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NUMERICAL MODELS OF SALT MARSH

EVOLUTION: ECOLOGICAL, GEOMORPHIC,

AND CLIMATIC FACTORS

Sergio Fagherazzi,1 Matthew L. Kirwan,2,3 Simon M. Mudd,4 Glenn R. Guntenspergen,2

Stijn Temmerman,5 Andrea D’Alpaos,6 Johan van de Koppel,7 John M. Rybczyk,8

Enrique Reyes,9 Chris Craft,10 and Jonathan Clough11

Received 25 February 2011; revised 25 June 2011; accepted 8 September 2011; published 6 January 2012.

[1] Salt marshes are delicate landforms at the boundary
between the sea and land. These ecosystems support a
diverse biota that modifies the erosive characteristics of the
substrate and mediates sediment transport processes. Here
we present a broad overview of recent numerical models that
quantify the formation and evolution of salt marshes under
different physical and ecological drivers. In particular, we
focus on the coupling between geomorphological and eco-
logical processes and on how these feedbacks are included
in predictive models of landform evolution. We describe in
detail models that simulate fluxes of water, organic matter,
and sediments in salt marshes. The interplay between biolog-
ical and morphological processes often produces a distinct

scarp between salt marshes and tidal flats. Numerical models
can capture the dynamics of this boundary and the prograda-
tion or regression of the marsh in time. Tidal channels are
also key features of the marsh landscape, flooding and drain-
ing the marsh platform and providing a source of sediments
and nutrients to the marsh ecosystem. In recent years, several
numerical models have been developed to describe the mor-
phogenesis and long-term dynamics of salt marsh channels.
Finally, salt marshes are highly sensitive to the effects of
long-term climatic change. We therefore discuss in detail
how numerical models have been used to determine salt
marsh survival under different scenarios of sea level rise.

Citation: Fagherazzi, S., et al. (2012), Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors,

Rev. Geophys., 50, RG1002, doi:10.1029/2011RG000359.

1. INTRODUCTION

[2] Salt marshes are complex environments located

between the sea and land. They are regularly flooded by tides

and storm surges and covered by salt-tolerant vegetation,

mostly herbs and grasses, that is critical for their stability and

trapping of sediments (Figure 1).
[3] Salt marshes occur on low-energy coasts in temperate

and high latitudes, both in microtidal and macrotidal regimes

[Allen and Pye, 1992]. They typically form in sheltered

environments where fine sediments can accumulate, such

as in estuaries, shallow bays, and on the landward side of

barrier islands and spits. Salt marshes are also common near

large rivers and deltas, which provide the sediment input

necessary for their formation and evolution. Salt marshes are

ecologically important components of the coastal landscape

because they provide many critical ecosystem functions,

such as production of organic material and nutrient cycling

[Weinstein and Kreeger, 2000]. Because flooding is the main

mechanism for sediment delivery to the marsh platform,

salt marshes are inextricably linked to sea level and tidal

oscillations.
[4] Salt marshes are the manifestation of complex ecolog-

ical and physical interactions and therefore require an inter-

disciplinary approach to discern the mechanisms by which

they function [Fagherazzi et al., 2004a; Kirwan and Murray,
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2007;Marani et al., 2007; Townend et al., 2010]. Numerical

modeling is one powerful tool that can be used to quantify the

nonlinear feedbacks between salt marsh ecosystems, mor-

phology, and sediment transport processes [Costanza and

Voinov, 2004; Mcleod et al., 2010]. Numerical models can

be used to test hypotheses regarding salt marsh processes,

quantify the exchanges of energy and material across the

intertidal landscape, and shed light on the long-term evolu-

tion and resilience of these systems.
[5] Salt marsh models differ in the spatial scales that are

