2-1. 

 

Fig.3-4 illustrates the alternating core loss separation procedure at B = 0.1, 0.3, 0.5, 1.0, and 

1.3 T. The specific core loss per cycle pc/f (in W/kg/Hz) was separated into the specific 

hysteresis loss per cycle ph/f, the specific eddy current loss per cycle pe/f, and the specific 

anomalous loss per cycle pa/f, where lowercase p is used to denote average loss over a cycle. 

The specific hysteresis loss per cycle ph/f was measured at 0.5 Hz. The specific eddy current 
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loss per cycle pe/f was calculated analytically, under the assumption of sinusoidal flux density 

and thin laminations, by 

 

  p / f =
b

6
fBe

2 2

m

p
2σπ

ρ
       (3.15) 

 

where f is the magnetisation frequency, σ the conductivity, b the thickness of the steel sheet, 

and Bp the peak value of flux density. 
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 Fig.3-3 Alternating core losses of Lycore-140 measured using an annular ring sample 
  with a sinusoidal flux density at different frequencies 
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   Fig.3-4 Core loss separation of Lycore-140 
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When calculated from (3.10), 

 

  ∫
T

0 mm

e
e dt 

fAl

(t)P

T

1
=/fp

ρ
 

           = 2π2CefBp
2       (3.16) 

 

Therefore, C =
b

12
e

2

m

σ
ρ

. 

 

The specific anomalous loss per cycle pa/f was obtained by subtracting ph/f and pe/f from the 

total specific core loss per cycle pc/f. For a sinusoidal flux density, 

 

  ∫
T

0 mm

a
a dt 

fAl

(t)P

T

1
=/fp

ρ
 

           = 8.764C f Ba
1/2

p
3/ 2       (3.17) 

 

where coefficient ∫
π

ωωπ
2

0

3/2
tdt)cos(2=8.764  is corrected from 8.67 in [99]. Ca can, 

therefore, be determined by fitting the pa/f curve with (3.17). 
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For the core loss of Lycore-140 0.35mm sheet reported in Fig.3-3 and Fig.3-4, the deduced 

core loss coefficients are Ce = 0.3314×10-5, and Ca = 0.7280×10-4. The curve fitting process 

used was least squares curve fitting. 

 

 

3.2.2.4 Hysteresis Model and Differential Inductance 

 

Among the hysteresis models available, as discussed in chapter 2, the Preisach model appears 

to be the most practical one due to easy parameter identification and good accuracy. The 

normal Preisach model of magnetic hysteresis is thus employed to trace the history of 

magnetisation in the magnetic core to be modelled. 

 

When the flux densities in two consecutive time steps are obtained by the Preisach hysteresis 

model, the differential inductance can be calculated as 

 

  L(i) =
d

di
= NA

B B

i iL

m m 1

L(m) L(m 1)

λ −
−

−

−

     (3.18) 

 

where the subscript m denotes the m-th time step. 

 

 

3.2.3 Experimental Verification 

 

To confirm the validity of the proposed discrete circuit model, the current and emf waveforms 

and the core loss of the annular ring sample used in the alternating core loss measurement in 

section 3.2.2.3 were measured and simulated under sinusoidal and square wave voltage 

excitations at 100 Hz. 

 

 

3.2.3.1 Experimental Method 

 

Fig.3-5 illustrates the experimental set-up for the measurements. The annular ring was the 

same one (Lycore-140) used in the alternating core loss measurement reported in section 

3.2.2.3. The current is signal was obtained from the voltage across the resistor R1 (1.17 Ω), 

and the voltage VL in the core model was measured from the secondary coil voltage because 

the current was zero. The total core loss was calculated by (3.14). 
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Fig.3-5 Experimental set-up of annular ring example 

 

 

3.2.3.2 Calculation 

 

The equivalent circuit in Fig.3-2 was used in the simulation with R1 in series with Rw. The core 

losses were calculated by (3.9), where the hysteresis loss was calculated by the numerical 

integration of the pure hysteresis loop obtained from the normal Preisach model in chapter 2. 

 

 

3.2.3.3 Comparison of Results 

 

Fig.3-6(a) and Fig.3-7(a) show the simulated and the measured voltage and current 

waveforms under both sinusoidal and square wave excitation. Fig.3-6(b) and Fig.3-7(b) give 

the variation of the anomalous loss equivalent resistance and the differential inductance against 

time. The anomalous loss equivalent resistances in Fig.3-6(b) and Fig.3-7(b) should have 

become zero when VL=0. Due to the big change of VL about zero, very small time steps are 

required to achieve this point. For the time steps used, the Ra curves did not reach zero, 

because the exact point was not calculated. Fig.3-6(c) and Fig.3-7(c) are various B-H loops. 

Among these loops, the innermost is the pure hysteresis loop obtained by plotting B against 

H=NiL/lm. The Hyst.+Eddy Loop was obtained by plotting B against Heh=N(iL+ie)/lm, and 

the Hyst.+Eddy+Anom. Loop by plotting B against Hs=Nis/lm. The predicted outermost 

loops are quite close to the measurements. This shows the agreement between the predicted 

and the measured core losses. Table 3-1 lists the calculated and the measured core losses in 

each case. 



Chapter 3.  Dynamic Circuit Model of Magnetic Cores 

79 

 

 

Time (s)

Voltage (V)

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Current (A)

Vs (t)

VL (t)

i s (t)

Measured

Calculation

 
  Note: The ideal value of Vs used in the calculation is slightly different  
   from the actual signal due to the non-ideal characteristics of the  
   power amplifier. 

(a) 

 

 

Time (s)

0

5

10

15

20

25

30

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

L(t)

Resistance ( Ω )
Inductance (mH)

R a (t)

 

 

(b) 

 



Chapter 3.  Dynamic Circuit Model of Magnetic Cores 

80 

-1.5

-1

-0.5

0

0.5

1

1.5

-200 -100 0 100 200

B (T)

H (A/m)

Hyst.+Eddy+Anom.

Loop (Test)

Hyst.+Eddy+Anom.

Loop (Cal.)

Pure Hyst.
Loop (Cal.)

Hyst.+Eddy

Loop (Cal.)

 

(c) 

 

 Fig.3-6 Results of discrete modelling under 100 Hz sine wave voltage excitation 
  (a) comparison of voltage and current waveforms, 
  (b) time variation of anomalous loss equivalent resistance  
       and differential inductance, and 
  (c) comparison of B-H loops 
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  Note: The ideal value of Vs used in the calculation is slightly different  
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 Fig.3-7 Results of discrete modelling under 100 Hz square wave voltage excitation 
  (a) comparison of voltage and current waveforms, 
  (b) time variation of anomalous loss equivalent resistance  
       and differential inductance, and 
  (c) comparison of B-H loops 
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   Table 3-1  Comparison of calculated and measured core losses 

Excitation Pc(Cal.) (W) Pc(Test) (W) Error (%) 

Sine Wave 0.0474 0.0488 2.87 

Square Wave 0.0691 0.0726 4.82 

 

 

The time step used to achieve these results was 50 µs or 200 steps per cycle for sinusoidal 

excitation, and 10 µs or 1000 steps per cycle for square wave. A smaller time step was 

required for the second due to the sudden change in voltage. 

 

 

3.2.4 Discussion 

 

3.2.4.1 Skin Effect 

 

Although the loss coefficients Ce and Ca used to obtain the equivalent resistors in the model 

are identified from sinusoidal alternating core loss measurements, this model gives reasonable 

results for the dynamic simulation of non-sinusoidal flux densities. However, it is important to 

notice that the expression for the classical eddy current loss (3.10) neglects the reaction of 

eddy currents on the distribution of magnetic field, i.e. the magnetic flux density is assumed to 

be uniform over the cross sectional area of the lamination. This is approximately correct only 

when the lamination is effectively thin (i.e. skin depth > one lamination thickness) [206]. 

Hence, one can anticipate that this model is limited to the modelling of magnetic cores of 

effectively thin laminations. When the frequency increases, or laminations are thick, errors may 

appear. This may explain why the difference between predicted and measured results in Table 

3-1 is higher under square wave than under sine wave voltage excitation. 

 

For effectively thick laminations, the cross sectional area of a lamination sheet can be 

discretised into a few slices, or 'thin sheets', where symmetrically opposite slices are paired, as 

illustrated in Fig.3-8. The flux density can be considered uniform in each slice, but the field 

couples with other slices, which can be accounted for by mutual inductance. The discrete 

transform technique can be easily applied to networks with mutual inductance [203]. The 

losses occurring in each pair of slices can be calculated with the method outlined in the 

preceding sections. Thus the discrete model can be extended to include cores with thick 

laminations. 
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Fig.3-8  Subdivision of an effectively thick lamination 

 

 

3.2.4.2 Eddy Current Loss Models 

 

As discussed in section 3.2.2.2, the eddy current losses are classified as the classical eddy 

current loss and the anomalous eddy current loss. This is not the true representation of what 

happens during the magnetisation of the materials. The eddy currents are induced in the 

magnetisation process by the movement of magnetic domain walls [3,81-103]. Fig.3-9 

illustrates the eddy current paths with and without the presence of domain walls. Hence, it is 

obvious that the actual eddy current loss is different from that calculated by the classical 

method, which does not consider the domain wall motion effects. Although great efforts have 

been made to calculate the eddy current losses in ferromagnetic cores with domain wall motion 

effects included [81,87,88,94,95,99], there has only been limited success because of the 

complexity of domain patterns and domain wall movements. Equations (3.10) and (3.12) 

provide a relatively simple and approximate approach based on the macroscopic measurement 

with reasonable precision [95,99]. To build a unified model of eddy current losses, a much 

better understanding of the mechanisms is still required. 

 

 

3.2.4.3 Computing Time and Precision 

 

For applications of the model in the analysis and design of electrical and electronic systems 

containing electromagnetic devices, the computing time to achieve a precision which is 

acceptable in practice has to be kept as short as possible. 

 

Due to its simplicity, the discrete circuit model is fast. The results in this section have shown 

that this model is sufficiently precise for most engineering purposes. 
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Fig.3-9 Eddy currents, (a) classical model, and (b) domain model 

 

 

The discrete transform technique reported in [203,204] was used to develop the discrete 

model for the core material. This transform has been compared with other numerical methods 

and has been shown to offer advantages which include: unconditional stability, good efficiency 

and accuracy, similarity with Laplace transforms, and ease of handling non-linearities. For the 

modelling of hysteresis loops, the Preisach theory presented in chapter 2 was incorporated 

into the circuit model. Although constant time steps were used in the present simulations, a 

further reduction in computing time could have been achieved if the variable-time-step 

technique [205] was employed. 
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3.3 A GENERALISED DYNAMIC CIRCUIT MODEL  

 OF MAGNETIC CORES 

 

As pointed out in section 3.2.4.1, the dynamic circuit model outlined in section 3.2 is limited to 

magnetic cores of effectively thin laminations because the skin effect is not considered. For 

high frequency operation, the cross sectional area of the core lamination should be divided into 

a number of paired slices to account for the non-uniform distribution of flux density due to the 

eddy current reaction or the skin effect. In this section, the equivalent circuit model is extended 

into a flexible ladder network model of magnetic cores for both low and high frequency 

operation taking the skin effect into consideration. The number of ladder network stages is 

determined by the size of the core, the excitation frequency, and the resistivity and 

permeability. In fact, it will be shown that even for low frequency operation, a ladder network 

can provide better accuracy than the single-stage circuit. 

 

 

3.3.1  Ladder Network Model of Magnetic Cores 

 

Cross sections of laminated and solid magnetic cores can be divided into a few segments for 

magnetic circuit analysis. To calculate eddy currents, eddy current paths and their associated 

magnetic flux paths are assumed in each segment, as shown in Fig.3-10. 
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Fig.3-10  Cross section of a solid magnetic core with assumed eddy current paths 

 

 

These eddy current paths are divided so that the reaction of eddy currents on the distribution 

of flux density is negligible, that is, the flux density in each path is assumed uniform. In general, 

assume that there are n eddy current loops in the core. The generalised circuit equations are 
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Coil: 

  
R

N
(Ni ) +

d( + +  ...  + )

dt
=

V

N
w

2 s
1 2 n sΦ Φ Φ

    (3.19) 

 

Core: 

  R i +
d( + +  ... + )

dt
= 0n n

1 2 nΦ Φ Φ
     (3.20) 

  ...... 

 

  R i +
d( + )

dt
= 02 2

1 2Φ Φ
      (3.21) 

  R i +
d

dt
= 01 1

1Φ
       (3.22) 

 

where Rw is the winding AC resistance, N the number of turns of the winding, is the current in 

the winding, Φk (k=1,2,...,n) the flux within each path, Vs the terminal voltage across the 

winding, and Rk (k=1,2,...,n) the equivalent resistance of each assumed eddy current path 

representing eddy current and anomalous losses. 

 

The generalised set of equations (3.19-3.22) can be represented as an equivalent circuit in the 

form of a ladder network as shown in Fig.3-11. 
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Fig.3-11  Equivalent circuit of a generalised magnetic core model 
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3.3.2 Discrete Mathematical Description of Dynamic Magnetic Core Model 

 

In terms of the mesh currents, these circuit equations can be written in matrix form as 
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(3.23a) 

 

where R ' =
R (R / N )

(R / N ) +R
n

n w
2
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n , or in a symbolic matrix form 

as 

  [ ][ ] [ ]V
dt

di

di

d
iR =









+ '

'

F
'               (3.23b) 

 

The relationship between the assumed eddy currents ik (k=1,2,...,n) in Fig.3-11 and the mesh 

currents ik' (k=1,2,...,n) in the ladder network (Fig.3-12) is as follows 
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    (3.24) 

 

Equations (3.23) and (3.24) give the mathematical description of the generalised magnetic 

core model in a continuous form. In the ladder network, while resistor Rk represents the core 

loss equivalent resistance in the k-th eddy current path, the hysteresis effects can be included 

in the 
d

di '
k

k

Φ
 terms in equation (3.23).  

 

For computer simulation, a discrete circuit model is derived using the TLM-based discrete 

transform technique [203,204]. First, 
d

di '
k

k

Φ
 is replaced by the corresponding differential 

inductance L(ik') in the k-th loop, where 
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  L(i ' ) =
d

di '
k

k

k

Φ
        (3.25) 

 

These differential inductances at any time instant are determined by the normal Preisach model 

of hysteresis as described in chapter 2. Second, express the 
di '

dt
k  (k=1,2,...,n) terms in (3.23) 

as 

 

  
di '

dt
= V = Z i ' +2Vk

U
k

U k U
i 'k   (k=1,2,...,n)   (3.26) 

 

using the TLM-based discrete transform technique, where ZU = 2/Tp, Tp the propagation time 

(which equals the time step used in the numerical solution), VU
i 'k  is the incident voltage pulse on 

inductor L(ik') used in the TLM method, and VU
k  is equal to the magnitude of dik'/dt or 

numerically the voltage across an inductor of 1 Henry with the same dik'/dt. 

 

Hence, using equations (3.25) and (3.26), matrix equation (3.23) can be rewritten as 
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(3.27a) 

or 

  [Z][i'] = [Vi']                (3.27b) 

 

where L(ik') (k=1,2,...,n), are non-ideal differential inductors when magnetic hysteresis is 

considered and [Vi'] is the voltage vector containing the incident pulses. Equation (3.27) is the 

generalised discrete-time model of magnetic cores and is suitable for direct implementation on 

digital computers. 

 

At the beginning of each time stepping procedure, incident pulses VU
i 'k  and the instantaneous 

differential inductances L(ik') calculated from the ik' (k=1,2,...n) in the previous time step are 

substituted into (3.27) in order to determine the new current vector [i']. The differential 

inductances L(ik') can then be updated according to the new ik' and the history of 

magnetisation using the Preisach theory. 
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According to the TLM discrete transform, it can be shown that the incident pulses for the next 

time step can be obtained as follows: 

 

  V =  Z i ' +VU(m+1)

i '

U k (m) U(m)

i 'k k−       (3.28) 

 

where ik' = i1', i2',..., and in', and the bracketed subscripts (m) and (m+1) denote the m-th and 

(m+1)-th time steps, respectively. From (3.27) and (3.28), it can be seen that the discrete 

algorithms of the dynamic core model are recursive, and that the discrete transform technique 

allows simple discrete circuit formulation, and easy handling of non-linearities. Therefore, a 

non-linear magnetic core can be modelled by a tridiagonal system of non-linear algebraic 

equations which can be easily solved. 

 

 

3.3.3 A Criterion for the Size of the Ladder Network  

 for Low and High Frequency Applications 

 

For solid or laminated cores, the flux distribution within the core becomes less uniform as the 

operating frequency increases. The number of stages of the ladder network (which represents 

the number of assumed eddy current paths) depends on the operating frequency, conductivity 

and permeability of the core materials. Generally, the width of each eddy current path (we) 

should be smaller than the skin depth δ at the fundamental excitation frequency f, i.e. 

 

  w   =
2

e

r o

≤ δ
σωµ µ

       (3.29) 

 

where σ is the conductivity, ω=2πf the angular frequency, µo=4π×10
-7

 the permeability of a 

vacuum in SI units, and µr the relative permeability. Equation (3.29) shows that the skin depth 

decreases with increasing frequency. Thus more stages are required in the ladder network for 

a high frequency model. For low frequency applications, the flux distribution within the core is 

fairly uniform so that only one or two eddy current paths are required. The generalised model 

reduces to the low frequency model developed in section 3.2 when only one stage of the 

ladder network is used. However, it should be noted that (3.29) gives the minimum criterion in 

choosing the size (i.e. the number of stages) of the ladder network. In general, a larger ladder 

network would give more accurate results. 
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3.3.4 Core Losses and Circuit Parameters  

 

3.3.4.1 Approximate Eddy Current Distribution in a Thick Lamination Sheet 

 

Figs.3-12(a) and (b) show the cross section of a thick lamination sheet of length lz, thickness b 

and width a. The applied magnetic field is in the Z direction. If a>>b>>δ and lz>>b>>δ, 

where δ is the skin depth of the fundamental excitation of frequency f, the reaction of the eddy 

currents on the distribution of magnetic field can not be neglected. When the cross section is 

divided into several slice pairs (Fig.3-12(b)), the flux density in each slice pair can however be 

considered as uniformly distributed. 
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  Fig.3-12 Diagram of a cross section of a thick lamination sheet 
   (a) with assumed eddy current paths shown 
   (b) with typical slice pair shown 
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In the k-th slice pair, let the flux density be 

 

  Bk = Bzk k        (3.30) 

 

where the bold symbols denote that they are vectors, k is the unity vector in the z direction in 

Fig.3-12, subscript k refers to the k-th slice pair (k=1,2,...,n), and the subscript z refers to the 

Z component. Since a>>b, the eddy current density in the k-th slice pair is 

 

  Jk = Jxk i        (3.31) 

 

where the subscript x denotes the X component, and i is the unity vector in the X direction in 

Fig.3-12. 

 

Substituting (3.30) and (3.31) into 

 

  J = σE         (3.32) 

and 

  ∇ × − ∂
∂

E
B

=
t

        (3.33) 

 

where E is electric field strength, one obtains 
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∂
∂ σ        (3.34) 

 

where the index k=1,2,...,n. 

 

From (3.34), 
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where Jk and Jk-1 are the eddy current densities at y=yk and y=yk-1 respectively. 

 

Therefore, 
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where 
k

z

dt

dB







 is assumed to be independent of y in the k-th slice pair and ∆y = yk-yk-1. 

 

 

3.3.4.2 Classical Eddy Current Loss 

 

The classical eddy current loss in the k-th slice pair Pek can be expressed as the resistive loss 

of the eddy current path in the k-th slice pair. Since the classical eddy current loss P =
1

Je
2

σ
 

per unit volume, the instantaneous power loss Pek is 
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From (3.34), we have 
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Therefore, 
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Resistance in the current paths along the Y axis is ignored because the thickness b is assumed 

to be very small when compared with width a and length lz. From (3.35), one obtains 
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Therefore, the classical eddy current loss in the k-th slice pair becomes 
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is a correction factor which takes into account the variation of eddy current density Jx with y. If 

current densities are assumed to be uniform, i.e. Jk=Jk-1, rJk becomes one. 

 

 

3.3.4.3 Consideration of Anomalous Loss 

 

It has been pointed out in section 3.2 that the eddy current loss Pe and the anomalous loss Pa 

expressions (in W/kg) in a thin sheet are given by 
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where Ce and Ca are the coefficients of the classical eddy current loss and the anomalous loss 

respectively, and B is assumed uniform within the depth. The sum of the classical eddy current 

loss and the anomalous loss is 
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where 

  r = 1+
C

C
dB

dt

c
a

e
z

       (3.46) 

 

is a correction factor if the anomalous loss (the effects of domain wall movement) is included in 

the calculation of the eddy current loss. 

 

Therefore, the sum of the eddy current and anomalous losses in the k-th slice pair Peak from 

(3.41) is 
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where 

  r =1+
C

C
dB

dt

ck
a

e
z

k

 

 

is the correction factor for the k-th slice pair. For the time instant at which 
dB

dt
= 0z

k

, Peak=0, 

and rck approaches infinity. Numerically, a large number, for example 1020, is assigned to rck 

in this case. 

 

 

3.3.4.4 Equivalent Core Loss Resistance 

 

Since a>>b, the induced emf Vk in the k-th slice pair at y=yk is 

 

  Vk = 2aEk        (3.48) 

 

Since Jk = σEk, then 

 

  V =
2a

Jk kσ
        (3.49) 

 

for the k-th slice pair. 
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Because the equivalent resistance for the eddy current and anomalous losses is in parallel with 

the differential inductance in the model (Fig.3-11), the equivalent core loss resistance Rk for 

the k-th slice pair can be calculated by 

 

  R =
V

P
k

k
2

eak

        (3.50) 

 

Thus, from (3.47) and (3.49), one obtains 

 

  

ckJk

2

k
z

2

k

k

rrJ
y2al

J
2a

=R







 ∆








σ

σ
 

 

         
ckJk

z

rr

yl

2a

=






∆σ

 

 

         =
R

r r
DCk

Jk ck

        (3.51) 

 

where R =
2a

l y
DCk

zσ ∆
 is the DC resistance of the k-th slice pair. 

 

The DC resistance RDCk changes to 
R

r
DCk

Jk

 if the eddy current density variation is considered. 

The resistance expression changes to the form in (3.51) if the anomalous loss is also included. 

 

Equation (3.51) provides a simple general expression for the equivalent eddy current and 

anomalous loss resistance for each eddy current loop in the magnetic core. It is important to 

note that Rk is expressed in terms of the DC resistance which can be easily determined. 

 

The coefficients of the classical eddy current and anomalous losses used in (3.46) for 

correction factor rc can be obtained by the alternating core loss separation procedure 

described in section 3.2.2.3. 
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3.3.4.5 Hysteresis and Differential Inductance 

 

The normal Preisach model of magnetic hysteresis outlined in chapter 2 is used to trace the 

history of magnetisation in each slice pair in the magnetic core. At a time instant, the mesh 

currents ik', (k=1,2,...,n), can be obtained by solving the tridiagonal non-linear algebraic 

equation system (3.27). The magnetic field strength in the k-th segment of the magnetic core 

can be calculated by 

 

  H =
i '

l
k(m)

k (m)

z

        (3.52) 

 

where bracketed subscript (m) denotes the m-th time step. The magnetic flux density in the k-

th segment of the magnetic core for the m-th time step Bk(m) can then be determined 

according to the magnetic field strength Hk(m) and the previous magnetisation state (Hk(m-1), 

Bk(m-1)) by the normal Preisach model. 

 

When the flux densities in each segment in two consecutive time steps are obtained, the 

differential inductance in the k-th segment can be calculated as following 
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where Ak is the cross sectional area of the k-th segment. 

 

When the effect of hysteresis is considered, the differential inductance L(ik') is non-ideal. The 

average hysteresis loss dissipated in the k-th inductor can be calculated by 
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The total average hysteresis loss Ph is therefore equal to 
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3.3.4.6 Total Core Loss Calculation in the Ladder Network Model 

 

The general core loss expression of the magnetic core model can be described, based on the 

law of energy conservation, as 

 

 ( ) ∑ ∫∑ ∫∫ 
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   = Pea + Ph       (3.56) 

 

where VRn = Vs/N − Rw(Nis) is the voltage across resistor Rn, and Pea and Ph are the sum of 

the eddy current and anomalous losses and the hysteresis loss, respectively. The term on the 

left hand side of (3.56) is the total power fed into the core loss model (i.e. total input power 

less the copper loss of the winding). The first term on the right hand side of (3.56) is sum of 

the classical eddy current and anomalous losses, and the second term on the right hand side is 

the total hysteresis loss dissipated in the non-ideal inductors L(ik'), (k=1,2,...n), for an n-stage 

ladder network. 

 

 

3.3.5 Software Implementation 

 

Fig.3-13 shows the flow chart of the operation of the magnetic core model. The program can 

be used to run the core model routine Nc times. A user chosen Ns points can be obtained 

within each switching period. A variable time step TLM technique [205] can be selected in the 

routine so that any non-linear excitation waveforms with transients can be incorporated without 

losing transient information. This is particularly important in the study of magnetic core 

behaviour in many modern switched mode power supplies because the excitation waveforms 

are normally highly non-sinusoidal with rapidly changing edges. 

 

 

3.3.6 Experimental Verification 

 

3.3.6.1 Annular Ring of Silicon Iron with Square Wave Voltage Excitation 

 

The experimental apparatus shown in Fig.3-5 was again used for measuring the response of an 

annular ring of silicon iron Lycore-140 0.35mm laminations under square wave voltage 

excitation at 1 kHz. The dimensions and winding parameters of the ring inductor were given in 

chapter 2, section 2.2.5.2, Table 2-1. 
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Fig.3-13  Flow chart of dynamic circuit model calculation 
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(1) Simulation with width of eddy current path larger than skin depth 

 

Fig.3-14 shows the simulated and measured results of Lycore-140 core at 1 kHz excitation, 

assuming only one eddy current loop. At this frequency, the skin depth (δ) for the core is 

0.134 mm. The width of each lamination in the core is 0.35 mm, giving the width of each eddy 

current path (we) to be 0.175 mm. This means that the condition set in (3.29) is not satisfied. 

It can be seen that the calculated excitation current is lower and flatter than measured. The 

calculated specific core loss per Hertz is 0.036 W/kg/Hz, and the measured core loss was 

0.0336 W/kg/Hz. The percentage error is 7.2%. This inaccuracy can be attributed to the 

reaction of eddy currents on the distribution of flux density in the core as discussed in section 

3.2.4.1. 
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  Fig.3-14 Simulated and measured results of Lycore-140 ring sample  
   at 1 kHz with a one-stage ladder network model 

 

 

(2) Simulation with width of eddy current path smaller than skin depth 

 

Applying the condition set in (3.29), the cross section of the core is divided into two layers of 

eddy current paths, resulting in the width of each layer being 0.0875 mm. The width of the 

eddy current path (we) is now smaller than the skin depth (δ). The core model with two 

assumed eddy current paths is represented by a two-stage ladder network (i.e. n=2). Fig.3-15 

shows the simulated results using a two-stage ladder network. The simulated current has better 

agreement with the measured excitation current than that in Fig.3-14. The calculated specific 

core loss per Hertz is 0.0346 W/kg/Hz, and the percentage error is reduced to 2.98%. 
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  Fig.3-15 Simulated and measured results of Lycore-140 ring sample  
   at 1kHz with a two-stage ladder network model 

 

 

3.3.6.2 A Ferrite Toroid in a Switching Circuit 

 

A Siemens/Matsushita N47 soft ferrite R16 toroid core with high frequency excitation 

(provided by a switching circuit as shown in Fig.3-16) was also simulated. The dimensions and 

parameters of the core and the excitation and flux density coils were given in chapter 2, section 

2.2.5.3, Table 2-3. 

 

 

 

Fig.3-16  Schematic of a high frequency switching circuit 

 

 

For the measurements of voltage and current in high frequency switching mode, a 

YOKOGAWA DL-1200A 4 channel digital oscilloscope was used. The sampling frequency 

of the oscilloscope is 100 MHz. Because the reactance of the winding is much higher than the 
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resistance, there was hardly any difference between the measured signals of Vs and VL. 

Therefore, VL was not compared with the simulation. The current signal in the primary winding 

was picked up by a Tektronix current probe, PS042. The bandwidth of the current probe is 

from DC to 50 MHz. 

 

The AC resistance of the winding Rw is higher than the DC resistance, since the skin effect and 

the proximity effect [4] in the wire are significant when the switching frequency is high. The 

winding in this example was constructed with thin (diameter = 0.2 mm) wire, with only a few 

turns, so the difference between the DC resistance and the AC resistance at the frequency 

used was ignored. 

