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Abstract. A generalised mathematical formulation is provided for any 

melting and solidification problem. Non-dimensional parameters 

governing this problem are identified. Depending on the problem, ways 

of simplifying t~e generalised mathematical statement are discussed. 

Different methods of formulation of melting and solidification problems, 

namely, variable and fixed domain methods, are discussed highlighting 

their merits and demerits. Methods to solve the momentum equation in 
the molten region and model alloy solidification problems are presented. 

Recent progress in all the numerical methods is reviewed. Critical 
numerical aspects of all the methods are discussed. Guidelines are 

provided to select the correct numerical method. Areas needing 
emphasis in future research are highlighted. 
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1. Introduction 

1.1 Phenomena of solidification and melting 

Solidification and melting are commonly observed phenomena. Melting of snow, 

formation of ice cubes in a domestic refrigerator, melting of iron, gold or silver for 

making domestic utensils, ornaments or machine components by forging, casting or 

welding are all common knowledge. 

The important feature of the phenomenon however is that it is brought about by 

a process of heat transfer that is accompanied by a change of phase i.e. from solid 

to liquid or vice versa. During a phase change, thermal energy is released or 

A list of symbols is given at the end of the paper 
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absorbed at the interface between the solid and the liquid. This energy, which is also 

known as the latent heat of fusion 0-), is drawn from one phase and distributed 

through the other primarily by a process of conduction heat transfer. Under certain 

circumstances, however, tl~e liquid phase may not remain stagnant and the 

essentially conduction heat transfer may be superimposed by convective heat 

transfer. 
It is well known that whereas the transfer of heat by co~daction results from 

temperature differences within each phase, the release or absorption of latent heat at 

the interface occurs without any temperature difference at all. It is this characteristic 
of latent heat which makes the phenomenon of solidification and melting a 

transient one. 

In pure substances, the temperature at which the latent heat is released is uniquely 

defined and is known as the melting point (T*) of the substance. Thus, the interface 

between the solid and-the liquid phases can be sharply identified. Both the T* and 2 

are properties of a substance. In impure substances or alloys, on the other hand, the 

total latent heat is released or absorbed over a range of temperatures. The exact 

amounts of latent heat released at each temperature within the range are however 

rarely known precisely. Thus the interface between solid and liquid in alloys is not a 

clearly identifiable surface, but essentially a region of finite thickness. This region is 

often referred to as the "mushy" zone. 
In many applications that will be mentioned in the next section, the engineer 

needs to know the rates of solidification or melting. This means that he needs to 

calculate: 

a) the rate of heat transfer in materials undergoing solidification and melting; 
b) the rate of interface movement (or interface velocity) which yields the estimate of 

total solidification or melting times in materials of finite volume; 
c) the shape of the interface at every instant of time. 

The general problem of predicting rates of solidification and melting is known as 

the "Stefan problem", named after Stefan (1891) who carried out a study of the 
melting of polar ice. He showed that the rate is governed by a dimensionless 

number, known as the Stefan number (Ste), that is defined by: 

Ste = [C* (T* - T*) ]/2, (1) 

where C* is the specific heat of the material and T,* is the temperature of the 

surroundings or some other appropriate reference temperature. The higher the 

value of Ste, the higher is the rate of the interface movement. Since Stefan's early 

investigation in 1891, several attempts have been made to capture all the 

phenomena that occur during melting and solidification of alloys and pure 

substances. We have already seen that change of phase may be accompanied by 

convection or the presence of a "mushy" region. Today vast numbers of application 
areas have emerged involving both natural as well as synthetic materials. Thus 

additional effects such as changes in properties (density, conductivity, specific heat), 

transfer of solutes in alloys, turbulence, surface tension at the free surface etc. must 

be considered along with multidimensionality and geometric complexities in the 

general problem of solidification and melting. Fortunately, the availability of 

computers allows consideration of all such effects in calculations intended to assist 

an engineer. 
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1.2 Some important applications 

There is hardly any product which, during its manufacture, does not undergo a 

process of solidification and melting at some stage. Casting, welding, soldering/ 

brazing, dip-forming, crystallisation etc. are typical manufacturing processes that 

involve melting and solidification. Processes such as rapid solidification, directional 
solidification or surface alloying are often used to create new materials or impart 

new physical and metallurgical properties to existing ones. The phenomenon known 

as "permafrost" is concerned with changes in load-bearing capacity of soils in very 

cold environments. The process of freezing and thawing is of interest in the 

preservation of foods. The principle of latent heat transfer is used in the 

development of compact thermal energy storage devices that enable storage and 

retrieval of energy at nearly constant temperature. 

In all the above applications, it is important to know the rates of solidification 
and melting so that they can be controlled to meet the objectives at hand. 

1.3 The purpose of the review 

From the foregoing it is clear that solidification and melting are importam 

phenomena in various applications. Being a transient phenomenon that takes place 

in impervious materials, experimental determination of melting and solidification 

rates through internal probing of the temperature field is a difficult task. Often the 

phenomenon takes place over very small regions, as for example in surface alloying. 

As such, experiments involve taking cross-sectional cuts to examine the relate- 

structure of the material after subjection to different rates of solidification. The 

purpose of experimentation then is to draw general qualitative inferences;, the 
experimentation itself being quite tedious. 

It is for these reasons that solidification and melting phenomena have received 
considerable theoretical attention. Most of the earlier investigations were confined to 
one-dimensional diffusion-controlled problems. While one-dimensional problems 

provide useful guidance, multidimensional problems are of greater technological 

importance and are more difficult to solve. The availability of computers enabled 
the consideration of multidimensional phenomena involving convection as well as 

the presence of "mushy" region. In spite of the large number of publications dealing 

with solidification and melting, none of the methods used can be considered general 

enough to yield all quantities of interest (e.g., cooling rate, interface, temperature 
history etc.) under all types of boundary conditions. 

The purpose of this review is to provide the most generalised formulation of 

melting and solidification problems and to examine the manner in which the 

formulation is particularised by different authors. Attention is directed to 

multidimensional problems involving numerical methods. The merits and demerits 

of different methods have been highlighted and the need for evolving a generalised 

method for solving melting and solidification problems has been emphasised. 

1.4 Outline of the paper 

In this section, melting and solidification problems are defined physically 

highlighting the important applications. In the second section, a generalised 
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mathematical statement of any melting and solidification problem is derived along 

with source laws, boundary and initial conditions. Different ways of formulation are 

discussed and non-dimensional numbers governing the process are identified. 

Recent progress in numerical methods is reviewed in the third section, while the 

fourth section presents critical numerical aspects of all numerical methods. In the 

last section guidelines are provided for selecting numerical techniques. Areas 

needing emphasis in future research are also highlighted. 

2. Mathematical statement 

2.1 Domain of interest 

Consider a r eg ion  bounded by boundary (B) and occupied by a pure substance 
(figure la). At some instant of time, the solid (S) and liquid (L) phases are separated 

by an interface (I). The latent heat is released or absorbed at the interface which is 

at a fixed temperature, T*. Due to the heat interaction at the boundary (B), the 

interface moves through the domain with a velocity v~ (x, y, z). 

If the region is occupied by an impure substance (figure lb), then the solid and 

liquid are separated by a finite "mushy" region that can be demarcated by I, 

(separating solid-solidus) and IL (separating liquid-liquidus). Both Is and IL move 

through the region as a result of heat interactions at the boundary. Every point in 
the region is defined by an orthogonal or non-orthogonal system. Our objective is 
to apply the conservation of energy, mass and momentum principles to small 

control volumes within each phase and at the interface. 
When invoking the conservation of energy and mass principles, two approaches 

are possible- 
(i) variable domain method; and 

(ii) fixed domain method. 

The essential difference between the two is that in the former the total domain is 

divided into two phases and the interface region; and each region is treated 
separately. Since the volume of each region changes with time, the method is termed 

as the variable domain method. 
The fixed domain method does not deal with the particularised forms of the 

energy and mass conservation principle for each region. It rather considers the 

n interfQce ( I )  
n solidus ( I )  "liquidus(II) 

boundar y ( B ) 
(a) (b) 

Figure I. Domain of interest for (a) pure metal and (b) alloy. 



Modellinq (?/ melting .rot solid(fication 173 

entire domain including all regions together; and thus since the total domain does 

not change with time, the method is termed as the fixed domain method. 

Both methods have their adwmtages and disadvantages. It will be obvious 

though that in the variable domain method the interface location is explicitly 

identified a priori whereas in the fixed domain method the interface location is 

inferred from the solution of the governing equation. 

2.2 Variable domain method 

Solidification and melting being a thermo-fluid dynamic process, the application of 

the laws of conservation of mass, momentum and energy to control volumes 

situated in each phase yields partial differential equations governing the distribution 

of temperature (T*), concentration (C*), three velocity components (u*, v*, w*) and 

pressure (p*). The equations require information on material properties such as 

density (p*) and specific heat (C*) in addition to transport properties such as 

kinematic viscosity (v*), thermal diffusivity (~t*) and mass diffusivity (D*). The 

equations for any dependent variable can be written in generalised form as follows, 

* *) = S*. ~ ( p  ~b*) + div (p 'u* ¢ div (F* grad ~b*) + (2) 

Table 1 provides the meanings of F* and S* for different ¢'s. The last mentioned 

entry in the table 1 (i.e., ~ * = 1) is the continuity equation applicable to a liquid 

phase. It enables determination of pressure distribution. In solid phase, of course, 
u* * - -  

= S u , v , w  - O. 
Since the properties can be assumed to be uniform for each phase, the equation 

can be non-dimensionalised. Thus defining, 

T* - 7-* C* - C *~ u* r* 

O - T , _ T ,  ~, C - C ~ _ C , ~ .  U=~--R- R, r-- L, 

p* k* * p* 
p = ~ ,  k = ~ ,  c p - C P  P -  , '  

D* p* t~* 
D=D~, p=p,U2 and Z - L 2 ,  

where L and U R a r e  characteristic length and velocity and suffix s refers to the solid 

phase, (2) can be written as, 

- -  + Re. Pr. div ( p U b )  = div (F grad ~b)+ S, (3) 
dr 

Table 1. Conservation equation. 

~* F* S* 

u*, v*, w* p* = p* v* ( t3p* / On* ) + F* 

T* k*/C* = p*ct* (~ *isc + R~-" )/C* 
C* p'D* R'r" 

1 1 0 
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Table 2. Non-dimensional conservation equation. 

@ F S 

u,v ,w pPr  S . . . . .  {LZ/(P*ct*UR)} 

0 k/C n S~{L2/[p*~t*( T* - T*~)] } 

C pO(Pr/Sc) S* { L Z / [ p  * oq*(C *~-  C*~)] } 

1 1 o 

where ¢ ,  F and S are defined as in table 2. 

The different non-dimensional numbers mentioned in table 2 and (3) are defined 

as follows, 

Re = * . _  p.~ U R L / p s -  URL/v* , 

Pr = C~,p.,"/ks- p~ /(Ps ~., ) -  v* /~*, 

Sc ~* _ v~* 
p 'D*  D*"  

Note that in the solid phase p, D, k, C and/~ take the value of unity. 