considered, the processes that are simulated within the

models, and ultimately, the output that is generated by the

simulations [Rybczyk and Callaway, 2009]. At the smallest

scale are the zero-dimensional models that simulate pro-

cesses (i.e., net primary production and elevation change) at a

single point within a marsh. Next are the models that simulate

morphodynamics (i.e., sedimentation, channel development,

and erosion) across a marsh platform (a two-dimensional

model) or a marsh transect (a one-dimensional model). These

models are said to be “ecogeomorphic” if they additionally

consider the feedbacks between marsh vegetation and phys-

ical processes such as sedimentation and erosion. Finally, at

the largest scale are the landscape models that simulate pro-

cesses over entire coastlines or estuaries. In general, land-

scape models excel at simulating general trends at large

spatial scales while the smaller-scale models often provide

more mechanistic algorithms to simulate wetland processes.
[6] Salt marsh models usually simulate long time scales,

from years to centuries, and therefore particular attention

must be devoted to integration errors, which accumulate in

the results and predictions. To this end, empirical frame-

works based on data collected at the temporal scale of interest

are often more suitable, whereas mechanistic models based

on a detailed description of the short-term physics might lead

to long-term errors.
[7] Here we present a synthesis of several approaches to

salt marsh modeling. All models follow a general conceptual

framework for salt marsh evolution (Figure 2) [Fagherazzi

et al., 2004a; Ogden et al., 2005, Sklar et al., 1990]. First

we review physical processes; modeling sediment fluxes

across the marsh platform and modeling marsh boundary and

channel evolution. Next, because the presence or absence of

halophytic vegetation on the marsh surface is fundamental to

salt marsh evolution [Fagherazzi et al., 2004b], we review

the simulation of aboveground and belowground production.

We then shift to larger-scale simulations and review models

that simulate coastal marsh evolution at the landscape scale.

Finally, because much of the recent salt marsh modeling

work has been in response to concerns regarding the effects

of rising sea levels on salt marsh evolution and resilience

[Kirwan et al., 2010], we review how numerical models have

been used to determine the fate of salt marshes under differ-

ent scenarios of sea level rise.

2. MODELING SEDIMENT FLUXES ON THE MARSH
PLATFORM

[8] During flooding, suspended sediments are transported

with the tidal currents onto the marsh platform and partially

deposited in distinctive spatial patterns. The modeling of

these sediment fluxes is particularly relevant from a geo-

morphic and ecological point of view. The spatial sedimen-

tation patterns that occur during single inundations drive the

longer-term geomorphic development of the marsh platform,

such as the development of natural levees [e.g., Temmerman

et al., 2004]. Also, ecological processes are directly affected

Figure 1. Marsh boundary in Plum Island Sound, Massachusetts, United States, a macrotidal environment
dominated by Spartina spp. at (a) low and (b) high tides. (c) Network of tidal channels dissecting a salt
marsh in the Venice Lagoon, Italy (IKONOS image).

Figure 2. Simplified scheme of the interactions between
ecology and geomorphology in salt marshes [after Fagherazzi
et al., 2004a].
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by sediment transport and deposition, such as the fluxes of

organic matter, nutrients, contaminants, and seeds [e.g.,

Struyf et al., 2007].
[9] All existing models of sediment fluxes in salt marshes

assume that tidal advection of suspended sediment and

sedimentation are the dominant processes, while surface

erosion is considered negligible on the marsh platform [e.g.,

D’Alpaos et al., 2007a; Temmerman et al., 2005b]. Field data

have shown that the dense vegetation canopy, which covers

the marsh platform, exerts significant friction on the flow-

ing water, thereby limiting peak flow velocities to less than

about 0.15 m s�1 within the canopy [Bouma et al., 2005a;

Christiansen et al., 2000; Leonard and Luther, 1995;

Lightbody and Nepf, 2006; Neumeier and Ciavola, 2004],

and dissipates wind-driven waves over short distances of a

few tens of meters [Bouma et al., 2005b;Möller et al., 1999].

Waves also break or are reflected at the marsh boundary, so

that wave energy is limited on the marsh surface [Fagherazzi

and Wiberg, 2009; Tonelli et al., 2010;Mariotti et al., 2010].
[10] Consequently, bed shear stress levels are generally

low on the vegetated marsh platform (<10–4 Pa) [Christiansen

et al., 2000]. Furthermore, the roots of salt marsh vegetation

strongly increase the shear strength of the sediment bed (up to

>4500 Pa) [Howes et al., 2010]. Therefore surface erosion on

the vegetated marsh platform is neglected in existing models.