 

The magnetisation of ferrites is very sensitive to the ambient temperature [4,207]. In order to 

account for this effect, various hysteresis loops at different temperatures should be 

incorporated in the model. In this example, the limiting hysteresis loop used in the simulation 

was measured immediately after the switching mode measurements, and reported in chapter 2, 

Fig.2-12. Hence, the temperature effect was not specially treated. 

 

For identification of core loss coefficients, an alternating core loss separation procedure 

described in section 3.2.2.3 was performed on the specific core loss per Hertz of N47 ferrite 

obtained from the manufacturer's data sheet. Fig.3-17 shows the specific core loss at different 

frequencies provided by the manufacturer [207]. Fig.3-18 depicts the specific hysteresis loss 

per cycle measured at 1 Hz using the testing system reported in chapter 2, section 2.2.5.1, 

Fig.2-8. The alternating core loss separation is illustrated in Fig.3-19 for flux density B=0.025, 

0.05, and 0.1 T. For N47 soft ferrite, the deduced core loss coefficients are Ce= 9.12×10-10, 

and Ca=7.53×10-7 SI units. 

 

Fig.3-20 shows the simulated and measured current waveforms and the B-H loops of the core 

at 100 kHz switching frequency. The cross section of the core was divided into five paths. The 

time step was 50 ns or 200 steps/cycle. The calculated specific core loss per Hz, 

corresponding to the area enclosed by the calculated B-H loop in Fig.3-20(b), is 2.592×10-3 

W/kg/Hz, and the measured specific core loss, corresponding to the area enclosed by the 

measured B-H loop in Fig.3-20(b), is 2.566×10-3 W/kg/Hz. The percentage error is about 

1%. 
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Fig.3-17  Core loss of N47 ferrite at different frequencies (from [207]) 
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Fig.3-18  Alternating hysteresis loss of N47 soft ferrite measured at 1 Hz 
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Fig.3-19  Core loss separation of N47 soft ferrite for (a) B=0.025 T, (b) B=0.05 T, and (c) B=0.1 T 
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           (b) 

   Fig.3-20 Comparison of simulated and measured  
    (a) current waveforms and (b) B-H loops 

 

 

3.4 CONCLUSION 

 

The dynamic discrete circuit model proposed in section 3.2 takes magnetic non-linearity and 

all kinds of core losses into consideration and has shown satisfactory accuracy. Since the 

Preisach model is used to keep trace of the magnetisation process, this model can simulate the 

performance of a magnetic core under arbitrary excitation. The discrete transform technique 
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provides a simple, fast, and accurate means for non-linear transient analysis. This model is 

limited to simulations of magnetic cores which are effectively thin at the excitation frequency. 

 

A generalised dynamic discrete circuit model of magnetic cores for both low and high 

frequency applications was presented in section 3.3. Skin effect was included by using a 

ladder network. This model reduces to the simple model for low frequency applications 

outlined in section 3.2, when only one stage of the ladder network is used. The criterion for 

choosing the number of stages of the ladder network was we<δ. 

 

The non-linear B-H loop and the hysteresis loss were incorporated in the distributed non-ideal 

inductors, and calculated by the normal Preisach model of hysteresis. The classical eddy 

current and anomalous losses were included in the distributed non-linear resistors based on an 

approximate analysis of the magnetic field and eddy current distribution. A new expression for 

the effective core loss resistance, which includes both the classical eddy current and 

anomalous losses, was derived and explained. 

 

All information required for identifying the model parameters, such as limiting hysteresis loop 

and specific core losses with sinusoidal flux densities at different frequencies, can be obtained 

from the manufacturers' data sheets or through simple measurements. 

 

The anomalous loss coefficient used in the identification of effective resistors was determined 

by a standard alternating core loss separation procedure. This procedure was illustrated for 

two different magnetic materials. Although the core loss coefficients were identified from the 

core loss curves measured with a sinusoidal flux density, they could be used to evaluate the 

core losses with non-sinusoidal flux densities. 

 

The discrete transform technique together with the Preisach hysteresis model provides a useful 

means to handle hysteresis non-linearity. The resultant tridiagonal non-linear algebraic equation 

system features easy programming and fast computation. Comparisons of the simulations with 

the experimental results for two types of magnetic cores and at different frequencies confirmed 

the accuracy of the generalised model. 



CHAPTER 4. A REVIEW OF ROTATIONAL CORE LOSS  

   MEASUREMENT AND MODELLING 

 

 

4.1 INTRODUCTION 

 

Rotational core loss is the power dissipated in a magnetic core subjected to a rotating 

magnetic field, including rotational hysteresis, eddy current, and anomalous losses. Practically, 

it occurs in the regions of electrical machines where the direction of magnetic flux varies in the 

plane of laminations, such as the T joints of a three phase transformer and the stator yoke of a 

rotating electrical machine. 

 

In a rotating machine stator core, it can account for up to 50% of the total core loss [119]. It 

would be very advantageous if the rotational core loss is considered properly in electrical 

machine design. For various reasons, however, the study in this area is still at an early stage, 

although a considerable amount of work has been done [119-196]. So far, the techniques for 

measuring rotational core loss have not been fully developed, and there is no model bearing a 

strong physical background for predicting the core losses with practical accuracy, since the 

mechanisms of rotational core losses have not been well understood. 

 

For core loss analysis in rotating electrical machines, models for alternating core losses are 

generally used. When the magnetic flux density waveforms in all motor core parts are assumed 

sinusoidal, the loss values obtained by this procedure are always lower than the experimental 

ones, from 20 to 50% in standard motors operating at 50 or 60 Hz, and even more in motors 

operating at higher frequencies [192]. Since 1991, a phenomenological approach generalised 

directly from the corresponding model for alternating core losses has been employed by 

several researchers for rotational core loss analysis in rotating electrical machines, but the 

comparison between the theoretical and experimental results showed that further improvement 

was required [192-196]. 

 

In this chapter, a literature survey on rotational core loss measurement and modelling is 

reported. Section 4.2 is a review of the development of measuring techniques and apparatus in 

the last hundred years, including the measuring techniques of magnetic field and flux density, 

evaluation of rotational core loss, and rotational core loss testers, while the important results of 

measurement, understanding, and modelling of rotational core losses in electrical sheet steels 

are discussed in section 4.3. In section 4.4, the current status of core loss modelling in rotating 

electrical machines is presented. 
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4.2 DEVELOPMENT OF TECHNIQUES AND APPARATUS FOR  

 ROTATIONAL CORE LOSS MEASUREMENT 

 

The first experimental work upon the hysteresis of ferromagnetic materials in a rotating 

magnetic field was carried out by Ferraris in 1888, but he was not able to measure the 

hysteresis loss because of his rough apparatus. The rotational hysteresis loss was first 

quantitatively determined by Baily in 1896 [120]. Fig.4-1 illustrates the apparatus used by 

Baily. The specimen was made up of a stack of laminations. The magnetic field was generated 

by an electromagnet, which could rotate around the specimen. The power loss was measured 

via the torque which is proportional to the angle of rotation of the specimen. 

 

Since then, in the last a hundred years, various measuring techniques and systems have been 

developed [121-180]. Mainly, they fall into two categories: 

 

 (1) rotating a disk sample in a static magnetic field [125-134]; 

 (2) rotating the magnetic field while keeping the sample stationary 

      [120,135-180]. 

 

 

 

 
 

Fig.4-1 Rotational hysteresis measuring apparatus used by Baily (from [120]) 
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In the second category, the sample can be a disk [137,162,170] (or a stack of disks 

[120,147,168,179]), a stack of annular rings [146], a cross [136,139-142,170], an Epstein 

strip [145,164,170], a square [138,143,144,148-157,160,161,163,165-167,169-

173,177,178,180] (or a stack of squares [135]), or a large sheet [158,159,169,174,175]. 

 

In core loss testers, magnetic field strength H and flux density B are two basic quantities to be 

measured. Generally, there are four methods available: the magnetisation current method 

[3,123,135,137,139,174,208], the sensing coil method [3,125-132,135-152,155-157,160-

165,167-173,176-181,210,211], the Hall element method [3,133,134], and the B tip method 

[136,143,144,152,166,209-211]. 

 

As to the power loss evaluation, four methods have been used. They are the torque-metric 

method [120,125-127,130,131,146], the thermometric method [135,137,138,140, 

141,146,147,168,170,181], the field-metric method [128,129,132-134,136,142-145,147-

149,151,152,155,157,161,163-166,168-176,178,180], and the watt-metric method 

[139,174]. 

 

 

4.2.1 Measuring Techniques for Magnetic Field Strength and Flux Density 

 

4.2.1.1 Magnetisation Current Method 

 

When the magnetic circuit of a core loss tester satisfies the following conditions: 

 

(1) the magnetic flux path inside the sample is well defined, 

(2) there are no dissipative processes outside the sample, and 

(3) there is no magnetic potential drop outside the sample, then 

 

the magnetic field strength H can be determined from the magnetisation current I by applying 

Ampere's law: 

 

  H = 
NI

lm
         (4.1) 

 

where N is the number of turns of the excitation winding, and lm the mean length of magnetic 

flux path. 
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This method is widely used in apparatus for alternating core loss measurement, such as annular 

rings, Epstein frames, and single sheet testers [208]. If used in rotational core loss testers, 

however, this method is not accurate, since the magnetic flux paths in the specimen are vague 

[174]. 

 

 

4.2.1.2 Sensing Coil Method 

 

(1) Conventional H Coil 

 

The tangential component of magnetic field strength at the specimen surface can be measured 

by a thin search coil placed on the surface, as illustrated in Fig.4-2. When the magnetic field is 

parallel to the surface of the specimen, the magnetic field strength can be calculated by 

 

  H = 
1

µoKH

⌡⌠VHdt       (4.2) 

 

where µo=4π×10-7 is the permeability of a vacuum, KH the coil coefficient determined by 

calibration, and VH the terminal voltage of the H sensing coil. 

 

 

(a)

H coil

Specimen

(b) (c)

Hx coil

Hy coil

Hx coil

 

Fig.4-2 (a) One dimensional H coil, (b) two dimensional H coil, and (c) position of H coil. 

 

 

This method is commonly used in both alternating and rotational core loss testers, and can 

yield accurate results if the magnetic field on the specimen surface is uniform. In square 

specimen rotational core loss testers with horizontal yokes, however, the magnetic field varies 

significantly with the distance between the specimen surface and the H coils, as observed by 

several researchers [149,153,154,180,211]. In order to reduce error, the sensing coils must 

be made extremely thin and installed as close to the specimen surface as possible, but this is 

often very difficult. 
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(2) Two H Coil Arrangement 

 

To reduce the error caused by the variation of magnetic field with the distance above the 

specimen surface, a two H coil arrangement, as shown in Fig.4-3, can be used [164,212]. The 

magnetic field strength at the specimen surface can be calculated by 

 

  H = 
d2H1-d1H2

d2-d1

       

 (4.3) 

 

where H1 and H2 are the magnetic field strength measured by H coil #1 and #2, d1 and d2 the 

distances of two H coils away from the specimen surface. 

 

 

d2
d1 Specimen

H coil #1

H coil #2

 

Fig.4-3 Two H coil arrangement 

 

 

Both numerical analysis [149,153,154] and experimental measurement [164,180] have shown 

that the linear extrapolation of (4.3) is a reasonable approximation, when two H coils are 

placed not far away from the specimen. 

 

 

(3) The Rogowski-Chattock Coil 

 

Another choice of higher accuracy than the conventional H coil is the Rogowski-Chattock coil 

(also known as magnetic potentiometer) [3,148,210,211], as depicted in Fig.4-4, the principle 

of which is based on the existence of the scalar magnetic potential Vm in the absence of 

currents. The magnetic potential difference between two points A and B can be determined by 

 

  VmA-VmB = ⌡⌠
C1

H•dl  

       = ⌡⌠
C2

H•dl       (4.4) 
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Specimen

AB
l

A BC1

C2
Rogowski-
Chattock coil

 

Fig.4-4 The Rogowski-Chattock coil (magnetic potentiometer) 

 

 

If the magnetic field is uniform between point A and B, the line integral of H along path C1 can 

be calculated as 

 

  ⌡⌠
C1

H•dl = H lAB        (4.5) 

 

where lAB is the distance between point A and B. When the magnetic field varies with time, the 

induced terminal voltage of the coil is 

 

  VH = 
dλ
dt

  

        = µoAHn 
d

dt
 ⌡⌠
C2

H•dl       (4.6) 

 

where λ is the total flux linkage, AH the cross sectional area, and n the number of turns per unit 

length of the coil. Substituting (4.4) and (4.5) into (4.6) yields 

 

  VH = µoAHn 
d(H lAB)

dt
 

        = µoKH 
dH

dt
       (4.7) 

 

where KH = AHnlAB is the coil coefficient, which can be determined by calibration. Therefore, 

the magnetic field on the specimen surface can also be obtained by the time integral of VH. 
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Because both ends of the coil can be installed very close to the specimen surface, correct H 

can be detected, and higher sensitivity can be achieved by a larger coil coefficient KH, which is 

proportional to the number of turns per unit length of the coil. 

 

 

(4) B Coils 

 

Magnetic flux density in core loss testers can also be measured by sensing coils [3,125-

132,135,137-151,155-157,160-165,167-173,176-181]. When magnetic flux density is 

uniformly distributed over the cross section of a sample, the sensing coil can be wound around 

the whole sample, as illustrated in Fig.4-5(a). If the flux density is non-uniform over the cross 

section of a sample, the sensing coil can then be threaded through small holes at the position of 

interest, as shown in Fig.4-5(b). The magnetic flux density in the sample is calculated by 

 

  B = 
1

NAB

⌡⌠VBdt       (4.8) 

 

where N is the number of turns, AB the cross sectional area, and VB the induced terminal 

voltage of the B coil. 

 

This method gives accurate results, but it is not advantageous when a great number of 

specimens are to be measured. 

 

 

By
Coil Bx

Coil
By
Coil

Bx
Coil

(a) (b)

Specimen with
uniform B Specimen with

non-uniform B

 

Fig.4-5 B coil settings for specimens with (a) uniform B, and (b) non-uniform B 
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4.2.1.3 Hall Elements 

 

This method makes use of the Hall effect, which occurs in any conductor carrying a current in 

the presence of a transverse magnetic field. In semiconductors, this effect is much larger than in 

metals. If there is a current i in a plate-shaped semiconductor, as shown in Fig.4-6, then two 

opposite points a and b will be at the same potential in the absence of a magnetic field. When 

a field H acts at right angles to the plate, the current path is distorted, and an emf eH is 

developed between a and b. The magnitude of this Hall emf is proportional to the product of 

the current and the field, and hence, the magnetic field strength can be determined as 

 

  H = 
eH t

RH i
        (4.9) 

 

where t is the thickness of the plate, and RH, the Hall constant, which is a property of the 

material. 

 

 

Fig.4-6 Relationship between magnetic field, current, and emf in the Hall effect 

 

 

Because of the difficulties of installation, this method is not commonly used in rotational core 

loss testers, except the one using a rotating disk sample developed by Flanders in 1985 

[133,134]. 

 

 

4.2.1.4 B Tips  

 

This method was first developed by Werner in 1949 [209], and used for rotational core loss 

measurement by Kaplan in 1961 [136,210], Brix in 1983 [143,144], and Sievert in 1990 

[152,166]. 
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As illustrated in Fig.4-7, the induced electromotive force V is measured between two needle 

tips placed a certain distance apart in contact with the specimen surface. If the specimen is a 

thin lamination, by Maxwell's equations, the measured voltage can be approximately calculated 

by 

 

  V = 
bd

2
 
dBy

dt
  (d << b)     (4.10) 

 

where d is the thickness of the sample, b the distance between two potential tips, and By the 

Y component of magnetic flux density in the specimen. Therefore, 

 

  By = 
2

bd
 ⌡⌠Vdt        (4.11) 

 

 

 
 

Fig.4-7 Principle of measuring one component of B using tips (from [143]) 

 

 

Compared with the B sensing coils, B tips are more suitable for batch measurements, but 

limited to conducting materials. Essentially, this method is equivalent to a one turn search coil. 

In practical measurement, high quality preamplifiers are required, since the voltage signal 

obtained from the tips is very weak. It is also very difficult to exclude stray fluxes through the 

air, which may become significant when the specimen size is small. Therefore, the sensitivity of 

this method is lower than that of the B search coil. 
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4.2.2 Methods for Measuring Rotational Core Loss 

 

4.2.2.1 Torque-metric Method 

 

This method is usually used in apparatus using disk or ring samples, as will be described in 

section 4.2.3.1. The torque due to rotational core loss occurring in the sample is measured by 

using mechanical torque meters [120,125-127,130,146], or calculated from the variation of 

sample angular speed [131]. 

 

The advantages of this method are the direct reading of the torque corresponding to rotational 

core loss from the torque meter, and the ability to measure rotational core loss with high flux 

density. 

 

The disadvantage is the difficulty of torque meter construction owing to the complicated 

mechanics. 

 

 

4.2.2.2 Thermometric Method 

 

In the thermometric method, the temperature of the sample is determined by thermocouples, 

thermistors, or thermoviewers [135,137,138,140,141,146,147,168,170, 171]. The rotational 

core loss is proportional to the initial rate of the sample temperature rise if no cooling process 

is involved, namely, 

 

  Pr = C 
dθ
dt

        (4.12) 

 

where Pr is the specific rotational core loss in W/kg, C the specific heat of the sample material, 

θ the temperature of the sample, and t the time instant. 

 

This is a very versatile method, which has been widely used in apparatus using various types of 

samples, such as disc [137,147,168], ring [146], cross [140,141], and square [135,138], 

with various types of rotating magnetic field. It is also able to measure localised core loss at the 

T joints of a 3-phase transformer core [170,181]. 

 

The major short-comings of this method are the difficulties of installation and calibration of 

thermosensors, and isolation against the surrounding. It is, therefore, being more and more 

replaced by the field-metric method. 
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4.2.2.3 Field-metric Method 

 

In the field-metric method, rotational core loss is calculated from the measured magnetic field 

strength H at the sample surface and flux density B inside the sample. This method features 

high accuracy and great versatility. Moreover, the set of measured instantaneous H and B 

values can yield more desirable information, such as various loss contributions, the loci of H 

and B vectors, and harmonics etc. The main disadvantages are the difficulties of manufacture, 

calibration, and installation of B and H sensors, and the sensitivity to preamplifier phase angle 

errors. 

 

For the evaluation of rotational core loss, there exist two formulas, which are here called as the 

field-metric method type one and type two, respectively. The field-metric method type one 

[136,142-145,147-149,151,152,155,157,161,163-166,168-176,178,180] calculates the 

total specific core loss Pt in W/kg as 

 

  Pt = 
1

Tρm⌡
⌠

0

T

(H•
dB

dt
)dt 

      = 
1

Tρm⌡
⌠

0

T

(Hx
dBx

dt
+Hy

dBy

dt
)dt      (4.13) 

 

where T=1/f is the time period, f the frequency of magnetisation, ρm the sample material mass 

density, and Hx, Hy, Bx, and By are the X and Y components of H and B. 

 

In the field-metric method type two [128,129,132-134], the torque per unit volume due to the 

rotational core loss in the sample is calculated by 

 

  Tr = µo|H×M| 

      = µoHMsinα 

      = µoHM⊥        (4.14) 

 

where M is the magnetisation, α the angle between H and M vectors, and M⊥ the component 

of M perpendicular to H. 

 

For the rotational specific core loss corresponding to the torque Tr calculated by (4.14), 

Enokizono and Sievert [121,149,151] proposed a formula as following 
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  Pr  =  
ω

Tρm
 ⌡⌠

0

T

 |H×B| dt       (4.15) 

 

where ω=2πf is the angular speed of magnetisation. 

 

According to Enokizono and Sievert [121,149,151], (4.13) can be classified as the total loss, 

while (4.15) as rotational loss, since it is related to the rotational component of the magnetic 

flux. In measurements on both grain oriented and non-oriented electrical sheet steels with 

purely circular rotating magnetic flux, (4.13) and (4.15) gave identical results, whilst with 

elliptically rotating magnetic flux, contradictory results were obtained [151]. 

 

About (4.15), there are still some open questions, and they will be further discussed and 

clarified in chapter 5, section 5.3, and 5.4. 

 

 

4.2.2.4 Watt-metric Method 

 

This method differs from the field-metric method in that the magnetic field strength H is 

determined from the magnetisation current [123], and is widely used in the Epstein frames and 

single sheet testers for alternating core loss measurement [208]. Initially, magnetic field 

strength, flux density, and core loss were measured by ammeters, voltmeters, and wattmeters 

[139,208], respectively. That is why this method is known as the watt-metric method. With 

the development of digital techniques, H and B waves can be readily obtained in numerical 

form, and core losses can then be calculated by (4.13) and (4.15) [174]. An outstanding 

advantage of this method is the simplicity of the H determination. 

 

In apparatuses for rotational core loss measurement, this method can only be applied to the 

vertical yoke single sheet tester (to be described in section 4.2.3.4) [139,174], because of the 

absence of air gaps between the sample and the yokes. Compared with alternating core loss 

testers, the magnetic flux paths in the sample and the yoke system of the rotational core loss 

testers are not well defined. This causes excessive systematic error in magnetic field strength 

measurement by applying Ampere's law. Since the flux density is not uniformly distributed in 

the sample, the magnetic flux density is measured in the centre of the sample by sensing coils 

wound through small holes, or B tips. 

 

The accuracy of measurement strongly depends on the structure of the yoke and the shape of 

the sample, which define the path of the magnetic flux. When a 500×500 mm2 square sheet 
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sample was used, the systematic error reached up to 27% at B=1 T, 50 Hz, with yokes of 

wound C-core lamination (Fig.4-8(a)) and was reduced to 17%, with yokes of stacked 

lamination (Fig.4-8(b)) [174]. 

 

 

 

 
 Fig.4-8 Loci of B vector in the sample of a vertical yoke single sheet tester,  
  two phase excitation, isotropic sample, and B=1T in the centre;  
  (a) wound C-core yokes; and (b) yokes with stacked lamination (from [174]). 

 

 

4.2.3 Development of Measuring Apparatus  

 

4.2.3.1 Disk and Ring Samples 

 

In earlier measurements, disk samples were commonly used. A typical set up, developed by 

Brailsford in 1938 [125], is shown in Fig.4-9. The rotational hysteresis loss was determined 

by measuring the torque due to rotational hysteresis, and hence known as torque 

magnetometer. To eliminate the torque caused by anisotropic effect, a stack of several disks 

with the easy directions uniformly oriented was adopted, and the sample was rotated both 

clockwise and anticlockwise. The average torque curve of these two rotating directions would 

be the torque curve only due to the rotational hysteresis loss. For accurate torque 

measurement, the friction of the mechanical system should be kept as small as possible. 
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  Fig.4-9 Torque magnetometer built by Brailsford (from [125]) 
   A -- graduated aluminium disk 
   B -- brass disks to clamp the sample 
   D -- sample 
   N -- pole faces of an electromagnet to generate the applied field 
   P -- pointer 

 

 

In 1967, Flanders developed a rotating sample magnetometer [128,129] as shown in Fig.4-

10, which could be used for multiple purposes, such as the measurements of magnetic 

moment, rotational hysteresis, spin flop, and properties related to anisotropic energy, i.e. 

anisotropic constants, anisotropic susceptibility, and anisotropic spontaneous magnetisation. 

The measurements were performed on a single piece rotating sample. Sensing coils were used 

to detect the magnetisation perpendicular to the applied magnetic field. The field metric 

method type two (4.14) was used to evaluate the torque due to rotational hysteresis. 
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(a) 

 

 

 
 

(b) 

 
 Fig.4-10 Rotating sample magnetometer developed by Flanders (from [129]) 
  (a) Mechanical details, and 
  (b) Samples and sensing coil configurations. 
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To minimise the pickup due to variations in magnetic field or to coil motion relative to H, a set 

up of two coils connected in series opposition was employed. This method gives better results 

than the torque magnetometer illustrated in Fig.4-9, since the effect of mechanical friction has 

been removed. This magnetometer was further improved by replacing the sensing coils with 

Hall elements in 1985 [133]. 

 

Besides the rotating disk samples, a fixed disk sample was used by Fiorillo and Reitto 

[147,168] in 1988. Fig.4-11 is the layout of the equipment and the cross sectional view of a 

sample, which consists of a number of disks (from two to six) of scaled diameters, cut from 

the same lamination, and superposed to emulate an oblate ellipsoid. The sample was placed in 

a cylindrical plexiglass chamber, which could be evacuated to emulate the adiabatic conditions 

for measuring the temperature variation of a sample required in the thermometric method. The 

rotating field was generated by a three phase motor stator. Both the thermometric and field-

metric type one methods were used for rotational core loss determination. The results obtained 

by both methods were in excellent agreement as illustrated in Fig.4-12. 

 

 

 

 

  

    (a)      (b) 

 
 Fig.4-11 (a) Layout of the equipment built by Fiorillo and Reitto (from [147]); 
  (b) Cross sectional view of a sample (from [168]). 
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Fig.4-12 Rotational core loss vs. flux density, measured by two methods: ∆  thermometric method, • field-

metric method, in three different materials: (1) soft iron (0.20 mm), (2) grain oriented silicon iron 
(0.35 mm), and (3) non-oriented silicon iron (0.35 mm), at 50 Hz (from [147]) 

 

 

In 1987, Reisinger [146] developed an apparatus using a stack of ring samples as shown in 

Fig.4-13. The torque-metric and thermometric methods were adopted. Essentially, this 

apparatus has the same features as those using disk samples described above. In addition, the 

sample preparation and the flux control are not convenient. 

 

 

 
(a) 
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(b) 

 
Fig.4-13 Rotational power loss measuring system using a stack of ring samples built by Reisinger  
 (a) set-up, and  (b) circuit diagram, (from [146]) 

 

 

The major disadvantages of these disk sample methods are: 

 

(1) Since the magnetic flux density is not controlled by feedback, the flux density 

fluctuates according to the anisotropic permeability of the sample. This is 

particularly serious when grain oriented materials are under test. 

 

(2) The magnetic field is not uniform within the sample. This will affect the 

precision of the measurement. 

 

(3) Disk samples can not be conveniently used for testing under various flux 

conditions, such as elliptically rotating magnetic fields. In practice, it is often 

required to study the core loss under a rotating field of variable magnitude. 

 

 

4.2.3.2 Cross and Strip Samples 

 

On the other hand, cross samples do not have these problems. In 1973, Moses and Thomas 

[140] measured the rotating magnetic flux and the rotational core loss in silicon iron laminations 

with cross samples as shown in Fig.4-14. The two dimensional magnetic field was generated 

by the excitation windings wound on the cross sample. The rotational core loss was measured 

by the thermometric method, and the magnetic flux density by the sensing coils wound through 

very small holes in the centre of the cross, while the magnetic field strength was determined 
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from the magnetisation current. In this set-up, there was no flux density feedback control. 

Therefore, in grain oriented samples, the magnitude of flux density was not kept constant. 

 

 
 

Fig.4-14  Cross sample used by Moses and Thomas (from [140]) 

 

 

In 1978, Basak and Moses [141] studied the sensitivity to mechanical stress of rotational 

power loss in silicon iron with cross samples and magnetic flux density feedback. Fig.4-15 

shows their system. 

 

 
Fig.4-15 Apparatus for measuring rotational core loss under complex stress developed by Basak and 

Moses, where A and B are fixed ends, and C and D spring loaded ends (from [141]) 
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In 1982, Brix, Hempel, and Schroeder [142] built a fully computerised control and 

measurement system with cross samples as depicted in Fig.4-16. In this system both magnetic 

field strength H and flux density B were obtained by the sensing coils, and the power loss was 

determined by the field-metric method type one. 

 

 

 

(a) 

 

 

 
 

(b) 
 
  Fig.4-16 Rotational core loss measuring system using cross samples built  
   by Brix, Hempel, and Schulte, (from [142]) 
   (a) block diagram of the system, and  
   (b) arrangement of B and H sensing coils  
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In 1985, Sasaki, Imamura, Takada, and Suzuki [145,164] built a measuring system using a 

single Epstein strip. Sensing coils were used to measure magnetic field strength and flux 

density, and the core loss was calculated by the field-metric method type one. The 

configuration and the block diagram are illustrated in Fig.4-17. This system is quite similar to 

those using cross samples. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
 Fig.4-17 Rotational core loss tester using an Epstein strip built by Sasaki, Imamura,  
  Takada, and Suzuki, (from [145,164]) 
  (a) magnetic flux search coils, (b) configuration, and (c) block diagram. 
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4.2.3.3 Square Samples 

 

In 1983, Brix, Hempel, and Schulte [143,144] found that the magnetic field was more uniform 

in a square sample than in a cross sample, and developed a tester using square samples. Fig.4-

18 illustrates the whole arrangement, and the sensor. In this system, B tips were exploited for 

detecting magnetic flux density. 