2.3 Boundary and initial conditions 

Solidification and melting being a transient phenomenon, initial conditions must be 

specified for solution of equations along with the boundary conditions. Thus at the 

commencement of melting of a solid, for example, the velocities are zero and the 

concentration and temperature can be assumed to be uniform and known. The 

initial temperature may equal the environmental temperature T* or some other 

temperature including T*. At the beginning of the solidification, however, the initial 

conditions must be those at the end of melting. Thus the velocities in the liquid 

phase may be finite and temperature and concentration may be non-uniform with 

the temperature in the liquid phase often exceeding T*. 

The boundary conditions, however, require careful consideration in different 

applications. We shall, therefore, consider each variable separately. 

2.3a Temperature boundary condition: The most frequently obtained boundary 

condition for temperature is that of an energy flux, q*. Either the flux is specified at 

the boundary or it must be inferred from the temperature of the boundary, T~ and 

its environment, T*. Thus for heating or cooling flux, 

8T* l = q~(s) = h* (s)(T~ - T*) + Cl~tr(T~ ''~ - T*4), (4) 
- k~, N-;n* b 

where s is the distance along the boundary. 
In surface melting, welding etc, q~' (s) is known as the heating flux over a part of 

the boundary, and for the remainder of the boundary h* (s) and eR must be known. 

Often q* (s) has a specified (Gaussian or top-hat) distribution. In applications such 

as crystal growth, heat energy storage etc., q* (s) is not specified but energy transfer 

takes place by convection and radiation (e.g., crystal growth, permafrost) or by 

convection alone (e.g., heat storage devices). In the manufacture of turbine blades by 
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unidirectional solidification, radiant heat transfer is the only mechanism used. Often 

zero flux boundary conditions can be employed on a part of the boundary where 

adiabatic conditions prevail (e.g. symmetry planes and insulated surfaces). 

In terms of the dimensionless parameters employed earlier, (4) can be written as, 

gn [ b = qb (S) = (Bi + R F) Ob, (5) 

where 

qb (S) = q'~ (s)/[(k*/L)( T*., - T*~ ) 3. 

2.3b Concentration boundary condition: Usually the boundary condition for 

concentration is one of zero mass flux, e.g., 

J =o. (6) 
c3n J b 

However, in surface alloying where alloying elements are added to a part of the 

molten metal, the condition is, 

~C I 
I (7) - D ~ - n  I 

2.3c Velocity boundary condition: When the liquid phase is bounded by solid 

walls, the boundary condition is one of no-slip, e.g., 

u* = v* = w* = 0-0. (8) 

However, a part of the boundary may often be a free surface and convection is 

driven by surface tension forces that result from the temperature gradients. Under 

such circumstances, the condition can be derived with reference to the figure 2 

where force balance between fluid shear and surface tension is demonstrated in two 

! 
o- bb "x 

I _ 

.,solid J 

i 
y ; u  

Figure 2. Force balance at the frec surface of the molten pool. 

--__-- X°tl 
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dimensions. Thus, 

, ~?u* I 
#t ~ y ,  [ b 
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- 

or in dimensionless form, 

Ou [ = _ R d0 

b" 

For the other velocities, we note that, 

and 

R I 
b b 

v=0.0. 

2.4 Source laws 

In tables 1 and 2, 

(9) 

(10) 

(11) 

(12) 

sources (or sinks) have been identified for each variable of 

interest. We consider the variables in turn. 

2.4a Momentum sources: For velocities u*, v*, w*, the dimensional source term is, 

S* = (dp*/an*) + F~'. (13) 

Writing the obvious pressure gradient term (dp*/On*) in dimensionless form yields, 

S = Re Pr ~p/On + F* L2/(p * U R o~*). (14) 

Two types of convection generating body forces Fb* are common, 

i) buoyancy forces; and 

ii) electromagnetic forces. 

The first type of force is commonly known to arise as a result of density differences 

acting against the gravity force, the density differences being caused by temperature 

or concentration differences. Under these conditions, 

F* (buoyancy) = p* r* g( ~ * - 4~ r'a,), (15) 

where ~* represents T* or C* and 4~*fis T* in thermal buoyancy and C *s in 

concentration buoyancy. Similarly r*  equals 

p~' \?T*Jp, or - P ~ - \ ~ J v *  respectively. 

The electromagnetic force which arises due to electron beam heating is expressed 

in vector form as, 

#., Hm x F~' (electromagnetic) = - * * (V x H*)  (16) 
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Now normalising H* by H o, the total source term can be written as, 

177 

S = R e P r c s ~ n + k p ~ / - - R ~ - 0 +  ~ ~ C  

Reer[ 1 + ~ - ,  /-/~ x tV x H,,) . (17) 

2.4b Mass and energy sources: Solidification and melting are rarely accompanied 

by a chemical reaction. Thus sources of mass and energy equations are absent. The 

melting process may however be brought about by induction heating and a finite 

volumetric heat generation rate must be considered in each phase in such a case. 

2.5 Interface conditions 

In most applications the interface movement rate is sufficiently low for equilibrium 

conditions to prevail at the interface. Thus two types of conditions are invoked at 

the interface, 

(i) equilibrium condition, 

(ii) energy and mass flux condition. 

The no-slip condition for velocities is of course satisfied. 

2.5a Equilibrium conditions: For pure substances, the interface is an isothermal 

surface with temperature equal to T*. For an alloy, on the other hand, the liquidus 

temperature is governed by the solute concentration and can be determined from 

the phase diagram. Often the interface turns out to be a curved surface and the 

magnitude of the saturation temperature is known to depend on the surface tension 

(as), the entropy of melting (s) and the local surface curvature (R). Thus three 
possibilities arise which can be expressed in non-dimensional form as follows, 

0i = 0"0, (for pure metals), 

= m { [ ( C  * s -  C*~) / (T  * -  T*]]  C + [C*~/ (T  * -  T*)]  }, 

(for alloys), (18) 

= - (~rJsL) [1/R(T* - T*)], (for curved interfaces). 

2.5b Flux condition for pure substances: A separate energy balance is required at 

the interface because of release or absorption of latent heat during solidification or 

melting, respectively. The energy balance is as follows, 

( k ,  dT* - ~ k*~n,  ) = - p* 2v' ~. (19) 

Normalising this equation (as mentioned in § 2.2), the following form is obtained 

0n 1 -  k~n s=  - (RePr /Ste)pv1 '  (20) 
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The significance of the dimensionless number, Ste, is now clear from (20), e.g. the 
higher the Ste the faster is the rate of interface movement. The values of Ste for 

different important applications are given in table 3. 

2.5c Flux condition for alloyed substances: For alloys, both energy and mass 

balance are required across the mushy region. Energy balance, e.g., the heat flux 
condition, is the same as for the pure substances, (20). Because of the jump in the 

solute concentration between liquidus and solidus, a separate mass balance is 

needed across the mushy region. Thus the mass balance condition yields, 

~n* 1- D* ~n, ,=-(C[~-C~*)v~'" (21) 

Normalising this equation, one obtains 

/ ) DffnnC~C l -  D ~  ~= Le vl, (22) 

where Le = Lewis number = Pr/Sc. 
Note that the speed of the interface movement is dependent on both mass ~nd 

heat diffusion [e.g., (20) and (22)] in the case of alloy solidification problems. 

Hence, both Ste and Le have to be high for faster interface movement. 

2.6 Summary 

The phase change process is thus governed by several dimensionless parameters. 
The transfer processes within each phase are governed by Re, Pr and Sc. The 
boundary conditions give rise to Bi, Re and Rsr representing the effects of external 

convection, radiation and surface tension. The source laws yield Gr,, Gr~, and Ms, 
representing effects of buoyancy due to temperature and concentration differences, 

and of magnetic field, respectively. 
The interface and mushy region processes give rise to Ste and Le, the former 

being the result of energy transfer and the latter' of mass diffusion. 

The rate of solidification and melting in the most general problem is thus 

governed by 
Phase change rate = F~Re, Pr, Sc, Gr,, Gr~,, Mm, Bi, Rr, Rsr, Ste, Le . . . .  others,, 

Table 3. Typical values of Stefan numbers. 

Application Ste 

Casting and processing of pure metals with large temperature range 1 to 3 

Casting and processing of alloys with large temperature range 0.2 to 0"3 

Thermal energy storage, freezing and melting of water by nature, both within small frO to 0"2 

temperature range. 

Reference'. Shamsunder (1978). 
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where F ( ) means "function of" and other symbols signify property ratios between 

phases, geometry, interface curvature and the properties of the phase diagram. The 

fixed domain method will now be considered. 

2.7 Fixed domain method 

2.7a The energy equation: In the variable domain method the transport of 

sensible heat in the two phases and that of latent heat at the interface were treated 

separately; these transport rates however were balanced by the conduction heat 

transfer rates (and sources if any). Both the sensible heat as well as the latent heat 

are different forms of energy and the changes in them contribute to changes in 

enthalpy. Use of enthalpy, rather than the temperature, thus offers an opportunity 

for treating the two phases as well as the interface in a unified way. Thus 

irrespective of the region being considered, the energy transfer is governed by the 

following equation 

(3 
~(p*H*) + div (p*u*H) = div (k* grad T*). (23) 

We however now have an equation, which has two dependent variables: enthalpy 

H* and temperature T*. We thus need a relationship between H* and T*, in order 

that (23) can be solved for the entire domain without specific reference to the phases 

and the interface region. The fixed domain method, with use of enthalpy, is designed 

to take advantage of this fact. 

Figures 3a and b show the typical relationship between H* and T* for the pure 

substance and an alloy. In the completely solid and the liquid regions, the 

relationship between H* and T* is simply linear; the difficulty however arises at the 

interface for a pure metal and in the mushy region for an alloy. 

Different authors have made proposals for the H*-T* relationship particularly 

H * H ~ 

s o l i d ~ ~ i l  =~'p I t 

H'--%'T" 
(o) 

solid ~_ ! _ 

J  s,i li,.id 

, s ~T N 

(b) 

Figure 3. Enthalpy (H*) and temperature (T*) relationships for (a) pure metal and 
(b) alloy. 
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for the case of a pure metal. Our purpose is to seek similarities, or otherwise, 

between them and to examine their consequences in the calculation of the time 

derivative ? H * / ? t  at the interface and within each phase. 

Pure m e t a l s -  Thus, all models use the following relationships for the solid and the 

liquid regions: 

Solid: H*  = Cv* T*, for T ~ < T*, (24) 

Liquid: H *  = C~ T*, for T* > T*. (25) 

For the interface where T* = T*, however, there are four proposals which we shall 

refer to as models. Thus, 

Model  1 -  Szekely & Themlis (1970) 

- -  ~ T • H~' - f ( C  v ); (26) 

where f is a continuous linear function of T* which is assumed to vary over a small 

temperature interval 2e or 

T * -  r,< T*<  T* + e,. 

Model  2 - M e y e r  (1971), 

H *  = C*~ T* + ( )~/2e)( T* - T*' + ~) (27) 

= C* T* + ( 2 / 2 e ) ( e -  T*), 
Peff 

with T* - e < T* < T* + ~, 

and C~,.,, = C*~ + (2/2~). 