Nevertheless, erosion may be observed during extremely

high storm surges associated with severe wave conditions

[Howes et al., 2010].
[11] Existing models of platform sediment fluxes may be

classified into two groups: empirical models and physical

models. Empirical models are based on statistical relation-

ships between observed sedimentation patterns and envi-

ronmental variables (mostly topographical variables) [e.g.,

Temmerman et al., 2003b]. Physical models have been

developed using hydrodynamic and sediment transport equa-

tions in order to simulate the flow paths of water and sediment

over the platform [e.g., D’Alpaos et al., 2007a; Rinaldo et al.,

1999b; Temmerman et al., 2005b]. Here we present examples

from both model approaches, focusing on relatively recent

spatial models that are two- or three-dimensional, although

earlier one-dimensional modeling efforts have also been per-

formed [e.g., Allen, 1994; Woolnough et al., 1995].

2.1. Empirical Models of Marsh Sedimentation

[12] Empirical models start from field measurements of

spatial sedimentation patterns (Figure 3) followed by statis-

tical analyses in order to relate the observed sedimentation

patterns to environmental variables [e.g., French et al., 1995;

Leonard, 1997; Temmerman et al., 2003a; Van Proosdij

et al., 2006]. First, many studies have identified that sedi-

mentation rates decrease with increasing platform elevation

[e.g., Cahoon and Reed, 1995; Stoddart et al., 1989]. This is

simply explained by the fact that lower portions of the marsh

platform are flooded more frequently, higher and longer,

so that more sediment is supplied and deposited. Second,

platform sedimentation rates are found to decrease with

increasing distance from tidal channels and from the seaward

marsh edge [e.g., French et al., 1995; Leonard, 1997; Reed

et al., 1999; Temmerman et al., 2003a], which may be

explained by progressive sediment deposition along flow

paths starting from the channels or marsh edge and directed

to the inner portions of the marsh platform [Christiansen

et al., 2000]. The underlying mechanism is that suspended

sediments start depositing as soon as the flow reaches the

marsh platform, where velocities are much smaller than in the

Figure 3. Example of observed (bars) and simulated (contour maps) spatial sedimentation patterns on a
tidal marsh platform (Paulina marsh, SW Netherlands) using (a) the empirically based model of
[Temmerman et al., 2003a, 2003b] and (b) the physically based model of Temmerman et al. [2005b].
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channel [D’Alpaos et al., 2007a]. Sedimentation is also

favored by the dense vegetation cover that exerts significant

friction and therefore rapidly decreases tidal current veloci-

ties and turbulence once the water flows from the channels

into the platform vegetation canopy [Christiansen et al.,

2000; Leonard and Luther, 1995; Yang, 1998]. Some field

studies have further highlighted the role of vegetation in

trapping sediments directly on aboveground plant structures

[Stumpf, 1983].
[13] On the basis of the above described mechanisms, a

spatially explicit empirical sedimentation model has been

proposed by Temmerman et al. [2003b]. The model describes

the spatial variations in platform sedimentation rates using an

equation of the form:

SR ¼ k:el:H : em:Dc : en:De ð1Þ

where SR is the sedimentation rate (g m�2 per time unit); H is

the platform surface elevation (m relative to tidal datum);

Dc is the distance to the nearest tidal channel or marsh edge (m);

De is the distance to the marsh edge (m) measured along the

nearest creek; and k, l, m, and n are model coefficients for

which k > 0 and l, m, n < 0. Values of k, l, m, and n are

estimated by multiple nonlinear regression fitting of

equation (1) through an empirical data set of SR, H, Dc, and

De values. Equation (1) is then spatially implemented on a

regular rectangular grid. For each grid cell, H must be cal-

culated from a digital elevation model, and Dc and De are

calculated from a remote sensing image from which the tidal

channel network and marsh edge are extracted. Most GIS

software programs offer algorithms to do this [see, e.g.,

Temmerman et al., 2003b]. Figure 3a shows an example of

the spatial implementation of this model for a specific tidal

marsh, illustrating that observed sedimentation patterns are

reasonably well reproduced [Temmerman et al., 2005a].

