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SUMMARY

We use a numerical method that can model the seismic waveforms scattered from an
arbitrary number of fractures that are either empty, or contain elastic or £uid material.
The indirect boundary element method (BEM) is capable of generating the full elastic
wave¢eld and is programmed in two dimensions. The governing equations and discrete
implementation of the technique are described.We explain in detail a new approach for
evaluating the improper boundary integrals.

The method is shown to be highly accurate from a comparison with mode
summation. Subsequently, the BEM is applied to modelling hydrofractures. Synthetic
examples, calculated for cross-well and single-well geometries, demonstrate the
e¡ects of crack length, opening and in¢ll on recorded displacements. It is shown that
di¡ractions from the tips can, in principle, be used to locate and determine the hydro-
fracture size. These arrivals depart from ray theoretical traveltimes due to defocusing
over a Fresnel zone. S-wave di¡ractions generally have a larger amplitude than the
di¡racted P waves, and so may provide a better indication of fracture size. Energy
that is converted to interface waves and subsequently di¡racted from the crack tips
is also observed. The presence of water allows energy to pass through the fracture;
this is clearly evident on the cross-well seismograms. Closure of the fracture causes a
further increase in transmission amplitude as less energy is attenuated through internal
multiples.

Key words: boundary element method, crack tip di¡raction, hydrofracture,
improper integral, interface waves.

1 INTRODUCTION

The motivation for analysing time-dependent seismic data is
to understand how temporal changes in the elastic wave-
¢eld can be generated by external in£uences such as those
that occur during improved oil recovery (IOR). Modelling
the seismic response produced during a hydraulic fracturing
treatment is of particular interest: hydrofracturing is the
primary means of increasing the hydrocarbon production from
a well (Vinegar et al. 1992). Ideally, if it were possible to
determine the location, dimensions and in¢ll of the hydro-
fracture throughout the treatment then the e¤cacy of the
production programme could be optimized accordingly.
The modelling of seismic waves scattered by cracks

or fractures has taken a variety of approaches. Analytical
solutions for the di¡racted seismic wave¢eld produced by

a fracture are only available for single cracks with a simple
geometry (Mal 1970), and in some cases are only valid in
the far ¢eld (Liu, Crampin & Hudson 1997) . Seismologists
have to employ numerical approaches in order to simulate
the di¡racted wave¢eld produced by models that approach
anything like the real scenario.
Each method has inherent advantages and disadvantages.

In some techniques simpli¢cations or approximations to the
representation of the elastic wave¢eld are invoked to reduce
memory requirements and computation time so that complex
models can be considered. Other methods can synthesize the
full wave¢eld but the investigator is limited to using a much
simpler parametrization. With the advent of powerful parallel
computers more researchers are starting to adopt the latter
approach. The techniques employed so far to study seismic
wave scattering problems include Maslov theory (Chapman
& Drummond 1982), the ¢nite di¡erence method (Fehler
& Aki 1978), the ¢nite element method (Lysmer & Drake
1972), the Born approximation (Wu & Aki 1985), the complex-
screen approach (Wu 1994), Kirchho¡^Helmholtz integration
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(Neuberg & Pointer 1995), the boundary integral equation
method (Benites, Aki & Yomogida 1992) and the boundary
element method (BEM) (Chen & Zhou 1994).
An indirect BEM is used in this paper. The main advantage

is that an integral representation of the elastic wave¢eld
allows one to model fractures with an arbitrary shape. The
complete wave¢eld is produced, including all multiples and
reverberations, and in fact the only approximation involved
is the discretization of the crack surface into a number of linear
elements. To keep computation times to within reasonable
limits, the implementation is in two dimensions, and there-
fore the analysis is restricted to modelling the cross-section of
a hydrofracture.
In the following section the governing equations and

implementation of the BEM are examined, and the advantages
and disadvantages of using this approach are made apparent.
A comparison is made with analytical solutions. This is
followed by synthetic examples that show the e¡ects on the
di¡racted radiation pattern of di¡erent crack geometries and
in¢lls. Salient features that may be evident in ¢eld data are
examined.This leads on to a ¢nal discussion and some remarks.

2 GOVERNING EQUATIONS AND

DISCRETE IMPLEMENTATION

The BEM approach to solving physical problems is based upon
formulating the governing expressions in terms of boundary
integral equations. The derivation of the background theory
has been carried out in similar forms by Banerjee & Butter¢eld
(1981), Bonnet (1989), Coutant (1989) and Sänchez-Sesma &
Campillo (1991), and is explained clearly in Appendix A.

Elastic inclusions

Consider an exterior unbounded (E) region, DE, within which
there is a source of elastic radiation, and an interior (I) region,
DI, surrounded by a surface S (Fig. 1). The total displacement
wave¢eld u(t) in the exterior region at a point x consists of two
parts: (i) a known incident wave u(i) due to the source alone,
and (ii) a di¡racted wave u(d); it can be expressed as

u
(t)
j (x)~u

(i)
j (x)zu

(d)
j (x) . (1)

The total wave¢eld in the interior region comprises the
refracted displacements

u
(t)
j (x)~u

(r)
j (x) . (2)

Similar expressions can be written for the tractions both inside
and outside the inclusions.
The boundary conditions on S are the continuity of

displacement and traction. Therefore, we can equate (1) and
(2) and the corresponding expressions for the tractions at
all points of S as expressed by eqs (A13). We now sub-
stitute discrete versions of eqs. (A8), (A9) and (A12) for the
di¡racted and refracted displacements and tractions and
obtain the following:

X

M

l~1

G
E
jk(xm, jl)�

E
kl{

X

M

l~1

G
I
jk(xm, jl)�

I
kl~{u

(i)
j (xm) , m~1, M ,

X

M

l~1

T
E
jk(xm, jl)�

E
kl{

X

M

l~1

T
I
jk(xm, jl)�

I
kl~{t

(i)
j (xm) , m~1, M.

(3)

To achieve this, the surface S has been discretized into M

linear elements of size *Sl (l~1, 2, . . . , M). Expression (3)
represents a system of linear equations for the unknown
quantities �E

kl~�E
k (jl)*Sl and �I

kl~�I
k(jl)*Sl (l~1, 2, . . . , M).