Model  3 Bonacina et al (1975), 

H* = C~,, T*, (28) 

with T* - e < T < T*~ + e, 

and C~,.,, = 2/2e. 

Model  4--Shamsundar & Sparrow (1975a), 

(l/V*)~v, H* dV* = t l /V*)[v,(C* T,,* + )~)d V*. (29) 

The first three models simply assume that  melting takes place over a range of 

temperatures rather than at a fixed value of the temperature i.e. T*. Model 1 and 

model 3 are similar, except that the latter assumes linearity between H* and T*, 

whereas the former allows for a nonlinear variation. Model 2 is similar to model 3, 

but the linearity constant is different. Figure 4 shows graphical representation of the 

three models. Note that since ~ is very small, the variation of Cv in model 3 shows a 

very sharp and spike-like variation. 

Unlike the first three models, model 4 assumes that melting takes place over a 

small control volume V* rather than over a small range of temperature. 

The time-derivative of enthalpy then takes the following forms, 

0H* 
Solid Ot - Ot (C*~ T* ); (30) 
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ii~.,~model 1_ 

2E 

Figure 4. Approximation of H* T* and Cp-T* relationships. 

Liquid ai - (c*, T *  +,~): (c*, T*); (31) 

Interface 

OH* _ Of OT*. 
Model 1 3t ~ OT*" ~Ot ' (32) 

OH* [ 0 
Models 2 & 3 ~ 7 -  , =a t  (Cp*'T*);  (33) 

1 ~ £ H*dV* 1 ( 0H* 
Model 4 V* Ot ,, = V~* .Iv* 8t 

2 OV* 
dV* + - - -  (34) 

V* 8t 

1 I ~ d V *  + 2  Oft 
V* ,Iv* ot Ot 

v* . ( c * 7 * ) d V *  + ~-~ ,  

(35) 

where (34) & (35) result from Leibniz's rule and f~ is the liquid fraction. 

Models 1, 2 and 3 thus allow replacement of H* in (23) by T* with proper values 

being assigned to Of/OT* and Cpo,. Equation (23) can now be solved by any 
discretization technique without specific reference to interface. The new empirical 

inputs however are the values of e and the Of/OT* function. 
An additional point to note, however, is that models 2 and 4 can also be 
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interpreted in another way. If it is argued that melting takes place not only over a 

finite temperature range or a finite volume, but also over a finite time At (say), then 

a relationship between H* and T* for all regions can be written as, 

such that 

H*(x,y,z,t)= c*r*(x,y,z, t)+ H*s(t), (36) 

I,+a, dt = 2. (37) 
dH*, 

dt " 

The meaning of H*~ (t) can now be interpreted as: 

Model 2-n*,(t) = (2/25)(T* - T* + 5); (38) 

dU*s (t) 
Model4 dt - 2  . (39) 

Equations (38) and (39) will be referred as models 2a and 4a, respectively, in the rest 

of this paper. If (36) is used then replacement of H* will yield a source term in the 
energy equation i.e. dH*Jdt; and again the equation can be solved without 

specifically locating the interface; care is however needed in the choice of At when 

numerical solution over discrete time steps is sought, so that (37) is satisfied. It is 

quite clear then, that in model 2 correct choice of At and ~ must be made 

simultaneously; any arbitrariness in the choice of ~ must result in an erroneous 

solution. 
The models presented above are, of course, deceptively simple when numerical 

solutions are sought over discrete time and space intervals. Although convenient to 

use, it is often found that the enthalpy models provide solutions that are at variance 

with exact solutions (available for a 1D case) or expectations. 

Alloys-For alloys, the H*-T* relationships used are (see figure 3b). 

[ C~,T* ; T* < T* } 

H* = C~' T* +ftr" 2 ; T* = T* 

C* T* +f~2 • T*<T*<.T* 
Pmush 

C* T* + 2 " T* > T* p! ' , 

where C* =fz" C~', + (1 -fz)  C~,, 
Pmush 

(40) 

(41) 

fze is the eutectic liquid fraction and fz is the liquid fraction, determined from the 

mass diffusion considerations (see § 2.7b). 
It will be noticed that unlike pure metals, melting and solidification of alloys 

truly takes place over a range of temperatures, e.g., T* ~< T*~< T* and models 1, 

2 and 4 can be directly applied by noting that 2e = T* - T*. 

2.7b Mass transfer equation: The concept of fixed domain formulation can also 

be extended to the mass transfer equations. In the mass transfer problem there is a 

jump in the concentration profile, e.g. between C *~ (liquidus) and C *S (solidus) 

(figure 5) across the mushy region. As a result, the mass diffusion term will be 

divergent across the mushy region. The fixed domain formulation, thus needs an 

alternative form of mass transfer equation with a different variable (which is 
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solidus ~ 
J j ' ~  
! 

! 
! 

' 1 ! 

I 
~ S  

s c t C ~ Figure 5. A simplified phase diagram. 

continuous across the mushy region) for evaluating the mass diffusion term. From 

the equilibrium diagram, it can be seen that, 

C *~ = m I T* "~. (42) 

) 

If m is defined as 

m = , (43) 
ms 

we can see the C/m is continuous across the mushy region. On this basis, Fix 
(1978) defined a variable G* as, 

G* =- C* /m. (44) 

The modified form of mass conservation equation is then as follows 

~C*/at + div (u*. C) = div (roD* grad G*). (45) 

Equation (45) thus represents the mass conservation in the whole domain. The 

different properties and the concentration jump across the mushy region are thus 

bound up in the functional form of C* (G*) which is as follows, 

f m~G* in the solid, 
C* = between m~ G* & m IG* in the mushy region, (46) 

m~ G in the liquid. 

Another approach to include mass transfer is to write an integral mass balance 

across the mushy region and thus determine the amount of material which has 

undergone the phase change (e.g., f~). Once the f~ is known it can be directly 

included in model 4 to calculate enthalpy correctly. Depending on the assumption, 

a series of expressions are available in the literature to determine f~. All these 

expressions are based on the well-mixed liquid assumption, e.g., there is no 

concentration gradient in the liquid. The rate of mass diffusion in liquid alloys is 

very slow compared to thermal diffusion-for example D* is 10-7 to 10 -s m2/s for 
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Mn in steel (Chande & Mazumder 1985), where ~* is 10 -5 to 10 -6 mZ/s. As a 

result, mass transfer is important in the mushy region, solid phase and liquid phase. 

The solute boundary layer, on the liquid-side is very thin compared to the thermal 

boundary layer and hence a well-mixed condition is a reasonable assumption for 

liquid alloys. 

The various integral mass balance equations are as follows, 

Scheil equation (Flemings 1974, pp. 160-163)- 

ft = [ ( T * -  T * ) / ( T * -  T*)]  -1/(1-k'). (47) 

Brody-Flemm9 s equaiion (Brody & Flemings 1966)- 

fl = [1/(1-2Xbk')]  [(T* - T*) / (T*  - Tz*)] -(l-2Xbk')/(1-k'). (48) 

Clyne and Kurz's equation (Clyne & Kurz 1981), 

fl = [ 1 / ( 1 -  2Xck ' )  ] [ T* - T* )/( T* - T*)]-11-2Xck')/(1-k'). (49) 

Here, k' is the partition coefficient and is defined as 

k'= C*VC 

Equation (47) assumes that the diffusion of solute in solid is negligible. For slow 

rates of solute diffusion in solids, (28) is used whereas for faster rates (49) is used. Xb 

is known as the "Brody-Flemings back diffusion" parameter and defined as 

X~ = 4D* t f / L  2 , 

where t s is the local solidification time. Xc, the modified back diffusion parameter, 

is related to Xb as 

X~ = Xb [1 - exp ( - 1/Xb)] - ½ exp ( - 1/2Xt,). (50) 

2.7c Momentum equation: The usual way of solving a momentum equation along 

with the enthalpy formulation is to solve the equations only in the liquid control 

volumes. But the advantage of the fixed domain formulation is lost because one has 

to identify the liquid control volumes, e.g., the interface position is needed. The 

papers of Chan et al (1983, pp. 150-157, 1984, 1985) are of this type. There are two 

ways of extending the fixed domain concept to the solution of momentum 

equations-the variable viscosity model and the porous media model. 

Variable viscosity mode l - In  this model, viscosity, #*, is assumed to be a function of 

temperature such that in the phase change and solid region p* takes a high value. 

The function should be dependent on the latent heat change of a control volume 

and thus it is proper to assign an approximate pseudo-viscosity depending on the 

amount of liquid in the control volume. The variable viscosity is thus defined as 

follows (Voller et al 1987), 

~* = #* + B M [2 - H*, (t)],  (51) 

where H*~ (t); introduced in (36) and (37), is the representative latent heat of the 

control volume and B M is some large value. In the liquid H** ( t )= 2 and hence 
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#* =/~*. in the solid region takes a high value, e.g. 

#* = / ~ ' +  B M 2, 

and thus ensures zero velocity in that region. Depending upon the value of 

H*s(t),t~* takes different values in the phase change region. A typical /~*-T* 

relationship is shown in figure 6. 

Equation (51) is suitable for pure metals. For alloys, where the actual value o f f  is 

known from the mass balance, the suitable definition of viscosity is as follows 

P* =/~*. ft + BM(1 -fz) ,  (52) 

This relationship also ensures a large value of #* in the solid, while #* in the 

mushy region is dependent on ft. 

Porous media m o d e l - T h i s  model is relevant for alloy solidification problems and 

treats the mushy region as a porous medium. The mushy region consists of 

dendrites with primary, secondary or other arms and nearly saturated liquid. As a 

result, flow in the mushy region can be treated as a liquid fraction flowing through 

a solid matrix. This model was first suggested by Mehrabian et al (1970) while 

analysing the effect of indendritic fluid flow on microsegregation. 

The flow through a porous medium is governed by the well-known Darcy's law. 

The law states that velocity of flow in a porous medium is proportional t6 the 

pressure gradient, e.g., 

u* = - k* (Op*/~x*). (53) 

Hence, the flow in the porous medium can be accounted for by the momentum 

equation (3) replacing source S* by -u*/k*. The permeability, k*, in the mushy 

region is directly related to the fraction of liquid present. As fc-*0, the permeability 

k*~0 and the source term (which is of high value) will dominate and thus force the 

related velocity close to zero. A suitable choice for the source term then will be 

S* = B M (1 -ft)- (54) 

Except the linear Darcy source (54), a nonlinear Darcy source term can also be used 
(Voller et al 1987). 

t~s 

solid 
(s) 

I 

S+L It 
i 
I 
I 

Liquid 
( l )  

? Figure 6. A typical p* T* relationship. 
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S* = Bu [exp (1 -f~) - 1]. 

Different sources used by Voller et al (1987), are as follows, 

Viscosity (arithmetic), B M = 200, 

Viscosity (harmonic), BM = 200, 

Linear Darcy source, BM = 200, 

Nonlinear.Darcy source, BM = 6.78. 