2.2. Physical Models of Marsh Sedimentation

[14] Rinaldo et al. [1999a] were one of the first to propose

a set of simplified hydrodynamic equations that describe the

two-dimensional depth-averaged flow field over a tidal

marsh platform. Their model basically assumes that the tide

propagates instantaneously (i.e., by immediate vertical

adjustment of a flat water surface) through the tidal channel

network dissecting the marsh platform, and that the flow on

the marsh platform is dominated by a balance between water

surface slope and friction. It is further assumed that the marsh

platform is flat, that the friction is constant in space and time,

that spatial variations in water surface above the platform are

much smaller than the average water depth, and that the

length of the marsh platform is much smaller than the tidal

wavelength. Under these assumptions, Rinaldo et al. [1999a]

reduced the shallow water equations to a Poisson approxi-

mation of the form [see Rinaldo et al., 1999a; Fagherazzi

et al., 2003]:

r2h1 ¼
l

D0
2

∂h0
∂t

ð2Þ

where h1 is the local deviation of the water surface from its

instantaneous average value, h0; l is a constant bottom fric-

tion coefficient; and D0 is the average water depth above the

platform. This model is used to calculate water surface slopes

above the marsh platform at any time during a tidal cycle and

to derive flow directions at any location above the platform

following the direction of steepest water surface slope.

Depth-averaged flow velocities are calculated from

rh1 ¼ �
l

D
U : ð3Þ

The model of Rinaldo et al. [1999a] has been used in

later publications to address several aspects of tidal marsh

morphodynamics, including the transport and deposition of

suspended sediments on the marsh platform [D’Alpaos et al.,

2007a]. Suspended sediment transport may be generally

modeled by an advection–diffusion equation of the form:

∂ CDð Þ

∂t
þr: UCD� kDDrCð Þ ¼ E � S ð4Þ

where C is the depth-averaged suspended sediment concen-

tration; D is the local water depth; U is the local depth-

averaged flow velocity field; kD is a diffusion coefficient; E is

the local erosion rate; and S is the local sedimentation rate.

For cohesive sediments, E and S are generally modeled as

[Partheniades, 1965]

E ¼ E0

t

te
� 1

� �

fort > te ð5Þ

S ¼ wsC 1�
t

ts

� �

for t < ts ð6Þ

where t is the local bed shear stress; te is the critical bed

shear stress for erosion (E = 0 when t < te); E0 is an empirical

erosion coefficient; ts is a critical bed shear stress for sedi-

mentation (S = 0 when t > ts); and ws is the settling velocity

of the suspended sediment. On a vegetated marsh platform,

t < te in most cases, so that erosion may be neglected.
[15] D’Alpaos et al. [2007a] simulated the transport and

deposition of suspended sediment on a marsh platform

assuming that the tidal channels are the sources of the

suspended sediment. Their model results basically show that

simulated sedimentation patterns are governed by a decrease

in sedimentation rate with increasing distance from the

channels, as a consequence of progressive sediment settling

along simulated flow paths that are more or less perpendic-

ular to the channels.
[16] While the simplified hydrodynamic scheme of Rinaldo

et al. [1999a] and D’Alpaos et al. [2007a] assumes that vir-

tually all water and sediment is supplied to the marsh plat-

form through the channels, field data have shown that

considerable water volumes (up to 60% of total volume) are

directly transported as sheet flow from the marsh edge

[French et al., 1995; Temmerman et al., 2005a]. Field data
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further show that the partitioning of flow through the chan-

nels versus flow over the marsh edge is controlled by the

depth of flooding of the marsh platform. The deeper the

marsh platform and its vegetation canopy are submerged,

the greater the percentage of water that flows over the marsh

as sheet flow rather than through the channels [Temmerman

et al., 2005a]. Therefore the hydrodynamic scheme of

Rinaldo et al. [1999a] and D’Alpaos et al. [2007a] is better

suited to capture the initial stages of the marsh flooding and

drainage, when the water depth on the platform is small.