On the right-hand side are the incident displacements u(i) and
tractions t(i) at the midpoints xm of the surface elements on
the boundary S (Fig. 1). The incident wave¢eld is that which
would exist in the absence of any scattering surfaces, and can
be calculated analytically using for example an expression for
a plane wave propagating from in¢nity or a moment tensor
description of a point source.
The kernels in (3) consist of (i) G

E
jk(xm, jl) and G

I
jk(xm, jl),

the displacement Green's functions for the lth element
corresponding to the exterior and interior regions, respectively,
and (ii) T

E
jk(xm, jl) and T

I
jk(xm, jl), the traction Green's tensors

for the lth element. They can be calculated using

Gjk(xm, jl)~

�

*Sl

Gjk(xm, j)dsj (4)

and

T jk(xm, jl)~+
1

2
djkdmlz

�

*Sl

Tjk(xm, j)dsj , (5)

where Gjk and Tjk are, respectively, the displacement and
traction Green's functions, and the z/{ signs correspond
to the interior and exterior regions respectively. Our
implementation is in 2-D isotropic media, so P^SV and SH

motions are decoupled. The full-space Green's functions are
employed and are given in Appendix B. They can also be
calculated numerically using the discrete wavenumber method
(Bouchon 1987). The simultaneous equations (3) are valid
for three dimensions (Sänchez-Sesma & Luzön 1995) and full
anisotropy (Wang, Achenbach & Hirose 1996) providing Gjk

and T jk can be evaluated.
Integrals (4) and (5) can be calculated by numerical means,

such as Gaussian quadrature (Press et al. 1992). There is a
singularity in both the displacement and the traction Green's
functions where the load point jl coincides with the ¢eld point
xm (Appendix C). Closed-form solutions for the displacement
integration in two dimensions have been given recently by
Tadeu, Kausel & Vrettos (1996). The singularity in displace-
ment is logarithmic (see eq. C2) and therefore weak, so we
simply integrate as usual over the element with midpoint jl in

Figure 1. Problem con¢guration for the indirect BEM. The total
wave¢eld u(t) in the exterior region DE is the sum of the incident
wave¢eld u(i) generated by the source and the scattered wave¢eld u(d).
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our code. However, the singularity in traction is of the form 1/r
(see eq. C4), where r~jxm{jl j, and cannot be integrated over.
Integral (5) is, therefore, improper (Appendix C) and must
be understood as a Cauchy Principal Value integral, whereby
the second term on the right-hand side is null if m~l, as the
limiting form is an odd function. The preceding double Dirac
delta term is positive for the interior region, as xm approaches
jl from the inside of S, and negative for the exterior region, as
xm approaches jl from the outside of S.
The simultaneous linear equations (3) are solved for �E

jk and
�I
jk, the two ¢ctitious source distributions corresponding to the

exterior and interior regions of the surface S, respectively. The
¢nal step is to calculate the refracted displacement u(r) inside an
inclusion or the di¡racted displacement u(d) in the exterior
region at an arbitrary point x using the discrete versions of
eq. (A8):

u
(r)
j (x)~

X

M

l~1

G
I
jk(x, jl)�

I
kl (6)

and eq. (A11):

u
(d)
j (x)~

X

M

l~1

G
E
jk(x, jl)�

E
kl . (7)

It should be noted that eq. (3) is valid for any number
of arbitrarily shaped cracks each possibly enclosing a
di¡erent elastic material: the kernels G

I
jk and T

I
jk simply have

to be calculated using the appropriate elastic parameters
corresponding to the interior material at each element with
midpoint jl . The matrix sizes for SH and P^SV problems
concerning elastic inclusions in two dimension are (2M|2M)
and (4M|4M), respectively.

Cavities

If all the inclusions or fractures are gas ¢lled (e¡ectively dry)
then the only boundary condition is that of a traction-free
boundary, and eqs (3) reduce to

X

M

l~1

T
E
jk(xm, jl)�

E
kl~{t

(i)
j (xm) , m~1, M . (8)

The matrix sizes are now (M|M) and (2M|2M) for SH and
P^SV problems, respectively.

Fluid inclusions

In the case of £uid-¢lled inclusions the same boundary
conditions as a cavity apply for SH waves, and once again
there is an M|M system of equations to be solved. However,
for P^SV the boundary conditions are the continuity of
normal stresses and normal displacements, and the annulment
of shear stresses within the £uid. In this case the equations are
constructed in a local coordinate system corresponding to
the normal (su¤x n) and tangential (su¤x s) directions at
each ¢eld point xm, resulting in a size reduction to 3M|3M
(Coutant 1989; Dong, Bouchon & ToksÎz 1995) to give the

discrete version of eqs (A19):

X

M

l~1

G
E
nk(xm, jl)�

E
kl{

X

M

l~1

G
I
(xm, jl)�

I
l~{u(i)n (xm) , m~1, M ,

X

M

l~1

T
E
nk(xm, jl)�

E
kl{

X

M

l~1

T
I
(xm, jl)�

I
l~{t(i)n (xm) , m~1, M ,

X

M

l~1

T
E
sk(xm, jl)�

E
kl~{t(i)s (xm) , m~1, M .

(9)

In this case the unknown ¢ctitious line forces are
�I
kl~�E

k (jl)*Sl and �I
l~�I(jl)*Sl (l~1, 2, . . . , M). G

E
nk, T

E
nk

and T I
sk are the line element Green's functions as before

(eqs 4 and 5). G
I
and T

I
are the corresponding quantities for

the £uid, with

G
I
(xm, jl)~

1

2
dmlz

�

*Sl

GI(xm, j)dsj (10)

and

T
I
(xm, jl)~{ou2

�

*Sl

T I(xm, j)dsj , (11)

where o is the £uid density and u is the angular frequency.
It is not possible to model liquid inclusions by substituting

a small value for the interior S-wave speed into eq. (3). The
matrix on the left-hand side becomes ill-conditioned and the
numerical solution unstable.
One can assign N elements for the interior surface and M

elements for the exterior surface in the case of a solid or
£uid-¢lled inclusion. This leads to a (2Mz2N)|(2Mz2N)
matrix system for the case of P^SV waves interacting with
a solid scatterer. If the wave speeds in the interior are much
di¡erent from those in the exterior then a considerable
amount of computer time and memory can be saved. However,
the approach to element integrations of tractions over the
boundary has to be modi¢ed.
It is straightforward to model any combination of cavities,

and elastic and £uid inclusions. The single scattering or Born
approximation can be evaluated by making all the matrix
terms that describe crack^crack interactions in eqs (3), (8) or
(9) equal to zero. It is possible to include a free surface (Yokoi
& Sänchez-Sesma 1998) or to place the inhomogeneities within
a layer by introducing extra elements. We do not consider a
solid-¢lled fracture, which could be used to model fault gouge.
In the numerical experiments in Section 4 we examine only dry
and water-¢lled fractures situated in an unbounded space.