(55) 

2.8 Normalisation of fixed domain equation 

The fixed domain equations can now be normalised in the following way, 

¢, = in* - ~*t)/,~, c = (c* - c*~9/(c *~- C*~), 

- 6m)/C, c~ ). O=C*(T* T,,)/2, G=m~*(G*- * * ' -  *' 

Other variables (e.g. n*, p*, C~*, ~*, p*, t*.. .) are normalised as mentioned in § 2.2. 

The generalised form of the non-dimensional governing equation is expressed as 

follows 

~3 (b~bt) + Re.Pr div (puSh,) = div (Tgrad~b,) + S. (56) a-7  

The definitions of ~,, q~s, T, S, a, b and the proper functional relationship of 

(~ t -~s )  for different regions are given in table 4. 

2.9 Simplifying assumptions 

The generalised mathematical statement (see ~ 2.2 to 2.8) is applicable to any 

melting or solidification problem. It is very. difficult to solve all these coupled 

equations together along with the generalised boundary conditions and so has not 

been tried so far. On the other hand, it is possible to simplify the generalised 

mathematical statement depending on the nature of the problem. In fact, all 

numerical studies so far are based on such assumptions which are directed to some 

specific applications. Broadly, there are four classes of simplifications possible and 

these are described in table 5. Based on these assumptions, the simplified 

mathematical formulations for different problems are listed in table 6. 

One more important assumption is the steady state assumption. This assumption 

is useful for the physical understanding of many complex processes, specially rapid 

solidification processes like laser melting and solidification (Chan et al 1985; Basu 

& Srinivasan 1988). Under steady state assumptions, the melting problem can be 

simplified by neglecting the latent heat of fusion and thus the solution can be 

obtained by sin,ply solving the governing equations without any energy balance at 

the interface. Such studies are mainly done to analyse the molten pool geometry 

and flow pattern in the pool. 

3. Methods of formulation 

3.1 Variable domain methods 

As explained earlier, the energy conservation equation is derived with temperature 

as the dependent variable. The energy equation is solved in two regions (S and L) 
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Table 5. Classification of simplifying assumptions. 

Nature of 
Notation simplification No. Description Remarks 

D Dimensional I One-dimensional 
II Two-dimensional 

P Property I No property change 

II No density variation 
III All properties except density 

are invariant 

G Governing I 
process II 

M Material 

Thermal diffusion controlled 
Both thermal diffusion and 
convection controlled 

Analytical solution possible 
Most common assumption 

Analytical solution possib4e 
in one dimension 
No buoyancy force 
Numerical solution is needed 

Convection terms neglected 

I Pure metal Accurate solutions cannot be 
obtained by fixed domain 
formulation 

II Alloy Mass diffusion is important 

separately and the solutions in the two regions are coupled through the energy 

balance at the interface. How to track or approximate the interface efficiently is the 

main question that is to be answered in all methods of the variable domain 

formulations. 

There are five different groups depending on the ways of handling the interface. 

In the fixed grid method, a special differencing scheme is written near the interface 

considering the interface the boundary. Either grid sizes or the number of grids are 

adjusted in the variable space grid method so that the interface lies on a grid point 

or line. In the variable time step method the time step is selected such that the 

interface moves one grid per time-step. In the boundary immobilization method the 

interface remains fixed by transformation of co-ordinates. The isotherm migration 

method consists of exchanging one of the spatial co-ordinates with temperature, 

making the former a dependent variable and temperature the independent variable. 

All these methods will be discussed-only finite difference methods are considered. 

3.1a Method of fixed grids: T h e  usual way of solving the heat transfer equation 

over a fixed domain in one dimension by a finite difference method is to evaluate 

the temperature 0 at the discrete grid points (iAx) on a fixed grid at different times 

(z). The complication associated with a moving boundary is that at any time (z) the 

moving boundary (e.g. the interface) is located between two neighbouring grid 

points, say, iAx and (i+ 1)Ax (figure 7). In this method a special finite difference 

scheme based on unequal grid space interval is written near the interface. Let us 

assume that the interface is located at a distance px from the grid point iAx at a 

time, z. Using Lagrangian interpolation between the points ao, ai and a2 (figure 7), 

the space derivatives can be written as follows (Crank 1981). 

For x < I (z), 

Ox 2 - h x  2 \ p  + 1 , a t  x = i A x ,  (56) 
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COO_ 1 (pOi--_l p+ 10i'], at  x = l ( z ) .  (57) 
cOx A x \ p + l  p / 

[ B o t h  (56) a n d  (57) are  wr i t t en  wi th  0interf~¢, = 0 (which fol lows f rom the  de f in i t ion  of  

0)]. 
Simi la r  express ions  c an  be der ived  for x>I(r). The  in ter face  ene rgy  ba l ance  

e q u a t i o n  will t ake  the fo l lowing  fo rm in  one  d i m e n s i o n ,  

cOx ~ -  ~xx 5 = Ste Ovt. (58) 

Fable 6. Simplified mathematical formulation. 

Dependent 
Mathematical variables 

Assumption statement & operators Remarks 

(DI) 7 = 72 ¢~ 0 = 0 
(PI) or 

(GI) p" Re. Pr dl 02 0 
V 2 = -  V = - -  

(MI) 7 0  I~ Ste dz dx 2' dx 

(DII) O ~ $ = 0 
(PI) - -  = 72 4~ d2 02 

?r V 2 = _ _  + _ _  
(GI) c~x 2 p" Re. Pr dl 0y2 
(MI) V ~ I~ 0 

Ste dr V = - -  
On 

0,# 
(DI) - - - =  V. (FV ¢ ) ¢ =0  
(PII) & F=ct 
(GI) p" Re- Pr dI 0 
(MI) V¢ 1'2- Ste dz V = - -  

&x 

(DID 
(PII) 

(GI) 

(MI) 

(DI) 

(HID 
{GI) 

(MI) 

(DII) 

(HID 
(GI) 
(Ml) 

04 
~--=V-(FV~) ¢ =o 
C'C 

p. Re. Pr dl F=c~ 
v,t, l ' ,-  o o 

Ste dr V = i~x + j - -  

0r 
c~4 
~ - +  Re. Pr V.(u ¢)=V.(FV~b) 4 = 0  
C7; F=cX 

7 $ I t, p. Re. Pr dl c3 
V = - -  

Ste dr Ox 

04 
- - + R e . P r  V.(u~)= gp=O,u,v 
& 

VWV¢)+S F=a,v 

p'  Re' Pr dl 0 0 

Ste dr ~-x ~yy 

Most simplified problem. 
Analytical solution available 

(Goodman 1958). Important 
for casting problem 

Most common problem 

attempted so far (Duda et 
at •975). Important for 

casting, thermal storage 

This problem has been ana- 
lysed by Goodrich (1978); 

important for permafrost 

The velocity for volume 

change can be determined 

explicitly from interface 

mass balance 

One has to solve momen- 
tum equations to determine 

velocity distribution due to 
volume change; so proper 

assumption is (DID (Pill) 
(CII) (MI) 

IContinued) 
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Table 6. (Continued) 

Dependent 
Mathematical variables 

Assumption Statement & operators Remarks 

(Oil) 
(Piii) 
{GII) 
(MI) 

(DI) 

(PI) 
(GI) 
(MII) 

{DII) 
(Ptl) 
(GI) 
(MII) 

8¢ ¢=O,u,v 
- - + R c ' P r ' V ' ( u ~ ) =  
CaT 

V.tFV40+S Ff~,v 

V.~u)=0 

p 'Re 'Pr  dl V_,T_+j = 
V4~l I, 

ox oy 
Ste dr 

- - = V 2 ¢  $=0,C 
& 

p-Re" Pr dl ca2 
v¢ I~ v 2 = _  

Ste dz Ox 2 

Re" Pr dl ca 
V~l', V = - -  

Le dz Ox 

o4, - v . ( r v ¢ )  ~=o,c  
& 

p.Re'Pr dl F=a,D 
eel ' ,=  

Ste d~ 0 0 

Re. Pr dl V= i : - + ~ : -  
v ¢ l ~ =  OX Gy 

Le dz 

This is the most practical 
problem suitable for many 
important appficatiOns: cast- 
ing, welding, crystal growth 
(Oreper & Szekely 1984; 
Kuo & Sun 1985) 

For this problem also an 
analytical solution is possi- 
ble (Tien & Geiger 1967) 

This is important for the 
alloy solidification problem 
where convection is suppress- 

ed for fine microstructure 
(Reddy & Sekhar 1985) 

a¢  
(DID - -  + V" (u 0)" Re Pr = ~ ffi 0, C, u, v This is the most generalised 

problem (Beckermann & 
(PIIl) CaT V-(FV~)+S F f a ,  D, v Viskanta 1988) 
(GII) V- (pu) = 0 
(MID ca c a 

p 'Re 'Pr  dt V= i~-7+j ~ 
V01's= 

Ste de 
Re- Pr dl 

v ¢ l , =  - 
Le d~ 

F o r  mult idimensional  problems, Patel  (1968) has derived a generalised interface 

condi t ion and for a two-dimensional  problem, the condit ions are as follows; 

- - R o P r  

Ste pvjy, 

c~I 2 k = -  (60) 
0, 

Ste PVl~" 

Lazardis (1970) used this method in mult idimensional  problems where he 

assumed a quadrat ic  temperature profile near the interface to avoid the singularity 

of  the finite difference equat ions when p = O. Lazardis  determined the coefficients of  

the quadrat ic  profile using the following two conditions, 
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GO Q1 02 

I I : 
L ax ~ x :  

I 

I l z  
J I : 

I 

i-1 
interfQcelI) 

i ,  I, 

J :--X 

t 

Figure 7. Grid arrangements for the method of fixed grids. 

a) the time rate of change of the temperature vanishes at the interface 

b) the temperature gradient along the interface is zero ('." 0 tz = 0). 

The two-dimensional problem chosen was that of an infinitely long prism with 

fixed temperature and convective cooling boundary conditions (figure 8). Koh et al 
(1969) used this method while analysing the thermal responses of space vehicle walls 
during re-entry. Using a one-dimensional problem, they analysed this problem 

where two interfaces (e.g. solid/liquid and liquid/vapour) exist. 

While solving a problem of frost penetration into earth (figure 9) by the fixed grid 
method, Goodrich (1978) suggested a new solution procedure based on nodal 

iteration which reduces the computation time. Except the interface and its 

Figure 8. 

t 
Y 

I 
fixed temperQture 

J or convective 
initioily liquid cooling condition 

at saturQtion 

[ 
[ . .x 

temperature 
( T sQt) 

! 

I 
J 

Lazardis's 11970 t and Gupta & Kumar's (1985) physical problem. 
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T'2*C 

initially solid ot T--0.0 

I ~ X  
I 

property vQlues Ks - 2 . 2 5 w l m c  

Cps :1 .5  MJ lm3c 

Cpl = 2-5 MJ /m3c  

KI = 1.75 w l m c  

= 100 M J / m  ~ 
Figure 9. Goodrich's (1978) physical 
problem. 

neighbours, solution of other grid points were obtained by either a forward or 

backward Gauss elimination method. The solution of the interface and its 
neighbours was found by an iterative method which he called "nodal iteration". Rag 

& Sastri (1983) also used Goodrich's (1978) solution procedure to solve a different 

one-dimensional problem. Later, Rag & Sastri (1984) extended Goodrich's (1978) 

method to two dimensions while solving a solidification problem in an infinitely 

long square prism with the fluid initially at superheated conditions. 