 

 
(a) 

 

 

(b) 
 Fig.4-18 Rotational core loss tester using square samples built by Brix, Hempel, and Schulte, 
  (a) arrangement of yoke, sample, and sensors, and  
  (b) details of sensor head for one component of H and B. (from [143,144]) 



Chapter 4. A Review of Rotational Core Loss Measurement and Modelling 

128 

In 1989, Enokizono and Sievert [149-155,165-167] developed a very flexible system 

consisting of a horizontal magnetic circuit with a square single sheet sample and adjustable air 

gaps, an analog electronic circuit for flux density feedback control, and a computer which 

performed function generation and data acquisition in rotational core loss measurement. Fig.4-

19 illustrates the configuration and the circuit diagram. The magnetic field strength was picked 

up by conventional surface H sensing coils. For flux density measurement, B sensing coils 

threaded through small holes in the centre of square sample were adopted by Enokizono 

[151,165], while B tips were used by Sievert [152,166], which is more convenient for batch 

measurements. 

 

 

 

   (a)      (b) 

 

 

   (c)     (d) 
 

Fig.4-19 Rotational core loss measuring system built by Enokizono and Sievert (from [151,152]) 
 (a) outline of system and B tips  (b) magnetic circuit and B sensing coils  
 (c) H sensing coils    (d) setting of H coils  
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According to the analysis by Enokizono and Sievert [154], the optimum performance in H 

measurement can be obtained when the yoke laminations are arranged vertically and the 

magnetisation poles are shaped in wedges, as illustrated by Type D in Fig.4-20. 

 

This system can be used to examine the behaviour of ferromagnetic materials under either 

rotational or alternating magnetic field. Measurements on rotational core losses of various 

electrical steels [151,155,157,160,173] and dynamic magnetostriction under rotational field 

have been performed with this system [150,156,167]. 

 

 

 
 

Fig.4-20 Effect of yoke construction (from [154]) 

 

 

In 1990, Nakata, Nakano, and Fujii [170,185] developed a square specimen tester with 

complicated auxiliary yokes. Fig.4-21 illustrates the measuring system, the tester, the 

specimen, B and H search coils, and the principle of the auxiliary yokes. It was believed that 

the single sheet auxiliary yoke could help to control the magnetic flux deviated from the rolling 

direction, as shown in Fig.4-21(c), while the double layer laminated auxiliary yokes, which 

formed a symmetric flux path, could make the magnetic flux distribution in the specimen more 

uniform, as shown in Fig.4-21(d). The two H coil method described in section 4.2.1.2 was 

adopted. This testing system is much more sophisticated than those developed by other 

researchers, but the performance was not reported in detail. 
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(a) 

 

 

 
 

(b) 
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   (c)     (d) 

 

 
   (e)     (f) 
 
Fig.4-21 Rotational core loss measuring system developed by Nakata, Nakano, and Fujii (from [170]) 
 (a) block diagram of the system,  (b) square specimen tester, 
 (c) position of specimen, B and H coils, (d) dimension of H coils, 
 (e) flux flow parallel to auxiliary yoke, and (f) flux flow perpendicular to auxiliary yoke. 

 

 

In 1991, Gumaidh, Mahadi, Alinejad-Beromi, Moses, and Meydan [169,176] also built a 

testing system for rotational core loss in square samples, as illustrated in Fig.4-22. Essentially, 

it is almost the same as that described above (Fig.4-21) in all aspects. 
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Fig.4-22 Rotational core loss testing system built by Gumaidh, Mahadi, Alinejad-Beromi, Moses, and  
 Meydan (from [176]). (a) Tester, (b) sample and sensor holder, (c) yokes, 
 (d) 4-channel magnetic signals digitiser board, and (e) 2-channel waveform generating board. 

 

 

In the same year, Kedous-Lebouc, Zouzou, and Brissonneau built a square specimen tester 

with double vertical yokes [163,178]. The tester and the B and H search coils are illustrated in 

Fig.4-23. The size of the specimen is exactly the same as that used by Enokizono and Sievert. 

The performance is also similar. 

 

 

 
 

(a) 
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(b) 

 
Fig.4-23 Rotational core loss tester built by Kedous-Lebouc, Zouzou, and Brissonneau (from [163]), 
 (a) tester, and (b) B and H search coils. 

 

 

The system using square samples is superior to those using disk and cross samples in the 

following aspects: 

 

(1) Since the magnetic fluxes in the two perpendicular directions are controlled by 

feedback, the system can generate magnetic field excitations of various complex 

magnetic flux patterns, and hence can be used to simulate the actual situation 

happening in electrical machines where the magnetic field is rotating with either 

constant or varying magnitude. 

 

(2) The measurement is carried out in the centre of the specimen where the field appears 

to be the most uniform, which leads to more accurate results. 

 

(3) More information can be obtained from the measured B and H curves, which helps in 

understanding the mechanisms of rotational core losses. 

 

(4) Preparation of the specimen is much simpler. 

 

(5) This system can be conveniently incorporated into a system for domain structure 

observation, which is very important for the understanding of the mechanisms of 

rotational core losses. 

 

The major drawback of this system is that it is difficult to control the flux density waveforms on 

the X and Y axes to be sinusoidal when the sample is close to saturation. Generally, the 

highest flux density values are 1.6 T for non-oriented and 1.2 T for grain oriented electrical 

sheet steels [186,187]. 



Chapter 4. A Review of Rotational Core Loss Measurement and Modelling 

134 

4.2.3.4 Large Sheet Samples 

 

In 1991, Sievert and Enokizono [159,166,174,175] developed a vertical yoke system, which 

allowed measurements on larger sheet samples, as illustrated in Fig.4-24. Both the field-metric 

and watt-metric methods were used for rotational core loss evaluation, but as discussed in 

section 4.2.2.4, the systematic error of the watt-metric method was high (up to 28% in the 

worst case [174]). The major problem, however, was the inability to reach high flux density 

values in the centre of the sample, where the rotational core loss was measured. It was stated 

[187] that the highest flux density that could be reached in the sample was normally about 0.2 

T lower than that achieved by the horizontal arrangement using square samples described in 

section 4.2.3.3. According to Dr. Sievert [166,187], this was due to the heavy leakage and 

stray magnetic fluxes between the yokes of the X and Y axes. 

 

 

 
 

Fig.4-24 Apparatus for two dimensional excitation and measurements with vertical yokes (from [174]) 

 

 

4.3 INTERNATIONAL STANDARDISATION AND INTER-COMPARISON  

 OF ROTATIONAL CORE LOSS MEASUREMENT TECHNIQUES AND  

 APPARATUS 

 

In June 1990, the Central Office of the International Electrotechnical Commission (IEC) 

circulated a questionnaire, "Questionnaire on the standardization of methods of measurement 

of rotational power loss", under No. 68(Secretariat)70. According to the results of this inquiry, 

the need for such a standard is generally accepted [212]. However, discussions among 

experts active in the field of rotational core loss measurement revealed that it was still too early 

to lay down one method in a standard of mandatory character. Since the existing formulas 
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(4.13) and (4.15) yielded contradictory results in the case of elliptically rotating magnetic 

fluxes [151,155,157,160,173,180], comprehensive and clear definitions would be desirable 

before drafting a standard touching this problem. 

 

Although core losses of various electrical sheet steels with rotating magnetic fluxes have been 

measured and reported by various laboratories in Australia [180], Austria [146], France 

[163,178], Germany [151,152,155,157,160,161,166,172-174], Italy [131,147, 168,179], 

Japan [130,139,145,151,152,155,157,160,164,165,173,174], U.K. [120,125-

127,132,138,141,169,176], and U.S.A. [134,136,137], with different principles and setup 

designs, the measured results have never been compared with each other. For the 

standardisation, the Magnetic Measurement Techniques Laboratory, Physikalisch-Technische 

Bundesanstalt (PTB), Braunschweig, Germany, is currently organising an European 

intercomparison of rotational core loss measurements [186,187]. Several sets of grain oriented 

and non-oriented specimens have been distributed among the participant laboratories, and are 

to be measured with various different testers. 

 

 

4.4 MEASUREMENT, UNDERSTANDING, AND MODELLING OF  

 ROTATIONAL CORE LOSSES IN ELECTRICAL SHEET STEELS 

 

During the last hundred years, a great amount of study has been done on the measurement, 

understanding, and modelling of rotational core losses in electrical sheet steels. Early research 

work in this field dealt more with rotational hysteresis loss with purely circular rotating 

magnetic field. From 1960's, total rotational core loss with both purely circular and elliptically 

rotating magnetic fields at different excitation frequencies have been investigated. Important 

results are summarised and discussed in this section. 

 

 

4.4.1 Rotational Hysteresis Loss 

 

(1) In 1888, Ferraris concluded that the rotational hysteresis is independent of the rotating 

speed of a disk sample, although he did not obtain quantitative experimental results. 

 

(2) In 1896, Baily [120] measured the rotational hysteresis loss of hard steel and soft iron 

using the apparatus shown in Fig.4-1, and confirmed the conclusion of Ferraris. Fig.4-25 

illustrates his results obtained under rotating and alternating magnetic fields. For a range of flux 

density up to about 70% of the saturation flux density, the rotational hysteresis losses in both 

hard steel and soft iron are larger than the alternating hysteresis losses, but when the flux 
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density further increases, the rotational hysteresis losses drop quickly and vanish when the flux 

density reaches the saturation value, while the alternating hysteresis losses continue to increase. 

This indicates that the mechanisms of rotational hysteresis loss are different from that of 

alternating hysteresis loss. 

 

 

 
 

Fig.4-25  Rotational hysteresis loss of iron and steel obtained by Baily (from [120]) 
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(3) In 1938, Brailsford [125] measured rotational hysteresis losses of four materials: ordinary 

electrical dynamo sheet, high quality dynamo sheet, ordinary transformer silicon steel, and cold 

rolled transformer silicon steel, using the torque magnetometer illustrated in Fig.4-9, and 

observed a sharp increase in loss at about 0.7 of the saturation value of B-H for all four 

materials. Fig.4-26 shows the rotational hysteresis loss and magnetisation curve of cold-rolled 

transformer silicon steel. When the flux density is close to the saturation value, the rotational 

hysteresis loss decreases quickly to zero. A qualitative explanation of this phenomenon and of 

the general form of the loss curves was given on the basis of the domain theory of 

ferromagnetism. 

 

 

 

 
Fig.4-26  Rotational hysteresis loss and magnetisation curve of cold-rolled silicon steel (from [125]) 

 

 

According to this theory, magnetisation below the knee proceeds in steps, corresponding to 

the Barkhausen discontinuities, each step representing a reversal or sudden change in direction 

through 90
o
 of the spontaneous saturation in a domain. There may be, in addition, a parallel 

reversible process, involving no hysteresis loss. For any particular domain, the sudden change 

in direction may be expected when a certain value of the field acting on it in the final direction 

of its magnetisation has been reached. The total change in energy involved in this discontinuous 

change is then dissipated as hysteresis loss, a function of the volume of the domain, the 

saturation magnetisation and the effective field strength. 
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At the knee of the magnetisation curve, the field required to produce the discontinuous rotation 

has already been reached or exceeded for most of the domains, and these domains contribute 

further to the total magnetisation on a further large increase of H, by a rotation of the 

spontaneous magnetisation in the domains from the easy direction towards the direction of the 

applied field. There are some domains remaining, however, which are not acted upon until H 

has increased beyond its value at the knee. The contribution to the magnetisation due to these 

domains is only that corresponding to their volume, but the contribution to the loss is high on 

account of the high value of H at which the sudden change in direction of the magnetisation 

occurs. The loss will therefore rise steeply with increase of magnetisation. 

 

Similar ideas may be applied to the portion of the loss curve near saturation. For a very high 

field, the spontaneous magnetisation is always in the direction of the field, and as the field is 

rotated, it rotates smoothly and without the discontinuities which result in hysteresis loss. 

Hence, the hysteresis loss may then be expected to be zero. 

 

(4) In 1960, Archenhold, Sandham, and Thompson [126] measured the rotational hysteresis 

loss in grain oriented silicon iron for various orientations and thicknesses with rotating disk 

samples (Fig.4-27). The experimental results were discussed in terms of multi-domain 

concepts and of the Stoner-Wohlfarth single-domain particle, of which the rotational hysteresis 

behaviour had been evaluated. 

 

The basic Stoner-Wohlfarth model is of a particle sufficiently small that it acts as a single 

domain with an angular dependence of the energy on the direction of the applied field caused 

either by strain, by crystal anisotropy, or by shape anisotropy. The variable part of the energy 

W is 

 

  W = − 
1

4
 cos 2ψ − h cos φ      (4.16) 

 

where h = HIs/2K for crystalline anisotropy, H is the effective field strength acting on the 

particle, Is the intensity of magnetisation, K the first anisotropy constant, φ the angle between 

the intensity and field vectors, and ψ the angle between the direction of easy magnetisation and 

the intensity vector. 

 

For rotational hysteresis, the H vector is taken as a constant and is rotated from an initial 

position aligned with the intensity vector, when there occurs a discrete energy jump for certain 

values of the field. This was derived and given by 
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The value of h must lie within the range of 0.5-1.0, the energy change being a maximum at 

h=0.5 and zero at h=1.0. As shown in Fig.4-27, there exists a significant discrepancy between 

the experimental results and the model. 

 

 

 
 

Fig.4-27 Graph of WR/K and H/HA, where WR the rotational hysteresis loss, and HA=2K/Is (after [126]) 

 

 

(5) In 1964, Boon and Thompson [127] used a torque magnetometer to measure the 

rotational hysteresis loss in 3% (nominal-weight) silicon iron disks cut from single crystals with 

the planar orientations (100), (110) and (111) versus magnetic flux density. The variation of 

the hysteresis loss with magnetic flux density was obtained for the three principal crystal 

directions [100], [110], and [111], from normal B-H loop measurements on single-crystal 

picture frames. Variation in the magnitude and direction of the field both took place slowly, so 

that essentially static results were obtained. 

 

The manner in which the ratio of rotational hysteresis loss to alternating hysteresis loss depends 

on the magnetic flux density B for the three planes and directions was considered in terms of 

an existing theoretical model of the magnetic domain changes that took place during the 
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rotational hysteresis and alternating hysteresis loss cycles. The rotational hysteresis loss was 

discussed in terms of the energy required for the creation and annihilation of various domain 

configurations. For the (100) plane, there are two equivalent easy directions of magnetisation 

in the plane, and as the field rotates there is a gradual and continuous change in the amount of 

material magnetised along these two directions, by simple domain-wall movements. The 

experimental value of the ratio of rotational hysteresis and alternating hysteresis losses is about 

2:1 for the (100) plane and [100] direction, except for high and low degrees of saturation, but 

it is 8:1 for the other two planes and directions. 

 

(6) In 1974, Narita and Yamaguchi [130] measured rotational hysteresis loss on small disks of 

approximately 4% silicon iron single crystal with (001) surfaces, and explained the results on 

the basis of the changes in domain structure observed under a rotating magnetic field. It was 

confirmed that in the high magnetisation region a considerable part of the loss could be 

attributed to the energy dissipation which takes place at the time of the annihilation of domain 

walls. The rapid fall of the rotational hysteresis loss near saturation magnetisation was 

explained in terms of the decrease of the surface energy of domain walls. The loss 

measurements were carried out on a composite specimen consisting of three identical disks 

using a torque magnetometer proposed by Brailsford [125]. The domain structure was 

observed by the Bitter technique. 

 

(7) In 1978, Grimwood, Cambell, and Evetts [132] studied the rotational hysteresis at very 

low rotational speeds in nearly isotropic polycrystalline materials. Measurements were made 

on disk shaped samples of pure iron, 1.2% carbon steel and mild steel. The results were 

explained in terms of two models, one appropriate to low fields, below the maximum in the 

rotational loss curve, and the other to the high field region. At low fields the losses are due to 

domain wall motion, and the model predicted that the ratio of rotational loss to alternating loss 

was π/ 2. At high fields the loss was thought to be due to a mechanism not present in 

alternating fields. This is the unstable rotation of the magnetisation in each grain past its 

direction of difficult magnetisation. 

 

Their observation that the ratio between the rotational and alternating hysteresis losses is π/ 2 

at low fields appears to be consistent with the experimental results observed by Boon and 

Thompson [127], but not with the experimental results reported by Baily [120]. The 

experimental value of 2:1 reported by Boon and Thompson was measured in the (100) plane 

and [100] direction of a single crystal sample where exists only two easy axis and a medium 

axis. In a practical silicon steel sheet, the iron crystals are randomly distributed, and the actual 

ratio could possibly be a little higher due to the existence of the hard axis of magnetisation. The 

experimental results reported by Baily [120] in Fig.4-25, however, shows that the ratio 
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between the rotational and alternating hysteresis losses is smaller than 2:1 for both hard steel 

and soft iron at low fields. This may suggest that the ratio of rotational hysteresis loss to 

alternating hysteresis loss at low fields is material dependent. 

 

(8) In 1988, Fiorillo and Reitto [147] measured rotational hysteresis loss of soft iron 

laminations in a very large induction range using the fixed samples described in section 4.2.3.1. 

The ratio between the rotational hysteresis loss Prh and the corresponding alternating 

hysteresis loss Pah, measured in soft iron, exhibited a monotonic dependence on magnetic flux 

density and attained a maximum value Prh/Pah≤4 at about B=10-4 T. 

 

(9) In 1990, Fiorillo and Reitto [184] explained the rotational hysteresis loss with the domain 

theory, and it was concluded that the ratio of rotational and alternating hysteresis losses was 

between 1 and 2 at intermediate flux densities, say ≤1.5 T, in non-oriented SiFe laminations. 

 

(10) In 1991, Radley [162] performed dynamic domain observations and domain wall velocity 

measurements on disk samples of grain oriented SiFe sheets subject to rotating magnetic flux 

at 0.2 Hz by the Kerr effect. Domain photographs at several points in the cycle were included 

in the paper. These images implied that the flux took selective routes through a polycrystalline 

material, and these routes were at the scale of grains rather than individual domains. High 

velocity of domain wall movement was observed. It was suggested that this could be the 

dominant mechanism for rotational core loss, with contributions also from bar wall motion. 

 

 

4.4.2 Total Rotational Loss (Hysteresis + Eddy Current) 

 

(1) In 1961, Kaplan [136] measured core losses of grain oriented (M-7) and non-grain 

oriented (M-19) silicon iron using cross samples under various flux conditions ranging from a 

pure alternating flux (only the magnitude of flux varies with time) to a pure rotating flux (only 

the direction of flux varies with time) with a magnetic probe [210], in which the Rogowski-

Chattock coils and B tips were exploited, as shown in Fig.4-28. The field metric method type 

one was used, and it was found that the grain oriented iron was still the lower loss material 

under all flux conditions. This is not always true. As will be further discussed later in chapter 5, 

the rotational core loss in grain oriented steel sheets can be higher than that in non-oriented 

steel sheets, since grain oriented steel sheets have stronger magnetic anisotropy due to the 

textures, which causes higher hysteresis loss. 
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Fig.4-28 Magnetic probe developed by Tompkins, Stauffer, and Kaplan (from [210]) 

 

 

(2) In 1962, Strattant and Young [137] studied the power frequency losses in silicon iron 

alloys due to an elliptically rotating magnetic field with disk samples placed in the centre of two 

perpendicular pairs of rectangular Helmholtz-type air-cored coils, and predicted the losses 

approximately using a simple model 

 

  P = Physt + Peddy       (4.18) 
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and 

  Peddy = P3 
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where B1 and B2 are the major and minor axis flux densities, Bs is the saturation flux density, 

P1 and P2 are the alternating hysteresis losses in the major and minor axes for peak flux 

densities of Bs, respectively, and P3 is the eddy current loss for a peak flux density of Bs. 

 

As indicated in the paper, this model only simulates the core loss with elliptically rotating 

magnetic fields, while the basic physical phenomena were not described. The calculated losses 
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were compared to the measured losses for the (100) plane single crystal material as shown in 

Fig.4-29. Although there are sizeable differences in the calculated and measured losses, 

especially for circular fields, the general field dependence is similar. 

 

 

 
 
 Fig.4-29 Comparison of experimental data and losses calculated using the proposed model for  
  (100) plane single-crystal 0.0075 inch thick material. The parameters used for the  
  calculation are P1=P2=0.48 W/lb, P3=0.22 W/lb, and Bs=20 kGauss, (from [137]) 

 

 

(3) In 1965, Boon and Thompson [138] measured alternating and rotational core losses at 50 

Hz under various flux densities for hot-rolled and cold rolled 3% silicon iron in a square 

sample of 0.013 inch laminations, using an improved thermometric method, and found that the 

ratio of rotational loss to alternating loss at 50 Hz in four-square silicon iron was about 2:1 

over a wide range of flux densities (except at a high flux density), as illustrated in Fig.4-30. 
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 Fig.4-30 Rotational and alternating core losses in 0.013 inch hot-rolled 3% silicon iron  
  sheet at 50 Hz, a ---- alternating, and e ---- rotational. (from [138]) 

 

 

(4) In 1973, Moses and Thomas [181] studied the localised power loss in the T-joints of three 

phase transformers. The power loss was measured by 220 miniature thermocouples placed 

1.5 cm apart in arrays, and the flux density by an array of 600 search coils threaded through 

small holes on the laminations. Rotational flux was found in those T-joints, and it caused areas 

of high localised loss. A combination of normal flux between adjacent layers of laminations, 

rotating flux, and circulating third-harmonic fluxes caused the localised loss to rise to double 

the average core loss in some regions of the T-joints. 

 

(5) In 1974, Phillips and Overshott [183] measured core losses of individual grains in 

polycrystalline specimens of commercial 3% grain oriented silicon iron under longitudinal and 

transverse AC magnetisation and rotational flux conditions, and observed the corresponding 

domain configurations using a stroboscopic Kerr magnetic-optic apparatus. The effect of 

longitudinal stress and dc bias fields on the domain patterns and core loss under these AC 

magnetisation conditions was also investigated. It was concluded that the highest core loss 

occurred under pure rotational flux conditions and that the application of longitudinal 

compressive stress increased the core loss, but to a lesser extent when a transverse AC flux 

was present. The application of a longitudinal dc field increased the core loss for all AC 

magnetising conditions, and it was observed that a longitudinal tensile stress had the opposite 

effect on the domain configuration to the application of a transverse dc field. 
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(6) In 1978, Basak and Moses [141] investigated the stress sensitivity of rotational power loss 

in silicon iron, using cross samples, and made the following discoveries: The loss increases with 

tensile stress applied parallel to the rolling direction and decreases with compression. The 

opposite occurs when the stress is applied perpendicular to the rolling direction. Increasing the 

frequency causes the loss to rise drastically and also increases its stress sensitivity. It was also 

proved theoretically that the angle of lag of the flux density behind the applied field increases 

with stress and varies during the magnetising cycle. 

 

(7) In 1978, Cecchitti, Ferrari, Masoli, and Soardo [131] measured rotational power loss per 

cycle Pr/f as a function of rotational frequency f, between about 0 and 25 Hz, on grain oriented 

and non-oriented 3% SiFe, under different magnetisation conditions, up to almost complete 

saturation, using disk samples. Maximum losses were found to occur for a relative 

magnetisation M/Ms, which is of the order of 0.8 for all rotational frequencies. The results 

showed that the behaviour of Pr/f vs. f was characterised by large excess anomalous loss with 

respect to classical eddy current loss, except for M/Ms close to 1.0. On the other hand, the 

nonlinear anomalous loss, typical of alternating loss curves, was absent since the rotational 

core losses per cycle were found to increase linearly with f for all M/Ms values. 

 

(8) In 1985, Tan, Datta, Flanders, and Graham, Jr. [134] determined the rotational core 

losses in several thin gauge ferromagnetic materials as a function of frequency and 

magnetisation, using a Hall effect probe rotating disk sample magnetometer developed by 

Flanders [133]. The results, as illustrated in Fig.4-31, showed that the rotational core losses in 

Fe-based amorphous alloys are at least a factor of ten lower than non-oriented SiFe at very 

low frequencies. Furthermore, the rotational core loss in the thin high resistivity amorphous 

alloy is independent of frequency up to their measurement limit of 80 Hz, while SiFe alloys 

show a significant increase in loss with increasing frequency. The rotational core loss in planar 

oriented 6.5% SiFe is less than half of that in the best non-oriented 3% SiFe. 

 

(9) In 1988, Fiorillo and Reitto [147] measured rotational losses of soft Fe, 3% non-oriented 

SiFe and 3% grain oriented SiFe in a very large induction range using the fixed samples 

described in section 4.2.3.1. The measurements of total rotational core loss at 50 Hz (Fig.4-

12) showed that the total rotational core loss in 3% grain oriented silicon iron was higher than 

that in 3% non-oriented silicon iron. 
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    (a)    (b) 
 
 Fig.4-31 Rotational core losses measured by rotating sample magnetometer (from [134]) 
  (a) rotational core loss for various METGLAS Alloys, and 
  (b) comparison of rotational core loss of METGLAS Alloy 2605S-2 to those of SiFe. 

 

 

(10) In 1990, Enokizono, Suzuki, Shirakawa, Sievert, and Xu [151,155,157] measured 

rotational core losses in non-oriented and grain oriented steel sheets using the system 

described in section 4.2.3.3. They defined (4.15) as the rotational loss Pr, while taking (4.13) 

as total loss Pt. According to their measurements, in circularly rotating magnetic flux, Pt = Pr 

for both grain oriented and non-oriented electrical steel sheets, while in elliptically rotating 

magnetic flux, Pt≥Pr for non-oriented materials, and Pt≤Pr for grain oriented materials, as 

shown in Fig.4-32. But the reason for this phenomenon was unknown. (This is questionable. 

Theoretically speaking, the rotational loss is just a component of the total loss, and hence, it 

should never exceeds the total loss.) It was also found that Pr reached minimum values when 

the major axis of an elliptically rotating magnetic flux was applied to 45
o
 from the rolling 

direction in non-oriented electrical steel sheets. 

 

(11) In 1990, Fiorillo and Rietto [168,179,184] reported the experimental results of rotational 

core loss in 3.2% non-oriented SiFe at different magnetisation frequencies up to 50 Hz, as 

depicted in Fig.4-33, measured by their tester using fixed disk samples. By plotting the losses 

against frequency (Fig.4-34), it was shown that the rotational core loss could also be 

separated into rotational hysteresis, classical eddy current, and anomalous losses, similar to the 

case of alternating core loss. 
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   (a)     (b) 

 

 
   (c)     (d) 
 
Fig.4-32 Specific total core loss Pt and specific rotational core loss Pr in grain oriented (ZDKH, 0.27 mm  
 thick) and non-oriented (H50, 0.50 mm thick) electrical steel sheets with purely circular and  
 elliptical magnetic fluxes at 50 Hz. 
 (a) Pt and Pr in non-oriented sheet with circular flux, 
 (b) Pt and Pr in non-oriented sheet with elliptical flux, the major axis (Bmax=1.5T) on the X  
       axis (rolling direction), 
 (c) Pt and Pr in grain-oriented sheet with circular flux, and 
 (d) Pt and Pr in grain-oriented sheet with elliptical flux, the major axis (Bmax=1.0T) on the X  
       axis (rolling direction). (from [151]) 
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  Fig.4-33 Specific rotational core loss per cycle vs. peak flux density in a  
   3.2% SiFe non-oriented sheet, 0.637 mm thick, at different frequencies.  
   Ph is the rotational hysteresis loss obtained by extrapolating the specific  
   rotational core loss vs. frequency curves to zero frequency (Fig.4-34).  
   (from [168]) 

 

 

 

 
 
  Fig.4-34 Specific rotational core loss vs. frequency in a 3.2% non-oriented  
   sheet at 1T and 1.5T. Ph is the rotational hysteresis, Pe the eddy  
   current, and Pa the anomalous losses. (from [168]) 
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A phenomenological approach to the rotational anomalous loss Pa was proposed in [179] as 

following 

 

  Par = Car (f B)3/2       (4.21) 

 

where Car is the anomalous loss coefficient, f the magnetisation frequency, and B the 

magnitude of flux density. This formula is essentially the same as the one for alternating 

anomalous loss described in chapter 3, except that the rotational anomalous loss coefficient 

Car is a function of flux density B, while the one for alternating anomalous loss is a constant, 

and it was also agreed by Dr. Fiorillo that Car would eventually drop to zero when the material 

was saturated and all domains disappeared [219]. 

 

(12) In 1991, Kedous-Lebouc, Zouzou, and Brissonneau [163,178] measured the magnetic 

properties of cubic textured NiFe using a square sample under alternating and rotational 

magnetic fields at 50 Hz. The experimental results of alternating and rotational core losses are 

illustrated in Fig.4-35. It was realised that the rotational core loss would decrease to the value 

of classical eddy current loss when the sample was saturated. 

 

 

 
 

Fig.4-35 Alternating and rotational core losses of NiFe (from [178]) 
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(13) In 1992, Salz and Hempel [172] measured various magnetic properties, including 

magnetic polarisation, permeability, and core losses, of the (100) [001] textured steels T1-50 

(nominal thickness 0.5 mm) and T1-65 (nominal thickness 0.65 mm) under rotational and 

alternating magnetic field excitations at various frequencies, using the square specimen core 

loss tester described in section 4.2.3.3. It was concluded that the rotational hysteresis loss was 

independent of the sample thickness, while the rotational eddy current loss increased with the 

sample thickness. 