3 TEST OF ACCURACY

It is necessary to check the output of any waveform modelling
code with analytical solutions or to compare it with other
methods whose results are known to be exact. This is especially
important if synthetic data are to be subsequently compared
with observed seismograms. We computed the scattered
radiation pattern produced when a plane wave impinges on a
cylindrical inclusion or cavity of radius a using the method of
wave-functions expansion (Pao & Mow 1973), whereby the
scattered wave¢eld is expressed as a superposition of a series
of outgoing cylindrical standing-wave modes. The modulus of
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the di¡racted displacement ¢eld is calculated at 100 receiver
points equally spaced on a circumference equal to 10a, where
a is the radius of the scatterer, in a similar manner to Benites
et al. (1992). The calculations are performed for an SH wave
incident on a cavity and a hard elastic inclusion, and for a
P wave interacting with a cavity, £uid-¢lled inclusion and
soft elastic inclusion, respectively (Tables 1 and 2), in each
case for values of kba equal to 2n and 8n, where kb is the
angular S-wavenumber for the exterior region. For each BEM
calculation the inhomogeneity surface was discretised into
400 elements giving 16 elements per S wavelength in the
case kba~8n. The results for SH and P^SV are displayed in
Figs 2 and 3, respectively.

The results show an excellent agreement between the
BEM synthetic (solid lines) and mode-summation (solid
circles) results. The accuracy is obviously dependent on the
number of elements used to prescribe the boundary: a ¢ner
discretization is needed to produce the same accuracy at a
higher frequency. A further check could be carried out to
determine the residual tractions along the boundary (Benites
et al. 1992) .
When parts of the surface are separated by only a very

small distance eqs (3), (8) and (9) become nearly degenerate.
This leads to ill-conditioning of the algebraic equations
(Krishnasamy, Rizzo & Liu 1994) . However, from numerical
tests we found that the BEM code is accurate when modelling
the thin cracks used in the following section. A further
suitable check would be to compare withMal's crack (Bouchon
1987) .

Figure 2. The scattered radiation pattern for SH (Table 1). The
modulus of the pure di¡racted ¢eld is plotted for the cases of a plane
wave impinging upon (i) a cavity (cav) in (a) and (b), and (ii) an elastic
(el) inclusion in (c) and (d), and in each case for values of kba~2n
and 8n, respectively, where kb is the angular S wavenumber and a is
the radius. The solid lines are the numerical results produced using the
BEM and the solid circles are the analytical solutions computed using
mode summation (Pao & Mow 1973).

Figure 3. The scattered radiation pattern for P^SV (Table 2). The
modulus of the pure di¡racted ¢eld is plotted for the cases of a plane
P wave impinging upon (i) a cavity (cav) in (a)^(d), (ii) a £uid (£)
inclusion in (e)^(h), and (iii) an elastic (el) inclusion in (i)^(l). In each
case the calculations were performed for values of kba~2n and 8n,
respectively, where kb is the angular S wavenumber corresponding
to the exterior region and a is the radius. The radial and tangential
values are denoted r and t, respectively. The solid lines are the
numerical results produced using the BEM and the solid circles are
the analytical solutions computed using mode summation (Pao &
Mow 1971) .

Table 1. The dimensionless S-wave speeds (b) and densities (o) used
for calculating the SH radiation patterns shown in Fig. 2.

exterior interior

cavity b~1:0
o~1:0

hard elastic inclusion b~1:0 b~1:6
o~1:0 o~1:3

Table 2. The dimensionless P-wave speeds (a), S-wave speeds (b) and
densities (o) used for calculating the P^SV radiation patterns shown
in Fig. 3.

exterior interior

cavity a~1:73
b~1:0
o~1:0

liquid inclusion a~1:73 a~1:0
b~1:0
o~1:0 o~0:8

soft elastic inclusion a~1:73 a~1:0
b~1:0 b~0:7
o~1:0 o~0:8
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4 SCATTERING BY A HYDROFRACTURE

The BEM code was used to model the seismic wave¢eld
di¡racted by a single hydrofracture. The in£uence of di¡erent
crack parameters on the scattered displacements was assessed.
In particular, we wanted to see the e¡ects of fracture length,
fracture opening and fracture in¢ll, and observe the di¡erences
between the forward- and backscattered wave¢elds.
The model geometry used to generate the synthetic

seismograms is shown in Fig. 4. The source, receivers and
hydrofracture are situated in an elastic (ac~3500 m s{1,
bc~2023 m s{1, oc~2300 kg m{3) full space. In all the
examples, we used a dilatational line source situated at
the origin. For the cross-well geometry there are 51 receivers
equally spaced between (200 m,{200 m) and (200 m, 200 m),
and to represent a single well set-up the sensors are placed
between (0,{200 m) and (0, 200 m) (Fig. 4). The centre line of
the fracture lies between (100 m, {h/2) and (100 m, h/2),
where h is the length of the crack.
The source signal is a Ricker wavelet (Ricker 1977) with a

peak frequency of 100 Hz. Seismograms were calculated using
128 discrete frequencies and a Nyquist value equal to 800 Hz.
Both the x- and z-components of displacement are plotted for
each model. The total displacement is displayed in the case
of a cross-well geometry and the pure scattered ¢eld for the

single-well set-up. The same scale is used for all the traces and
in each plot.
The hydrofracture is modelled as a single crack represented

by a thin rectangle. In reality a fracture would be highly
irregular with many asperities and contact points; however,
we assume that its average seismic properties can be approxi-
mated with a thin planar layer (Liu et al. 1995) . Each corner
node is replaced with two nodes that are placed 0:05 times
the local element length away from the corner, in order to
treat the problem of the singularity in traction (Banerjee &
Butter¢eld 1981) . We used an element length equal to 1 m,
which gave 20 elements per dominant S wavelength. For each
set of seismograms the fracture in¢ll, length and thickness,
together with the ¢eld geometry (cross-well or single well)
are displayed above the traces. The various arrivals on each
synthetic seismogram can be compared with the ray theoretical
times displayed in Fig. 5, which all have the fracture length and
¢eld geometry shown.