3.1b Methods of variable space grids: In this method, the number of space 

intervals are kept constant and the space intervals are adjusted in such a manner 
that the interface lies on a particular grid point. The space interval is thus a 

function of time. Differentiating temperature partially with respect to time following 

a given grid line instead of at constant x, one obtains, 

00_00 Ox 00 1 (61) 
0~ ,U~+~ / 

A general grid point (xi) moves according to the following relation, 

dxi_ xi .d/  (62) 

dz l(z) dz" 

Hence, for one-dimensional problems, the governing equations will be modified as 

follows, 

00 = xi dl 00 ~- 020 (63) 

0z i l(z) d~ 0x 0x 2" 

Murray & Landis (1954) used this formulation to solve the problem of freezing by 

the explicit method. Heitz & Westwater (1970) also used this method to solve a one- 

dimensional problem of solidification with the liquid initially at saturated 
temperature. They incorporated the volume change (e.g. shrinkage during 

solidification) and a higher value of liquid thermal conductivity to simulate the 

effect of fluid flow. Though multidimensional problems are more complex, one can 

obtain a very good insight into these from their work. Using this method in two 
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dimensions, Springer & Olson (1962), Rathjcn & J i j i  (1971) and Tien & Wilkes 

(1970) have obtained solutions of several two-dimensional problems. This method 

has also been used by many researchers for finite element analysis. The papers of 

Bannerot & Jamet (1975, 1977) and Jamet (1978) are of this type. 

3.1c Method of  variable time grid: In this method, the time-step is calculated in 

such a manner that the interface moves one grid spacing per time-step. This is 

described now with a one-dimensional problem. The problem is physically defined 

in figure 10. It can be mathematically described as, 

O0/Oz = t~2010x2; 0 >>. x >1 1 (z), (64) 

and the corresponding boundary conditions are, 

-c~O/Ox=QO+ R " x=O, z>O 1 

0 = 0  ; l (z)<x<~l 'O,  z > 0  I " (65) 
p Re Pr (Ox/&) = Ste'(O0/0x) • x = l(z), z > 0 

i ( 0 )  = 0. 

Integrating (64) over x from 0 to I and using the boundary conditions, the following 

integral equation results 

i R e P r p I ( z )  *~} 
Q O d z + R z =  - S 0dx.  (66) 

o Ste o 

With an initial guess of Az t°}, the finite difference form of (64) can be solved with the 

corresponding boundary and initial conditions. If the interface position is (iAx) at 

the old time-level then the interface should be at (i+ 1)Ax after the current time- 

level. Substituting I(z) by (i+ l)Ax along with the new temperature solution, one 

can obtain a new time step, Az tl), from (66). If Az t°} and Az tx) match, then Az m is 

the required time-step. Otherwise, the iteration is continued till Az k and Az k+l 

match to certain accuracy. 

Douglas & Gallie (1970) used this method to solve a one-dimensional problem 

with a simplified boundary condition as 

t30/t~x = - 1; x = 0, z > 0. (67) 

Gupta & Kumar (1981) used the generalised boundary conditions [e.g., (65)] to 

solve a one-dimensional problem. Goodling & Khader (1974) used the interface 

balance condition to find the required time-step. According to them, the required 

time-step is as follows: 

-dOdx =o " 8 + R / ~  - _  _,._._ 8 = 0 

x =I ( ~ )  

I ~---X I 
Figure 10. A physical model for a solidification 

problem with liquid initially at saturated statc. 
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00 
Az(1)=[pRePr(i+ 1)Ax]/( Ste~x i)" (68) 

They checked the convergence through the boundary condition (65). Gupta & 
Kumar (1981) followed the same method as Goodfing & Khader (1974) but used 
(68) for checking the convergence while the Az was obtained from (66). Both 
Goodling & Khader's (1974) and Gupta & Kumar's (1981) methods require a 
starting solution. Gupta & Kumar (1981), however, suggested a way of calculating 
the initial guess value of Az. On comparison of all these methods, Douglas & 
Gallie's (1974) and Gupta & Kumar's (1981) methods are found to be superior to 

others. This is because of the fact that the required time-step has been checked 
through the integral form of the energy equation while the other methods are based 
on boundary conditions only. 

Golder & Gay (1975) used this method while analysing the batch melting process 

in a glass manufacturing industry• Later, Voller & Cross (1981) used this method in 

enthalpy formulation. 

3.1d Boundary immobilization method: This is the most powerful method in 
variable domain formulation. Frequently finite difference methods are more 
straightforward in application to the problems governed by nonlinear partial 
differential equations in a fixed region of fixed extent than they are to linear 
equations in a changing domain• Using this fact, the space variable is changed in 
the boundary immobilization method in order to fix the moving interface. Under 
the transformation, the governing equations which are linear become nonlinear 

partial differential equations. 
This method will now be explained with a one-dimensional problem of ice- 

melting shown in figure 11. Using the transformation ~=x/I(z), the governing 

equation takes the following form: 

12 (t~O/t~'C) - -  ~I (dI /dz) . (dO/t~ 0 = (¢~20/~¢2). (69) 

The second term on the left hand side of (69) requires further explanation. We note 
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Figure 11. A physical model for a melting problem in (a) physical and (b) transformed 
planes. 
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that this term is similar to the convectic term. The control volume (or the grid 
points) are stationary in the transformed plane (3, z). But the control volumes are 
moving in the physical plane (X, z) and this results in convective flux in the 

transformed governing equation. This term can be called the "pseudo-convection" 
term. In a multidimensional problem, there will be some more cross-derivatives in 
the final differential equation other than the pseudo-convection terms. We will show 

these terms through the equation (2, 4) of Duda et al (1975) transformed from the 

equation in the (r-z) co-ordinate which is as follows (see figure 12), 

O0 Ozo 1 630 
- f_  

O'~ 632 2 2 (?2 

2~ OH, 020 020F 1 ~2 1/63Ht'~2-] 

L ~ \ ~ - /  t-/, e2 = +/-/, a ~ /  
(70) 

For understanding the different terms, (70) can be rearranged as follows, 

630--0201630t---'---I- 1 020 4_I~ OH, ~0] 

634 ~2 2 ~632 /-/,2 63¢2 tT, 0~ ~ + 
k ) 

i 

[-63H(~2 63H, 6320 2~ 6320 2~ 63., 630) + L 632., ] 
+ L63~ \ ~  63~ 63¢2 H, 63¢.63~ ~ ~2 632 63¢) n 63~2 j-  

k J y -  

B 

(71) 

We note that the term "A" is the "pseudo-convection" term. The term "B" is due to 

the non-orthogonality of the control volumes in the transformed plane (2, 0 with 
respect to the physical plane (r, z). According to Hsu et al (1981), these can be 
designated as pseudo-anisotropic diffusion terms. 

Referring again to our one-dimensional formulation [e.g. (69)], the advantage of 

transformation is now obvious. The moving boundary has become a fixed one 

(figure 11). The resulting finite difference equations along with the initial and 

boundary conditions can be solved by any standard finite difference technique 
where 63I/& is obtained from the interface boundary condition. 

Saitoh (1978) presented an immobilization method similar to that of Duda et al 
(1975). But in Saitoh's formulation the domain boundary shape can also be selected 

arbitrarily, thereby allowing the application of the method to diverse physical 

problems. While solving two-dimensional solidification problems in (r-O) co- 
ordinates, Saitoh (1978) used the following transformation (figure 13), 

r/= [r - I (0, z)]/[B(O)- I(0, z)]. (72) 

Thus an arbitrary region is mapped into a rectangle, regardless of 0, with r/= 0 at 

the interface and q= 1 at the fixed boundary. He solved the freezing problem in 
square, triangular and elliptic cavities under different cooling rates. 

Hsu et al (1981) suggested a control volume-based formulation. Identifying the 

pseudo-convection and pseudo-anistropic diffusion terms, they formulated the 
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Duda et a/'s (1975) problem in (a) physical and (b) transformed planes. 

equations in a cylindrical co-ordinate system and treated different terms separately. 

They included the effect of convection through a convective heat transfer co- 

efficient at the interface and the modified interface balance equation is as follows, 

- ~ k*'ff~n* s = - p*2" v * +  h* (T.* - T * )  (73) 

In a subsequent paper, Sparrow & Hsu (1981) implemented this formulation to 

solve a thermal storage problem. The advantage of Hsu et al's (1981) formulation is 
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that the final equation reflects the physical processes governing the melting/solidi- 
fication problems. 

Gupta & Kumar (1985) used this method while analysing solidification in an 
infinitely long square prism initially filled with liquid at saturated temperature. The 
problem in both physical and transformed planes along with the transformation is 
shown in figure 14. Szekely & Chabbra (1970) used this method in a one- 
dimensional problem introducing the heat transfer coefficient at the interface to 
include the effect of natural convection. Using the standard natural convection 
correlation, they obtained very good agreement between experimental and 

Y 
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Figure 14. Gupta & Kumar's (1985) model in (a) physical and (b) transformed planes. 
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numerical results. Sparrow & Souza Mendis (1982) and Chiesa & Guthrie (1974) 

used experimentally determined correlations for heat transfer coefficients. The 
correlations are as follows. 

For energy storage problems (Sparrow & Souza Mendis 1982), 

Nux = 0.486 Ra °'25 [ ( T * -  T * ) / ( T ~ -  7"*)] TM, (74) 

and Chiesa & Guthrie's (1974) correlation, 

Nu/Nu o = exp [ - 7"8 (LRI , /a  Nu)] (75) 

where Nuo = Nusselt number for steady state systems = 0'078 (0.68) L/D Ra. 1/a 

For further details regarding diffusion controlled melting and solidification 

problems see Sproster (1981) and Spaid et al (1971). 
Sparrow et al (1977) analysed the effect of natural convection during melting 

around a cylinder. They neglected the cross-terms in the final equation to reduce 

the computational complexity. Energy and momentum (in primitive variable) 

equations were solved in the melt by the semi-implicit method (see § 4"1 c). Through 
extensive numerical experiments over a wide range of parameters (e.g., 
7 x 104~<Ra~<7 x 106, 7~<Pr<~70 and 0-05 ~Ste~<0.15), they concluded that Pr and 

Ste do not have any significant influence on wall heat flux. But Ra strongly modifies 

the wall heat flux and the interface shape. Their analysis clearly shows the effect of 

convection during melting. 

Ramchandran et al (1981) studied solidification in a rectangular enclosure in the 

presence of natural convection. Assuming a quasi-stationary process, they used 
vorticity-transport formulation to solve momentum equations and studied the effect 

of Rayleigh number (10a~<Ra~105) and Biot number (0.5~Bi~2.0). Later, 

Ramchandran et al (1982) solved the same problem with top and bottom surface 

insulated. Gadgil & Gol~in (1984) analysed a melting problem similar to that of 
Sparrow et al (1977) but for a higher Rayleigh number range (106~<Ra~<108). 