Since the peaks in channel velocity are reached around

bankfull [French and Stoddart, 1992], this scheme provides

excellent estimates of the formative discharge in the channel

network.
[17] Platform flow directions may also considerably

change during single tides, and these changes seem to occur

around the moment of submergence of the microtopographic

relief or submergence of the vegetation canopy [Christiansen

et al., 2000; Davidson-Arnott et al., 2002; Torres and Styles,

2007].

2.3. Coupling Vegetation and Marsh Sedimentation

[18] Temmerman et al. [2005b] presented a physically

based model approach accounting for the interacting

effects of inundation depth, vegetation canopy structure,

and platform microtopography. They combined the three-

dimensional hydrodynamic model Delft3D with a sediment

transport model in presence of vegetation [Nepf, 1999]. In

contrast to the work of Rinaldo et al. [1999a], this hydro-

dynamic model does not assume instantaneous vertical

adjustments of a flat water surface in the tidal channels;

instead the model explicitly simulates the interactions of tidal

propagation through the channels and over the platform. The

model of Rinaldo et al. [1999a] is therefore ideal in situations

where a small tidal excursion and limited water depths on

the marsh platform result in a simplified system behavior.

On the other hand, high rates of change of tidal level give rise

to a complex hydrodynamics characterized by sheet flow

over the marsh platform and relevant fluxes from the marsh

boundaries.
[19] An important aspect of the model is that it accounts for

the influence of the vegetation canopy on the vertical profile

of the velocity and related drag, adding an extra source term

of friction force, F(z), caused by rigid vertical plant struc-

tures, to the momentum equations:

F zð Þ ¼ 0:5r0f zð Þn zð Þ U zð Þj jU zð Þ ð7Þ

where r0 is the fluid density; �(z) is the diameter of plant

structures at height, z, above the bottom; n(z) is the number

of plant structures per unit area at height z; and U(z) is

the horizontal flow velocity at height z. The model further

includes turbulence effects of the vegetation canopy.
[20] The turbulence closure used in this model is a classical

k-ɛ model, which is then modified to include extra source

terms for k (turbulent energy generation) and for ɛ (turbulent

energy dissipation) as a consequence of the vegetation. The

extra source terms for k and ɛ are dependent on vegetation

parameters such as the diameter of the stems and spacing in

between the stems. The closure scheme was calibrated to

measured turbulence data from a laboratory flume experi-

ment with vegetation [see Bouma et al., 2007].
[21] It is important to stress that nonlinear friction due to

vegetation is a very complex process, and equation (7) is just

a simplified approximation trying to account for the presence

of plant structures on the marsh platform.
[22] The model of Temmerman et al. [2005b] showed that

the vegetation canopy has a crucial impact on the spatial flow

and sedimentation patterns in a tidal marsh, while the influ-

ence of the platform microrelief (around 0.3 m) is minimal.

When vegetation is considered, the simulated tidal flow is

concentrated toward the channels, because friction is much

lower in the bare channels than on the densely vegetated

platform. Consequently, flood flow velocities are much

higher in the channels (�0.6 m s�1) than on the vegetated

platform (�0.1 m s�1). Given the size of the channels and

their spacing on the marsh platform, most of the tidal flow

rate is carried through the channels. Hence the platform is

flooded from the channels with flow directions more or less

perpendicular to the channel edges. In accordance with this

flow pattern, simulated sedimentation rates decrease with

distance from the channel edges (Figure 4b). Therefore, for

vegetated marsh surfaces, the simplified model of Rinaldo

et al. [1999a] is an excellent approximation of tidal hydro-

dynamics. In contrast, when vegetation is assumed to be

absent, the flow is less concentrated in the channels, so that

the speed of flood propagation through the channels and over

the platform is comparable, and the platform is flooded in

part from the seaward marsh edge. Consequently, simulated

sedimentation patterns on the platform also depend on the

distance from the marsh edge, leading to channel infilling

(Figure 4c). Temmerman et al. [2005b] conclude that the

presence of marsh vegetation has a profound impact on

(1) the development of natural levees along channels and

(2) the maintenance and even formation of dense channel

networks [see also Temmerman et al., 2007].
[23] Temmerman et al. [2005b] further explain the occur-