Fracture in¢ll

The suite of seismograms shown in Fig. 6 correspond to a
model of a fracture that is 200 m in length and 1 m in thickness,
with the source and receivers placed in a cross-well geometry.
The top traces relate to a dry fracture and the lower ones to a

Figure 4. Cross-well and single-well geometries for calculating BEM synthetics. The source, receivers and fracture are situated in a full space. The
ray paths of the P waves generated by the explosive line source that interact with the crack are shown schematically. PP and PS are P and S waves
re£ected at the crack boundary. The crack-tip P-wave di¡ractions are denoted PPdt and PPdb, where the subscripts t and b indicate whether the
energy was di¡racted at the `top' or `bottom' of the fracture, respectively. Similarly, the P-to-S converted waves that are di¡racted are called PSdt
and PSdb.
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water-(aw~1500 m s{1, ow~1000 kg m{3) ¢lled one. It is
possible to observe di¡ractions from the crack tips: there are
P-wave di¡ractions from the top (PPdt) and bottom (PPdb) of
the crack (more clearly seen on the x-component). Similarly,
there is energy that is converted from P to S that is di¡racted
from the ends of the fracture (PSdt and PSdb) (more evident
on the z-component). The minimum points in the traveltime
curves of the di¡racted waves clearly de¢ne the vertical extent
of the fracture (Fig. 5). The fracture causes a shadow zone in
the direct P arrivals. This is more apparent in the dry case as
no energy passes through. Acoustic waves that travel through
the £uid-¢lled crack can re-emerge as a P (PPP) or S wave
(PPS). There seems to be a precursor to the PSd arrivals for the
dry fracture (noticeable on the z-component between stations
40 and 80 m, and {80 and {40 m in Fig. 6(a) and marked
with the label A). This is simply the e¡ect of defocusing over
the Fresnel zone: the wavelet extends in time and decreases
in amplitude. In general the PSd arrivals are larger than
the PPd ones and therefore might be more observable in real
data. However, it is likely that they are much more strongly
attenuated due to intrinsic absorption.
The boundary element program generates the full wave¢eld

including all the interface waves and all internal multiples that
constitute waveguides. The inhomogeneous waves produced at
the crack boundary are not detectable in our synthetics due

to exponential decay of amplitude with distance. However,
their subsequent conversions to body waves are visible. If the
scaling was changed in the seismograms to boost the low
amplitudes one would observe two types of converted interface
waves: (i) P waves that arrive at the centre of the hydrofracture,
convert to Rayleigh (dry cracks) or Stoneley waves (£uid-¢lled
cracks), and are di¡racted from the crack tips as either P

waves or S waves; and (ii) P waves that arrive at the ends
of the hydrofracture, convert to an interface wave, travel to
the opposite tip and are ¢nally di¡racted. An example of the
former type, which converts to a Stoneley wave at the crack
centre and is di¡racted as a P wave, is shown in Fig. 6(b)
(label B).
The models used to produce the traces in Fig. 7 are identical

to those used for Fig. 6 except that the source and receivers are
now placed in a single-well geometry (Fig. 4). Only the pure
scattered ¢eld is shown. It is now possible to see the e¡ect of the
presence of a hydrofracture on the backscattered energy. The
re£ected (PP) and converted (PS) phases are easy to observe in
addition to the crack tip di¡ractions. As expected the re£ected
and di¡racted amplitudes are larger in the case of a cavity
as some energy can travel through the £uid-¢lled fracture.
However, the di¡erence in wave¢elds caused by the di¡erent
in¢ll does not manifest itself so clearly as in the case of the
cross-well geometry.

Figure 5. Ray-theoretical traveltimes (with respect to the centre of the incident pulse) for di¡racted, re£ected and transmitted waves (dashed). The
labels are explained in Fig. 4. The traveltimes according to the models used to generate the seismograms in Figs 6, 8(a) and 8(c) (the change in
traveltime due to the reduced crack opening is negligible) are shown in (a). The times in (b) correspond to the single-well geometry needed to produce
Fig. 7. The graph in (c) corresponds to Fig. 8(b)

GJI000 14/9/98 13:10:41 3B2 version 5.20
The Charlesworth Group, Huddersfield 01484 517077

ß 1998 RAS, GJI 135, 289^303

294 T. Pointer, E. Liu and J. A. Hudson

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
3
5
/1

/2
8
9
/5

7
0
1
2
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Fracture length

A cross-well shot gather is shown in Fig. 8(b) for a water-¢lled
fracture whose length is reduced to 100 m; it can be compared
with Fig. 8(a), which is identical to Fig. 6(b). The arrival times
of the crack-tip di¡ractions are dramatically di¡erent. The
vertical extent of the fracture is still apparent from the PSd

phases. There is much less transmitted energy in the form of
PPS owing to the reduced size of the fracture (clearly seen on
the z-component). The amplitude and phase of all the arrivals
are clearly a¡ected by the fracture length.

Fracture opening

A similar shot gather is shown in Fig. 8(c) for a water-¢lled
crack whose length remains at 200 m and crack opening
is reduced to 0.1 m. The change in thickness allows more
energy to pass through as PPP and PPS because less
energy is attenuated through internal multiples. The crack-tip
di¡ractions are larger because more refracted energy can
re-emerge at the crack ends. The same change in crack opening
for a dry crack has no visible e¡ect on the wave¢eld as there is
no transmitted energy and the dominant wavelength is much
larger than the crack width, although the results are not shown
here.

5 DISCUSSION

We have demonstrated that the BEM could be a useful tool for
analysing the scattering of seismic waves caused by hydraulic
fractures. Our implementations for cavities and elastic
inclusions is the same as those of Sänchez-Sesma & Campillo
(1991) and Sänchez-Sesma & Luzön (1995), respectively,
and similar to that of Coutant (1989) for the case of £uid-
¢lled scatterers, except that we use the full-space £uid
Green's function. We have explained, in detail, the evaluation
of the improper boundary integrals. From a comparison with
analytical solutions we have proved that our code produces
highly accurate results, although this may degenerate in the
proximity of the crack corners.
The synthetic experiments undertaken demonstrate how

P and S waves di¡racted at crack tips can be used to deter-
mine the vertical extent of the fracture; this has been
achieved from the analysis of real data (Liu et al. 1997) . The
converted PSd di¡ractions have a much stronger amplitude
than the PPd events, which suggests they could be a better
indicator of fracture length, with the potential to resolve
smaller-wavelength features. Energy that converts to inter-
face waves at the fracture and is subsequently di¡racted
from the tips may be observable in real data if a suitable gain is
applied. It is straightforward to include frequency-independent