Rieger et al (1982) analysed melting around a cylinder in the presence of natural 
convection by the numerical grid generation method. The predicted trends are 

consistent with the observation, but no direct comparison of predicted and 

measured results is given. 
Kroeger & Ostrach (1974) analysed a continuous casting process by conformal 

mapping. They used vorticity-transport formulation to solve momentum equations 

and obtained results for Grh=104 to 106, Re=50"0, Pr=0"02 and Pe (based on 

withdrawal speed)= 0-5, 1.0. It was found that there is negligible effect of convection 

on the interface profile though the flow pattern changes dramatically between 
Gr = 104 and 106. 

Benard et al (1985) studied the effect of convection during melting in a 

rectangular enclosure. They used the model developed by Gadgil & Gobin (1984) 

and validated the model by comparing experimental and numerical results. 

Recently, Benard et al (1986) modified Gadgil & Gobin's (1984) model by retaining 
the cross-terms in the solid phase governing equation. This is because of the strong 

influence of the interface shape on the isotherm pattern-in the solid phase. Two 
important conditions for applying the quasi-stationary assumption were suggested 

as follows: 

(Ra °'25 Ste p*)/p* >1 1.0 ] 
(76) 

(0-33 Ste p~')/p* <<. 1.0 J" 
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These two conditions are very useful because most of the analysis of melting and 

solidification with convection are based on the "quasi-stationary" assumption. 

3.1e Isotherm migration method: In this method, the heat flow equation is written 

in a form which concentrates attention on the movement of isotherms. Temperature 

is exchanged with one of the space variables making temperature an independent 

variable. This method is analogous to the Lagrangian formulation of fluid flow 

phenomenon. In one dimension, the governing equation takes the form, 

3X/3"~ = ( d x / ~ O )  - 2 ( ~ 2 X / ~ 0 2 ) .  (77) 

This equation along with any boundary condition can be solved by any standard 

finite difference method. The interface position will be obtained from the value of x 

corresponding to 0 = 0. The transformed governing equation is more complicated for 

multidimensional problems and for a two-dimensional problem the governing 

equation is 

(dy/dz) = - [(d2OIdx 2)- (d2yldO 2) ( dylt~O)- a] ( dyl OO). (78) 

Crank & Gupta (1975) used this method to solve a two-dimensional solidification 

problem of a saturated liquid in an infinitely long square prism. They started their 

solution by a one-parameter integral method of Poots (1962). They used y as a 

dependent variable which has to be a single-valued function. For convection 

dominated problems, this criterion is likely to fail and thereby restricts the use of 

this method to such problems. Crank & Crowley (1978) suggested a novel way of 

implementing the isotherm migration method. Using the fact that heat flow will 

always be normal to the isotherms, they wrote the governing equation in terms of a 

local co-ordinate treating the isotherm element as part of a cylindrical system. By 

geometry, they related the local co-ordinate to the global co-ordinate assuming the 

isotherm element to be a straight line. They used the local radial co-ordinate as a 

dependent variable. This method requires a starting solution and they solved 
Lazardis's (1970) problem using Crowley's (1978) model for the starting solution. 

Later, Crank & Crowley (1979) suggested an implicit formulation based on the 

Crank-Nicholson scheme. While comparing the implicit and explicit methods, they 

found that the computation time for the implicit method was larger than that of the 

explicit scheme when the number of grids on a particular isotherm is more than 10. 

This is really an unusual phenomenon which they also could not explain 
conclusively. 

3.2 Fixed domain methods 

The formulation of fixed domain methods has already been discussed in § 2.7. In 

brief, energy conservation is written in terms of enthalpy and diffusion terms are 

evaluated by temperature in fixed domain methods so that a single energy equation 

is valid in all the zones including the interface. Besides the physical explanation, the 

fixed domain concept can also be explained mathematically. Enthalpy is continuous 

only in time whereas temperature is continuous only in space. Hence, the enthalpy 

formulation, where the time derivative is evaluated in enthalpy and the space 

derivative is calculated in temperature, is valid in all regions. 

Dusinberre (1945) and Eyres et al (1946) were the first to report the application of 

the enthalpy formulation for melting and solidification. Price & Slack (1954) used 
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enthalpy formulation for freezing in a semi-infinite plane. Albasiny (1956) solved a 
solidification problem in a finite slab and Baxter (1962) used this method for 
simulating solidification of cylinders. 

Szekely & Themlis (1970) proposed the model 1 while Atthey (1974) used the 

model 2a (see § 2.7a). Meyer (1971) proposed model 2 and demonstrated the 

strength of this model by solving a two-dimensional melting problem for two values 
of e, e.g., 0.5 and 10 -6. The heating and cooling curves for these two values of 

were matched and therefore Meyer (1971) concluded that this method is 

independent of e. However, Voller et al (1979) showed that model 2a is dependent 

on the chosen value of ~. While solving Goodrich's (1978) problem by model 2, they 

found oscillations in the transient temperature profiles. Crowley (1978) solved 

Lazardis's (1970) problem by this model. Comini et al (1974) and Morgan et al 

(1978) applied model 2 using the finite element method. 

While solving Goodrich's (1978) problem by the model 2, Voller & Cross (1981a) 

observed a stepwise increase in temperature. They argued that the way in which the 

two-phase control volumes were handled was not proper. Shamsundar (1978) also 
observed waviness in the heat flux predictions while solving a one-dimensional 

problem with this model. This behaviour is characteristic of the enthalpy model and 

it is caused by holding the temperature of a two-phase node/control volume 

constant at T*. By keeping the temperature constant at T* for a two-phase 

node/control volume, the heat flux calculation at that node/control volume is not 

correct and, as a result, waviness in the temperature and heat flux histories occur. 

Voller & Cross (1981a) modified the solution scheme of the enthalpy equation to 

eliminate this waviness in the solution. They determined the time-step at each time- 
level in such a way that the interface moves from one node/control volume to 

another. They called this scheme the "node jumping scheme" and this way of 
solving enthalpy equations can be broadly called the "variable time-step enthalpy 

formulation". They solved Lazardis's (1970) problem to test the solution scheme. 

For materials which melt over a range of temperatures, they used model 2a and 
solved a spot-welding problem. In a subsequent paper, Voller & Cross (1981b) 
solved a two-dimensional solidification problem in a cylindrical co-ordinate system 

using model 2. Through a numerical experiment, they reported a simple way of 

calculating total solidification time for two-dimensional geometry. Bell (1982) 

calculated local solidification time of a control volume by an analytical method and 

showed that the time over which temperature, obtained by enthalpy formulation, 

remains constant is equal to the solidification time of that control volume. He has 

thus justified Voller & Cross's (1981a) argument about the stepwise increase of 
temperature. Voller (1985) used the model 2a to propose an efficient implicit finite 

difference scheme for enthalpy formulation which incorporates the node jumping 

procedure. He solved a one-dimensional solidification problem with liquid initially 

at superheated condition. 
Shamsundar & Sparrow (1975a) proposed model 4 (table 4) and showed the 

equivalence between enthalpy and temperature solution. They solved a two- 

dimensional solidification problem with saturated liquid for thermal storage 

application. They studied the effect of Ste and Bi on the interface movement. Later, 

Shamsundar & Sparrow (1975b) included the effect of density change in the 

enthalpy formulation and analysed a casting problem to study the cavity formation. 

Hsu et al (1978, 1980) and Kou et al (1981) used model 4 to study various surface 

heating problems with stationary or moving heat source. Recently, Ramarao & 
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Sekhar (1987) solved the problem of surface solidification with a moving heat 
source by this model. Basu & Date (1987) proposed model 4a (see table 4) and 

solved a one-dimensional problem. They showed that for the same problem, model 
4a with a direct solution technique is more efficient than model 4. 

Bonacina et al (1975) used model 3 to solve a one-dimensional solidification 

problem with liquid initially in a saturated and superheated state. They used e = 

0.25 and observed that the results are insensitive to e when liquid is initially in the 
saturated state. Comini et al (1974) used this model in finite element analysis while 

Morgan et al (1978) modified Comini et ars (1974) formulation to eliminate certain 

numerical problems. Rolphe & Bathe (1982) used model 2b in finite element 

analysis. 
Application of enthalpy formulation for the convection dominated problem has 

been first tried by Morgan (1981) who used the finite element method. Identifying 
the liquid elements, he solved the momentum equations only in the liquid element 

with proper boundary conditions. This is obviously the most common approach 

and Voller et al (1987) called this approach the "switch off" technique. Gartling 

(1980), who also used the finite element method, used the variable viscosity method 

for solving momentum equations. The main problem in this method is the proper 

/~*(T*) function in the phase change region because /~* (T*) in the phase change 

region is implicitly dependent on the interface position. Voller et al (1987) have also 

mentioned this difficulty in assigning proper /z*(T*) in the phase change region. 

Kou & Sun (1985) used the variable viscosity method to solve a melting problem in 

two dimensions by the finite difference method. They studied the effect of different 
forces, e.g., electromagnetic, buoyancy and surface tension forces, on the weld pool 

shape. Later Kou & Wang (1986a and b) extended Kou & Sun's (1985) formulation 

to three dimensions and solved some typical welding problems. Voller et al (1987) 
compared the different methodologies for solving momentum equations along with 

the enthalpy formulation. For alloys, they implemented a porous media model and 
have shown the validity of the porous media model by comparing results obtained 

by other methods. They used linear and nonlinear forms of Darcy's law but further 

research is needed to determine the proper Darcy's law which, in turn, is dependent 
on the geometry of the mush. 

Oreper & Szekely (1984) used the "switch off" technique for momentum 

equations with model 3 of enthalpy formulation to study heat and fluid flow during 

welding. Using steel as the material, they assumed a linear increase of specific heat 
in the phase change region and solved the momentum equations by vorticity-stream 
function formulation. They have studied the effect of electromagnetic, buoyancy and 

surface tension forces on the total heat transfer and pool shape. Oreper et al (1986) 

used this formulation to study the transient growth and collapse of axisymmetric 

weld pools in spot-welding operations. From the transient growth rate and heat 

flux at the interface, they predicted the order of the secondary dendrite arm 
spacings. 

3.3 Alloy solidification problems 

Different ways of alloy solidification formulation are already described in § 2.7. The 

concept of using a potential function for evaluating diffusion terms was first 

proposed by Fix (1978) through a variable G( = C/m) which is continuous across the 
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mushy region. He suggested this formulation but did not, however, test it through 

some standard problem. Crowley & Ockendon (1979) formulated the alloy 

solidification problem following Fix's approach and termed the variable G the 

chemical activity. They determined the temperature in the mushy region assuming 

that temperature and enthalpy are related through partitioned values. They also 

assumed the phase diagram to be linear. A one-dimensional problem was solved 

and they compared their results with the analytical one which is based on the 

similarity solution. Meyer (1981) improved Crowley & Ockendon's (1979) model by 
including an actual phase diagram (e.g., nonlinear C*-T* relationship) and 

presented a one-dimensional model. Recently, Voller (1987) implemented a node- 

jumping scheme in Crowley & Ockendon's (1979) formulation. With the node- 

jumping scheme, Voller (1987) could eliminate the oscillations in the concentration 

profiles observed in Crowley & Ockendon's (1979) result. But Voller's (1987) scheme 

is only applicable for plane front movement which is rarely true. 