rence of changes in platform flow directions during a single

tidal cycle, as a consequence of gradual submergence of the

vegetation canopy. At the onset of platform flooding, flow

directions are always perpendicular to the channels. How-

ever, as the vegetation canopy is submerged, the relative

difference in friction between the channels and platform

decreases, so that larger-scale sheet flow from the marsh edge

onto the platform becomes increasingly important. The

model simulations show that this partitioning of flow through

channels versus over the marsh edge is strongly controlled

by inundation depth and by the height and density of the

vegetation canopy. With larger inundation depths, the per-

centage of water that is supplied through the channels

decreases, and that is why distance from channels plays a

minor role in explaining sedimentation patterns on low-lying

marshes [Temmerman et al., 2005a]. Furthermore, the taller

and denser the vegetation canopy, the more water that is

supplied through the channels, which results in stronger
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sedimentation gradients with distance from the channels

[Temmerman et al., 2005b].
[24] The model of Temmerman et al. [2005b] only con-

siders rigid vegetation elements, when in reality vegetation is

flexible and thus gives rise to complex interactions between

flow and vegetation structures. Furthermore, the complex

vertical structure of real vegetation is neglected. In fact,

marsh vegetation may be less dense at low height, where the

main stem is located, and denser where the plant structure

branches out. This complex biomass distribution creates

equally complex effects, producing frictional forces which

are a function of the water level.
[25] Moreover, this model is hydrostatic and does not

capture the full 3D hydrodynamics. Finally, the assumption

of fully developed turbulent flow given the quadratic

dependence on velocity might be unrealistic for the entire

tidal cycle, since the velocities over the marsh are such that

the flow during slack water is likely in transition between a

viscous and a turbulent regime.

3. MODELING MARSH BOUNDARY EVOLUTION

[26] Salt marshes develop in intertidal zones when condi-

tions are sufficiently benign to allow for plant growth. When

sediment supply is sufficient, salt marsh vegetation can

accumulate extensive amounts of fine-grained sediment,

which can result in the formation of a salt marsh plateau

[Allen, 1989]. Consolidation of clays and silts on this plateau

is strengthened by the rooting activities of the vegetation.

Higher elevation and sediment stability improve plant

growth, resulting in a positive feedback between increased

sedimentation and increased plant growth.
[27] Because the remaining tidal flat is not accumulating

sediment in equal amounts, the edge between the salt marsh

and the tidal flat becomes increasingly steep and vulnerable

to wave attack. This can cause the formation of strongly

erosive marsh cliffs, which capture large amounts of wave

energy as they are often near vertical. The combined effects

of increased consolidation and direct protection by vegeta-

tion maintain a steep cliff that moves inland along a pro-

longed front (Figure 5). The front can be maintained for

decades and destroy extensive areas of salt marsh as it

translates landward [Van der Wal et al., 2008]. This process

is a consequence of the inevitable increase in elevation of the

marsh relative to the surrounding tidal flat and is crucial for

understanding marsh dynamics [Van de Koppel et al., 2005].

Moreover, external forcing like large storms, sea level rise,

and variations in sediment supply can strongly determine

the evolution of the marsh scarp and influence the coupling

between vegetation dynamics and morphology [Mariotti and

Fagherazzi, 2010].
[28] Current research provides information that can be

used to distinguish between endogenous and exogenous

causes of marsh erosion. In locations where cliff erosion is

an endogenous process, the tidal flat sometimes reemerges in

front of the cliff, becoming again suitable for plant growth.

This has been observed in a number of marshes along the

Westerschelde Estuary, Netherlands [Van de Koppel et al.,

2005; Van der Wal et al., 2008]. Thus the dynamics of veg-

etation patches in front of actively eroding salt marsh cliffs

can be used as indicators of endogenous marsh erosion.