Figure 6. BEM synthetic horizontal- (x) and vertical- (z) component seismograms for the cross-well geometry depicted in Fig. 4. The total wave¢eld
is plotted. The fracture length is 200 m and the fracture opening is 1 m. The traces shown in (a) and (b) correspond to a dry and a water-¢lled fracture,
respectively. The energy marked with the label A occurs due to defocusing at the crack tips. The arrival labelled B is a P wave that arrives at the crack
centre, travels along the crack surface as a Stoneley wave and is di¡racted at both tips as a P wave.
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attenuation or viscoelasticity (Chen & Zhou 1994) in the
BEM modelling; however, it is beyond the realm of this
study.
The e¡ect of a water-¢lled crack as opposed to an empty

one is to allow acoustic energy to pass through and reduce
the backscattering. The di¡erence in the observed wave¢elds is
more apparent for the cross-well geometry than for the single-
well set-up for the models that we examine. During a hydraulic
fracturing treatment there probably exists a state of partial
saturation during certain periods that may give rise to high
attenuation.
We show that it may be possible to detect changes in fracture

dimensions through examination of the displacement wave-
¢eld. The fracture length controls the position of the minimum
points on the traveltime curves. There is a strong defocusing
e¡ect of di¡ractions recorded at certain stations, manifesting
itself in amplitude and phase variations that are a¡ected by the
fracture length. The thickness of a £uid-¢lled crack has a large
e¡ect on both transmitted and di¡racted arrivals. Laboratory
experiments performed by Groenenboom & Fokkema (1998)
show that small changes in the width of a hydrofracture are
directly expressed in the dispersion of the transmitted signal.
In reality the fracture would have an irregular surface, and

there would exist other surrounding fractures. This gives rise
to a more complex wave¢eld due to the e¡ects of multiple
scattering. The data analysed by Majer et al. (1996) are much
more complicated than the synthetic examples presented here.

In order to model real data properly (Meadows &
Winterstein 1994; Majer et al. 1996) it is necessary to
incorporate the 3-D e¡ects of the borehole source radiation
pattern (Kurkjan et al. 1994) and to synthesize the pressure
¢eld that would be recorded inside a £uid-¢lled borehole
(Dong & ToksÎz 1995) . An e¡ective source array can be used
to approximate the explicit representation of sources and
receivers situated in a £uid-¢lled borehole. Furthermore, the
hydrofracture itself should be imaged in three dimensions.
Another useful extension to the modelling would be to include
layering (Gerstoft & Schmidt 1991; Pedersen, Maupin &
Campillo 1996; Yokoi 1996) .
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Figure 7. The same as Fig. 6 for the single-well geometry shown in Fig. 4. The pure scattered wave¢eld is plotted.
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APPENDIX A: 2-D BOUNDARY ELEMENT

METHOD THEORY

Elastic medium

The reciprocal theorem relates two di¡erent boundary value
problems on the same region with the same boundary. It
states that the work done by one set of forces f and boundary
tractions t on the set of displacements u* in the other system
is equal to the work done by the second set of forces
f* and tractions t* on the ¢rst displacements u. We deal with
the steady-state elastodynamic problem and assume that the
physical components in the representation are harmonic in
time with an angular frequency u. The reciprocal theorem for
the 2-D elastodynamic case (Gra¤ 1946) may be expressed as
�

S

ti(x, u)u1i(x, u) dsz

� �

D

fi(x, u)u1i(x, u) dA

~

�

S

t1i(x, u)ui(x, u) dsz

� �

D

f 1i(x, u)ui(x, u) dA , (A1)

where S is the boundary to the region D. The result is a direct
consequence of the symmetry in the elastic tensor, {cijkl~cklij},
which arises from the existence of a strain-energy function.
A representation for the displacement ¢eld u can be obtained

by replacing the other displacement ¢eld u* with the Green's
function Gij , the fundamental singular solution to the elastic
wave equation (Appendix B), and correspondingly the body-
force term f* with a delta impulse (Aki & Richards 1980) . The
resulting Somigliana representation theorem expresses the
displacement u(r) at a point j as an integral of the displace-
ments and tractions over the boundary S (with respect to x),
together with an integral over body forces within S (with
respect to y):

aIu
(r)
j (j, u)

~

�

S

[GI
ij(x, j, u)t

I
i (x, u){uIi (x, u)c

I
ipklnª pG

I
kj,l(x, j, u)] dsx

z

� �

DI

f Ii (y, u)G
I
ij(y, j, u) dAy ,

aI~
1 j in DI ,

0 j not in DI ,

(

(A2)
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where GI
ij is the Green's function for the region DI interior to

S andGI
kj,l(x, j)~LGI

kj(x, j)/Lxl ; fc
I
ijpqg are the sti¡nesses inDI,

and uI and tI are the limits of u(r) and t(r) as S is approached
from the interior. The outward normal to S is given by nª .
To evaluate the right-hand side of eq. (A2) when j is situated
on the boundary, we consider the limit as j approaches the
boundary S (Appendix C), which is assumed to be smooth,
from inside DI. We can rewrite eq. (A2) as

aIu
(r)
j (j)~P

�

S

[GI
ij(x, j)t

I
i (x){uIi (x)T

I
ij(x, j)] dsx

z

� �

DI

f Ii (y)G
I
ij(y, j) dAy , (A3)

aI~

1 j in DI ,

0 j not in DI ;

0:5 j on S ,

8

>

>

<

>

>

:

where we have substituted the expression for the traction
Green's function Tij(x, j)~cipklnª p(x)Gkj,l(x, j). P denotes
the Cauchy Principal Value (Appendix C). Eq. (A3) is the
representation used in the direct BEM. The boundary con-
ditions on S are applied to determine the unknown boundary
values uI(x) and tI(x). It is then possible to use eq. (A3) again
to calculate the displacements at any point j in DI (Kawase
1988).
We now replace the material in the regionDE, exterior toDI,

by one that has the same sti¡nesses and density as in DI, and
in which there are no sources. In doing so we shift the in£uence
of the material in DE to the boundary S. By taking the limit
as j approaches S from outside DI we can write a similar
representation for the displacement in the exterior region:

aEu¬ j(j)~{P

�

S

[GI
ij(x, j) t¬ i(x){u¬ i(x)T

I
ij(x, j)] dsx , (A4)

aE~

0 j in DI ,

1 j not in DI ;

0:5 j on S .