Grange et al (1976) used a mass balance approach while solving a one- 

dimensional solidification of the water-ice system. Sekhar et al (1983) solved a two- 

dimensional alloy solidification problem by this method. The amount of eutectic 

was found from the phase diagram. They used a linearised Scheil equation, i.e. 

f~ = (T*~ - T * ) / ( T *  - T~'). (79) 

This assumption is not valid for alloys of low solute content (e.g. less than 10% for 

the AI-Cu system, Flemings 1974). Recently, Basu & Sekhar (1988) modified Sekhar 
et al's (1983) formulation by solving the nonlinear Scheil equation. They validated 

their formulation by simulating an experimental study; Reddy & Sekhar (1985). 
They have carried out a wide range of numerical experiments to study the effect of 

Biot number and initial solute concentration on the total solidification time. 

For further references on one-dimensional models, the papers of Huppert & 
Worster (1985), Worster (198¢i) and Hunt & McCartney (1987) are important. But 

all these models are difficult to extend beyond specially formulated one-dimensional 

studies. 

3.5 Summary 

All methods based on variable domain formulation predict the interface profile 
accurately whereas interpolation is required to find the interface in the fixed domain 

method. Multidimensional problems can be efficiently handled by the fixed domain 

method without much difficulty. Formulation of multidimensional problems by 

variable domain methods are complex. With the boundary immobilisation method, 

there are some difficulties in the formulation of the multidimensional problem in a 

finite domain. Though no analysis considered the effect of curved interface, variable 

domain methods, mainly boundary immobilisation, are preferable because of 

accurate estimation of interface profile. 
For alloy solidification problems, the variable domain methods are very difficult 

to use because of the existence of four zones, namely, solid, eutectic, mush and 
liquid. Since there are two moving interfaces-solidus and liquidus, it will be very 

difficult to implement boundary immobilization to fix the position of both the 

interfaces. On the other hand, a fixed domain method can be easily applied because 

of well-defined enthalpy-temperature relationships in the four zones during an alloy 
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solidification problem. As a result, all the existing alloy solidification models are 

based on fixed domain formulations. 

The significant drawback of fixed domain formulation is the stepwise increase of 

temperature, enthalpy etc. with time when pure metal is used for analysis. As 
discussed earlier, this problem arises because of keeping the temperature of the 

phase change control volume constant (e.g. at saturation temperature) till the phase 

change control volume releases or absorbs all the latent heat. For control volumes 
of finer size, this assumption is close to physical reality and thus the fixed domain 

formulation predicts correct temperature and enthalpy histories with fine grids. For 

coarse grid solution, this assumption leads to improper calculation of heat fluxes 

and results in a stepwise increase of temperature, enthalpy etc. Hence, fixed domain 
formulation is dependent on the size of the space-grids or one has to incorporate 

variable time-step approach in the enthalpy formulation. Unfortunately both these 

alternatives would increase the computation time. Further research to eliminate this 

drawback of fixed domain methods for pure metal solution is needed. For alloys, 

the fixed domain method always predicts correct temperature and enthalpy 
histories because alloy melts or solidifies over a range of temperatures. 

For solving momentum equations in the liquid region during melting and 

solidification, a perfect and generalised method is yet to be developed. Boundary 
immobilization is the most accurate one because of precise calculation of the 

interface geometry. As mentioned earlier, this method is difficult to implement for 

multidimensional problems with finite domain and also for alloy solidification 

problems. On the other hand, all the techniques based on enthalpy formulation are 

approximate. In particular, the porous media model which is based on the proper 

Darcy equation, requires further research. For example, information about the 

geometry of the mushy region (e.g., the size and shape of dendrites) is essential in 

order to use the proper Darcy equation during alloy solidification. One has to 

develop a perfect mushy region model first and then couple this model with the 
momentum equation to calculate the flow in the mushy region. 

4. Methods of solution 

In this section, finite difference equations for different formulations and 

subsequently the solution procedure will be described. Stability and convergence 
criteria of different schemes are also highlighted. 

4.1 Variable domain method 

4.1a Explicit scheme: The explicit finite difference equations of the different 

formulations for any one-dimensional problem can be represented by the following 
generalised form, 

¢b7+ 1 =,4,47 + Bi~7+ 1 + CickT- 1. (80) 

The definitions of ¢ and expressions of Ai, Bi and Ci for different formulations are 
given in table 7. 

The significant drawback of the explicit difference scheme is the restriction on the 

time-step for stability. The stability criterion at any interior node is (Roach 1976), 

AT <~ A2/G, (81) 
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Table 7. Coefficients of explicit finite difference equations for the "variable domain" formulation. 

Method ~b A i B i C i 

Fixed grids & variable 0 1 - (2Ar /Ax  2) (Az/Ax 2) (Az/Ax 2) 

time-grids 

Variable space grids 0 1 - 2(A~/Ax 2) (A~/Ax 2) + M • (A~/Ax) (Az/Ax 2) - M .  ( A z / A x )  

Boundary immobili- 0 1 - (2AT/I 2" A~ 2) ( A z / l  2 A¢ 2) + (N. Az/AO (Az/l 2- A~ 2) - (N. A~/AO 

zation 

Isotherm migration x 1 - (2P" A z / A O  2) ( e "  A~/A0 2) (P" Az/A0 2) 

The different notations are defined as follows: 
M = x i • ( P  - I n - 1 ) / ( l ' . A z ) ;  N = ~ "  ( I  n - 1 " -  1) / ( In .  At); P = [AO2/(xT+ 1 - 2x'[ + x 7_ 1)] 2. 

where A is the spatial step size and G = 2, 4, 8 for one-, two- and three-dimensional 
problems. The stability criterion is of the same form as (81) corresponding to the 

finite difference equation based on the boundary condition but G may be smaller 

than that specified above (Shamsundar 1978). 

For the variable space grid and boundary immobilisation methods, an additional 

stability criterion has to be satisfied because of pseudo convection terms. 

Comparing the governing equations of the variable space grid (63) and boundary 

immobilisation (69) methods with that of a one-dimensional convection-diffusion 

equation, the additional stability criterion is, 

BAx/C < 2, (82) 

where, B = [ ( i -  1)/(1 - 1)]" (dl/dz) for the variable space grid, 

= I-(i- 1)//1]. A~ for boundary immobilisation, 

C = 1 for the variable space grid, 

= 1/12 for boundary immobilisation. 

4.1b Impficit scheme: The implicit finite difference equations for all these 

methods can be expressed as 

A a~n+l +Bid?7+l +C~ dp~ +d = D~. (83) 
i ' Y i +  1 " -  

~b is x in case of the isotherm migration method and 0 for all other methods. The 

coefficients A i, Bi, C~ and D i for different methods are given in table 8. When 

(83) is applied to all the grid points, a set of algebraic equations result. The solution 

procedure of the algebraic equations will be described later. The implicit finite 

difference equation is unconditionally stable. 

4.1c Semi-implicit scheme: In addition to fully explicit and implicit methods, there 

is a semi-implicit method referred to as the quasi-stationary approach in the last 

section. In this approach, the location of 1(7) is predicted implicitly over some 

interval and the governing equations are then solved implicitly on the predicted 

domain. Huber (1939) first used this approach, hence it is sometimes called 

"Huber's method". While comparing fully implicit and semi-implicit methods, 
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Table 8. Coefficients of implicit finite difference equations for "variable domain" formulations. 

Method A i B i C i D i 

Fixed grid & va- - Az/Ax 2 1 + ( 2Az /Ax  z) - A z / A x  2 

riable time-grid 

Variable space grids - [(Az/Ax 2 ) + M .  (Az/Ax)] 1 + (2Az /Ax  2) - [(Az/Ax 2) - M .(Az/Ax)] 

Boundary immobi- - [(Az/12A~ 2) + (N Az/A~)] l + (2Az/12A~ 2) - [(Az/12A~ 2) - (NAz/AO] 07 

lization 

Isotherm migra- - P A~/AO z 1 + (2PAz/AO z) - PAz /AO:  x 7 

tion 

The different notat ions are defined as follows: 

M = x i ( l " + l - l " ) / ( l " + l ' A z ) ;  N = ~ i ( I " + ~ - l " ) / ( l " + J . A z ) :  P-[AO- 2/(xi+l.+x_ 2xi"+l + xi_ 1.+1 )] 2. 

Meyer (1978) has shown that the semi-implicit method would break down when the 

interface moves rapidly. Meyer (1978) considered a problem where the liquid is 

100°C above the saturation temperature and solved this problem by both implicit 

and semi-implicit methods with two different latent heats (one 200 times greater 

than the other). He found that the solution, using the semi-implicit method, with 

low latent heat (e.g., faster interface movement) is totally unstable whereas the high 

latent heat solution is stable. This shows that the application of the semi-implicit 

method is problem-dependent and the condition for applying this method has been 

reported by Benard et al (1986) which is mentioned in the last section. 

4.2 Fixed domain method 

4.2a Explicit scheme: The explicit finite difference equations in one dimension for 

all the models are expressed as follows, 

q~"+' =q~," + P  [~" , ,+ , -  2 4),",, + @~",,-i] +S~ '. (84) t, i i 

The definitions of ~t, ~s and the expressions of P, $7 for different models are given 

in table 9. 

All the finite difference equations are written with no property variations. The 

interface condition in all these models is built in the form of the ~b-0 relation in 

models !, 2 and 4, S~ in models 2a and 4a and Cp-0  in model 3. The nodal latent 

Table 9. Coefficients of explicit finite difference equations for the "fixed domain"  

formulation. 

Model ~t  ~ ,  Pi Si 

1 0 0 (Ar/Ax2) .[1/ (d~/dO)]  - -  

2 qJ 0 A z / A x  2 

2a 0 0 A z / A x  2 n n- 1 ( l / S t e ) . ( H p , - H p ~  ) 

3 0 0 (Az /Ax2) . ( l /Cp)  - -  

4 t~ 0 A z / A x  2 

4a @ @ Az/Ax2 (At/Ax2) (fT, ~ + 1 - 2fit. i + ~ .  J- 1 ) 
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heat content, H,s, is evaluated as follows, 

Hp~ = 0"0; 0 < 0-0 "~ 

Hps = 1.0; 0 > 0"0 j"" 

In the phase change control volumes (Voller et al 1979), 

n n +  1 - -  n n +  1 _ _  
, s  - -  H , s  + (Oi 07), 

where 

07 + ~ = 2e (H~,s- 0.5). 

The stability criterion of (84) is the same as in § 4.1a. 