Moreover, as young salt marsh vegetation can be (but not

always) more diverse than the older marsh plateau, cliff

erosion can be interpreted as complex natural dynamics that

leads to salt marsh rejuvenation, thus maintaining structural

and species biodiversity in salt marsh ecosystems.
[29] Mariotti and Fagherazzi [2010] presented a one-

dimensional numerical model for the coupled long-term

evolution of salt marshes and tidal flats. The model focuses

on the migration of the boundary between the two land-

forms as a function of wind waves, sediment erosion, and

deposition, as well as the effect of vegetation on sediment

Figure 4. Simulations of flow and sedimentation patterns
on a tidal marsh with the model Delft3D. A detail of the
model domain is shown, representing a marsh platform dis-
sected by a tidal channel. (a) Model grid and input topogra-
phy. (b) Sedimentation pattern after one tide with presence
of vegetation on the marsh platform. (c) Sedimentation pat-
tern after one tide without vegetation on the marsh platform
(modified from Temmerman et al. [2005b]).
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dynamics. Numerical simulations demonstrate that a vertical

marsh slope forms during marsh retreat and that vegetation

determines the rate of marsh progradation and regression

(Figure 5).Mariotti and Fagherazzi [2010] relate the erosion

of the marsh boundary to wave characteristics by

R ¼
0 P < Pcr

b P � Pcrð Þ P > Pcr

�

ð8Þ

where R is the rate of boundary erosion; P is the wave power

per surface unit dissipated by breaking at the marsh bound-

ary; and Pcr is a threshold value for erosion, below which

the waves are unable to affect the scarp. In this model the

effects of vegetation roots and sediment characteristics on the

erodibility of the marsh boundary are not described in detail

but included in the b parameter. While vegetation clearly

reduces the height and erosive power of waves propagating

inland [Le Hir et al., 2007; Gedan et al., 2011], Feagin et al.

[2009] argue that vegetation does not have a major effect on

the erodibility of the marsh margin to wave impact. How-

ever, vegetation might dictate the style of boundary erosion,

favoring the formation of a steep scarp, undercutting, and

cantilever or toppling failure.
[30] Tonelli et al. [2010] used a numerical model solving

the coupled Boussinesq-nonlinear shallow water equations to

evaluate the effect of wave action on marsh boundaries as a

function of tidal elevation and wave height. Results show that

the wave thrust on the marsh scarp strongly depends on tidal

level. The thrust increases with tidal elevation until the marsh

is submerged and then rapidly decreases. Therefore, when

the marsh is flooded, waves affect the marsh boundary less,

and the maximum lateral erosion occurs when the water

elevation is just below the marsh platform.
[31] Marsh cliff movements have also been shown to be

independent of wave action, with debris that collects and

stabilizes the cliff during periods without waves. Often

sediments fill the spaces between blocks toppled or slumped

from the scarp, forming a gentle slope [Allen, 1989].
[32] The effect of increased sea level on the dynamics of

salt marsh edge erosion is still unknown. The amount of

wave energy that can reach the edge of the cliff is determined

to a large extent by the depth and slope of the tidal flat that

often exists in front of a (sedimentary) marsh. Sea level rise

will increase the relative depth of this tidal flat, and hence

more wave energy will be imposed upon the salt marsh edge.

Moreover, as the water level increases, it will become

increasingly difficult for new vegetation to establish on the

tidal flat that is exposed by the retreating edge [Fagherazzi

and Wiberg, 2009; Mariotti et al., 2010].
[33] Simulations carried out by Mariotti and Fagherazzi

[2010] indicate that a low rate of sea level rise increases

wave dissipation and sediment deposition while a high rate of

sea level rise leads to wave erosion and regression of the

marsh boundary (Figure 6). Hence, there is the possibility

that edge erosion becomes more severe, and recovery is

hampered, by sea level rise, further squeezing salt marshes

between increased human occupation at the landward side,

and increased sea level at the estuarine side. More research is

clearly needed to address this important point.