8

>

>

<

>

>

:

The body-force integral is dropped as it is zero. There is a
change in sign in the integral over S since the sense of the
outward normal to S is reversed. We use the same Green's
function, GI, as for the interior region since the material is the
same. This must therefore satisfy the radiation conditions for
outgoing waves. The limiting values u¬ and t¬ of the displace-
ments and tractions are unspeci¢ed as yet. We can sum eqs
(A3) and (A4) to obtain a representation for the displacement
at any point j on S:

1

2
[uIj (j)zu¬ j(j)]

~P

�

S

{GI
ij(x, j)[t

I
i (x){ t¬ i(x)]{T I

ij(x, j)[u
I
i (x){u¬ i(x)]} dsx

z

� �

DI

f Ii (y)G
I
ij(y, j) dAy . (A5)

We specify the solution outside DI to be that which establishes
on S exactly the same boundary displacements as those in the
initial interior-region problem [so that u¬ (j)~uI(j), j [S]. It
follows that, in general, tI(j)=tE(j). We now substitute uI(j)

for u¬ (j) in eq. (A5) to obtain

uIj (j)~

�

S

GI
ij(x, j)[t

I
i (x){ t¬ i(x)] dsxz

� �

DI

f Ii (y)G
I
ij(y, j) dAy .

(A6)

With the notation wI(x)~tI(x){ t¬ (x), we can rewrite eq. (A6)
as

uIj (j)~

�

S

GI
ij(x, j)�

I
i (x) dsxz

� �

DI

f Ii (y)G
I
ij(x, j) dAy , (A7)

which shows that wI(x) dsx represents a ¢ctitious line-force
distribution. Due to symmetry in the displacement Green's
function [Gij(x, j)~Gji(j, x)] we can restate eq. (A7) as:

uIi (x)~

�

S

GI
ij(x, j)�

I
j (j) dsjz

� �

DI

f Ij (j)G
I
ij(x, j) dAj . (A8)

This integral representation (without the last term) is known
as a single-layer potential and is classi¢ed as indirect because
the scattered wave¢eld is given in terms of unknown source
strengths located on the boundary. It is a mathematical
expression of Huygen's principle, whereby every point on the
boundary can be considered as a source of secondary wavelets.
We have shown above the formal equivalence of the direct
(eq. A3) and indirect (eq. A8) BEMs. Note that we could
equally have chosen the solution outside S as that which
establishes on S that tE(j)~tI(j).
By application of Hooke's law to both sides of eq. (A8),

an indirect representation of the interior tractions can be
stated:

tIi (x)~
1

2
�I
i (x)zP

�

S

T I
ij(x, j)�

I
j (j) dsj

zcipklnª p
L

Lxl
P

� �

DI

f Ij (j)G
I
kj(x, j) dAj , (A9)

where the ¢rst term on the right-hand side is a `free term' due to
the singularity when x coincides with j on S, which is assumed
to be smooth (Appendix C). The second term must again be
treated as a Cauchy Principal Value.
The combination of eqs (A3) and (A4) also gives the

displacement at any point x within DI:

u
(r)
i (x)~

�

S

GI
ij(x, j)�

I
j (j) dsjz

� �

DI

f Ij (j)G
I
ij(x, j)dAj . (A10)

In a similar way, the di¡racted (outgoing) displacements
u(d) in the exterior region DE can be represented in terms of
unknown source functions wE:

u
(d)
i (x)~

�

S

GE
ij (x, j)�

E
j (j) dsjz

� �

DE

f Ej (j)G
E
ij (x, j) dAj ,

(A11)

where GE
ij is the appropriate Green's function for the material

in DE. The limiting values u¬ E and t¬
E
of the displacements u(r)

and corresponding tractions t(r) on S are given by

uEi (x)~

�

S

GE
ij (x, j)�

E
j (j) dsjz

� �

DE

f Ej (j)G
E
ij (x, j) dAj ,

tEi (x)~{
1

2
�E
i (x)zP

�

S

TE
ij (x, j)�

E
j (j) dsj (A12)

zcikpqnª k
L

Lxq

� �

DE

f Ej (j)G
E
pj(x, j) dAj .
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The unknown functions wE and wI are determined by matching
the displacements and tractions on S due to, on the one
hand, a combination of the interior refracted ¢eld u(r) and the
exterior di¡racted ¢eld u(d), and on the other hand, the incident
radiation u(i):

uEj (x){uIj (x)~{u
(i)
j (x) ,

tEj (x){tIj (x)~{t
(i)
j (x) , x [S .

(A13)

Fluid medium

A similar procedure can be used to derive direct and indirect
representations for wave motion in a £uid medium (Dong
1993) . The direct representation for the interior displacement
potential t at a point j is, in the absence of sources,

aIt(r)(j)~P

�

S

nª i(x) GI(x, j)
LtI(x)

Lxj
{tI(x)

LGI(x, j)

Lxj

� �

i

dsx ,

(A14)

aI~

1 j in DI ,

0 j not in DI ;

0:5 j on S ,

8

>

>

<

>

>

:

where nª (x) is the outward-pointing unit normal at x and GI

is the scalar potential Green's function for a £uid medium
(Appendix B). The corresponding indirect expression is

t(r)(x)~

�

S

GI(x, j)�I(j) dsj , (A15)

where �I(j) is a distribution of ¢ctitious sources. The indirect
integral for the normal displacement u~=t . nª at a point x on
the boundary S is

uI(x)~
1

2
�I(j)zP

�

s

T I(x, j)�I(j) dsj , (A16)

in which T I is the normal displacement Green's function for a
£uid medium:

T I(x, j)~nª i(x)
LGI(x, j)

Lxi
. (A17)

The pressure in the £uid is given by p(r)~ou2t(r), where o is the
£uid density, so the normal traction at the boundary is

tI(x)~{pI(x)

~{ou2

�

S

GI(x, j)�I(j) dsj , x [S .
(A18)

If the exterior region is solid, the conditions determining �I

and wE are

uEj (x)nª j(x){uI(x)~{u
(i)
j (x)nª j(x) ,

tEj (x)nª j(x){tI(x)~{t
(i)
j (x)nª j(x) ,

tEj (x)mª j(x)~{t
(i)
j (x)mª j(x) ,

(A19)

where mª is a unit tangent to S at x.