 

 

4.5 MODELLING OF CORE LOSSES IN ROTATING MACHINES 

 

Although it has long been realised that a considerable amount of the total core loss in the stator 

core of a rotating electrical machine is caused by the rotating magnetic field, alternating core 

loss models were generally employed [188-191] due to the lack of a model and data for 

rotational core losses. 

 

In 1991, Bertotti et al [192] calculated the core loss of an induction motor with a three term 

model developed by Fiorillo and Rietto [168,179,184], which consisted of rotational 

hysteresis, classical eddy current, and anomalous losses, as described in section 4.4.2. For 

rotational hysteresis loss with an elliptically rotating magnetic flux, a linear interpolation 

between purely circular and alternating core losses was used. Due to various reasons, 

however, the calculated core losses were about 20% lower than the measured. 

 

In 1992, Atallah, Zhu, and Howe [193,194] predicted the core loss of two permanent magnet 

brushless dc motors of different types of laminations under different operating modes with the 

three term model for alternating core losses proposed by Bertotti [97] and Fiorillo [99], but 

the rotational effects were not included. Instead, the core loss was calculated from the loss 

deduced for each of the two equivalent orthogonal alternating flux density components. The 

finite element method was adopted to obtain the loci of rotating flux density vectors. 

Unfortunately, the theoretical results were not compared with measurements, and the accuracy 

of prediction was not reported. 

 

Also in 1992, Zhu, Ramsden, and Watterson [195] calculated the core loss of a permanent 

magnet motor using the finite element method and the three term model. The loss terms for 

classical eddy current and anomalous losses were modified to include the rotational effects, but 

owing to the lack of rotational hysteresis loss data of the material, the alternating hysteresis 

was calculated. The calculated results were about 15% lower than the measured. In 1993, the 
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model was improved by including the rotational hysteresis loss, and the discrepancy was 

reduced to less than 10% [196]. 

 

 

4.6 CONCLUSION 

 

The computer controlled square sample testing system appears to be the most advantageous in 

all aspects among the rotational core loss measuring systems available, and the horizontal 

yokes are superior to vertical yokes due to easier construction, and better performance. 

 

The field-metric method has higher accuracy, contains more information, and gives greater 

versatility than the other methods for rotational core loss evaluation, but equation (4.15) 

requires to be further clarified since it yields contradictory results in the case of elliptical 

magnetic flux excitation. 

 

Although quite a few rotational core loss measurements and domain structure observations 

have been carried out on various ferromagnetic materials, the mechanisms of rotational core 

loss are still far from being fully understood. 

 

Because of the very complicated mechanisms, it is not practical to develop a model of strong 

physical background at the current stage. On the other hand, a phenomenological approach, 

such as the three term model generalised by Fiorillo from the corresponding alternating core 

loss model, appears to be useful for core loss analysis in rotating electrical machines. 

 

Similar to the case of alternating core loss, the total rotational core loss can generally be 

separated into three components: rotational hysteresis, eddy current, and anomalous losses. 

The ratio of rotational hysteresis loss to alternating hysteresis loss at low fields veries from one 

to two for different materials as reported by various researchers. With a circular field, the 

rotational eddy current loss is twice as much as alternating eddy current loss. The rotational 

anomalous loss can be modelled using the same formula as for alternating anomalous loss, but 

the coefficient of rotational anomalous loss is generally a function of flux density, and eventually 

reduces to zero when the material is saturated and all domain walls disappear. 



CHAPTER 5. ROTATIONAL CORE LOSS MEASUREMENT 

 

 

5.1 INTRODUCTION 

 

This chapter deals with the development of rotational core loss measuring system and the 

measurement of rotational core loss in electrical sheet steels, whilst the modelling problem is 

left for chapter 6. 

 

As discussed in chapter 4, the rotational core loss tester using a single sheet square specimen 

is very flexible and suitable for measurements under various complex magnetic flux conditions. 

Hence, an apparatus using square specimens was designed, and constructed at the 

Commonwealth Scientific and Industrial Research Organisation (CSIRO), Division of Applied 

Physics, Lindfield. The whole system was finally installed and calibrated at the School of 

Electrical Engineering, University of Technology, Sydney (UTS). 

 

The design and construction of the measuring system, including the system outline, tester 

structure, feedback control, and the digital signal processing system for the specification of flux 

density waveforms (function generation) and the data acquisition, is presented in section 5.2. A 

novel sandwich arrangement of magnetic field strength H sensing coils was used to improve 

the accuracy of measurement. 

 

For high precision and more information, the field-metric method was adopted to evaluate the 

core losses from the measured magnetic field strength and flux density. The total core loss Pt 

was derived from Poynting's theorem, and the rotational core loss Pr was obtained by 

calculating the torque on the magnetic dipoles in the specimen. The derivation showed that 

(4.15) for calculating Pr was incorrect for measurements with magnetic fluxes other than purely 

circular rotating flux. Core losses in a square specimen of 0.35 mm electrical steel sheet 

Lycore-130 (a non-oriented silicon iron with alternating core loss of 1.30 W/kg at 1.0 T, 50 

Hz, chosen for its applications in rotational machines, which is our main field of interest) were 

measured with purely circular and elliptically rotating magnetic fluxes over a range of excitation 

frequencies from 1 to 200 Hz. The measured results are illustrated and discussed in section 

5.3. 

 

From December 8, 1993 to February 24, 1994, the author was invited to visit the 

Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany, as a guest scientist 

for a bilateral cooperative research project on rotational core loss measurement, which was 

funded by PTB and the Department of Industry, Technology and Regional Development 
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(DITARD), Australia. As part of the project, it was agreed to carry out an inter-comparison 

between the testers at PTB and UTS. This comparison will follow all the regulations used in 

the European Inter-Comparison of Rotational Core Loss Measurements, which is currently 

organised by PTB. The rotational core losses in four specimens of grain oriented (ORSI-100) 

and non-oriented (V270-35A) electrical steel sheets (part of the specimen set used for the 

European inter-comparison) will be used and compared. Core losses of these specimens have 

been measured with various magnetic flux patterns using the tester at PTB, and will be 

reported in section 5.4. Because of insufficient time, however, measurements using the tester at 

UTS have not been completed for this thesis. 

 

In section 5.5, discussions are given on the effects of material texture and crystal anisotropy, 

and the clarification of the relationship between Pt and Pr. A possible explanation of Pr is 

presented. 

 

 

5.2 DEVELOPMENT OF A ROTATIONAL CORE LOSS MEASURING 

 SYSTEM USING A SQUARE SPECIMEN 

 

5.2.1 Outline of the System 

 

The core loss was measured by the field-metric method with an apparatus capable of 

generating arbitrary two dimensional magnetic flux patterns. Fig.5-1 is a photograph of the 

testing system, and Fig.5-2 illustrates the system schematically. 

 

 
Fig.5-1  A photograph of the rotational core loss measuring system developed at UTS 
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Fig.5-2  Schematic diagram of the square specimen testing system developed at UTS 

 

The magnetic field is generated by two groups of excitation coils arranged on the X and Y 

axes, respectively. The excitation voltages and currents are supplied by two identical power 

amplifiers. By controlling the waveforms, magnitudes, and phase angles of the excitation 

voltages on the X and Y axes, any complex one or two dimensional magnetic flux density 

vector, such as an alternating magnetic flux density inclined at a specified angle from the X or 

Y axis, a purely circular or elliptically rotating magnetic flux density, and a rotating magnetic 

flux density of any specified locus, can be generated. Two specially designed differential 

amplifiers were used in the feedback control of the magnetic flux density components on the X 

and Y axes. 

 

An IBM/PC-386 based digital signal processing (DSP) system was used for both function 

generation and data acquisition. This DSP system is a commercial system, AMLAB, supplied 

by an Australian company, Associative Measurement Pty. Ltd, Specified voltage waveforms 

for the X and Y components of magnetic flux density were generated by the software, and 

exported through two isolated channels of analog output (X and Y). Voltage signals from the 

sensing coils of magnetic field strength and flux density on the X and Y axes were collected by 

four independent input channels (A, B, C, and D) with high precision preamplifiers, and 

recorded into an ASCII data file. The software project for both function generation and data 

acquisition was written by the author in a graphic form and compiled by the graphic compiler 

provided together with the hardware by the manufacturer. 

 

The recorded data was then processed by a C code for calculating rotational core losses, 

plotting the component waveforms and loci of B and H vectors, and other analyses for better 

understanding and modelling. 
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5.2.2 Square Specimen Tester (SST) 

 

Fig.5-3(a) is a photograph of the square specimen tester, and Fig.5-3(b) a drawing of the 

assembly, while the dimensions of the yoke and the specimen are illustrated in Fig.5-3(c). The 

horizontal yoke arrangement was employed. For high precision measurement, the power loss 

in the yoke and the excitation poles should be kept as low as possible, and hence, low core 

loss ORIENTCORE.HI-B, grade M-0H grain oriented silicon steel sheet [213] manufactured 

by Nippon Steel Corporation, Japan, was chosen as the yoke material. The yoke laminations 

were arranged vertically and the magnetisation poles were shaped in wedges, since this type of 

structure, according to the analysis by Enokizono and Sievert [154], gave better results in H 

measurement, as discussed in section 4.2.3.3. 

 

Four excitation coils were placed on the magnetisation poles, and every two on the same 

coordinate axis were connected in series to contribute aiding magnetomotive forces. Each coil 

was wound with 300 turns of 1.6 mm enamel insulated copper wire. 

 

The size of the specimen was chosen as 50×50 mm2 according to the possible minimum width 

of electrical steel sheets to be measured, which was found to be 50 mm for MetGlas 2605S-

2, an amorphous material. 

 

 

 

(a) 
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School of Electrical Engineering

0.5 50

 
(c) 

  Fig.5-3 Square specimen tester (a) photograph, (b) assembly,  
   and (c) dimensions of yoke and specimen 
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The magnetic circuit design and the calculation of temperature rise in the excitation coils, the 

yokes, and the poles, are given in Appendix B. An equivalent heat transfer network was 

employed for thermal modelling. 

 

Fig.5-4 illustrates the magnetic field distributions in the middle area of the tester, measured 

with and without a specimen when the X axis was excited. It can be seen that the field in the 

centre area of the specimen is close to uniform (±5%). 

 

 

(a) 

 

(b) 

Fig.5-4  Field distribution in the middle of SST  (a) without, and  (b) with a specimen 
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5.2.3 Measurement of Two Dimensional Magnetic Field Strength  

 and Flux Density 

 

5.2.3.1 Sensors for Measuring Magnetic Field and Flux Density 

 

As discussed in section 4.2.1, both sensing coil method and Hall element method can be used 

to measure magnetic field strength H. In a single sheet tester, sensing coils are generally 

preferred for surface magnetic field strength, because their response is linear, and they may be 

mounted very close to the surface of the specimen. 

 

For the measurement of magnetic flux density B, two methods can be used. In one method, a 

sensing coil is wound through tiny holes in the specimen. This method gives very accurate 

results, but winding a coil through tiny holes in the specimen is tedious, especially when a batch 

of specimens is to be measured in a short time. Moreover, the tiny holes also affect the 

distribution of the magnetic field in the specimen. Another method for flux density measurement 

is to use B tips, which pick up the induced electromotive force on the specimen surface. This 

method is especially suitable for batch measurements, but is limited to thin sheets of conducting 

materials. The sensitivity of this method is also lower than that of sensing coils. 

 

In our rotational core loss tester, sensing coils were used to measure magnetic field strength 

and magnetic flux density components on both the X and Y axes. Fig.5-5(a) illustrates the two 

dimensional magnetic field sensing coils used in the tester. The conventional surface H sensing 

coils were wound with 130 turns on each axis of 0.08 mm enamel insulated copper wire on a 

1.0 mm plastic former. The sandwich H sensing coils, which will be described later in section 

5.2.3.3, were wound with 1000 turns on each axis of 0.02 mm enamel insulated copper wire 

on a 0.35 mm thick plastic former, and then sealed in a plastic container. The total thickness of 

the sandwich H coils is about 1.2 mm. Fig.5-5(b) shows the magnetic flux density sensing 

coils. Each coil was threaded with 20 turns of 0.02 mm enamel insulated copper wire through 

small holes of 1.0 mm diameter. The two coils on each axis were connected in series, and the 

terminals were twisted to exclude stray magnetic flux. Fig.5-5(c) shows the conventional 

surface arrangement of H sensing coils, and Fig.5-5(d) the new sandwich arrangement of H 

sensing coils. 
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  Fig.5-5 (a)  Structure of H sensing coils, 
   (b)  Structure of B sensing coils and specimen clamp, 
   (c)  Conventional surface arrangement of H sensing coils, and 
   (d)  New sandwich arrangement of H sensing coils. 

 

 

The components of magnetic field strength H and flux density B on each coordinate axis can 

be calculated from the induced emf of the sensing coils by 

 

    Bi = 
1

KBi
⌡⌠VBidt  (i=x,y)   (5.1) 

and 

    Hi = 
1

µ0KHi
⌡⌠VHidt  (i=x,y)   (5.2) 
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where KBi =  NBiDspdi is the B sensing coil coefficient, NBi the number of turns of the B 

sensing coil, Dsp the thickness of the specimen, di the distance between two holes, KHi the H 

sensing coil coefficient obtained by calibration, and VBi and VHi are terminal voltages of the B 

and H sensing coils. 

 

 

5.2.3.2 Calibration of Magnetic Field Sensing Coils 

 

The magnetic field sensing coils were calibrated in a solenoid as shown in Fig.5-6. The coils 

were mounted in the middle of the solenoid, where the magnetic field was uniform. The 

magnetic field strength was double checked by measuring both the excitation current and the 

magnetic flux density. By adjusting the orientation of the coil under calibration for the maximum 

induced emf, the coil coefficient is determined by 

 

    KH = 
VH

2πfµoHm

     (5.3) 

 

where VH is the rms value of the sensing coil terminal voltage when the coil axis is aligned with 

the field, f the frequency of excitation current, and Hm the magnitude of the magnetic field 

strength in the centre of the solenoid. 

 

 

A

B
C D

E

60 mm

115 mm

Solenoid:   N = 281 (turns), and B/I = 0.002722 (T/A)  
 
  Fig.5-6 Solenoid for calibration of H sensing coils  
   A -- Solenoid  B -- Table supporting the sensing coils  
   C -- Sensing coils   D -- Handle for adjusting coil orientation 
   E -- Gaussmeter probe 
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The calibration results of the H sensing coils depicted in Fig.5-5 are listed in Table 5-1, where 

I is the rms value of the solenoid magnetisation current, BI the rms value of the flux density in 

the centre of the solenoid calculated from the magnetisation current, BGM the rms value of the 

flux density measured by a gaussmeter (Bell-610 with a Hall element probe), VHx and VHy are 

the rms values of the sensing coil terminal voltage measured by a digital millivoltmeter 

(SELFCAL-1271 made by DATRON INSTRUMENTS), and KHx and KHy are the coil 

coefficients of Hx and Hy sensing coils. The excitation frequency was 50 Hz. 

 

 

 

Table 5-1. Calibration results of H sensing coils shown in Fig.5-5 

 
 

(a) conventional surface Hx sensing coil 
 

I (A) BI (T) BGM (T) Hm (A/m) VHx (mV) KHx (m2) 

0.506 0.00138 0.00136 1530.538 0.716 0.001676 

1.035 0.00282 0.00285 3207.377 1.457 0.001627 

1.495 0.00407 0.00400 4501.582 2.091 0.001664 

1.990 0.00542 0.00530 5964.596 2.783 0.001671 

2.502 0.00681 0.00670 7540.149 3.476 0.001651 

3.030 0.00825 0.00820 9228.242 4.200 0.001630 

    Average KHx 0.001653 

 

 

(b) conventional surface Hy sensing coil 
 

I (A) BI (T) BGM (T) Hm (A/m) VHy (mV) KHy (m2) 

0.501 0.00136 0.00135 1519.284 0.757 0.001785 

1.019 0.00277 0.00280 3151.107 1.517 0.001725 

1.506 0.00410 0.00400 4501.582 2.276 0.001811 

2.001 0.00545 0.00530 5964.596 3.020 0.001814 

2.505 0.00682 0.00680 7652.689 3.833 0.001794 

3.070 0.00836 0.00830 9340.782 4.710 0.001806 

    Average KHy 0.001789 

 

 



Chapter 5. Rotational Core Loss Measurement 

162 

(c) sandwich Hx sensing coil 
 

I (A) BI (T) BGM (T) Hm (A/m) VHx (mV) KHx (m2) 

0.504 0.00137 0.00136 1530.538 3.987 0.009332 

1.010 0.00280 0.00280 3151.107 7.825 0.008896 

1.502 0.00409 0.00400 4501.582 11.569 0.009206 

2.008 0.00547 0.00540 6077.135 15.418 0.009088 

2.508 0.00683 0.00675 7596.419 19.248 0.009077 

3.008 0.00819 0.00820 9228.242 23.072 0.008956 

    Average KHx 0.009092 

 

 

(d) sandwich Hy sensing coil 
 

I (A) BI (T) BGM (T) Hm (A/m) VHy (mV) KHy (m2) 

0.510 0.00139 0.00137 1541.792 4.609 0.010709 

1.030 0.00280 0.00282 3173.615 9.166 0.010346 

1.501 0.00409 0.00400 4501.582 13.306 0.010589 

2.020 0.00550 0.00540 6077.135 17.910 0.010557 

2.515 0.00685 0.00680 7652.689 22.281 0.010430 

3.004 0.00818 0.00820 9228.242 26.584 0.010319 

    Average KHy 0.010492 

 

 

 

5.2.3.3 Correction of Error due to Distance between H Sensing Coils and Specimen 

 

At first, a conventional surface magnetic field sensing coil arrangement, as shown in Fig.5-5(c) 

was employed. It was found, however, that the measured value of magnetic field strength 

varied significantly with the distance between the specimen surface and the centre of the 

sensing coils, as observed by other researchers [149,154,211]. Only when this distance 

becomes very small, will the magnitude converge to the true value, but this distance is limited 

by the thickness of the coils. 

 

This problem is mainly caused by the flux through the air near the specimen surfaces. Because 

of the small specimen size, the flux through the air is more than half of the total flux, as will be 

described in section 5.2.5.1 via the inductances with and without a specimen. If the specimen 

is large enough, as in the case of a single sheet tester for alternating core loss [121], this flux 
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through the air is negligible compared with the flux through the specimen, so that accurate field 

strength can be picked up by the surface field sensing coil. Unfortunately, this is not the case 

with rotational core loss testers. 

 

As discussed in section 4.2.1 and 4.2.3, Enokizono and Sievert [154] reduced the error by 

using an optimum yoke structure, and Nakata [170] estimated the value of the surface 

magnetic field strength by extrapolating the measurements from the two H coil arrangement, 

whereas the Rogowski-Chattock coils were used by Salz and Hempel [211]. We used a 

novel sandwich sensing coil arrangement, as depicted in Fig.5-5(d). Fig.5-7 shows a photo of 

the H and B sensing coil assembly. The magnetic field sensing coils are sandwiched between 

the specimen and an identical guard sheet. With this structure, the effect of air flux is almost 

completely removed. 

 

 

 
 

Fig.5-7  Photograph of magnetic field and flux density sensing coil assembly 

 

 

Figs.5-8(a) and (b) illustrate the measured magnetic field strength and alternating specific core 

loss on the X axis (rolling direction) at different distances between the specimen surface and 

the sensing coil centre with and without the guard sheet. It can be seen that the sandwich 

arrangement yields less variation, although both results converge to the same value when the 

distance reduces to zero. 
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  Fig.5-8 Variation of (a) magnetic field strength, and (b) alternating core loss 
   with distance between specimen surface and coil centre 

 

 

A comparison of B-H loops measured with an alternating magnetic field on a square specimen 

and on an annular ring specimen of 0.35 mm non-oriented electrical steel sheet Lycore-130 

was made at 1 Hz and 40 Hz, as illustrated in Figs.5-9(a) and (b). Although this steel sheet is 

non-grain-oriented, the B-H loops on the rolling direction (X axis) and the transversal direction 

(Y axis) are different. Interestingly, the mean B-H loop, which was obtained by placing the 
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rolling directions of the specimen and the guard sheet perpendicular to each other, agrees with 

that measured on the annular ring specimen, as does the arithmetic mean of the B-H loops on 

the X and Y axes. 
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  Fig.5-9 B-H loops of Lycore-130 measured on square and annular ring specimens  
   at (a) 40 Hz, and (b) 1 Hz 
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5.2.3.4 Correction of Error due to Misalignment of Sensing Coils 

 

If the axes of the sensing coils, either magnetic field or flux density, are possibly misaligned 

with the axes of excitation coils, the measured values will not be the true components on X and 

Y axes of the magnetic field or flux density. The error caused by this misalignment can be 

eliminated easily by a rotation of coordinate axes, by using the following transformation: 

 

   






Cx

Cy

 =  
1

| C |
 






cosαy -sinαx

sinαy cosαx

 






Cx'

Cy'
    (5.4) 

 

where αx and αy are the angles of misalignment with the X and Y axes respectively, as shown 

in Fig.5-10(a), Cx and Cy are the true values of  the X and Y components, Cx' and Cy' the 

measured values of the sensing coils, and |C| = cosαxcosαy+sinαxsinαy. The angle αx and 

αy can be identified by a measurement of both sensing coils on the X and Y axes under one 

dimensional excitation. When only the X axis is excited, one has Cy = 0, and 

 

   Ax = 
Cx'

Cy'
 = 

cosαx

-sinαy
      (5.5) 

 

When only the Y axis is excited, Cx = 0, and 

 

   Ay = 
Cx'

Cy'
 = 

sinαx

cosαy
      (5.6) 

 

Solving (5.5) and (5.6) simultaneously, one obtains 

 

   αx = arccos








 ± Ax 
1-Ay2

Ax
2 - Ay

2     (5.7) 

and 

   αy = arccos




 

sinαx

Ay
       (5.8) 

 

Fig.5-10(b) illustrates the effect of this axis rotation on the results obtained by the sandwich 

field sensing coils when the X and the Y axes are excited separately, where the dotted lines 

and solid lines are the results before and after the rotation, αx = -4.26
o
, and αy = 8.29

o
. The 

results of the flux density sensing coils did not need to be corrected, because the angle of 

misalignment was very small. 
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   Fig.5-10 (a)  Rotation of misaligned coordinate axis, and 
    (b)  Effect of coordinate axis rotation on H coil results 

 

 

For the same purpose, an average procedure, which averages the measurements with 

clockwise and anticlockwise rotating magnetic fluxes, was proposed by Sievert 

[152,166,174]. It was shown that the rotational loss defined in (4.15), when the angles of 

misalignment, αx and αy, were small, could be expressed approximately as 

 

  Pr = 
2π

ρmT2
[⌡⌠

0

T

(HxBy-HyBx)dt ± αx ⌡⌠
0

T

HyBydt ± αy ⌡⌠
0

T

HxBxdt]  (5.9) 

 

where the positive sign + stands for the measurement with anticlockwise rotating flux, and the 

negative sign - for the measurement with clockwise rotating flux. Obviously, only the first term, 

which is independent of the misalignment angles, in (5.9) remains, when the measurements with 

clockwise and anticlockwise rotating fluxes are averaged. Fig.5-11 illustrates the 

measurements with clockwise and anticlockwise rotating fluxes and the averaged results for 

various misalignment angles αx of Hx coil, while Hy coil was aligned with the Y axis, i.e. αy=0, 

when B=1 T at 50 Hz [154]. 

 

This method eliminates the error of rotational core loss caused by the possible small 

misalignment of sensing coils conveniently and effectively. Unfortunately, this method is limited 

to the measurement of core loss with a purely circular rotating flux density, since Pr calculated 

by (4.15) and hence (5.9) is incorrect for rotational loss with an elliptically rotating flux density, 

as pointed out by the author in [180] and will be further discussed in section 5.4, while the 

method of rotating the coordinate axes described above is not limited by the pattern of rotating 
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fluxes. Moreover, for large misalignment angles, (5.9) is no longer valid, since it is based on 

the assumption that sinα≈α, for a small α. 

 

 

 
 Fig.5-11 Rotational power loss Pr measured clockwise (¡), anticlockwise (l), and averaged  
  ( ), versus angular position αx of the Hx sensing coil axis, the Hy coil being at the  
  optimum angular position, at B=1 T, 50 Hz, with a non-oriented specimen (from [154]) 

 

 

 

5.2.4 DSP System 

 

The DSP system (AMLAB) shown in Fig.5-2 is used for function generation and data 

acquisition. The hardware consists of four physical pieces: the analog module, the real time 

windows printed circuit board (PCB), and the master and slave PCBs [214], which fit into an 

IBM PC 386/486 as shown in Fig.5-12. 
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Fig.5-12 How AMLAB fits into an IBM PC 386/486 

 

 

On each analog module, there are four isolated analog input channels, one general purpose 

input/output (GPIO) connector, and two analog output channels. Depending on the 

requirement, up to eight analog modules can be installed. 

 

Each analog input channel has an input instrumentation amplifier of programmable 26-126dB 

gain (3 micro volts resolution at a signal to noise ratio of one), a programmable anti-alias filter, 

and an A/D converter of 12 bit resolution. The input signal range is ±500 mVDC or 330 

mVAC. With the help of the voltage adaptor box supplied by the manufacturer, the input 

voltage range can be increased up to ±1000 VDC or 440 VAC. Each channel can be either 

AC or DC coupled with long AC coupling time constant (2 minutes) and has independent 

controls of AC or DC offsets which can be controlled from the user interface. The sampling 

rate can be 40 kHz per channel depending on the project processing load and the number of 

analog channels sampled. The inputs are isolated to 3.5 kV continuous to comply with 

IEC601-1. 

 

Each analog output channel has a voltage output range of ±10 V and current capacity of ±100 

mA, and can be used for strain gauge biasing (AC or DC driven), control outputs etc. 

 

The digital GPIO connector consists of eight bits of ground referenced digital input (TTL signal 

level) provided to allow binary sense switches, such as input to rate meters, comparators or 

other functions to be used as part of a project, four connections for tape recorder 

inputs/outputs, eight bits of digital output for driving switches or relays or trigger stimuli etc., 

one frequency and event counter, and one 5 VDC reference with a nominal accuracy of ±5% 

and capable of supplying 100 mA for use as a strain gauge stimulus or for other applications 

that need a regulated voltage. 
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The AMLAB software is in three parts: the menu, the schematic, and the graphic compiler. 

The menus allow the user to call up AMLAB functions of two kinds - real time functions and 

replay functions. The real time functions are those associated with data acquisition, and the 

replay functions are those that provide a review of previously acquired data. The schematic is 

the heart of AMLAB in that it contains the information that tells AMLAB what to do, and is 

known as a project. The graphic compiler converts the menu choices into instructions and the 

schematic into a program controlled by those instructions. It checks the schematic for a wide 

range of possible errors and works out the order in which it has to carry out the program so as 

to minimise timing errors. 

 

For function generation, the software provides icons of various voltage waveforms, such as 

sinusoidal, triangular, saw-tooth, and square, with adjustable frequency, magnitude and phase 

angle. Complex waveforms can be realised by combining several such icons with different 

harmonics. For very complicated waveforms, a special C program can be compiled and 

incorporated in the software project. 

 

For data acquisition, it provides icons for the independent input channels of high precision pre-

amplifiers with different modes of coupling and adjustable gains. AMLAB software also 

provides icons for digital signal processing, such as FFT, various kinds of filters, integrator, 

differentiator, etc. 

 

In our rotational core loss measuring system, as illustrated in Fig.5-2, only two output channels 

for the X and Y axes flux density signal specifications, and four input channels for the X and Y 

components of the magnetic field strength and flux density were required. Therefore, only one 

analog module was used. Fig.5-13(a) shows the practical software project for rotational core 

loss measurement, and Fig.5-13(b) shows the waveforms and X-Y plots of voltage signals 

from B and H sensing coils. 