(85) 

(86) 

4.2b Implicit scheme: Except for models 2 and 4, implicit finite difference 

equations for all other models can be written as follows, 

A ,h.+ 1 + B i ~ 7 +  1 . r ,hn+ 1 = Di" (87) 
i v / i +  I -- " ~ i W i -  I 

The definitions of ~b and expressions of Ai, Bi, Ci and D~ for all the models are 

shown in the table 10. Since proper (~,-0) relations have to be maintained during 

calculation, the implicit finite difference equation for the models 2 and 4 changes 

from grid to grid depending on the state of the respective grid. 

The detailed description of the solution methodology for pure metal and alloy 

has been reported by Shamsundar & Sparrow (1975a) and Basu & Sekhar (1988) 

respectively. 

4.2c Node-jumping scheme 

In the node-jumping scheme, the time-step is determined in such a manner that the 

interface jumps from one node to the next one during a time-step. If at a time z, the 

interface is at a node p, the latent heat content of the control volumes are, 

frO (0.0), if i = solid } 

H*~(Hps) = 2/2 (0"5), if i=p  
;t (1.0), if i = liquid (88) 

Hence, the time-step selected should be such that the interface moves from p to 

p + 1 and the nodal latent heats are, 

Table 10. Coefficients of implicit finite equat ions of the "fixed domain"  formulations.  

Model  ~ Ai B~ Ci Di 

I 

2a 

3 

4a 

o -(ar/ax2) • D/(d¢/d0)] I + {2Ar/~'.[(d~/d0)]} -(AT~Axe) " D/(d~,/d0)] 

0 -- ( A T / A x  2) 1 + (2Az/Ax 2) _ (az/Ax z) ~ _ (H~+ a _ H g  } 

0 - (A'r/Ax2) • (1/Cp) 1 + [2Az / (Ax  2" C~)] - (Az/Ax2) • ( l /Cp) 

~b - (A~/Ax z) 1 + 2A~/Ax 2 - A z / A x  2 ~ - (A'r/Ax z) × 

n + l  n + l  
x (fl . i+ i - 2 f , . ,  + 

+fT.~/_ ' ,) 
r, 
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f 
0-0 (0"0), if i = solid t 

H*~(H,s) = 2/2(0.5), if i = p +  1 
2(1.0), i f /= l iqu id  . (89) 

Therefore, an amount of 2/2 has to be evolved from the control volumes p and 

p + 1. The source term S~' of (84) for the model 2 will take the following form, 

. _  ~0.0, i # p, i v~ p+ l, (90) 
Si - (0.5, otherwise 

Starting from a guessed time-step, the correct time-step is found by an iterative 

procedure using the following relation to find the subsequent time-step (Voller et al 
1979), 

- Ark = Ark_ 1 Lv, -- Opt_ 2 )]. (91) 

Here 0~, +1 is calculated from (86). The iterative procedure is continued until the 
value of Am is such that 

0~ +1 < ),, 

where 7 is the convergence factor. 

The node jumping scheme can also be used in model 4 (Voller & Cross 1981a), 

where the subsequent time-step is obtained from the following equation, 

Ar~, + 1 = Arp,+ ~ + eJ JAr< - Arp<_ + I ] (92) 

where 

Arc = 2~Op+ 1 ̂  . + 1 
~ r k  - 1 

k-- iteration level. 

The correct time will be such that m//"+1 " r p  = 0"5 when the interface is at node p. 

4.3 Solution procedure 

The finite difference equations resulting from implicit formulation can be solved in 
two ways, 

(i) point by point solution; and 
(ii) line by line solution. 

The line by line solution procedure can also be divided into three groups 

depending on the method of sweeps and these are as follows, 

(i) single line sweep; 

(ii) multiple line sweep; and 

(iii) diagonal sweep. 

The point by point iteration procedure is known as the Gauss-Seidal iterative 

method and for further details one can refer to Patankar (1980). For one- 

dimensional problems, a line by line solution gives a direct solution and hence it is 

sometimes known as "direct solution" method. The Thomas algorithm (Roach 

1976), is used in the line by line solution procedure. The algorithm requires the 

coefficient matrix to be tri-diagonal and for one dimensional problems the coefficient 

matrix is always tri-diagonal. But in two-dimensional problems the coefficient 
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matrix is block tri-diagonal. This matrix is not easy to solve and the popular 

method of attack is iterative. Although the use of implicit methods allows a larger 

time-step, it generally takes many iterations to solve for that step. There is thus 

nothing to gain by just using the implicit method without an efficient solution 

algorithm. In two- and three-dimensional problems, one may use the alternative 

direction implicit (ADO scheme instead of a fully implicit scheme. The ADI scheme 

makes use of the splitting of the time-step to obtain a multidimensional implicit 
method which requires the inversion of the tri-diagonal matrix. 

The Thomas algorithm with a single-line sweep is the most common way of 
solving implicit finite difference equations. But multiple lines and diagonal sweeps 

are sometimes found to be useful in reducing the number of iterations. Godbole & 

Date (1985) presented a comparative study between multiple line (two and three), 

diagonal, ADI and Gauss-Seidal iterations while solving a two-dimensional single 

phase diffusion problem with different boundary conditions. They have found that 

the Thomas algorithm with a two-line sweep is always efficient because of faster 

convergence. In melting and solidification problems, multiple line and diagonal 

sweeps have not been tried so far. Most of the analyses to date are based on the 

Gauss-Seidal iterative method~ Hence, there is need for further research in this 
direction which may result in efficient computer-codes. 

5. Conclusions 

For a pure metal, the variable domain, methods, especially the ones based on 

boundary immobilization, will yield more accurate results than those based on fixed 

domain methods. On the other hand, the fixed domain method is very much easier 

to program because tracking of the interface is not needed. Thus, fixed domain 

methods, unlike variable domain methods, can be easily extended to multidimen- 
sional problems. For alloy solidification problems, fixed domain methods are always 
superior to variable domain methods. This is because of the existence of four 

different zones, namely, solid, eutectic, mush and liquid, in alloy solidification 
problems which can be easily incorporated through proper enthalpy-temperature 

relationships. While analysing melting and solidification problems with convection, 
the boundary immobilization method is the most accurate because of the precise 

description of the liquid region. All the techniques based on the fixed domain 

method are approximate. A porous media model with fixed domain formulation 

seems to be the most generalised one because of its suitability for alloy solidification 

problems. 
Among the methods of solution, the explicit difference scheme is very simple and 

convenient. Because of numerical instability, the explicit difference scheme is useful 

only for melting and solidification problems with large Stefan numbers, e.g., the 

total transient is small. For other problems, implicit methods must be resorted to 
and systems of nonlinear algebraic equations will need to be solved. 

On the basis of experience gained so far, numerical methods based on a time- 

implicit solution of the fixed domain equation can be highly recommended for 

multidimensional melting and solidification problems. 

The following topics involve unsolved problems of technological interest and 

therefore research on them would be very worthwhile. 



Modelling of  melting and solidification 209 

(i) Physical models to study heat and solute flow in the mushy region during 

alloy solidification. 
(ii) Physical models to predict the geometry of the mushy region and 

subsequently deri~e the proper Darcy equation. 

(iii) Mathematical models to account for convection effects during melting and 
solidification in a finite domain. 

(iv) Solution procedures to enhance the rate of convergence. 

(v) Improvement of fixed domain formulations to eliminate the stepwise increase 

of the dependent variable, e.g. to calculate proper heat fluxes at the phase change 
control volume. 

We wish to record our sincere thanks to Prof. E C Subbarao, TRDDC, Pune for 

several fruitful discussions. We are grateful to Ms P Lobo for assistance. This work 
was supported by a project from the Defence Research Development Organisation, 
New Delhi. 

List of symbols 

A 
B 

BM 

Bi 

C 
Cp 
D 

A 
A 
F~ 
G 
Grh 

Gr .  
g 

h 
H, 
Hm 
H 

Ho 

Hps 

I 

J 
k 

k'  

k* 

Le 
L 

rn I 

ms 

area; 

boundary; 

a large number; 

Biot number = hL/K*,; 

concentration; 

specific heat; 
mass diffusivity; 

fraction eutectic; 

fraction liquid; 

body force term in the momentum equation; 
chemical activity; 
thermal Grashoff number = g fl* ( T* - T* ) f.3/v*2 " 

concentration Grashoff number = .q l~,* IC* - C*~ ) L 3 / vs .2  ; 

acceleration due to gravity; 

convective heat transfer coefficient; 
height; 
magnetic flux; 
cnthalpy; 

characteristic magnetic flux; 

representative latent heat content of a control volume; 
solid/liquid interface; 
mass flux; 

thermal conductivity; 

partition coefficient: 
permeability; 

Lewis number = D*/~* ; 
reference length; 

slope of liquidus line; 

slope of solidus line; 
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M 
m 

n 

Nu 

P 
Pe 

Pr 
q 

qb 
Q 
r 

Re 

Ra 

R~ 

RSF 
Ryr 

R 

S 

S 

Sc 

Ste 

t 

t f  
T 

Tb, 
U, I), W 

UR 

V 
Xb 

Xc 
X,  y ,  2 

O~ 

7 
F 

6R 

~,~ 

0 

2 

I 1 
#,. 
V 

P 
f f  

~7 s 

T 

0 

magnetic Mach number = UR/(I~* Ho/p*)l/2 ; 

normal direction; 

Nusselt number = hL/k?; 

pressure; 

Peclet number; 

Prandtl number = vs/~s ; 

heat flux; 
boundary heat flux; 

total heat generation; 

space variable; 

Reynolds number = URL/v*; 

Rayleigh number = [3" g ( T* - T.)L* 3/(vs* ~s*)," 
radiation factor = treRL ( T* 2 + T,2) ( T~ + T*)/k* ; 

surface tension factor = (&rJdT*)[  ( T * -  T*)/(#* UR)]; 

freezing rate; 

radius of curvature; 

entropy of melting; 

source term; 
* * .  Schmidt number = v , /D,  , 

Stefan number = C* ( T* - T*)/).; 

time; 
local solidification time; 

temperature; 

bulk mean temperature of liquid; 

velocity; 

characteristic velocity; 

volume; 
Brody-Fleming's back diffusion parameter = 4D*t l /L2;  

modified back diffusion parameter = Xhl-1 - exp  ( -  1/X~)] -½ exp ( -  1/2X~); 

space variables; 

thermal diffusivity; 
coefficient of thermal gradient due to concentration gradient; 

coefficient of volumetric expansion due to thermal gradient; 

convergence factor; 
any transport propcrty; 

diffuse range; 

emissivity; 

transformed space variables; 

nondimensional temperature; 

latent heat of fusion; transformed space variable; 

dynamic viscosity; 

magnetic permeability; 

kinematic viscosity; 

density; 

Stefan-Boltzmann constant; 

surface tension; 

nondimensional time; 

any dependant variable; 

nondimensional enthalpy. 
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Subscripts 

amb ambient temperature; 

c mass transfer; 

e energy; 

eft effective value; 

E eutectic; 

i any grid point; 

I interface; 

k iteration level; 

l liquid; liquidus; 

m momentum; melting point; 

mush mushy region; 

R reference; 

s, S solid; 

sat saturated; 

c~ surrounding. 

Superscripts 

* dimensional value; 

k iteration level; 

n new time level; 

s saturated state. 
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