APPENDIX B: GREEN'S FUNCTIONS FOR

2-D ISOTROPIC MEDIA

Elastic medium

The Green's function for SH motion is given by

G(x, j)~
1

4ki
H

(2)
0 (kbr) , r~jx{jj , (B1)

where kb~u/b, and b and k are respectively the S-wave speed
and the modulus of rigidity in the material. This represents the
displacement at x due to an anti-plane unit force at j.
For steady-state P^SV motion, the Green's function

describes the displacement at x in the ith direction as a result
of the application of an in-plane unit force in the jth direction
at j:

Gij(x, j)~
i

4k
dijH

(2)
0 (kbr){

1

kbr

Lr

Lxi

Lr

Lxj

�

| H
(2)
1 (kbr){

b

a
H

(2)
1 (kar)

� ��

{
i

4k

Lr

Lxi

Lr

Lxj
H

(2)
0 (kbr){

b2

a2
H

(2)
0 (kar)

" #( )

,

r~jx{jj , (B2)

where ka~u/a and a is the P-wave speed.

Fluid medium

The displacement potential Green's function in a £uid takes a
similar form to the displacement for SH in an elastic medium:

G(x, j)~
1

4i
H

(2)
0 (kf r) , (B3)

where kf , the wavenumber inside the £uid, is given by u/c,
and c is the wave speed in the £uid.
The Green's functions given above can be found in

Dom|̈nguez & Abascal (1984).

APPENDIX C: EVALUATION OF THE

BOUNDARY INTEGRALS

Expressions such as eq. (A2) for the displacement u(r)(j) within
the region DI, that involve integrals like
�

S

Gij(x, j)(i(x) dsx

and
�

S

Tij(x, j)ti(x) dsx (C1)

are not simple to evaluate in the limit as j approaches the
boundary S since both Gij and Tij are singular at j~x. We
assume that the boundary is smooth and that C and y

represent continuous functions.
The Green's function Gij in plane strain (P^SV motion)

is given by eq. (B2) and is a function of kar and kbr, where
ka~u/a, kb~u/b and r~jx{jj. The limit r?0 is, therefore,
the same as the limit kar?0 and also u?0; that is, the
asymptotic behaviour for small r is the same as that for low
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frequency, or the static limit. The 2-D static Green's function
Gs

ij(x, j) is given by Banerjee & Butter¢eld (1981) as

Gs
ij(x, j)~

{1

8nk(1{l)
{(3{4l) dij log r{rª i rª j}zAij , (C2)

where l is Poisson's ratio, rª i~(xi{mi)/r and Aij is a constant
tensor. There is therefore a logarithmic singularity in Gij at
x~j, but this is integrable. The ¢rst of the integrals in eq. (C1)
may therefore be evaluated in the limit as j?xS[S by simply
setting j~xS in the integrand and evaluating the improper
integral.
The second of the integrals in (C1) involves Tij(x, j), given by

Tij(x, j)~cipklnª p(x)
L

Lxl
Gkj(x, j) , (C3)

where nª (x) is the outward normal to the boundary S. The static
equivalent of this is (Banerjee & Butter¢eld 1981)

T s
ij(x, j)~

{1

4nr(1{l)
{(1{2l)(nª j rª i{nª i rª j)

z[(1{2l)dijz2rª i rª j ]rª knª k} , (C4)

and this has a (1/r) singularity that is not integrable when
j~xS[S. We therefore need to look carefully at the details of
the limit as j?xS, where xS is any point of S.
The derivation of the ¢nal result given by Banerjee &

Butter¢eld (1981) is given only for the acoustic (scalar) case
and is, in any case, not valid in all circumstances.
Consider the point j within the region DI as it approaches a

point xS on the boundary S of DI (see Fig. C1). We split the
curve S into two parts, namely S�, a section of curve centred on
xS and of length � on either side, and S'~S{S�. The main task
is to evaluate

lim
j?xS

�

S�

Tij(x, j)ti(x) dsx . (C5)

To do this, we split the integral into two further parts:
�

S�

Tij(x, j)ti(x) dsx~ti(x
S)

�

S�

Tij(x, j) dsx

z

�

S�

Tij(x, j)[ti(x){t(xS)] dsx . (C6)

If y is HÎlder continuous on S,

jti(x1){ti(x2)j¦Ljx1{x2j
a (C7)

for any two points x1, x2 of S, where L and a are constants,
with 0 < a¦1. On the assumption that this inequality holds,
the second integral in eq. (C6) is integrable and bounded when
j~xS. It remains to evaluate the ¢rst of the integrals in (C6).

We have assumed that S is smooth and so wemay replace the
curve S� by a section of straight line, tangent to S� at xS (see
Fig. C2) with error of the order of �:
�

S�

Tij(x, j) dsx~

��

{�

Tij(x, j) dxzO(�) , (C8)

where we have set up axes oriented such that xS lies at
the origin, the x-axis lies along the tangent [so that
x~(x, 0),{�¦x¦�] and the y-axis points into DI so that
j~(0, g), nª (x)~(0,{1).
Since jx{jj is arbitrarily small in this integral, we use the

static form for Tij. Substituting for x, j and nª in eq. (C4) we
obtain

T11(x, j)~
{1

4nr(1{l)

g

r
1{2lz2

x2

r2

� �

,

T12(x, j)~
{1

4nr(1{l)
{(1{2l)

x

r

{2g2x

r3

� �

,

T21(x, j)~
{1

4nr(1{l)
(1{2l)

x

r
{

2g2x

r3

�

g ,

T22(x, j)~
{1

4nr(1{l)

g

r
1{2lz2

g2

r2

� �

,

(C9)

where r~(x2zg2)1=2. In the integration over x, odd powers of x
give zero contribution, so that the integrals of T12 and T21 are
both zero.
The remaining integrals are

��

{�

T11(x, j) dx~
{g

4n(1{l)

��

{�

1{2l

x2zg2
z

2x2

(x2zg2)2

� �

dx

~
{1

4n(1{l)
4(1{l) tan{1 �/g{

2�g

(�2zg2)

� �

,

��

{�

T22(x, j) dx~
{g

4n(1{l)

�

�

{�

1{2l

x2zg2
z

2g2

(x2zg2)2

� �

dx

~
{1

4n(1{l)
4(1{l) tan{1 �/gz

2�g

(�2zg2)

� �

.