 

The voltage signals of the H and B sensing coils were recorded into a comma separated data 

file by AMLAB, and further processed later for useful results, such as rotational core losses, 

loci of B and H vectors, and harmonics of the X and Y components of H and B etc., by a 

special program written in C. The results of measurement will be illustrated and discussed in 

section 5.3. 
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(a) 

 

 
(b) 

 
Fig.5-13 Application of an AMLAB DSP system in rotational core loss measurement, 
 (a) software project for rotational core loss measurement; 
 (b) waveforms and X-Y plots of voltage signals from B and H sensing coils, where  

 VdHx = AHxKHxµo
dHx

dt
, VdBx = ABxKBx

dBx

dt
, VdHy = AHyKHyµo

dHy

dt
, and VdBy = AByKBy

dBy

dt
  

 are the voltage signals from Hx, Bx, Hy, and By sensing coils after pre-amplification,  
 respectively, and AHx, ABx, AHy, and ABy are the gains of the corresponding pre-amplifiers. 
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5.2.5 Feedback Control of Flux Density Waveforms  

 

5.2.5.1 System Model 

 

Strictly speaking, the feedback control of magnetic flux density in SST under rotational 

magnetic field excitation is a problem of non-linear multi-variable control. But, the non-linear 

dependence of the magnetic flux density vector on the magnetic field strength vector in the 

specimen is not clear yet, when the field is rotating. Instead, the two components of magnetic 

flux density on the X and Y axes can be modelled and controlled independently; the effects of 

non-linearity and the interactions between the two components of magnetic field are 

considered as noise VN to be depressed by the feedback, as shown in Fig.5-14. 

 

K V G F(s) K P G SST (s)
VWVS

VdB

VN

+

+
−

−

 
 
 Fig.5-14 Block diagram of the system 
  KV Gain of voltage amplifier  VS Specified signal 
  KP Gain of power amplifier  VW Winding voltage of SST 
  GF(s) Transfer function of low pass filter VN Noise due to non-linearity 
  GSST(s) Transfer function of SST  VdB Output signal of B coil 

 

The feedback control system was designed to be able to control the flux density waveforms to 

a sinusoidal shape over a frequency range from 1 to 200 Hz. For measurements at higher 

frequency, the waveform distortion is not severe since the specimen is not saturated, and the 

waveform control is no longer of critical importance. 

 

Fig.5-15 illustrates the SST on one axis, where R=Rw+Rex, Rw is the winding resistance, Rex 

the external resistance in series with the winding to reduce the low frequency drift of the power 

amplifier, Nw the number of turns of the excitation winding, and NB the number of turns of the 

B sensing coil. The circuit equations are 

 

  vw = Riw + 
dλw

dt
 = Riw + Lw

diw
dt

     (5.10) 

  vdB = NB

dΦB

dt
 = NBKA

dΦS

dt
 

         = 
NB

Nw
KA(Nw

dΦw

dt
 - Nw

dΦa

dt
) = KNKA(Lw - La)

diw
dt

  (5.11) 
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where λw is the flux linkage of the excitation winding, Lw = dλw/diw the differential inductance 

of the winding, KA is the ratio of the cross sectional area of B sensing coil to the cross 

sectional area of specimen, KN = NB/Nw, ΦB is the magnetic flux linking the B sensing coil, 

Φs the magnetic flux passing through the cross section of the specimen, Φw the total magnetic 

flux generated by the excitation coils, Φa the magnetic flux passing through the air, and La = 

NwdΦa/diw. Lw can be measured when the specimen is in the SST, while La can be measured 

approximately by taking out the specimen. By measuring the impedance at different exciting 

current ranging from 0.15 to 1.0 A at 50 Hz, it was determined that Rw = 1.65 Ohm, Lw = 

0.12 ~ 0.11 H, and La = 0.086 H. From the definitions of Lw and La, it is understood that the 

magnetic flux passing through the air can account for more than half of the total magnetic flux 

generated by the excitation current. Lw is non-linear, but was assumed a constant, 0.12 H, in 

the numerical analysis. La is substantially a constant. The constants, KN = 40/300 and KA = 

10/50, were determined from the dimensions of the SST and the specimen. 

 

 

   (a)                (b) 
Fig.5-15  SST on one axis, (a) circuit model, and (b) magnetic fluxes. 

 

Applying the Laplace transform to (5.10) and (5.11) yields the transfer function of the SST, 

 

  GSST(s) = KNKA

Lw - La

 Lw
 

s

s + R/Lw
     (5.12) 

 

This is a first order system, and is unconditionally stable. To remove high frequency noise, a 

passive low pass filter with a corner frequency = 150 Hz is adopted. Hence, the open loop 

transfer function is 

 

  GOL(s) = KvKpKNKA

Lw - La

 Lw
 

s

s + R/Lw
 

1/Tf

s + 1/Tf
   (5.13) 

 

where Tf is the time constant of the low pass filter. The closed loop transfer function for the 

specified signal Vs is 
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   GCL(s) = 
GOL(s)

1 + GOL(s)
      (5.14) 

 

The transfer function for the noise signal VN, which represents the effects of non-linearity and 

interaction between two field components, is 

 

   GN(s) = 
1

1 + GOL(s)
      (5.15) 

 

 

5.2.5.2 System Responses in Frequency and Time Domains  

 

The system responses in frequency and time domains were simulated with the linearised 

transfer function model, outlined by equations (5.13)-(5.15), using a MATLAB package. 

Fig.5-16 illustrates the open loop, and the closed loop frequency responses of the system to a 

specified signal Vs and to a noise signal VN, respectively. The dotted lines in Fig.5-16 illustrate 

the frequency responses when Rex = 0 and the low pass filter is absent, while the solid lines 

represent the frequency responses when Rex = 5 Ohm and the filter is cascaded in the forward 

path. It is shown that increasing Rex can effectively reduce the very low frequency drift, which 

is below 0.5 Hz and generated by the amplifiers in the forward path. 
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Frequency Response (closed loop)
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Frequency Response (to noise, closed loop)
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   Fig.5-16 Frequency responses of the control system 
    (a) open loop response, 
    (b) closed loop response to specified signal Vs, and 
    (c) closed loop response to noise VN 

 

 

From the frequency responses, it can be seen that the system bandwidth is from 1 Hz to 1 

kHz, which is good enough for measurements at frequencies from 1 to 200 Hz, while the noise 

due to the non-linear B-H relationship and the interaction between the two axis components of 

magnetic field can be effectively reduced. 
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Fig.5-17 depicts the simulated results in the time domain, when Vs(t) = sinωt, VN(t) = 

0.5sin3ωt, where ω = 2πf, and f = 1 Hz. From Fig.5-17, it can be seen that by feedback 

control the third harmonic noise generated by the non-linearity of the magnetisation curve and 

the interaction between the magnetic field components on two axes can be reduced by a factor 

of ten. A further reduction by a factor of three can be achieved by integration since the 

feedback is applied on VdB, a voltage proportional to dB/dt. That is, if 50% third harmonic is 

assumed due to the non-linearity and the field interaction, the resultant flux density B only 

contains about 1.7% third harmonic. 
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Time Domain Response (closed loop)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Voltage (V)

Time (s)

Vs

Response to Vs & Vn

 

(b) 
  Fig.5-17 Time domain responses   
   (a) responses to specified signal Vs and noise signal VN, and  
   (b) resultant response 
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5.2.5.3 Implementation of the Feedback Control 

 

Fig.5-18 shows the circuit  diagram of the differential voltage amplifier and the passive low 

pass filter. Between the amplifier and the low pass filter there is a high pass filter with a corner 

frequency about 0.3 Hz. This filter was adopted to reduce the low frequency drift generated 

by the voltage amplifier since it is constructed with the general purpose operational amplifier 

LM324. The overall performance is not affected when the frequency is higher than 1 Hz. 

 

 

From DSP

From B coil

To power

amplifier

 
Fig.5-18  Circuit diagram of differential voltage amplifier and filters 

 

 

5.2.6 Power Amplifier 

 

The two channel power amplifier used in the system, as shown in Fig.5-2, was a modified 

Australian Monitor AM1600 power amplifier. The frequency response was extended in the 

low frequency region to meet the requirements of SST. The bandwidth of the amplifier is 1 Hz 

- 90 kHz. The output power is 470 W with 8 Ω resistive load, 810 W with 4 Ω resistive load, 

and 1050 W with 2 Ω resistive load each channel. The input impedance is 8.5 kΩ with 1 kHz 

sine wave. The input sensitivity is +1.5 dBm (0.92 volts rms). The intermodulation distortion is 

less than 0.015% with 60 Hz and 7 kHz sine waves and 0.007% with 14 kHz and 15 kHz 

sine waves at rated output and into a 4 Ω resistive load. The common mode rejection ratio is 

97 dB at 100 Hz, 91 dB at 1 kHz, 72 dB at 10 kHz, and 67 dB at 20 kHz. 
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5.3 CORE LOSS MEASUREMENTS WITH ROTATING  

 MAGNETIC FLUXES 

 

5.3.1 Calculation of Core Losses from Measured Magnetic Field Strength  

 and Flux Density 

 

Fig.5-19 sketches a square specimen placed in the middle of a tester. Since the magnetic field 

is not uniformly distributed in all of the specimen, as mentioned in section 4.2.3.3, the X and Y 

components of the magnetic field strength and flux density are measured in the centre area of 

the specimen, where the magnetic field can be considered as uniform. 
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  Fig.5-19 (a) A specimen placed in the middle of the tester, 
   (b) A small block chosen in the centre of the specimen, 
   (c) Relationship between E and Bx, and 
   (d) Relationship between E and By. 

 

 

Consider a small block in the centre of the specimen as shown in Fig.5-19(b). The height of 

the block is chosen equal to the thickness of the specimen. When the thickness of the 

specimen is smaller than the skin depth, the magnetic field in the cross section of the specimen 

can be assumed uniform since the eddy current reaction can be neglected. The total power 

dissipated in the block at any time instant equals the net electromagnetic power entering the 

block through the closed surface S = Si

i =
∑

1

6

, where Si, (i=1,2,...,6), are the surrounding 

surfaces of the block. According to Poynting's theorem, this power can be calculated by 
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    P = ∫ •×−
S

d)( sHE      (5.16) 

 

where s is the surface element with the normal direction pointing outwards, E and H are the 

electrical field intensity and the magnetic field strength on the block surface, and E×H is the 

Poynting vector standing for the power flow per unit surface area. 

 

Let E = Exi + Eyj + Ezk, and H = Hxi + Hyj, where the subscripts x, y, and z, indicate the 

components on the X, Y, and Z axes, and i, j, and k are the unit vectors on the X, Y, and Z 

axes. The Poynting vector can then be written as 

 

   E×H = -EzHyi + EzHxj + (ExHy-EyHx)k   (5.17) 

 

and the total power entering the block 

 

  P = - ∫
1S

xyyx )dxdyHE-H(E  + ∫
2S

xyyx )dxdyHE-H(E  

        - ∫
3S

xz dxdzHE  + ∫
4S

xz dxdzHE  + ∫
5S

yz dydzHE  - ∫
6S

yz dydzHE  

     =    ∆x ∆y (-Ex1Hy1+Ey1Hx1+Ex2Hy2-Ey2Hx2) 

        + ∆x ∆z (-Ez3Hx3+Ez4Hx4) + ∆y ∆z (Ez5Hy5-Ez6Hy6)  (5.18) 

 

where the numbers (1,2,...,6) in the subscripts of E and H indicate the components of E and H 

on the corresponding surfaces Si, (i=1,2,..,6). 

 

The assumption of uniform magnetic field leads to Hx = Hx1 = Hx2 = Hx3 = Hx4, and Hy = Hy1 

= Hy2 = Hy5 = Hy6. Therefore, (5.18) can be rewritten as 

 

  P = ∆x Hx (Ey1∆y-Ez3∆z-Ey2∆y+Ez4∆z) 

     + ∆y Hy (-Ex1∆x-Ez6∆z+Ex2∆x+Ez5∆z) 

     = ∆x ∆y ∆z (Hx
dBx

dt
 + Hy

dBy

dt
) 

     




 •∆

dt

d
V=

B
H        (5.19) 

 

where ∆V = ∆x ∆y ∆z is the volume of the block, 
dBx

dt
 = Ey1∆y-Ez3∆z-Ey2∆y+Ez4∆z, and 

dBy

dt
 = -Ex1∆x-Ez6∆z+Ex2∆x+Ez5∆z, by Faraday's law. 
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Therefore, the mean specific power (in W/kg) dissipated in the block is 

 

    Pt =  
1

Tρm
 ⌡
⌠

0

T

H • 
dB

dt
 dt     (5.20) 

 

where T is the time period of magnetisation, ρm the mass density of specimen, H the measured 

surface magnetic field strength vector, and B the measured average magnetic flux density 

vector. Equation (5.20) is exactly the same as (4.13). 

 

Rotational core loss can also be calculated by the torque on the magnetic dipoles in the 

specimen. The torque on a single dipole of magnetic moment m (Am2) in a uniform magnetic 

field can be expressed as [215] 

 

    Tm = µom×H      (5.21) 

 

Assume there are n dipoles in the block of volume ∆V shown in Fig.5-19(b). The net torque 

per unit volume can then be calculated, if the magnetic field in the block is uniform, by 

 

    
V

=

n

=1k
m(k)

r ∆

∑T

T  

         

( )
V

=

n

=1k
o

∆

×∑ Hm kµ
 

         H

m

×


















∆

∑
V

=

n

=1k
o

k

µ  

          = oµ M H×      (5.22) 

 

where M

m

=
V

k=1

n

k∑
∆

 is defined as the magnetisation (A/m). Equation (5.22) is essentially the 

same as (4.14) proposed by Flanders [128,129,132-134]. 

 

Because B = µo(H+M) and B×H = µoM×H, the expression of rotational specific core loss 

in the field-metric method type two can then be derived from (5.22) as 
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   ∫ •
π

β
πρ

2

0

r

m

r d
2

1
=P T  

        ∫ Ω×
T

0m

(t)dt
T

1
= HB

ρ
     (5.23) 

 

where β  is the angular displacement, and Ω(t) = dβ/dt the angular speed of vector B. It 

should be noticed that Ω(t) is generally a function of time, and should not be taken out of the 

integral. It was assumed a constant and placed outside the integral to evaluate rotational core 

losses with both purely circular and elliptical magnetic fluxes in [149] when (4.15) was first 

proposed by Sievert and Enokizono, but this is thought to be incorrect, as pointed out by the 

author [180]. This was also agreed by Dr. Sievert in a frank discussion [186]. 

 

For a purely circular rotating magnetic flux density vector of constant velocity and magnitude, 

as shown in Fig.5-20, we have 

 

  d = dB B β         (5.24) 
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   Fig.5-20 Positions of B and H vectors when B is a  
    purely circular rotating vector 

 

 



Chapter 5. Rotational Core Loss Measurement 

182 

Thus, 

 

  




 ••

dt

d
=

dt

d β
HB

B
H  

              =
d

dt
cosB H

β
γ  

              = sinB H Ω α  

              = Ω H B×        (5.25) 

 

where Ω =
d

dt

β
 is a constant angular speed for a circular vector B, and γ π α=

2
− . 

 

Therefore, (5.20) is identical to (5.23) for a circular flux density. This will also be shown 

experimentally in the following sections. 

 

 

5.3.2 Measurement of Core Losses with Rotating Magnetic Fluxes 

 

With the system and techniques outlined in the previous sections, the rotational core losses of 

Lycore-130, a non-grain oriented electrical steel sheet, has been measured at 1, 10, 50, 100 

and 200 Hz, for various rotating fluxes, and the results are reported below. 

 

 

5.3.2.1 Pt and Pr with a Circular Flux Density 

 

Figs.5-21(a) and (b) illustrates the loci of circularly rotating vectors B and H at 50 Hz, and 

Fig.5-21(c) the core loss versus flux density, where Pt is the total core loss calculated by 

(5.20), and Pr the rotational core loss calculated by (5.23). 

 

From the loci of B and H vectors, it can be seen that there exists another hard axis of 

magnetisation about 55
o
 from the X axis (rolling direction) besides the difference in 

magnetisation properties between the rolling direction and the transversal direction. This could 

be attributed to the texture and the crystal anisotropy of the magnetic material, and will be 

explained later in section 5.5.1. 

 

The identity Pt=Pr for a purely circular rotating magnetic flux density, obtained by the 

mathematical analysis in the last section, is confirmed experimentally in Fig.5-21(c). The 

discrepancy between Pt and Pr above |B|=1.4 T was caused by the higher harmonics of flux 
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density, since it was very difficult to keep a purely circular rotating flux density vector when the 

specimen was close to saturation. 
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 Fig.5-21 Core loss measurement of Lycore-130 with circularly rotating flux at 50 Hz 
  (a)  loci of vector B,  (b)  loci of vector H, and 
  (c)  rotational core losses. 
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5.3.2.2 Pt and Pr with an Elliptical Flux Density 

 

Figs.5-22(a)-(e) are the B and H loci and the core losses of Lycore-130 versus the axis ratio, 

which is defined as the ratio between the minor axis and the major axis, of an elliptically 

rotating magnetic flux density at 50 Hz, when the major axis is on the X axis and Y axis, 

respectively. The major axis of the elliptical flux density is fixed at 1.25 T. In Fig.5-22(e), Pt is 

the total core loss calculated by (5.20), and Pr the rotational core loss calculated by (5.23). 
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  Fig.5-22 (a) Loci of elliptical vector B with the major axis on the X axis; 
   (b) Loci of vector H corresponding to the elliptical vector B in (a); 
   (c) Loci of elliptical vector B with the major axis on the Y axis; 
   (d) Loci of vector H corresponding to the elliptical vector B in (c); 
   (e) Core loss of Lycore-130 with elliptically rotating fluxes, when  
         the major axis is on the X axis, and Y axis, respectively. 

 

 

Our measurements, as illustrated in Fig.5-22(e), confirmed the results reported by Sievert and 

Enokizono [151,155,157] that Pt≥Pr for non-oriented materials in elliptically rotating magnetic 

flux. When the axis ratio of flux density is one (circular flux density), Pt=Pr. When the axis ratio 

is zero (alternating flux density), Pr is reduced to zero, while Pt gives the alternating core loss. 

That is why Pt was clarified as the total core loss, and Pr as the rotational loss due to the 

rotational component of magnetic flux density, by Sievert and Enokizono [121,149,151]. 

Further analysis, however, has shown that Pr depends not only on the rotational component of 

magnetic flux density but also on the rotational component of magnetic field strength [180], as 

will be discussed in section 5.5.2. 

 

 

5.3.2.3 Ratio of Rotational Core Loss to Alternating Core Loss 

 

Alternating core losses in the rolling direction (X axis) and the transversal direction (Y axis) 

were also measured at the same time when the rotational core losses were measured. Figs.5-

23(a) and (b) plot the alternating core loss on the X and Y axes and the rotational core loss 

with purely circular flux density against the magnitude of magnetic flux density at 1 and 50 Hz, 

respectively. It can be seen that the alternating core losses on the X and Y axes are different 

due to the crystal anisotropy, but the average of the two losses can give a correct value of the 
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alternating core loss obtained by a ring sample or an Epstein frame, as illustrated in Fig.5-9, 

section 5.2.3.3. 
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   Fig.5-23 Alternating core loss on the X and Y axes and purely  
    rotational core loss at (a) 1 Hz, and (b) 50 Hz 

 

 

The ratio of rotational core loss to alternating core loss, which is defined as 2Pt/(Px+Py), was 

2.07 at 1 Hz and 1.99 at 50 Hz, over a wide range of flux densities up to 1.6 T. This is close 

to the ratio of 2 for both the pure hysteresis losses and the losses at 50 Hz in 3% non-oriented 



Chapter 5. Rotational Core Loss Measurement 

187 

silicon iron observed by Boon and Thompson [127,138], and the ratio of π/ 2 for the pure 

hysteresis losses in 1.2% carbon steel and mild steel observed by Grimwood, Cambell, and 

Evetts [132]. When the specimen is saturated, however, this ratio will no longer be held 

constant as rotational core loss drops very rapidly while alternating core loss increases 

dramatically. 

 

 

5.3.2.4 Rotational Core Loss at Different Frequencies 

 

Fig.5-24 is the specific total rotational core loss of Lycore-130 versus the magnitude of 

magnetic flux density at various frequencies from 1 to 200 Hz, for a purely circular flux density. 

 

Owing to the difficulty in the control of flux density waveforms on the X and Y axes to be 

sinusoidal when the specimen is close to saturation, as discussed in section 4.2.3.3, the highest 

flux density reached in this material was 1.6 T, which is exactly the same as that reached by 

Sievert and Enokizono [186,187]. Therefore, the quick falling of rotational core loss in a 

saturated specimen was not observed. 
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Fig.5-24  Rotational core loss of Lycore-130, for a purely circular rotating flux density 
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5.4 MEASUREMENT OF ROTATIONAL CORE LOSS  

 WITH TESTER AT PTB, GERMANY 

 

The rotational core loss testing system developed by Dr. Sievert at PTB has been described 

earlier in section 4.2.3.3. The field-metric method was employed for core loss measurement. 

H and B signals were picked up by conventional surface H coils and B tips. Generally, this 

system is able to control the flux density waveforms sinusoidal up to 1.2 T for grain-oriented 

materials and 1.6 T for non-oriented materials over a range of frequencies from about 30 to 

80 Hz [187]. When the frequency is lower than 30 Hz, core loss measurement can still be 

performed, but the magnitudes and waveforms of the flux density components on the X and Y 

axes are difficult to control. 

 

Core losses in specimens of 0.35 mm grain-oriented electrical steel sheet ORSI-100 and 0.35 

mm non-oriented electrical steel sheet V270-35A were measured at 50 Hz with purely 

circular flux densities, elliptical flux densities with the major axis on the X axis (rolling direction) 

and the Y axis (transversal direction), and alternating flux densities on the X and Y axes, 

respectively. The results are reported and discussed below. 

 

 

5.4.1 Pt and Pr with a Circular Flux Density 

 

Fig.5-25 illustrates the results of core loss measurement for a specimen of ORSI-100 with a 

circular flux density, including the values of the total loss Pt and the rotational loss Pr, 

calculated by (5.20) and (4.15), listed against the amplitude of circular flux density Bamp , the 

loci of B and H vectors, the B/H loops on the X and Y axes, the angle between H and B 

vectors, and the waveforms of B and H components on the X and Y axes, where the 

sinusoidal waveforms are B components and the non-sinusoidal waveforms are H 

components. Fig.5-26 is the results of core loss measurement for a specimen of V270-35A 

with a circular flux density. 

 

As proved mathematically in section 5.3.1, equations (4.15), (5.20), and (5.23) are identical 

for a circular flux density. This is again confirmed experimentally by the results of core loss 

measurement listed in Fig.5-25 and Fig.5-26. The discrepancy near saturation in Fig.5-26 is 

caused by the higher harmonics in B. 
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Fig.5-25 Results of core loss measurement for a specimen of ORSI-100 with circular flux density 

 

 

 

Fig.5-26 Results of core loss measurement for a specimen of V270-35A with circular flux density 
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Owing to the different textures of grain-oriented and non-oriented materials, as will be 

explained in section 5.5.1, the anisotropy on the medium axis (Y axis, transversal direction) 

and the hard axis, which is in the direction about 55
o
 away from the rolling direction (X axis), 

of ORSI-100 is much stronger than that of V270-35A. This can be readily recognised by the 

large magnitude of rotating H in these directions. Because of the stronger anisotropy, the angle 

difference between H and B vectors varies dramatically from +70
o
 to -20

o
 in the specimen of 

ORSI-100, while in V270-35A, this variation is much smaller. 

 

The angle difference between H and B vectors can generally be attributed to two factors: (1) 

the hindrance to the variation of B from the rotational hysteresis and eddy currents, and (2) the 

magnetic anisotropy of the material. The curves of the angle difference between H and B 

vectors plotted in Fig.5-25 and Fig.5-26 as Phi(H,B) are just the superpositions of these two 

factors. Since the magnetic hysteresis and eddy currents always resist the variation of flux 

density, this factor causes a positive angle difference between H and B. 

 

The angle difference caused by the material anisotropy, however, varies with the position of B 

vector. It is difficult to pull the B vector off the easy axis, which is favoured by B since more 

magnetic domains are aligned in this direction, and hence, the H vector leads ahead of the B 

vector for a large angle when it begins to rotate from the easy axis. Once B is pulled off the 

easy axis, the angle difference between H and B vectors is reduced quickly because of the 

existence of the hard axis, which is not favoured by B. Before reaching the medium axis 

(transversal direction), B catches up with H, and the angle is reduced to zero. When H and B 

rotate further, B leads H in order to get rid of the hard axis, and the difference angle becomes 

negative. As B reaches the easy axis, it is hard to pull B off the easy axis again. 

 

Because these anisotropic axes are symmetrically distributed within the plane of the specimen, 

the positive part of the angle difference curve is symmetric to the negative part of the curve. 

This means that the average angle difference caused by the material anisotropy is zero. 

Therefore, the average value of the angle difference between H and B for a whole cycle gives 

the angle difference due to the effects of rotational hysteresis and eddy currents only. 

 

 

5.4.2 Pt and Pr with an Elliptical Flux Density 

 

Fig.5-27 and Fig.5-28 are Pt and Pr in specimens of ORSI-100 and V270-35A with an 

elliptical flux density at 50 Hz when the major axis is on the X and Y axes. The axis ratio is 
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defined as the ratio of the minor axis to the major axis of an elliptical flux density. The major 

axis of the elliptical flux density is fixed at 1.2 T. Pt is calculated by (5.20), and Pr(1) and Pr(2) 

are calculated by (5.23) and (4.15), respectively. 
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(b) 

 
   Fig.5-27 Core losses of ORSI-100 with an elliptical flux density, 
    when the major axis is on (a) X axis, and (b) Y axis  
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(b) 

 
   Fig.5-28 Core losses of N270-35A with an elliptical flux density, 
    when the major axis is on (a) X axis, and (b) Y axis  

 

 

Theoretically, as pointed out by the author in [180], the rotational loss Pr should not exceed 

the total power loss Pt in any case, since Pr is just a part of the total loss. The correctness of 

the results, that Pr≥Pt for grain-oriented materials with an elliptical flux density, as plotted in 

Fig.4-32(d) when the major axis was on the X axis, reported by Enokizono, Suzuki, 

Shirakawa, Sievert, and Xu in [151,155,157] was therefore questionable. The derivation of 

equation (5.23) for calculating Pr represented in section 5.3.1 revealed that equation (4.15) is 

incorrect for the case with an elliptical flux density because the angular speed of an elliptical 

flux density vector varies with time and should not be taken out of the time integral. This is 
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proved experimentally by Fig.5-27(a). When the major axis of an elliptical flux density is on 

the X axis (rolling direction) of the ORSI-100 specimen, the rotational loss Pr(2), calculated 

by (4.15) assuming constant angular speed, is greater than the total loss Pt for axis ratio of flux 

density larger than 0.2, while the rotational loss Pr(1), calculated by (5.23) assuming variable 

angular speed, never exceeds Pt. 

 

In Fig.5-27(b), when the major axis of elliptical flux density is on the Y axis (transversal 

direction) of the ORSI-100 specimen, Pr(1) and Pr(2) are very close, and both are smaller 

than Pt. This phenomenon is very interesting, but unfortunately was not reported before. 

 

In order to understand why Pr(2) is different from Pr(1) when the major axis is on the X axis, 

while Pr(2) is close to Pr(1) when the major axis is on the Y axis, the waveforms of the angular 

speed Ω(t), the torque |B×H| (in Nm/m3), and the instantaneous power losses (in W/m3) are 

plotted in Fig.5-29 and Fig.5-30, when the major axis is on the X and Y axes, respectively, 

with axis ratio 0.4, Bmax=1.2 T, at 50 Hz. The instantaneous power losses were obtained by 

multiplying the torque |B×H| by the variable angular speed Ω(t) and by the constant angular 

speed ω=2πf. The average values of the instantaneous power losses are proportional to Pr(1) 

and Pr(2). 

 

In Fig.5-29, when the major axis is on the X axis, the variation of the torque |B×H| is large 

due to the fact that the effects of the material anisotropy and the elliptical flux density on the 

cross product of B and H are aiding each other, and hence, the error of rotational loss Pr 

caused by assuming a constant angular speed is large. This can be seen in Fig.5-29(b) from 

the difference between the average values of the instantaneous power losses. 

 

In Fig.5-30, when the major axis is on the Y axis, however, the variation of the torque |B×H| 

is much smaller since the effects of the material anisotropy and the elliptical flux density cancel 

each other. Therefore, the difference between the average values of the instantaneous power 

losses, or the error of rotational loss Pr, caused by assuming a constant angular speed is 

smaller than that in Fig.5-29(b). But, the waveforms of the instantaneous power losses are still 

quite different. This indicates that equation (4.15) is incorrect in the case of an elliptical flux 

density, although sometimes the averaged value of the instantaneous power loss could be close 

to the correct result. 
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 Fig.5-29 Waveforms of angular speed, torque, and power losses in a specimen of ORSI-100  
  with an elliptical flux density at 50 Hz, the major axis on the X axis, Bmax =1.2 T,  
  and Axis Ratio = 0.4 

  (a) angular speed of vector B and torque |B×H|, and  

  (b) instantaneous rotational losses and the average values, calculated  
        by using actual angular speed and constant angular speed 
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 Fig.5-30 Waveforms of angular speed, torque, and power losses in a specimen of ORSI-100  
  with an elliptical flux density at 50 Hz, the major axis on the Y axis, Bmax =1.2 T,  
  and Axis Ratio = 0.4 

  (a) angular speed of vector B and torque |B×H|, and  

  (b) instantaneous rotational losses and the average values, calculated  
        by using actual angular speed and constant angular speed 
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In Fig.5-28, it is confirmed again that Pt≥Pr in non-oriented electrical steel sheets with an 

elliptical flux density. It can also be seen that the rotational loss calculated by (5.23) is different 

from that calculated by (4.15), although the difference is not big. This can be explained by the 

fact that in non-oriented materials the magnetic anisotropy due to the material texture is not as 

strong as that in grain-oriented materials, and hence, for non-oriented materials the error of 

rotational loss caused by assuming constant angular speed of flux density is smaller than that 

for grain-oriented materials. 

 

 

5.4.3 Ratio of Rotational Core Loss to Alternating Core Loss 

 

Fig.5-31 and Fig.5-32 show the core losses in ORSI-100 and V270-35A with circular and 

alternating flux densities. The ratio of total rotational core loss to alternating core loss, which is 

defined as 2Pt/(Px+Py), is 1.99 for a range of flux densities up to 1.2 T in ORSI-100, and 

1.69 for a range of flux densities up to 1.6 T in V270-35A. Although the ratios of total 

rotational core loss to alternating core loss are close to 2 in both grain-oriented and non-

oriented magnetic materials, the total rotational core loss is not simply the sum of the 

alternating core losses on the X and Y axes. It is noticed that the B/H loops on the X and Y 

axes for a circular flux density in Fig.5-25 and Fig.5-26 are different from those for alternating 

flux densities on the X and Y axes. This indicates that the mechanisms of total rotational core 

loss are different from that of alternating core loss. 
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Fig.5-31 Alternating core losses on the X and Y axes and rotational core loss of ORSI-100 
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Fig.5-32 Alternating core losses on the X and Y axes and rotational core loss of V270-35A 

 

 

By comparing the curves of core losses plotted in Fig.5-31 and Fig.5-32, it can be seen that in 

grain-oriented materials the alternating core loss in the rolling direct (X axis) is smaller than that 

in non-oriented materials, but the total rotational core loss in grain-oriented materials is not 

always smaller than that in non-oriented materials because the magnetic properties on the 

medium and hard axes in grain-oriented materials are inferior to those in non-oriented 

materials, as will be discussed in section 5.5.1. 

 

 

5.5 FURTHER DISCUSSION 

 

5.5.1 Magnetic Anisotropy due to Material Textures 

 

From the discussions in the previous sections, it was realised that the anisotropy of magnetic 

materials played an important role in the measurement of rotational core loss. Most 

importantly, the difficulty to control the waveforms of flux density sinusoidally, when the 

material is close to saturation, can be related to the magnetic anisotropy of the material. As 

mentioned earlier, the highest value of flux density ever reached by Sievert and the author was 

1.6 T in non-oriented materials and 1.2 T in grain-oriented materials. 

 

Magnetic anisotropy simply means that the magnetic properties depend on the direction in 

which they are measured. There are several kinds of anisotropy, such as crystal anisotropy, 

shape anisotropy, stress anisotropy, and exchange isotropy, etc. Among them, only crystal 
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anisotropy is intrinsic to the material, and all others are induced anisotropy in specific 

circumstances. 

 

Fig.5-33 depicts the normal magnetisation curves measured in the three crystal axes, <100>, 

<110>, and <111>, of a single iron crystal, which has a body centred cubic structure. For an 

iron crystal, <100> is the easy axis, <110> is the medium axis, and <111> is the hard axis. 

Magnetic domains in an iron crystal will therefore lie in [100] directions (the easy axes). From 

the magnetisation curve in <111> direction, it can be seen that the crystal begins to saturate at 

M=1000 emu/cm3, or 1.26 T. When the effects of impurities and rotational hysteresis are 

considered in an electrical steel sheet , this value could be even lower. 

 

 

 

 

Fig.5-33 Magnetisation curves for a single crystal of iron (from [3]) 

 

 

In an ideally isotropic magnetic material, the iron crystals are randomly oriented. Practically, 

however, the crystal orientations or textures are more or less affected by fabrication and heat 

treatment, but the effect is complicated and imperfectly understood. In fact, it is difficult to 

achieve isotropy in any fabricated material, even if fabrication involves no more than 

solidification from the melt. When a single crystal is elongated by tension, slip occurs on a 
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limited number of crystal planes that, in general, are inclined to the axis of tension. As 

elongation proceeds, the planes on which slip is taking place tend to turn so that they are less 

inclined to the axis. In this way a definite crystallographic direction approaches parallelism with 

the length of the specimen. In a similar but more complicated way, any of the usual methods of 

fabrication cause the many crystals of which it is composed to assume a non-random 

distribution of orientations, often referred to as preferred orientations, or textures. 

 

The relief of the internal strains in a fabricated metal by annealing proceeds only slowly at low 

temperatures (up to 600
o
C for most ferrous metals) without noticeable grain growth or change 

in grain orientation and is designated recovery. Near the point of complete relief, distinct 

changes occur in both grain size and grain orientation, and the material is said to recrystallise. 

At higher temperatures grain growth increases more rapidly. The specific temperatures 

necessary for both recovery and recrystallisation depend on the amount of previous 

deformation. Special orientations are also present in fabricated materials after recrystallisation. 

 

In order to build up the required texture, rolling operation must be followed by a 

recrystallisation annealing at high temperature. Fig.5-34 shows schematically the preferred 

orientations of crystals in iron sheet after rolling and recrystallisation. 

 

 

      
 
  (a)      (b) 
 
 Fig.5-34 The preferred orientations of crystals in iron sheet after rolling and recrystallisation 
  (a) cubic texture, and (b) cube-on-edge or goss texture, where RD stands for rolling  
  direction (from [217]). 

 

 

Low-carbon steel sheet and pure iron can generally be considered as isotropic magnetic 

materials because they are fabricated by hot rolling, in which less tension is applied to the 

crystals to make them align with the preferred orientations, and most of the crystals are still 

randomly distributed. 

 

Non-oriented silicon steel sheet is made by hot rolling almost to final thickness, pickling in acid 

to remove the oxide scale, slightly cold rolling to improve flatness, and batch annealing. More 

tension is applied to the crystals by cold rolling than by hot rolling, and hence, more crystals 
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take the preferred orientations, with [100] axes aligned with the rolling direction, as illustrated 

in Figs.5-34(a) and (b). Since better magnetic properties can be achieved in the preferred 

orientations, the greater the number of crystals aligned in the preferred orientations the higher 

the grade of the steel sheet. Stronger anisotropy, of course, is obtained in higher grade steel 

sheet. This was shown clearly by the loci of rotating B and H vectors in Fig.5-21 for Lycore-

130 and Fig.5-25 for V270-35A non-oriented silicon steel sheets. Strictly speaking, these 

electrical steel sheets can be referred to as partially anisotropic magnetic materials, although 

technically, they are known as isotropic materials. 

 

The fabrication of grain-oriented materials is much more complicated than non-oriented 

materials. Generally, grain-oriented silicon steel sheet is made by hot rolling to a thickness of 

about six or seven times of the final thickness, pickling in acid to remove the oxide scale, cold 

rolling to the final thickness, primary recrystallisation annealing in moist hydrogen, and 

secondary recrystallisation annealing in dry hydrogen to form the cube-on-edge texture. 

 

In modern grain-oriented silicon steel sheet, such as ORIENTCORE.HI-B (commonly 

abbreviated to HI-B) by Nippon Steel Corporation, Japan, a high degree of grain orientation 

is obtained. The average deviations of <100> axis from the rolling direction are about 3
o
 in HI-

B and about 7
o
 in conventional grain-oriented steel sheets. A surface coating which consists of 

a glass-film and a phosphate coating as shown in Fig.5-35, is used to improve the magnetic 

properties. The surface coating not only functions as interlaminar insulation, but also places the 

material under tensile stress in the rolling direction. This helps keep the preferred grain 

orientation. 

 

The cube-on-edge texture makes the easy <100> directions in all grains almost parallel to one 

another and to the rolling direction of the sheet. The magnetic properties in this direction are 

therefore excellent, and almost all properties quoted by the manufacturers for grain-oriented 

sheet refer to this direction. The magnetic properties in the other directions in grain-oriented 

sheet are drastically inferior to those in the rolling direction, since the hard <111> direction and 

the medium <110> direction lie at 55
o
 and 90

o
 to the rolling direction in the plane of the sheet. 

This is also be confirmed by the loci of rotating B and H vectors of a grain-oriented steel sheet 

ORSI-100, reported in Fig.5-26. 
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Fig.5-35 Schematic diagram of the surface coating of HI-B (from [216]) 

 

 

To have a quantitative comparison, the normal magnetisation curves, obtained by joining the 

tip points of alternating B/H loops, in the easy, medium, and hard directions were measured in 

a specimen of grain-oriented sheet steel ORSI-100 with alternating flux densities at 50 Hz 

using the single sheet rotational core loss tester at PTB, and plotted in Fig.5-36. Since the 

measurement was performed at 50 Hz, extra magnetic field strength was required to overcome 

the resistance of the eddy currents, but the level of flux density to saturate the specimen was 

not affected. At about 1.2 T, the specimen is saturated in the hard axis. Any further increase of 

flux density in this direction requires a great increase of magnetic field strength, and in turn the 

excitation current. If only alternating magnetic field is involved, this is not a problem, since the 

hard axis is almost never used as mentioned earlier. In rotational core loss measurement, 

however, the inferior magnetic property in the hard axis will certainly cause difficulty in 

saturating the specimen. This is believed to be the major reason why the highest flux density 

that can be reached is 1.2 T in grain-oriented materials, and 1.6 T in non-oriented materials. 

This is also believed to be a problem for other kinds of rotational core loss testers whenever 

the flux density vector is to be controlled. 
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Fig.5-36 Normal magnetisation curves of ORSI-100 on the easy, medium, and hard axis at 50 Hz 

 

 

To solve the problem, the time constant of the control system must be very small so that it 

responds quickly to meet the requirement of sudden increase of excitation current when the 

rotating magnetic flux density vector is on the hard axis. A two channel power amplifier of 

large capacity and bandwidth is also necessary. 

 

 

5.5.2 More Discussion about Total Loss Pt and Rotational Loss Pr 

 

Fig.5-37 compares the losses in a specimen of non-oriented silicon steel sheet Lycore-130 

with elliptically and purely circular rotating magnetic flux densities and throws further light on 

the meaning of Pr. Curves 1 and 2 are Pt and Pr, calculated by (5.20) and (5.23), with an 

elliptical flux density at 50 Hz versus the axis ratio, which is defined as the ratio of the major 

axis to the minor axis of the elliptical flux density. The major axis is on the X axis and fixed at 

1.25 T. Curve 3 plots the total loss with a purely circular rotating magnetic flux density against 

B/Bmax, where Bmax=1.25 T, the same Bmax value used for the results with elliptically 

rotating magnetic flux density. The figure shows that Pr (Curve 2) with an elliptically rotating 

magnetic flux density is higher than that with a purely circular rotating magnetic flux density, 

when the circular flux density equals the resolved rotational component of the elliptical flux 

density. This implies that Pr with an elliptical flux density depends not only on the resolved 

rotational component of the flux density, but also on some other components as well. 
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 Fig.5-37  Comparison of core losses with elliptical flux and with circular flux at 50 Hz 

 

 

Further conclusions can be drawn by resolving the elliptical magnetic field strength and flux 

density into alternating and rotational components. Using Fourier series expansions, (5.20) 

becomes 

 

  Pt = 
1

Tρm
 ⌡
⌠

0

T

( ΣHk )⋅( Σ
dBk

dt
 )dt = 

1

Tρm
 Σ ⌡

⌠

0

T

Hk⋅
dBk

dt
dt   (5.26) 

 

where Hk and Bk (k=1,3,5,...) are the k-th harmonics of H and B, and Hk and Bk are both 

elliptically rotating vectors. These vectors can be further resolved into rotational components 

and alternating components, as Hk = Hrk+Hak, where Hrk is a purely circular rotating 

magnetic field strength of constant velocity and magnitude, and Hak an alternating magnetic 

field strength, and similarly for Bk. Thus, the total loss Pt in (5.26) can be divided into four 

portions as follows 

 

  Pt = 
1

Tρm
 Σ ⌡

⌠

0

T

Hrk⋅
dBrk

dt
dt + 

1

Tρm
 Σ ⌡

⌠

0

T

Hak⋅
dBrk

dt
dt 

       + 
1

Tρm
 Σ ⌡

⌠

0

T

Hrk⋅
dBak

dt
dt + 

1

Tρm
 Σ ⌡

⌠

0

T

Hak⋅
dBak

dt
dt 

       = P1 + P2 + P3 + P4      (5.27) 
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where Hrk, Hak, Brk, and Bak, are the rotational and the alternating components of Hk and 

Bk, and Pi, i = 1,2,...,4 are the four loss components corresponding to the integral terms. 

 

In Fig.5-37, the total loss Pt (Curve 1) with an elliptically rotating magnetic flux density is 

resolved into four portions by the method outlined above, and the losses P1+P2 and 

P1+P2+P3 are plotted as the curves 4 and 5. It can be seen that P1+P2 (Curve 5) is close to 

the loss measured with a circular flux density (Curve 3), and this is consistent with the fact that 

both P1 and P2 contain dBr/dt, and P3 and P4 contain Ba which is zero for a purely circular 

rotating magnetic flux density. It can also be seen that P1+P2+P3 (Curve 4) is close to Pr 

(Curve 2) calculated by (5.23), and this is consistent with the fact that P3 depends on Hr. P4 is 

the only term containing both Ha and Ba, and should not contribute to a rotational component 

of core loss. 

 

Therefore, the rotational loss Pr with an elliptical flux density depends on the rotational 

components of both the magnetic field strength and flux density, and is only a fraction of the 

total loss Pt. 

 

 

 

 

 

5.6 CONCLUSION 

 

The developed square specimen tester can be successfully used for both alternating and 

rotational core loss measurements with arbitrary magnetic flux patterns. The precision of 

magnetic field measurement in a two dimensional single sheet tester is improved by the 

sandwich arrangement of magnetic field sensing coils. 

 

The rotational core loss of a non-grain-oriented electrical steel, Lycore-130, has been 

measured with purely circular and elliptically rotating magnetic flux densities for up to 1.6 T 

over a range of frequencies from 1 to 200 Hz. 

 

Because of insufficient time, it has not been possible to complete and include the results of an 

inter-comparison between the rotational core loss testers at PTB and UTS. Much useful 

information was obtained, however, from the measurements on grain-oriented silicon steel 

sheet ORSI-100 and non-oriented silicon steel sheet V270-35A with both alternating and 

rotating magnetic flux densities using the tester at PTB. 
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The ratio of rotational core loss to alternating core loss is about 2 for both grain-oriented and 

non-oriented materials for a wide range of flux density (up to 1.2 T in grain-oriented steel 

sheet and up to 1.6 T in non-oriented steel sheet). This is consistent with the results reported 

by other researchers [127,132,138]. This, however, does not mean that the total rotational 

core loss with a circular flux density is the sum of the alternating core losses on the X and Y 

axes, since the mechanisms are different. 

 

Mathematical derivation and experimental measurements of rotational core losses in both 

grain-oriented and non-oriented magnetic materials have shown that equations (4.15), (5.20), 

and (5.23) are identical with a circular flux density, but with an elliptical flux density, equation 

(4.15) is incorrect for calculating Pr, since the angular speed varies with time. It was also found 

that the error caused by using a constant angular speed in (4.15) depended on the magnetic 

anisotropy of the material. The stronger the anisotropy of the material, the larger the error of 

equation (4.15). 

 

Further analysis in section 5.5.2 has shown that with an elliptical flux density, rotational loss Pr 

is only a fraction of total loss Pt, and should never exceed Pt. By resolving the magnetic field 

strength and flux density into rotational and alternating components, the total loss Pt can be 

divided into four portions, and Pr is possibly explained by the first three portions in (5.27). 

 

The experimental results have shown that the magnetic anisotropy of materials played an 

important role in rotational core loss measurement with a circular flux density. Because of the 

higher degree of grain orientation, or stronger anisotropy, the alternating core loss on the easy 

axis (rolling direction) in grain-oriented materials is generally smaller than that in non-oriented 

materials, but the rotational core loss in grain-oriented materials is not always smaller than that 

in non-oriented materials because the magnetic properties on the medium and hard axes in 

grain-oriented materials are much inferior to those in non-oriented materials. 

 

The analysis of the magnetic anisotropy due to the textures of magnetic materials and the 

measurements of the normal magnetisation curves on the easy, medium, and hard axes in a 

specimen of grain-oriented silicon steel sheet ORSI-100 revealed that the difficulty in flux 

density waveform control, when the specimen was to be saturated by a purely circular rotating 

flux density, could be attributed to the inferior magnetic properties on the hard axis of the 

specimen. This problem is common for any rotational core loss testers whenever the flux 
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density waveforms are to be controlled. In order to saturate the specimen with a rotating flux 

density, the control system must be improved to have a much quicker current response to 

meet the requirement of a sudden increase of excitation current. 



CHAPTER 6.  MODELLING OF ROTATIONAL CORE LOSSES 

 

 

6.1 INTRODUCTION 

 

In this chapter, rotational core losses with various kinds of rotating magnetic fluxes are 

modelled. Because of the very complicated mechanisms, as discussed in chapter 4, it has not 

been possible to develop models with a physical background. Instead, phenomenological 

models have been developed, and applied to core loss analysis in rotating electrical machines. 

 

In section 6.2, the purely circular rotational core loss of a non-oriented silicon steel sheet, 

Lycore-130, is first separated into rotational hysteresis, eddy current, and anomalous losses 

using a conventional core loss separation procedure, and then modelled by a three term model 

generalised from the corresponding alternating core loss model. 

 

Section 6.3 presents a novel analogical approach to rotational hysteresis loss based on the 

strong analogy between the profile of rotational hysteresis loss per cycle versus flux density 

and the torque/slip curve of a single phase induction machine. The rotational hysteresis losses 

of different magnetic materials reported by various researchers and the author show excellent 

agreement with the model. 

 

In section 6.4, a new formulation for predicting the total core loss with an elliptically rotating 

flux density from the core losses with a purely circular rotating flux density and with a purely 

alternating flux density is reported. Experimental verification is also given. 

 

Section 6.5 outlines the method used for core loss analysis in rotating electrical machines. The 

finite element method was used to determine the magnetic field distribution in a permanent 

magnet motor. The locus of the rotating magnetic flux density vector in each finite element was 

assembled from a sequence of finite element solutions. The total core loss dissipated in each 

element was then calculated according to the locus of flux density in that element. A model of 

the core losses with an arbitrary two dimensional rotating magnetic flux density based on the 

models reported in the previous sections is presented in this section. The predicted results are 

compared with the experimental data. 
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6.2 ROTATIONAL CORE LOSS SEPARATION  

 WITH A CIRCULAR FIELD 

 

As for alternating core loss, rotational core loss (in W/kg) can also be separated into three 

portions as [184] 

 

  Pr = Phr + Per + Par       (6.1) 

 

where Phr is rotational hysteresis loss, Per rotational eddy current loss, and Par rotational 

anomalous loss. 

 

With a purely circular rotating magnetic flux density, the rotational eddy current loss in thin 

laminations can be calculated by 

 

  Per = 2Ce(fB)2        (6.2) 

 

where C =
b

6
e

2 2

m

π σ
ρ

 is the coefficient of eddy current loss, the same for both rotational and 

alternating eddy current losses, b the thickness of the lamination, σ the conductivity, ρm the 

material mass density, f the frequency, and B the magnitude of the rotating flux density. 

 

Similarly, the rotational anomalous loss is given by 

 

  Par = Car(fB)3/2       (6.3) 

 

where Car is the coefficient of rotational anomalous loss, a function of flux density. Car 

eventually reduces to zero when the material is saturated and all magnetic domain walls 

disappear [219]. 

 

This model has been employed to separate the rotational core loss of Lycore-130, reported in 

section 5.3.2, Fig.5-24. First, the curves of the total rotational loss per cycle Pr/f versus 

frequency were extrapolated to f=0 Hz to obtain the rotational hysteresis loss per cycle Phr/f. 

In the calculation of Per/f, the theoretical Ce was assumed. Subtracting Phr/f+Per/f from Pr/f, 

the rotational anomalous loss per cycle Par/f was obtained. Finally, Car was obtained by fitting 

over a range of B and f values, and found to be a constant over a range of B up to 1.4 T. 

Fig.6-1 illustrates this separation procedure when B=0.5, 0.7, 0.9, 1.0, 1.2, and 1.4 T. The 

deduced parameters are Ce=6.54×10-5 W/kg/T2/Hz2, and Car=1.07×10-3 W/kg/T1.5/Hz1.5. 
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Fig.6-1 Rotational core loss separation of Lycore-130 at (a) 0.5, (b) 0.7, (c) 0.9, (d) 1.0, (e) 1.2, (f) 1.4 T 
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6.3 A MODEL FOR ROTATIONAL HYSTERESIS LOSS 

 WITH A CIRCULAR FIELD 

 

As discussed in section 4.4, rotational hysteresis loss was first modelled by Archenhold, 

Sandham, and Thompson [126] using the basic Stoner-Wohlfarth model (4.17) of a small 

particle in 1960, but the discrepancy between the experimental and the predicted results was 

enormous, as illustrated in Fig.4-27. In 1962, Strattant and Young [137] simulated rotational 

hysteresis loss with elliptically rotating magnetic fields, using an empirical model (4.19) without 

any physical background. The error between the calculated and measured losses was also 

large as shown in Fig.4-29. 

 

This section presents an analogical model for rotational hysteresis loss with a circular field, 

based on the strong analogy between the curve of rotational hysteresis loss versus flux density 

or magnetisation and the torque/slip curve of a single phase induction machine. 

 

 

6.3.1 Rotational Hysteresis Loss 

 

With a purely circular rotating flux density at low speed, the instantaneous torque due to 

rotational hysteresis is proportional to the cross product of the rotating flux density or 

magnetisation vector and the rotating magnetic field strength vector, as described by (5.22). 

For the convenience of analysis, it is restated here as 

 

  Tr = µ
0
|M×H| = µ

0
MHsinδ      (6.4) 

 

where Tr is the torque due to rotational hysteresis of the magnetic material, M the magnitude of 

the magnetisation vector M, H the magnitude of the magnetic field vector H, and δ the angle 

difference between vectors H and M. Because B=µ
0
(H+M), and B×H=µ

0
M×H, M in (6.4) 

can be replaced by B, and δ is then the angle difference between H and B. Since the angular 

speed of the flux density vector is constant, the average hysteresis loss equals the average 

torque multiplied by the constant angular speed, as shown in equation (5.23). 

 

Fig.6-2 illustrates the rotational hysteresis loss in 3% non-oriented silicon steel at 1 Hz 

reported by Cecchitti, et al, [131] in 1978. At first, the rotational hysteresis loss increases 

with the magnitude of rotating magnetisation slowly, segment a-b in Fig.6-2. Above a certain 

magnetisation level, about 0.6-0.7 of the saturation magnetisation, the increment of rotational 

hysteresis loss becomes larger and larger with increasing magnitude of magnetisation, segment 

b-c in Fig.6-2. After reaching the maximum value at about 0.8 of the saturation magnetisation, 
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point c in Fig.6-2, the rotational hysteresis loss drops quickly to zero when the specimen is 

saturated, segment c-d in Fig.6-2. 
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Fig.6-2 Rotational hysteresis loss in non-oriented 3% silicon steel measured at 1 Hz (after [131]) 

 

 

The shape of the hysteresis loss curve in Fig.6-2 can be explained qualitatively by using the 

domain theory of magnetisation. Consider an isotropic specimen of a simple domain structure 

as shown in Fig.6-3. The magnetic domains, large or small each saturated to saturation 

magnetisation Ms, are equally distributed along two easy axes of magnetisation at right angles 

to one another. In the unmagnetised state, the magnetic domains are balanced, and the 

resultant magnetisation is zero. The average torque and hence the rotational hysteresis loss is 

zero when the magnetisation or flux density is zero, point a in Fig.6-2. 

 

 

 

 

Fig.6-3 Magnetic domain structure of an isotropic specimen in the unmagnetised state 
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As the applied magnetic field strength increases, the volumes of the magnetic domains whose 

orientations are close to the direction of the magnetic field increase and the volumes of the 

oppositely oriented magnetic domains decrease, as illustrated in Fig.6-4(a). The amount of 

domain wall movement depends on the magnitude of the applied magnetic field strength. Thus, 

a nonzero resultant magnetisation is induced. When the applied magnetic field rotates, the 

resultant magnetisation vector follows the field vector. Because of the pinning of domain walls 

by defect sites inside the specimen, which causes an opposing force to resist any changes in 

magnetisation, as discussed in section 2.1, there exists an angle difference between the field 

and the magnetisation vectors. When the magnitude of the applied magnetic field strength is 

small, there is no domain wall annihilation and creation involved in the domain wall movement, 

as illustrated in Figs.6-4(a)-(c) when the induced magnetisation vector rotates for 90
o
. The 

rotational hysteresis loss is small, and increases slowly with the magnetisation, as illustrated by 

segment a-b in Fig.6-2. 
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  Fig.6-4 Domain wall movement when a small magnetisation vector rotates 
   to 90

o
 from position (a) 0

o
, to (b) 45

o
, and further to (c) 90

o
 

 

 

As the applied magnetic field strength increases, smaller magnetic domains with opposing 

magnetisation direction will disappear, and as the applied field rotates, reappear again when 

they are no longer in the opposing direction, as shown in Fig.6-5. Since extra energy is 

required for the annihilation and recreation of magnetic domain walls, the rotational hysteresis 

loss increases quickly with the increasing magnetisation, as illustrated by segment b-c in Fig.6-

2. 
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  Fig.6-5 Domain wall movement when a large magnetisation vector rotates 
   to 90

o
 from position (a) 0

o
, to (b) 45

o
, and further to (c) 90

o
 

 

 

When the specimen is close to saturation, there remain only a few large domains, and these 

domains begin to rotate with the applied magnetic field, that is, the magnetic domain walls will 

jump onto the other easy axis in order to be less inclined to the applied magnetic field, as 

shown in Fig.6-6. This is feasible since there are fewer domain walls by then and hence less 

hysteresis to the movement of domain walls. The rotational hysteresis loss falls quickly with the 

increasing magnetisation, corresponding to segment c-d in Fig.6-2. 
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  Fig.6-6 Domain wall movement when the specimen is close to saturation, and 
   the magnetisation vector rotates to 90

o
 from position (a) 0

o
, to (b) 45

o
, 

   and further to (c) 90
o
 

 

 

When the specimen is deeply saturated, all magnetic domain walls disappear, and there 

remains only one large magnetic domain, as illustrated in Fig.6-7. Therefore, the resistance to 
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the rotation of this domain due to rotational hysteresis reduces to zero, and so does the 

rotational hysteresis loss, corresponding to point d in Fig.6-2. 
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  Fig.6-7 Domain rotation when the specimen is deeply saturated, and the  
   magnetisation vector rotates to 90

o
 from position (a) 0

o
, to (b) 45
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   and further to (c) 90
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Of course, the mechanism of rotational hysteresis is still far from being fully understood yet. 

The actual magnetic domain configurations at different magnetisation levels are much more 

complicated than those illustrated above, so the above explanation only provides an 

approximate qualitative understanding of rotational hysteresis. 

 

 

6.3.2 Electromagnetic Torque in a Single Phase Induction Machine 

 

In a single phase induction machine, the instantaneous electromagnetic torque acting on the 

rotor can be calculated by 

 

  Tr = KΦsΦrsinδ       (6.5) 

 

where K is a constant coefficient, Φs the resultant rotating component of the stator magnetic 

flux, Φr the resultant rotating component of the rotor magnetic flux, which is induced by the 

stator magnetic flux, and δ the angle between the vectors Φs and Φr. 

 

In terms of the machine circuit parameters, the resultant electromagnetic torque can be 

calculated by 
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  T = T + Tr f b         (6.6) 

 

where 

  T =
V

2

R / s

(R + R / s) + (X + X )
f

2

syn

2

1 2
2

1 2
2ω

 

and 

  T =
V

2

R / (2 s)

(R + R / (2 s)) + (X + X )
b

2

syn

2

1 2
2

1 2
2

− −
−ω

 

 

are the electromagnetic torques generated by the forward and the backward rotating stator 

and rotor magnetic fluxes, V is the terminal voltage of the stator winding, R1 and X1 are the 

resistance and the leakage reactance of the stator winding, R2 and X2 are the resistance and 

the leakage reactance of the rotor winding referred to the stator side, respectively, 

s =
syn r

syn

ω ω
ω

−
 is the slip, ωr the rotor speed, and ωsyn the synchronous speed, or the speed 

of the rotating stator magnetic flux. 