(C10)

If we now let j?xS (g?0), we have
�

S�

Tij(x, j) dsx~
{1

2
dijzO(�) . (C11)

Figure C1. The boundary S is divided into two parts by taking out a
section S� of length 2�, with the boundary point xS in the middle.

Figure C2. The section of boundary S� is replaced by an interval
[{�, �] on the tangent at the point xS.
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Finally, we allow � to tend to zero. The integral over S' becomes
a Cauchy Principal Value and the second integral on the right
of eq. (C6) tends to zero. Thus

lim
j?xS, j[DI

�

S

Tij(x, j)ti(x) dsx

~P

�

S

Tij(x, x
S)ti(x) dsx{

1

2
tj(x

S) . (C12)

If the point j lies outside DI, we may repeat the derivation,
changing the sign of g in eq. (C9). This leads to the same result
except that the sign of the `free term' is changed:

lim
j?xS, j=[DI

�

S

Tij(x, j)ti(x) dsx

~P

�

S

Tij(x, x
S)ti(x) dsxz

1

2
tj(x

S) . (C13)

These results justify the step from eq. (A2) to eq. (A3).
The derivation of eq. (A9) from (A8) follows a slightly

di¡erent path. Eq. (A8) shows the displacement within DI

represented in terms of a single-layer potential w; that is, with
the body force f set to zero:

ui(x)~

�

S

Gij(x,j)�j(j)dsj,, x[D
I : �C14�

The corresponding stress ¢eld is

pij(x)~

�

S

cijpqGpk,q(x, j)�k(j) dsj , x [DI . (C15)

We need to evaluate the displacements and tractions on S.
As before, the singularity in Gij at x~j is integrable and we
may simply put x~xS in eq. (C13). To ¢nd the tractions, we
need to take the limit as x?xS:

ti(x
S)~ lim

x?xS

�

S

cijpqnª j(x
S)Gpk,q(x, j)�k(j) dsj . (C16)

This is similar to taking the limit as j?xS of the second
integral in (C1) except that nª (x) is replaced by nª (xS) and the
integration is over j instead of x. We may in fact write

ti(x
S)~ lim

x?xS

�

S

Fij(x, j)�j(j) dsj , (C17)

where

Fij(x, j)~cipklnª p(x
S)

L

Lxl
Gkj(x, j) . (C18)

We proceed as before to evaluate the integral in (C17) by
dividing the range of integration into a part over S� and a part
over S'~S{S�. The integral over S' will become a Cauchy
Principal Value when �?0; the integral over S� is partitioned as
in eq. (C6):
�

S�

Fij(x, j)�j(j) dsm~�j(x
S)

�

S�

Fij(x, j) dsj

z

�

S�

Fij(x, j)[�j(j){�j(x
S)] dsj . (C19)

The second integral is bounded as x?xS and tends to zero as
�?0. It remains, therefore, to evaluate the ¢rst integral and
take the limit as x?xS. This proceeds exactly as for the integral
over Tij in (C8) except that x and j have been interchanged.
Since Tij (and therefore Fij) is an odd function of rª~(x{j)/r,

the result is as before but with the opposite sign:
�

S�

Fij(x, j) dsj~
1

2
dijzO(�) . (C20)

We now let �?0 to obtain

ti(x
S)~P

�

s

Tij(x
S, j)�j(j) dsjz

1

2
�i(x

S) , (C21)

which leads to eq. (A9).
The derivation of eq. (A12) proceeds in exactly the same way

except that the limit is approached from outside DI and so the
sign of the free term is changed.
The corresponding expressions for the anti-plane-strain

(SH) problem involve integrals such as
�

s

G(x, j)((x) dsx

and
�

s

T (x, j)t(x) dsx , (C22)

where the Green's function is now (eq. B1)

G(x, j)~
1

4ki
H

(2)
0 (kbr) (C23)

and

T (x, j)~knª j(x)
L

Lxj
G(x, j)~

{kbnª j(x)rª j
4i

H
(2)
1 (kbr) ; (C24�

nª (x) is once again the unit outward normal on S.
The leading terms for the Hankel functions of small

argument are (Ryshik & Gradstein 1963)

H
(2)
0 (z)~

{2i

n
log zzO(1) ,

H
(2)
1 (z)~

2i

nz
zO(1) .

(C25)

It follows, as for the plane-strain case, that the ¢rst integral in
(C22) may be evaluated directly for j~xS[S, whereas we need
to take the limit j?xS to evaluate the second.
We proceed, as before, to write

�

S

T (x, j)t(x) dsx~

�

S0

T (x, j)t(x) dsxz

�

S�

T (x, j)t(x) dsx .

(C26)

The ¢rst integral takes the Cauchy Principal Value when x~xS

and �?0. The second integral becomes
�

S�

T (x, j)t(x) dsx~t(xS)

�

S�

T (x, j) dsx

z

�

S�

T (x, j)[t(x){t(xS)] dsx : (C27)

The second integral here is bounded as x?xS (assuming
HÎlder continuity for t) and tends to zero as �?0. The ¢rst
becomes
�

S�

T (x, j) dsx~

��

{�

T (x, j) dxzO(�) (C28)

by the replacement of S� by a section of the tangent at xS

(see Fig. C2).
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We choose axes so that xS~(0, 0), j~(0, g), x~(x, 0) and
nª ~(0,{1); thus,

T (x, j)~
{g

2nr2
zO(1) , (C29)

where r2~x2zg2. Substituting back into (C28) and performing
the integration, we obtain
�

S�

T (x, j) dsx~{
1

n
tan{1 (�/g)zO(�) . (C30)

Finally we take the limits g?0 and then �?0 to obtain

lim
j?xS

�

S

T (x, j)t(x) dsx~P

�

S

T (xS, j)t(x) dsx{
1

2
t(xS) .

(C31)

This establishes the formula in anti-plane strain for points j

on S.

Exactly the same procedure can be followed to establish
eqs (A9) and (A12) and the signs of the free terms for
anti-plane strain.
For a £uid medium, the expressions that need to be

evaluated are the same as in eq. (C22) but with (eq. B3)

G(x, j)~
1

4i
H

(2)
0 (kf r) (C32)

and

T (x, j)~nª j(x)
L

Lxj
G(x, j)~

{kf nª j(x)rª j
4i

H
(2)
1 (kf r) , (C33)

where kf is the wavenumber in the £uid. Thus T is exactly the
same as for anti-plane-strain (SH) motion in a solid and the
limit of the integral as x?xS[S is the same. This establishes
(A14) and (A16).
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