 

Fig.6-8 illustrates the torque/slip curve of a single phase induction motor. When the rotor is at 

standstill, both the stator and rotor fluxes are alternating. The resultant rotating stator and rotor 

fluxes equal zero. An alternating magnetic flux can be resolved into two rotating flux 

components of identical magnitudes but opposite rotating directions. The electromagnetic 

torques generated by the forward and the backward rotating magnetic fluxes cancel each 

other, and hence the resultant torque equals zero, point a in Fig.6-8. 

 

If the rotor rotates in the forward direction, the backward rotating components of both the 

stator and the rotor magnetic fluxes are weakened, while the forward rotating components are 

enhanced. The resultant rotating components of the stator and rotor magnetic fluxes are no 

longer zero, and the magnitudes of these resultant rotating fluxes increase when the rotor speed 

increases. Therefore, the resultant electromagnetic torque also increases with increasing rotor 

speed. 

 

At a low speed (high slip), a large emf at a high frequency is induced in the rotor winding, but 

the resultant rotating rotor flux is small. Because of the high rotor frequency, the angle 

difference between Φs and Φr is dominated by the rotor winding inductance, and thus δ is 

small. Therefore, the resultant torque increases slowly with the rotor speed, segment a-b in 

Fig.6-8. When the rotor speed increases (slip decreases), the effect of the rotor winding 

resistance becomes significant, and a larger δ is obtained. The resultant electromagnetic torque 

also increases more quickly, segment b-c in Fig.6-8. When the effect of the rotor winding 

resistance balances with the effect of the rotor winding inductance, the maximum resultant 
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torque is obtained, point c in Fig.6-8. When the speed is close to the synchronous speed (very 

small slip), δ is dominated by the rotor winding resistance, and is close to 90
o
. The 

backwardly rotating stator and rotor fluxes are negligible. Because the relative speed between 

the rotor winding and the rotating fluxes is very small, the induced emf is very small at a very 

low rotor frequency. Therefore the resultant torque drops quickly, segment c-d in Fig.6-8, and 

reaches zero slightly before the rotor speed reaches the synchronous speed, point d in Fig.6-8, 

because of the existence of a very small backward torque. 
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  Fig.6-8 Torque/slip curve of a single phase induction machine, where 
   Tf and Tb are electromagnetic torques generated by the forward and  
   the backward rotating fluxes, respectively, and Tr = Tf+Tb is the resultant  
   electromagnetic torque. 

 

 

6.3.3 An Analogical Approach to Rotational Hysteresis Loss 

 

From the analysis in sections 6.3.1 and 6.3.2, it can be seen that there exists a strong analogy 

between the rotational hysteresis loss in an electrical steel sheet and the resultant 

electromagnetic torque in a single phase induction machine, although the mechanisms are rather 

different. 

 

Fig.6-9 illustrates the analogy between the rotational hysteresis loss per cycle in an electrical 

steel sheet and the torque in a single phase induction machine. It can be seen that the 
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torque/slip curve of a single phase induction machine can be readily adapted to model the 

rotational hysteresis loss per cycle in an electrical steel sheet. 

 

Let a =
V

2 R
1

2

syn 2ω
 (in J/kg or Erg/cm3), a =

R

R
2

1

2

 (non-dimensional), and 
2

2

21

3
R

X+X
=a 







 

(non-dimensional). Equation (6.6) can be adapted to model rotational hysteresis loss as 

 

  ( ) ( ) 







−
−−

+ 3

2

23

2

2

1hr
a+s)1/(2+a

s)1/(2

a1/s+a

1/s
a=/fP    (6.7) 

 

with fewer parameters, where Phr/f is the rotational hysteresis loss per cycle, and f is the 

frequency. When (6.7) is used to model the loss per cycle due to the rotational hysteresis in an 

electrical steel sheet, the slip can be defined as 

 

  s = 1
M

M '

M

M

M

M 's s

s

s

− = −1       (6.8) 

 

where Ms ' is the intercept of the fictitious induction motor forwards field torque/slip curve with 

the zero torque axis, as shown in Fig.6-9. 
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Fig.6-9  Analogy between torques due to rotational hysteresis and due to induced rotor current 
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Let Phr/f=0, and one obtains 

 

  s =11 ,     for M=0   (6.9) 

and 

  s = 1 1
1

a +a2,3

2
2

3

m −    for M=±Ms   (6.10) 

 

From the definition of s, we have 

 

  s = 1
M

M '
2

s

s

−         (6.11) 

Hence, 

 

  
M

M '
= 1

1

a + a
s

s 2
2

3

−        (6.12) 

 

and (6.8) can be rewritten as 

 

  s =1
M

M
1

1

a + as 2
2

3

− −       (6.13) 

 

It is postulated that the rotational hysteresis loss per cycle in an electrical steel sheet can be 

expressed by (6.7) and (6.13) in terms of three parameters, a1, a2, and a3. 

 

 

6.3.4 Verification of the Model 

 

The model is verified by fitting the curves of hysteresis loss per cycle versus magnetisation or 

flux density for different electrical steel sheets reported by various researchers and 

measurements reported earlier in this chapter. To assess the accuracy of the model, an error 

estimator is employed. The error is defined as 

 

  Err { }i(Test)PMax
=

σ
 

 

        

( )
{ }i(Test)

N

=1i

2

i(cal)i(Test)

Pmax

PP
1N

1

=
∑ −

−
     (6.14) 
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where σ is the standard deviation, N is the number of measured data, Pi(Test) and Pi(Cal) 

(i=1,2,...,N) are the measured and calculated losses, respectively, and max{} is a function to 

find the maximum element in an array. The curve fitting was performed using an optimisation 

routine to minimise the error. The results are reported below. 

 

Fig.6-10 to Fig.6-16 plot the measured and predicted curves of rotational hysteresis losses 

per cycle in different materials with a circular field, and Table 6-1 lists the corresponding 

model parameters and the errors. In the curve fitting of the rotational hysteresis loss per cycle 

of Lycore-130 deduced from the loss separation in section 6.2, the saturation flux density Bs 

was also taken as a model parameter, since the specimen was not saturated in the 

measurement. It was determined that Bs = 1.80 T for Lycore-130. 

 

From the curve fittings shown in Fig.6-10 to Fig.6-16 and Table 6-1, it can be seen that the 

agreement between the measured hysteresis losses for a circular field and the predicted results 

in different magnetic materials is excellent. 
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Fig.6-10  Modelling of rotational hysteresis loss in soft iron measured by Baily [120] 
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Fig.6-11  Modelling of rotational hysteresis loss in hard steel measured by Baily [120] 
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Fig.6-12  Modelling of rotational hysteresis loss in cold rolled silicon steel measured by Brailsford [125] 
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 Fig.6-13 Modelling of rotational hysteresis loss in single crystal discs of 4% silicon iron with  
  (001) surfaces measured by Narita and Yamaguchi [130] 
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  Fig.6-14 Modelling of rotational hysteresis loss in grain-oriented 3% silicon steel  
   measured by Cecchitti, et al [131] 
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  Fig.6-15 Modelling of rotational hysteresis loss in non-oriented 3% silicon steel  
   measured by Cecchitti, et al [131] 
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Fig.6-16  Modelling of rotational hysteresis loss in Lycore-130 
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Table 6-1  Modelling of rotational hysteresis losses in different materials  

 

Fig. Author Year Ref. Material a1 a2 a3 Error (%) 

6-10 Baily 1896 [120] Soft iron 1.21×105 
Ergs/cm3 

−0.74 13.28 2.35 

6-11 Baily 1896 [120] Hard steel 4.07×104 
Ergs/cm3 

−1.66 4.75 2.49 

6-12 Brailsford 1938 [125] Cold rolled silicon 
steel 

1.44×105 
Ergs/cm3 

6.48 −3.54 3.64 

6-13 Narita and 
Yamaguchi 

1974 [130] A single crystal 
specimen of 4% 

non-oriented 
silicon steel with 

(001) surface 

9.38×103 
Ergs/cm3 

−0.072 52.95 5.55 

6-14 Cecchitti  
et al 

1978 [131] Grain oriented 3% 
silicon steel 

0.85 J/kg 2.80 36.36 4.73 

6-15 Cecchitti  
et al 

1978 [131] Non-oriented 3% 
silicon steel 

0.81 J/kg −0.76 37.92 2.73 

6-16 Author of 
the thesis  

1993 − Non-oriented 
silicon steel 
Lycore-130 

0.43 J/kg −1.53 21.89 1.45 

 

 

 

6.4 PREDICTING TOTAL ROTATIONAL CORE LOSS WITH 

 AN ELLIPTICAL FLUX DENSITY 

 

In computer aided design of electromagnetic devices with rotating magnetic fluxes, it is often 

required to predict the total core loss with an elliptical flux density, as will be discussed in 

section 6.5. For the power frequency losses in silicon iron alloys due to an elliptically rotating 

magnetic field, Strattant and Young [137] proposed an empirical model as illustrated by 

equations (4.18)-(4.20), but there is a large discrepancy between the experimental data and 

the model. A linear interpolation between the core losses with a circular flux density and with 

an alternating flux density was used by Bertotti et al [192] in predicting the core loss in an 

induction machine, and Zhu and Ramsden [196] in the core loss modelling of a permanent 

magnet motor. From the core loss measurements in grain-oriented and non-oriented electrical 

steel sheets with an elliptical flux density, reported in section 5.3 and 5.4, however, it can be 

seen that the linear interpolation was only a very rough estimation. 

 

In this section, a better model for predicting the total rotational core loss with an elliptical flux 

density from the purely rotational and alternating losses is to be developed. The model is 

verified with the experimental data in both grain-oriented and non-oriented electrical silicon 

steel sheets. 
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6.4.1 Elliptically Rotational Core Loss in Terms of Flux Density Axis Ratio 

 

Consider a body subject to an elliptically rotating magnetic flux density B. The applied rotating 

magnetic field strength H may not be an elliptically rotating vector because of the possible 

nonlinear B−H relationship and magnetic anisotropy. When it is expanded into a Fourier 

series, however, it can be shown by (5.24) in section 5.5.2 that the higher harmonics of H do 

not contribute to the total core loss as long as B contains only the fundamental component. 

 

Fig.6-17 illustrates schematically the loci of B and the fundamental component H1 of field 

strength. The loci of B and H1 vectors can be expressed as 

 

  




tsin B=B

tcos B=B

miny

majx

ω
ω

       (6.15) 

 

and 

 

  




)+tsin( H=H

)+tcos( H=H

1min1y'

1maj1x'

φω
φω

      (6.16) 

 

where Bx and By are the X and Y components of B in the XOY coordinate system, Bmaj and 

Bmin are the major and minor axes of elliptical B, ω=2πf is the angular frequency of 

magnetisation, f the frequency, H1x' and H1y' are the X' and Y' components of H1 in the 

X'OY' coordinate system, H1maj and H1min are the major and minor axes of elliptical H1, 

respectively, and φ is the phase angle by which H1 leads B in time. 

 

The standard equation (6.16) of elliptical H1 in the X'OY' coordinate system can be 

transferred into the XOY system by a coordinate rotation as following 
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Fig.6-17  Positions of elliptical B and H1 vectors in a body 

 

 

Substituting (6.15)-(6.17) into (5.20) gives the total rotational core loss in the body with an 

elliptical flux density 
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            =
T

B H (R + R )sin ( + )+ (1 R )(1 R )cos sin
m

maj 1maj H B B H

π
ρ

α φ α φ− −  (6.18) 

 

where T=1/f is the time period of magnetisation, ρm the mass density of the body, 

RB=Bmin/Bmaj and RH=H1min/H1maj are the axis ratio of elliptical B and H1, respectively. 

 

In an isotropic body, RH=RB, and hence (6.18) can be rewritten as 
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  P =
T

B H 2R sin ( + ) + (1 R ) cos sint

m

maj 1maj B B
2π

ρ
α φ α φ−   (6.19) 

 

When RB=1, the total rotational core loss in an isotropic body with a purely circular flux 

density 

 

  P = P =
2

T
B H sin ( + )cr t

m

maj 1maj

π
ρ

α φ      (6.20) 

 

When RB=0, the total core loss in an isotropic body with a purely alternating flux density 

 

  P = P =
T

B H cos sinalt t

m

maj 1maj

π
ρ

α φ      (6.21) 

 

Therefore, (6.19) can be rewritten as 

 

  P = R P + (1 R ) Pt B cr B
2

alt−       (6.22) 

 

Equation (6.22) is independent of the magnetisation frequency, since it is derived directly from 

the formula of the total rotational core loss, which is valid for any magnetisation frequency, and 

should therefore be applicable to both hysteresis and total losses. 

 

 

6.4.2 Experimental Verification 

 

In the above analysis, equation (6.22) is obtained under the assumption of an isotropic body. 

Practically, there is hardly any magnetic material that is strictly isotropic. This, however, does 

not mean that equation (6.22) is useless for calculation of rotational core loss in 

electromagnetic devices made of anisotropic magnetic materials. 

 

In the core loss analysis of three phase rotating electrical machines, isotropic magnetic 

materials are generally assumed because all points of the core are exposed to the rotating field. 

In the T joints of three phase transformers, where rotational core losses occur, grain-oriented 

silicon steel sheets are over-lapped with the grain-orientations perpendicular to each other, as 

illustrated in Fig.6-18, and hence the silicon steel sheets in the over-lapped regions can also be 

approximately considered isotropic. 
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(a) 

 

 
(b) 

  Fig.6-18 Loci of the fundamental component of the localised flux density within  
   (a) a 45

o
-90

o
 T joint, and (b) a 45

o
 offset T joint (from [181]) 

 

 

Fig.6-19 illustrates the modelling of the average total core loss in a non-oriented electrical steel 

sheet Lycore-130 with an elliptical flux density at 1 Hz. The average is the average value of the 

core losses measured when the major axis is on the X (rolling direction) and Y (transversal 

direction) axes respectively. Encouraging agreement was shown between the model (6.22) 

and the average total core loss. The error is 2.82%, which is defined as the standard deviation 

normalised to the maximum value of the measured data, as defined in (6.14). 
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 Fig.6-19 Modelling of total rotational core loss in Lycore-130 with an elliptical flux density  
  at 1 Hz (this is almost pure hysteresis loss). 

 

 

Fig.6-20 is the modelling of the average total core loss in Lycore-130 with an elliptical flux 

density at 50 Hz. The error is 1.66%. 
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Fig.6-20 Modelling of total rotational core loss in Lycore-130 with an elliptical flux density at 50 Hz 

 

 

Fig.6-21 is the modelling of the average total core loss in a grain-oriented electrical steel sheet 

ORSI-100 at 50 Hz. The error is 2.43%. 
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Fig.6-21 Modelling of total rotational core loss in ORSI-100 with an elliptical flux density at 50 Hz 

 

 

As a comparison, the results linearly interpolated from the purely rotational and alternating 

core losses are also plotted in Fig.6-19 to Fig.6-21. Apparently, the linear interpolation 

approach is a rough estimation. 

 

The above analysis and the modelling results illustrated in Fig.6-19 to Fig.6-21 show that 

model (6.22) can correctly predict the average (over two directions) rotational core losses in 

both grain-oriented and non-oriented electrical steel sheets with an elliptically rotating flux 

density. Therefore, the model can be used for rotational core loss analysis in both rotating 

electrical machines and three phase transformers, as a better estimate then linear interpolation 

method. The model is valid for rotational hysteresis loss as well as total loss (independent of 

magnetisation frequency). 

 

 

6.5 CORE LOSS MODELLING IN ROTATING ELECTRICAL MACHINES 

 

6.5.1 Rotating Flux Density in the Stator Core of a Permanent Magnet Motor 

 

To illustrate the method for core loss analysis in a rotating electrical machine, a permanent 

magnet motor has been chosen as an example. The outline and the dimensions of the motor 

are depicted in Fig.6-22. This is a three phase six pole surface mounted NdFeB permanent 

magnet motor. The stator lamination is Lycore-130, 0.35 mm silicon steel sheet, and the rotor 

material is solid mild steel. There are 36 slots in the stator, and each contains 117 conductors 

of the stator winding. For various considerations, two motors of the same cross sectional 
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dimensions but different axial lengths (76 mm and 38 mm respectively) were designed and 

constructed as part of another project [223]. 

 

 
(a) 
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  (b) 

Fig.6-22 Outline and dimensions of the permanent 
magnet motor used as an example 
(a) cross sectional view, where 

    � -- stator core (Lycore-130 silicon steel sheet) 

    � -- NdFeB permanent magnets 

    � -- rotor core (solid mild steel) 

    � -- plastic cylinder 

    � -- rotor shaft, and 
(b) dimension of a stator slot 
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Because the rotor rotates at the synchronous speed, the core loss in the rotor was assumed 

zero, and only the stator core loss was calculated. The total core loss was obtained by 

summing up the core losses dissipated in each element according to the locus of the rotating 

magnetic flux density vector in that element. 

 

 

6.5.1.1  Finite Element Analysis of the No-Load Magnetic Field 

 

The magnetic flux density distribution in the cross section of the motor was determined by the 

two dimensional finite element method using a FORTRAN code, MOTOR-CAD, which was 

initially written in 1989 by Hameed and Binns [218], Liverpool University, U.K., and 

corrected and further improved later by Dr. Watterson, senior research fellow, School of 

Electrical Engineering, University of Technology, Sydney, and the author incorporating 

Powell's method, the iterative Incomplete Cholesky Conjugate Gradient (ICCG) solution 

method, and other utilities for optimum design of permanent magnet motors [220,221]. 

 

Because of the symmetric motor structure, it is sufficient to pick only one pole pitch as the 

solution region with anti-periodic magnetic vector potential boundary conditions. First order 

triangular finite elements were used to discretise the solution region into 1320 elements and 

702 nodes, as illustrated in Fig.6-23. 

 

 

Fig.6-23   Mesh of two dimensional triangular finite elements for the permanent magnet motor 
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Fig.6-24 is the magnetic flux density contour plot of the permanent magnet motor at no load, 

when the stator winding currents in the conductors were set to be zero. Fig.6-25 depicts the 

radial component profile of the magnetic flux density in the mid-airgap. The magnitude of flux 

density is about 0.8 T. 
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6.5.1.2 Determination of Rotating Magnetic Flux Density 

 

The radial and circumferential component waveforms of the magnetic flux density were 

obtained from a sequence of finite element solutions, and the full waveforms for any element 

could be assembled from the corresponding elements in different slot pitches as the rotor 

rotated through only half a slot pitch in five steps. 

 

Fig.6-26 depicts the trajectories of the flux density vectors at positions A, B, C, D, and E of 

Fig.6-22, and the typical time variations are shown in Fig.6-27. Only in the middle of the teeth 

(position B) is the field nearly purely alternating (Fig.6-26(b) and Fig.6-27(b)). At the other 

positions, the flux density vectors are all elliptically rotational (Fig.6-26(a), (c)-(e), and Fig.6-

27(a), (c)-(e)). Higher harmonics are also contained in the radial and circumferential 

components of the flux density. 
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   (c)      (d) 

Fig.6-26 Trajectories of flux density vectors at 
different positions in the stator core, (a), (b), 
(c), (d), and (e) corresponding to positions A, 
B, C, D, and E in Fig.6-22 
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6.5.2 Core Loss Model for Rotating Electrical Machines 

 

In each element, the total core loss due to an arbitrary rotating flux density vector B can be 

calculated in terms of rotational hysteresis, eddy current, and anomalous losses as following 

 

  Pt = Pth + Pte + Pta       (6.23) 

 

where Pth, Pte, and Pta are the total hysteresis, eddy current, and anomalous losses in that 

element. 

 

A series of elliptically rotating harmonic flux density vectors can be obtained, when an arbitrary 

rotating flux density is expanded into a Fourier series 

 

  B (t) = B sin (2 kft )r rmk rk
k 0

π θ+
=

∞

∑               (6.24a) 

  B (t) = B sin (2 kft )mk k
k 0

φ φ φπ θ+
=

∞

∑               (6.24b) 

 

where Br and Bφ are the radial and circumferential components of the rotating flux density, 

Brmk and Bφmk are the k-th harmonic magnitudes of Br and Bφ, and θrk and θφk are the phase 

angles of these harmonics. The major axis Bkmaj and the minor axis Bkmin of the elliptical 

trajectory of each flux density harmonic vector can be determined by a coordinate rotation for 

the standard equation. 

 

Fig.6-27 Typical time variation of flux density 
at different positions in the stator core, (a), 
(b), (c), (d), and (e) corresponding to 
positions A, B, C, D, and E in Fig.6-22 
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The total hysteresis loss in an element can be obtained by summing up the contributions from 

these flux density harmonics. For each elliptically rotating flux density harmonic, as illustrated in 

section 6.4, the hysteresis loss can be predicted from the corresponding alternating and 

rotational hysteresis losses according to the axis ratio of the elliptical flux density by (6.22). 

Therefore, the total hysteresis loss 

 

  ( )[ ]∑
∞

−
0=k

ahk

2

BkBkrhkth PR1+RP=P      (6.25) 

 

where RBk=Bkmin/Bkmaj is the axis ratio of the k-th harmonic flux density, Prhk is the purely 

rotational hysteresis loss with flux density Bkmaj determined by equations (6.7) and (6.13), and 

Pahk=ChkfBkmaj
n, (for Lycore-130, Ch=0.0192, and n=1.79), is the alternating hysteresis 

loss approximately determined by the Steinmetz law. 

 

The total eddy current loss in an element can be calculated analytically by 

 

  ∫ 























T

0

22

r

m

2

te dt
dt

(t)dB
+

dt

(t)dB

T

1

12

b
=P φ

ρ
σ

 

 

       ( ) ( )∑
∞

0=k

2

kmin

2

kmaj

2

e B+Bkf C=      (6.26) 

 

where C =
b

6
e

2 2

m

σπ
ρ

 is the eddy current loss coefficient same as in (6.2) (for Lycore-130, 

Ce=6.54×10-5, as deduced in section 6.2). 

 

The total anomalous loss in an element is calculated for a vector B 
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where Car is the anomalous loss coefficient (for Lycore-130, Car=1.07×10-3, as deduced in 

section 6.2), and constant (2π)3/2 is a factor applied to Car so that (6.27) is consistent with 

(6.3) for a circular flux density. The integration can be calculated numerically. 
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6.5.3 Comparison of Calculation with Experiment 

 

6.5.3.1 Measurement 

 

To measure the core loss of the permanent magnet motor, a calibrated DC motor was used to 

drive it. The power fed into the DC motor would be the sum of core loss and mechanical loss 

(friction and windage) of both the DC motor and the permanent magnet motor. Subtracting the 

losses of the DC motor yields the core loss and mechanical loss of the permanent magnet 

motor alone. 

 

The mechanical loss of the permanent magnet motor was measured by replacing the stator of 

the permanent magnet motor with a plastic tube (to imitate the windage), and then repeating 

the previous procedure. The core loss of the permanent magnet motor was obtained by 

subtraction of the mechanical loss from the sum of the core loss and mechanical loss. 

 

To remove the effect of the motor ends where the field is not two dimensional, the core loss 

was measured in the above way for two motors of active length 38 mm and 76 mm. Fig.6-28 

shows measured results of the no-load power loss, which is the sum of the mechanical loss 

and the core loss, and the mechanical loss of the permanent magnet motors of two different 

active lengths. Fig.6-29 is the measured core losses before the removal of end effects obtained 

by subtracting the mechanical losses from the no-load losses. 
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  Fig.6-28 Measured no-load power loss and mechanical loss of the  
   permanent magnet motors of active length 38 mm and 76 mm 
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Assume two motors of different active lengths have the same end effects because of the same 

end structures. The net core loss after the removal of the end effects in the 76 mm motor 

should be twice as much as that in the 38 mm one. Thus, the core loss due to the end effects 

can be deduced by 

 

   Pend = 2P38-P76      (6.28) 

 

where P38 and P76 are the core losses in the 38 mm and 76 mm motors, respectively, before 

the removal of the end effects. The core loss due to the end effects is plotted in Fig.6-29 by 

the dotted line. 
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  Fig.6-29 Measured core losses of the permanent magnet motors of active  
   length 38 mm and 76 mm before removal of end effects 

 

 

The inferred end effect has been subtracted from the core loss of the 76 mm motor, and 

reported below. 

 

 

6.5.3.2 Comparison 

 

Figs.6-30(a) and (b) show the total core loss and the core loss torque (core loss over angular 

speed) by measurement and calculation for a motor of active length 76 mm versus speed, after 

the removal of end effects. 
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Initially, the core loss was calculated by summing up alternating hysteresis loss, rotational eddy 

current loss, and rotational anomalous loss in all finite elements, because the data for rotational 

hysteresis loss were not available. In the calculation, the Steinmetz law was used for alternating 

hysteresis loss, and (6.26) and (6.27) were used for rotational eddy current and anomalous 

losses. The calculated core loss and core loss torque of the 76 mm motor are plotted in 

Figs.6-30(a) and (b) by the dotted lines (Alt.Hyst.+Rot.Eddy+Rot.Anom.). These dotted lines 

are about 20% lower than the measured results at 1200 rev/min. 
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 Fig.6-30 Comparison of measured and calculated (a) core loss and (b) core loss torque of  
           the 76 mm permanent magnet motor after the removal of end effects 
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As soon as the rotational core loss was measured, the rotational hysteresis loss was included 

in the core loss calculation. The rotational hysteresis loss in each element with an elliptically 

rotating flux density harmonic was predicted by a simple model of linear interpolation between 

the purely rotational hysteresis loss and the alternating hysteresis loss corresponding to Bkmaj 

as explained earlier, and the total hysteresis loss in an element was calculated by 

 

   ( )[ ]∑
∞

−
0=k

ahkBkBkrhkth PR1+RP=P     (6.29) 

 

The calculated total core loss and the core loss torque are plotted in Figs.6-30(a) and (b) by 

the thin solid lines labelled as "Calculation (Rot.Hyst.+Rot.Eddy+Rot.Anom.) using linear 

interpolation for rotational hysteresis". The discrepancy between the measurement and the 

calculation is reduced to about 9% at 1200 rev/min. 

 

As discussed in section 6.4, the linear interpolation approach for elliptical hysteresis loss is a 

very rough estimation. The core loss was recalculated later with a better model (6.25) for 

elliptical rotational hysteresis loss. The results are shown in Fig.6-30 by the thick solid lines 

labelled as "Calculation (Rot.Hyst.+Rot.Eddy+Rot.Anom.) using (6.25) for rotational 

hysteresis". Although the discrepancy 13% at 1200 rev/min between this calculation and the 

measurement is higher than that obtained by using the linear interpolation approach, this 

calculation is believed to be of higher accuracy since this model agrees with the measurements 

in electrical steel sheets with an elliptical flux density much better than the linear interpolation 

approach, as illustrated in section 6.4. 

 

From Fig.6-30, it can also be seen that the rotational hysteresis loss has contributed a 

significant component of the total, as estimated in [195]. The discrepancy between the 

measured and calculated results has been reduced from 20% to 13% at 1200 rev/min. The 

remaining discrepancy may be due to one or more of the following: rotor core loss caused by 

tooth ripple, eddy current loss in the stator case, inadequate representation of non-sinusoidal 

fields, or unknown changes in material properties during manufacture due to punching and heat 

treatment. 

 

 

6.6 CONCLUSION 

 

The rotational core loss in an electrical steel sheet with a purely circular flux density can be 

separated into components of rotational hysteresis, eddy current, and anomalous losses, and 

modelled by the three term core loss model, in a similar way to alternating core loss separation 

and modelling. The rotational eddy current loss is twice as much as the alternating eddy current 
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loss with the same magnitude of flux density. As for alternating anomalous loss, the rotational 

anomalous loss can also be given in terms of (fB)3/2. The rotational anomalous loss coefficient 

was found a constant over a range of flux density up to 1.4 T for non-oriented silicon steel 

Lycore-130. 

 

Owing to the strong analogy between the electromagnetic torque in a single phase induction 

machine and the rotational hysteresis loss per cycle with a circular field, an analogical model 

was developed. Excellent agreement was achieved between the model and experimental data 

for different magnetic materials reported in earlier publications and measured here. Further 

work is required on physical understanding of rotational hysteresis loss. 

 

Measurements of rotational core losses with elliptical flux densities in both grain-oriented and 

non-oriented electrical steel sheets have shown that the linear interpolation between purely 

rotational and alternating core losses for elliptically rotational core loss is a very rough 

estimation. Derived from the formula (5.20) for total core loss, equation (6.22) can give much 

better prediction, and is independent of magnetisation frequency, and therefore applicable to 

hysteresis as well as total losses. 

 

The rotating flux density vector at any position in the stator core of a rotating electrical machine 

can be obtained by the finite element method. Smooth curves of flux density can be obtained 

from a sequence of finite element solutions as the rotor rotates for half a slot pitch in a number 

of steps. In optimum design, approximate curves can be assembled from only one solution by 

considering adjacent teeth in order to save time. 

 

The core loss in a rotating electrical machine was calculated by summing up the core losses in 

all finite elements. In each element, the core loss with an arbitrary rotating flux density vector 

was evaluated in terms of rotational hysteresis, eddy current and anomalous losses by (6.25) 

to (6.27). 

 

The comparison between the measured core loss and the core losses calculated by three 

different hysteresis models has shown that the rotational hysteresis does contribute a 

considerable component to the total core loss. Although the total core loss calculated by using 

(6.25) for rotational hysteresis loss in a finite element is lower than that calculated by the linear 

interpolation approach, it is still believed to be of higher accuracy, since this model agrees 

better with the measurements in both grain-oriented and non-oriented electrical steel sheets. 

 

The remaining discrepancy between the measurement and calculation in the core loss of the 

permanent magnet motor may be due to other loss components which are not included in the 
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model, and on which further work is required: eddy current loss in the motor case, loss in the 

rotor due to the tooth ripple flux density, and extra loss caused by the unknown changes in 

material properties during manufacture. A better representation of loss caused by non-

sinusoidal fields is also required. 

 



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

 

 

For computer aided design of electromagnetic devices, various novel models of magnetic 

materials were developed. These models are: 

 

(1) a normal Preisach model of magnetic hysteresis, 

 

(2) a generalised Preisach model of magnetic hysteresis, 

 

(3) a dynamic discrete circuit model of laminated magnetic cores, 

 

(4) a generalised dynamic discrete circuit model of solid magnetic cores for 

both low and high frequency applications, 

 

(5) an analogical model of pure rotational hysteresis loss, 

 

(6) an analytical model for predicting the core loss with an elliptical flux 

density from alternating and pure rotational core losses, and 

 

(7) a model of core losses in rotating electrical machines using finite element 

analysis. 

 

The normal Preisach model features simple formulation and easy parameter identification. It 

provides correct results, but fails when the hysteresis loop to be predicted is close to the origin 

of the B-H plane due to intrinsic defects of the model, such as zero initial susceptibility and 

congruent minor loops. 

 

These defects are eliminated in the generalised Preisach model. The extra data required by the 

generalised model is the normal magnetisation curve. Verifications using minor loops of same 

Hb and H∆, major loops, and normal and incremental permeabilities showed that the 

generalised Preisach model gives better accuracy than the normal Preisach model. 

 

The dynamic circuit model of laminated magnetic cores takes all kinds of alternating core 

losses into consideration and has shown satisfactory accuracy. It can simulate the performance 

of a magnetic core under arbitrary excitation since the Preisach model is used to trace the 

magnetisation process. This model is limited to simulations of magnetic cores which are 

effectively thin at the excitation frequency. 
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The generalised dynamic circuit model includes skin effect by using a ladder network. This 

model reduces to the model of laminated cores when only one stage of the ladder network is 

used. The validity of the theory was verified by comparisons with experimental results at both 

low and high frequencies. 

 

All information required for identifying the circuit parameters of these dynamic core models, 

such as the limiting hysteresis loop and specific core losses with sinusoidal flux densities at 

different frequencies, can be identified from manufacturers' data sheets or through simple 

measurements. 

 

To provide data for rotational core loss modelling, a single sheet square specimen tester was 

developed. This tester can be successfully used for both alternating and rotational core loss 

measurements with arbitrary magnetic flux patterns at different excitation frequencies. The 

precision of magnetic field measurement in a two dimensional single sheet tester is improved by 

a new sandwich arrangement of magnetic field sensing coils. 

 

Because of insufficient time, it has not been possible to complete and include the results of an 

intercomparison between the rotational core loss testers at PTB and UTS. Much useful 

information was obtained, however, from the measurements on grain oriented silicon steel 

sheet ORSI-100 and non-oriented silicon steel sheet V270-35A with both alternating and 

rotating magnetic flux densities using the tester at PTB. 

 

Mathematical derivation and experimental measurements of rotational core losses in both grain 

oriented and non-oriented silicon steel sheets showed that the formula proposed by Enokizono 

et al [151,155,157] for calculation of core loss due to the rotational component of an 

elliptically rotating magnetic flux density is incorrect. This formula was corrected and clarified 

in chapter 5. 

 

The total core loss in an electrical steel sheet with a purely circular flux density can be 

separated into components of rotational hysteresis, eddy current, and anomalous losses. With 

a circular flux density, the rotational eddy current loss is twice as much as alternating eddy 

current loss. The rotational anomalous loss can be modelled using the same formula as for 

alternating anomalous loss, but the coefficient of rotational anomalous loss is generally a 

function of flux density, and eventually reduces to zero when the material is saturated and all 

domain walls disappear. 
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The analogical model of rotational hysteresis loss was developed based on the strong analogy 

between the electromagnetic torque in a single phase induction machine and the torque due to 

rotational hysteresis with a circular field. Excellent agreement was achieved between the model 

and experimental data for different magnetic materials reported in earlier publications and 

measured here. 

 

Derived from the formula for total core loss used in measurement, equation (6.22) predicts 

core loss with an elliptical flux density from alternating and pure rotational core losses. This 

model is independent of excitation frequency and therefore applicable to hysteresis as well as 

total core losses. 

 

Using finite element analysis, the core loss in a permanent magnet motor was calculated by 

summing up the core losses in all finite elements. In each element, the core loss with an 

arbitrary rotating flux density vector was evaluated in terms of rotational hysteresis, eddy 

current, and anomalous losses by (6.25) to (6.27). The discrepancy between the calculation 

and measurement is about 13%. 

 

Further work is required on the following aspects: 

 

(1) Further checks of the generalised Preisach model of magnetic hysteresis, e.g. using 

experimental minor hysteresis loops and losses. 

 

(2) Development of a model of rotational hysteresis, i.e. the B-H relationship when the 

field is rotating, suitable for engineering applications. Although the Preisach model has 

been extended to cover rotational hysteresis [60-67], the method for parameter 

identification is impractical for engineering applications, and experimental verification 

was not reported. 

 

(3) Improvement of rotational core loss measuring techniques. A new control strategy is 

required in order to control the locus of the rotating flux density vector when the 

specimen is saturated. There is also a requirement for new probes of two dimensional 

magnetic field strength and flux density, which can provide accurate results and are 

convenient for batch measurements. 

 

(4) Intercomparison between the testers at PTB and UTS. Four specimens of grain 

oriented (ORSI-100) and non-oriented (V270-35A) silicon steel sheets (part of the 

specimen set used for the European intercomparison) have been measured with 
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various flux patterns using the tester at PTB, and the measurements will be repeated 

using the tester at UTS. 

 

(5) Further understanding of the mechanisms of rotational hysteresis loss. Although good 

agreement was achieved between the experimental results and the analogical model of 

rotational hysteresis loss, the underlying physical principle is still not very clear. 

 

(6) Investigation of other loss components that are not included in the core loss model of 

rotating electrical machines, such as core loss in the end region of the stator core, eddy 

current loss in the case, and loss in the rotor due to the tooth ripple flux density, and 

evaluation of spread due to manufacture tolerances and variation of material properties 

caused by manufacturing and assembly process. 
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APPENDIX B. MAGNETIC CIRCUIT DESIGN OF  

   A SQUARE SPECIMEN TESTER 

 

B.1 INTRODUCTION 

 

As discussed in chapter 4, the rotational core loss tester using a single sheet square specimen is 

very flexible and suitable for measurements under various complex magnetic flux conditions. 

Hence, a similar apparatus was designed. The designing method and results are reported in this 

appendix. 

 

For the magnetic circuit design of a square specimen tester, the method of magnetic reluctance 

network was used. This method yields acceptable results, when high quality grain-oriented 

silicon steel sheet is to be used for the tester yoke, and most of the magnetic flux is restrained 

within the tester core. Section B.2 gives the reluctance network and the parameters. 

 

Section B.3 deals with the design of the excitation windings which are mounted on the four 

poles of the tester core. Every two excitation windings on the same axis can be connected 

either in series or in parallel so that they produce aiding magnetic flux on that axis. 

 

In order to saturate the specimen, a very large excitation current may be required due to the 

non-linear magnetisation characteristics and the effects of rotational hysteresis. Therefore, a 

thermal analysis appears to be essential. An equivalent heat transfer network was employed for 

thermal modelling. The thermal analysis of the excitation winding and the magnetic core is 

illustrated in section B.4. 

 

In the design, specimens of different magnetic materials from lower grade to high grade silicon 

steels and amorphous materials are considered. The results of the magnetic circuit analysis and 

thermal modelling are reported in section B.5. 

 

 

B.2 RELUCTANCE NETWORK 

 

Fig.B-1 labels the dimensions of the tester yoke and the specimen illustrated in Fig.5-3. For 

high precision measurement, the power loss dissipated in the magnetic core of the tester should 

be kept as low as possible. Thus, low core loss ORIENTCORE.HI-B, grade M-0H grain-

oriented silicon steel [213] manufactured by Nippon Steel Corporation, Japan, was chosen as 

the lamination material. To reduce the reluctance of the core, the lamination was designed to be 

continuous between the magnetisation poles and the yoke. The yoke laminations were arranged 

vertically so as to reduce leakage flux between the poles of two axes. The magnetisation poles 
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had a wedged shape to concentrate magnetic flux into the specimen. This type of structure, 

according to the analysis by Enokizono and Sievert [154], gives better results for H 

measurement, as discussed in section 4.2.3.3. 
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Fig.B-1  Dimension labels of rotational core loss tester 

 

 

The width of the excitation poles was determined by the possible minimum width of the 

electrical steel sheet to be measured. This was found to be 50 mm for MetGlas 2605S-2, a 

thin amorphous material. The length of the poles was determined by the size of the excitation 

windings, which in turn was determined by the required mmf and the temperature rise limit. 

 

 

Fig.B-2 shows the magnetic reluctance network corresponding to the magnetic circuit shown in 

Fig.B-1. 
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Fig.B-2  Magnetic reluctance network of rotational core loss tester 

 

 

The reluctances in the network can be calculated as 

 

   Rsij = 
1

2fµij
  (i=x,y; and j=1,2)   (B.1) 

 

   Rg = 
g

2a(e-f)µ
0

ln
e

f
      (B.2) 

 

   Rij = 
d

2a(c-e)µij
ln

c

e
 (i=x,y; and j=3,5)   (B.3) 

 

   Rij = 
b-3a-2(g+d)

4acµij
 (i=x,y; and j=4,6)   (B.4) 

 

   Ryokei = 
b-a

acµyokei
 (i=1,2,3,4)    (B.5) 
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where Rsij (i=x,y; and j=1,2) are the four reluctances of the specimen on the X and Y axes, Rg 

the reluctance of the air-gap, Rij (i=x,y; and j=3,5) are the reluctances of the wedged part of 

the magnetisation poles, Rij (i=x,y; and j=4,6) the reluctances of the un-wedged part of the 

magnetisation poles, Ryokei (i=1,2,3,4) the reluctances of the yoke, µ=B/H is the permeability 

of each part, and µ
0
=4π×10-7 the permeability of a vacuum. 

 

The required mmf to saturate the specimen was determined by solving the network for a 

specified flux density. First, the magnetic reluctance network was solved for the loop flux Φi 

(i=1,2,3,4) by non-linear iterations. Then, the flux and the flux density in each part of the 

magnetic circuit were evaluated in turn. After a few trials, the mmf required to saturate the 

specimen was finally determined. 

 

 

B.3 DESIGN OF EXCITATION WINDINGS 

 

The number of turns and the wire diameter of the excitation windings are subject to various 

constraints: the space available in the tester, temperature rise limit, the rating of the power 

amplifiers, and skin effect. Among them, the most important factor is that the required 

magnetisation current and the terminal voltage of the windings should match the rating of 

available power amplifiers. 

 

When the number of turns and the wire diameter are determined, the winding resistance can 

then be calculated by 

 

   R  =  
4l

d
w

w

w
2

ρ
π

       (B.6) 

 

where ρ is the resistivity of copper, lw the total length of the wire, and dw the diameter of the 

wire. 

 

The winding inductance was calculated by 

 

   L  =  
d

di
w

λ
       (B.7) 

 

using numerical difference, where λ is the flux linkage of the winding, and i the current flowing 

through the winding. 
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In the design, skin effect was checked at high frequency. In a concentrated winding, the skin 

effect in a conductor is caused by the leakage flux it links as shown in Fig.B-3. As an 

approximate check on the effect, the skin depth in an isolated conductor was used. 

 

 

 

  Fig.B-3  Concentrated winding and leakage flux 

 

 

Table B-1 lists the skin depth of copper at different frequencies. It can be seen that the skin 

effect would not be severe when the frequency is below or equal to 1 kHz if the wire radius is 

smaller than the skin depth of 2.11 mm. 

 

 
         Table B-1. Skin depth in copper versus frequency 
 

Frequency f (Hz) 1 10 100 1,000 10,000 100,000 

Skin Depth (m)  6.66E-02 2.11E-02 6.66E-03 2.11E-03 6.66E-04 2.11E-04 

 

 

B.4 THERMAL MODELLING 

 

Because the maximum value of the excitation current is limited by the temperature rise, thermal 

modelling is essential for determining the sizes of the tester magnetic core and the excitation 

windings. Heat transfer is a very complicated problem. In order to determine the temperature 

distribution in the tester magnetic core and the excitation windings accurately, sophisticated 

numerical methods and software packages would be required. In this case, an approximate 

equivalent heat transfer network [222] was employed. 

 

 

B.4.1 Equivalent Heat Transfer Network 
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This method divides the whole system to be modelled into many small solid elements according 

to the structure and the materials, and assumes that the heat is transferred by conduction within 

a solid element and between solid elements, and by convection and radiation between the 

surfaces of a solid element and the air. 

 

In a solid element, one dimensional heat transfer by conduction can be modelled by an 

equivalent heat transfer resistance R, as illustrated in Fig.B-4. The resistance is defined as 

 

   R =  
T - T

Q
2 1        (B.8) 

 

where Q is the heat flow through the solid element, and T1 and T2 are the temperature of the 

end surfaces. 

 

 

RQ
T 12 T

 

Fig.B-4  Equivalent heat transfer resistance in a solid element 

 

 

Fig.B-5 shows the three dimensional heat conduction model of a solid element, where Qs is the 

heat generated in the solid element, Rx, Ry, and Rz are the equivalent heat transfer resistances 

on the X, Y, and Z axes, respectively. 

 

The heat transfer resistance on the X, Y, and Z axes can be calculated as following 

 

   R  =  
x

2  y z
x

∆
λ ∆ ∆x

      (B.9) 

 

   R  =  
y

2  z x
y

y

∆
λ ∆ ∆

      (B.10) 

 

   R  =  
z

2  x y
z

∆
λ ∆ ∆z

      (B.11) 

 

where λx, λy, and λz are the heat conductivities on the X, Y, and Z axes, ∆x, ∆y, and ∆z the 

side lengths of the solid element. 
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Fig.B-5  Three dimensional heat conduction model of a solid element 

 

 

The convection and radiation of a solid element surface can be evaluated by Newton's law of 

cooling, namely 

 

   Q =  (h + h )A Tr c ∆       (B.12) 

 

where Q is the heat transferred, hr and hc are the coefficients of radiation and convection, 

respectively, A is the surface area, and ∆T the temperature difference between the surface and 

the air. The equivalent resistance to the heat radiation and convection of the surface can be 

calculated as 

 

   R  =  
1

(h + h )A
s

r c

      (B.13) 

 

Therefore, the whole system can be modelled by a network of equivalent heat transfer 

resistances. The potential of a node is the temperature of that point, and the reference potential 

is the air (ambient) temperature. The temperature rise of a node is defined as the difference 

between the node temperature and the ambient temperature. 

 

 

B.4.2 Thermal Analysis of the Tester 
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Because of the geometrical symmetry, only one fourth of the tester is to be modelled, as 

depicted in Fig.B-6. 

 

 

S1

S2

S3

S4

S5

S6

Magnetisation pole

Excitation winding

Tester yoke

 

Fig.B-6  Part of the tester for thermal modelling 

 

 

Generally, a three dimensional equivalent heat transfer network is required. To simplify the 

calculation, the conductivities of electrical steel and copper were assumed to be infinite, and the 

heat conduction in the insulation layer between two steel sheets and in the winding insulation 

between conductors was assumed one dimensional, that is, only the heat penetration in the 

direction of the thickness was considered. 

 

Applying the thermal network model described in section B.4.1 yields a network as illustrated 

in Fig.B-7. This network consists of three heat transfer paths: 

 

 (1) Winding - Tester Core - Air  ( Path 1 ), 

 (2) Winding - Coil Former - Air  ( Path 2 ), and 

 (3) Winding - Wrap Insulation - Air  (Path 3); 

 

and two heat sources: 
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 (1) PCu -- the copper loss due to the winding resistance, and 

 (2) PFe -- the iron loss of the tester core. 
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  Fig.B-7 Equivalent heat transfer network of the rotational core loss tester 
   1 -- winding centre, 2 -- lamination centre, and 3 -- the air 

 

 

The equivalent heat transfer resistances were calculated as follows 

 

   R  =  

b - 4a

4
- 2

2 A
      (i =1,4,5)Wi

W i

δ

λ
    (B.14) 

 

   R  =  
h

2 A
      (i = 2,3,6)Wi

W iλ
    (B.15) 

 

   R  =  
A

      (i =1,2,...,6)Ii

I i

δ
λ

    (B.16) 
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   R  =  
1

(h + h )  A
      (i = 1, 2,..., 6)IAi

c r IA i

   (B.17) 

 

   R  =  
a

2 ALq1

Lq 1λ
      (B.18) 

 

   R  =  
a

ALq2

Lq 2λ
      (B.19) 

 

   R  =  
a

2 (2b- 4a -2h)cLq3

Lqλ
     (B.20) 

 

   R  =  
a

2 (
b - 4a

4
-

d

2
-g)c

Lq4

Lqλ
     (B.21) 

 

   R  =  
1

(h + h )  A
LdA

c r LdA LdA

     (B.22) 

 

   R  =  
1

(h + h )  ALqA

c r LqA LqA

     (B.23) 

 

where Rwi (i=1,2,...,6) are the equivalent heat transfer resistance from the centre to the 

surfaces of the winding in the direction of Si,  RIi (i=1,2,...,6) the equivalent heat transfer 

resistance of the insulation including the plastic former in the direction of Si, RIAi (i=1,2,...,6) 

the equivalent heat transfer resistance from the insulation surface Si to the air, RLqi (i=1,2,...,4) 

the equivalent heat transfer resistance from the centre to the surfaces of the laminations in the 

direction of Si,  RLdA is the equivalent heat transfer resistance from the horizontal surfaces, 

which are perpendicular to the plane of the laminations, of the magnetic core to the air, RLqA is 

the equivalent heat transfer resistance from the vertical surfaces, which are parallel to the plane 

of the laminations, of the magnetic core to the air, the dimensions a, b, c, d, g, h, and δ are 

shown in Fig.B-1, λW is the average heat conductivity in the cross section of the excitation 

winding, λI is the heat conductivity of the plastic former and the winding insulation, λLq is the 

average heat conductivity of the tester core in the direction perpendicular to the laminations, 

(hc+hr)IA is the convection and radiation coefficient of the winding insulation surface in touch 

with the air, (hc+hr)LqA is the convection and radiation coefficient of the tester core surface in 

parallel with the laminations, (hc+hr)LdA is the convection and radiation coefficient of the tester 

core surface perpendicular to the laminations, Ai ( i=1,2,...,6 ) is the area of surface Si, ALdA is 

the area of the tester core surface perpendicular to the laminations, and ALqA is the area of the 

tester core surface parallel to the laminations. These areas were calculated as: 
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   A  =  2hc1        (B.24) 

 

   A  =  2c(
b - 4a

4
-2 )2 δ       (B.25) 

 

   A  =  4a(
b - 4a

4
-2 )3 δ       (B.26) 

 

   A  =  8ah4        (B.27) 

 

   A  =  8h5
2        (B.28) 

 

   A = 8h(
b -4a

4
- 2 )6 δ       (B.29) 

 

   A  =  2a[b -a + 2(
b - 4a

4
- g - d + d +

c

4
 )]LdA

2
2

  (B.30) 

 

   A  =  2c(b - 2a - h +
b - 4a

4
- g -

d

2
)LqA     (B.31) 

 

The copper loss PCu was calculated by 

 

   P  =  I RCu
2

W        (B.32) 

 

where I is the rms value of the current flowing in the winding. The core loss PFe was obtained 

by interpolation of the loss curves provided by the manufacturer. 

 

The heat conductivities of materials were chosen as λW=1.3, λI=0.2, λLq=0.65 [222]. The 

convection and radiation coefficients of the surfaces in touch with the air were all assumed to 

be 14 W/m2K [222]. 

 

The temperature rise of each part of the tester was obtained by solving the network. An 

approximate calculation, which assumes that all the heat generated by the losses is transferred 

to the tester core and that the temperature rise of the core is determined by Newton's law of 

cooling, gives a mean value of temperature rise between the temperature rises of the winding 

and the magnetic core obtained by the network method. 
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B.5 Design of the Tester 

 

By using the methods of magnetic reluctance network and heat transfer network outlined in the 

previous sections, the tester dimensions and winding parameters were determined after a few 

trial iterations. Magnetic flux, flux density, and field strength in different parts of the tester, 

required excitation currents and terminal voltages of the excitation windings were calculated for 

specimens of three different materials, Lycore-800, Lycore-140, and MetGlas 2605S-2. The 

copper loss in the excitation windings, the core loss in the tester core, and the temperature rises 

in the centre of the winding and in the centre of the laminated core were also checked. The 

results are printed in Table B-2. The structure and dimensions of the tester yoke are illustrated 

in Fig.5-3, and the design of the excitation winding is depicted in Fig.B-8. 

 

 

Table B-2  Design of the single sheet rotational core loss tester 
=========================================================================== 

 
 DESIGN OF SINGLE SHEET ROTATIONAL CORE LOSS TESTER 

        

1. Dimensions of the tester core (as shown in Fig.B-1, unit: mm)  

a b c d e f g δ 
25 240 20 10 1 0.3 0.5 1 

Material of the tester core: M-0H Grain-oriented silicon steel, 0.3 mm sheet 

Weight of the tester core: 5.416 kg     

        

2. Winding parameters      

Number of turns of each coil: 300 turns    

Wire length:  76.64 m    

Wire diameter:  1.6 mm    

Thickness of enamel insulation: 0.1 mm    

Height of winding:  27.2 mm    

Width of winding:  33 mm    

Winding resistance (two coils in series) 1.663 Ohm   

        

3. Performances       

Excitation currents: Ix = sqrt(2)*Ix_rms*sin(2πf*time+phi_Ix)  (A) 

  Iy = sqrt(2)*Iy_rms*sin(2πf*time+phi_Iy) (A) 

        

With a specimen of Lycore-800 (0.3 mm sheet)    

Ix_rms= 5 A  Phi_Ix= 90 deg  

Iy_rms= 5 A  Phi_Iy= 0 deg  

Freq.= 100 Hz  Time= 0 s  

        

Solution  (168 iterations,  Err.=0.00000E+000):    

        

Flux (Wb), flux density (T), and field strength (A/m) in the yoke:   

Yoke1: 0.000014 0.028722 1.4287     

Yoke2: -1.4E-05 -0.02871 -1.42809     

Yoke3: -1.4E-05 -0.02871 -1.42809     
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Yoke4: 0.000014 0.028722 1.428701     

        

Flux (Wb), flux density (T), and field strength (A/m) in the magnetisation poles: 

Pole X1: 0.000029 0.054697 2.520057 0.028716 1.428397   

Pole X2: 0.000029 0.054697 2.520057 0.028716 1.428397   

Pole Y1: 0 0 0 0 0   

Pole Y2: 0 0 0 0 0   

        

Flux density (T) and field strength (A/m) in air gaps:    

X axis: 0.883564 703117.7 0.883564 703117.7    

Y axis: 0 0.044539 0 0.044539    

        

Flux density (T) and field strength (A/m) in the specimen:   

X axis: 1.914389 69113.41 1.914389 69113.41    

Y axis: 0 0.000154 0 0.000154    

The position of B is 0.000004(Deg) from X-axis    

        

Winding inductances at the specified time instant (two coils in series):  

X-axis: 0.138 mH  Y-axis: 11.713 mH  

Terminal voltages at the specified time instant:    

Vx= 11.856 V  Vy= 51.186 V  

        

Max total copper loss:  83.155 W   

Max core loss in yoke:  0.028 W   

Winding temperature rise:  48.822 deg C   

Lamination temperature rise:  23.864 deg C   

Approximate temperature rise:  31.495 deg C   

        

With a specimen of Lycore-140 (0.3 mm sheet)    

Ix_rms= 2.5 A  Phi_Ix= 90 deg  

Iy_rms= 2.5 A  Phi_Iy= 0 deg  

Freq.= 100 Hz  Time= 0 s  

        

Solution  (44 iterations,  Err.=0.00000E+000)     

        

Flux (Wb), flux density (T) and field strength (A/m) in the yoke:   

Yoke1: 0.000015 0.030896 1.527318     

Yoke2: -1.5E-05 -0.0309 -1.52747     

Yoke3: -1.5E-05 -0.0309 -1.52747     

Yoke4: 0.000015 0.030896 1.527317     

        

Flux (Wb), flux density (T) and field strength (A/m) in the poles:  

Pole X1: 0.000031 0.058852 2.676971 0.030897 1.527395   

Pole X2: 0.000031 0.058852 2.676971 0.030897 1.527395   

Pole Y1: 0 0 0 0 0   

Pole Y2: 0 0 0 0 0   

        

Flux density (T) and field strength (A/m) in air gaps:    

X axis: 0.950689 756534.6 0.950689 756534.6    

Y axis: 0 -0.04454 0 -0.04454    

        

Flux density (T) and field strength (A/m) in the specimen:   

X axis: 2.059827 25491.36 2.059827 25491.36    

Y axis: 0 -1.3E-05 0 -1.3E-05    
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The position of B is 0.000003(deg) from X-axis    

        

Winding inductances at the specified time instant (two coils in series):  

X-axis: 1.854 mH  Y-axis: 12.958 mH  

Terminal voltages at the specified time instant:    

Vx= 6.522 V  Vy= 28.314 V  

        

Max total copper loss:  20.789 W   

Max core loss in yoke:  0.032 W   

Winding temperature rise:  12.213 deg C   

Lamination temperature rise:  5.980 deg C   

Approximate temperature rise:  7.883 deg C   

        

With a specimen of MetGlas2605S-2 (0.03mm sheet)    

Ix_rms= 1.5 A  Phi_Ix= 90 deg  

Iy_rms= 1.5 A  Phi_Iy= 0 deg  

Freq.= 100 Hz  Time= 0 s  

        

Solution (39 iterations,  Err.=0.00000E+000):     

        

Flux (Wb), flux density (T) and field strength (A/m) in the yoke:   

Yoke1: 0.000015 0.030554 1.511879     

Yoke2: -1.5E-05 -0.03056 -1.51194     

Yoke3: -1.5E-05 -0.03056 -1.51194     

Yoke4: 0.000015 0.030554 1.511879     

        

Flux (Wb), flux density (T) and field strength (A/m) in the poles:  

Pole X1: 0.000031 0.058198 2.652606 0.030554 1.511908   

Pole X2: 0.000031 0.058198 2.652606 0.030554 1.511908   

Pole Y1: 0 0 0 0 0   

Pole Y2: 0 0 0 0 0   

        

Flux density (T) and field strength (A/m) in air gaps:    

X axis: 0.940128 748130.3 0.940128 748130.3    

Y axis: 0 0 0 0    

        

Flux density (T) and field strength (A/m) in the specimen:   

X axis: 2.036945 8708.918 2.036945 8708.918    

Y axis: 0 0 0 0    

The position of B is 0.000000(deg) from X-axis    

        

Winding inductances at the specified time instant (two coils in series):  

X-axis: 4.214 mH  Y-axis: 13.124 mH  

Terminal voltages at the specified time instant:    

Vx= 4.403 V  Vy= 17.206 V  

        

Max total copper loss:  7.484 W   

Max core loss in yoke:  0.032 W   

Winding temperature rise:  4.402 deg C   

Lamination temperature rise:  2.164 deg C   

Approximate temperature rise:  2.846 deg C   
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Fig.B-8  Design of excitation winding 

 

 

 

From the results listed in Table B-2, it can be seen that the tester in this design is able to 

magnetise a specimen of Lycore-800 at up to 1.9 T with an excitation current of 5 A in the 

windings on both X and Y axes. Because high quality grain-oriented electrical steel sheet is 

used for the lamination material, the core loss occurring in the magnetic core is very low. The 

temperature rise, in this case, is 49
o
C in the centre of the excitation windings, and 24

o
C in the 

centre of the yoke laminations. For materials of higher grade, such as Lycore-140 and 

MetGlas 2605S-2, even smaller excitation current is required to magnetise the specimen, and 

the temperature rises are also much smaller. Therefore, the design is satisfactory. 
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