4. DYNAMICS OF MARSH CHANNELS

[34] A large body of literature exists describing salt marsh

channel initiation and development [e.g., Yapp et al., 1916,

1917; Pestrong, 1965; Redfield, 1965, 1972; Beeftink, 1966;

Gardner and Bohn, 1980; French and Stoddart, 1992; Steel

and Pye, 1997], the hydrodynamics of salt marsh channels

[e.g., Boon, 1975; Pethick, 1980; French and Stoddart, 1992;

Rinaldo et al., 1999a, 1999b; Temmerman et al., 2005b;

Fagherazzi et al., 2008], and their morphometric features

[e.g., Fagherazzi et al., 1999; Rinaldo et al., 1999a, 1999b;

Marani et al., 2003; Novakowski et al., 2004; Feola et al.,

2005; Marani et al., 2006]. In spite of their fundamental

role in the ecomorphodynamic evolution of salt marsh sys-

tems, only in the last few years have numerical models been

developed to describe the morphogenesis and long-term

dynamics of salt marsh channels [e.g., Fagherazzi and

Furbish, 2001; Fagherazzi and Sun, 2004; D’Alpaos et al.,

2005, 2006; Marciano et al., 2005; Perillo et al., 2005;

Minkoff et al., 2006; Kirwan and Murray, 2007; Temmerman

Figure 5. Erosion of a salt marsh boundary simulate with
the model of Mariotti and Fagherazzi [2010]. The evolu-
tion of the profile starts from a fully developed salt marsh,
imposing a sediment concentration equal to 0.1 g L�1 at the
seaward boundary. (a) Without vegetation. (b) With vegeta-
tion [after Mariotti and Fagherazzi, 2010].
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et al., 2007]. In one isolated case, the initiation and evolution

of tidal channel networks have been described in the frame-

work of a scaled laboratory model [Stefanon et al., 2010].

Although recent studies have helped refine our understand-

ing of salt marsh channel dynamics, the dominant mech-

anisms and chief processes governing the initiation and

development of these fundamental geomorphic features of

the tidal landscape are not completely understood and still

under debate. Moreover, more research is needed to quan-

tify the sensitivity of the models to inevitable errors in the

description and sediment transport processes, and how these

errors might affect morphological predictions.

4.1. Tidal Channel Initiation and Development

[35] It is generally agreed that the incision and subsequent

elaboration of a channel network on a tidal platform is one of

the chief morphological processes involved in the evolution

of the tidal landscape. Tidal channel initiation can be ascribed

to the concentration of tidal fluxes over a surface, which

could be a sand or mudflat, or a terrestrial region that has

been encroached by salt water due to sea level rise or breach

opening on a littoral barrier. The concentration of tidal fluxes

over the surface, possibly induced by the presence of small

perturbations of bottom elevations, produces local scour as

a consequence of the excess bed shear stress, thus favoring

the initiation of drainage patterns characterized by shelving

banks (see, e.g., Figure 7). Tidal fluxes further concentrate

within the forming channel due to its increasing cross-

sectional area and decreasing flow resistance as a result of the

increase in the depth of flow within the channel [Fagherazzi

and Furbish, 2001]. The increased flow velocity associated

with reduction of the relative bottom roughness in the

channel with respect to the adjacent marsh platform leads to

higher bottom shear stresses and channel erosion. Conse-

quently, erosion and deepening of the channel creates a

positive feedback mechanism between erosion and channel

formation which leads to the development of the incised tidal

patterns.
[36] The above described mechanism of channel initiation

and development is outlined by observational evidence and

by a number of conceptual and numerical models [e.g.,

Beeftink, 1966; French and Stoddart, 1992; Fagherazzi and

Furbish, 2001; D’Alpaos et al., 2006; Temmerman et al.,

2007]. During the earlier stages of the evolution of tidal

Figure 6. Progradation and erosion rates of the marsh
boundary computed with the model of Mariotti and
Fagherazzi [2010] as function of RSLR and sediment con-
centration. Positive values indicate progradation, and nega-
tive values indicate erosion. (a) With vegetation. (b) Without
vegetation [after Mariotti and Fagherazzi, 2010].

Figure 7. Sketch of the process of channel formation start-
ing from a nearly flat bottom configuration. Small perturba-
tions of bottom elevations enhance flux concentration,
leading to bottom erosion and the initiation of a channel
in which tidal fluxes further concentrate, thus increasing
channel dimensions in a self-sustained process.
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channels, the tidal network develops via headward growth

and tributary initiation through the carving of incised cross

sections, where the local shear stress exceeds a critical shear

stress for erosion. As the channels evolve and progressively

drain larger portions of the marsh landscape and therefore

capture a larger tidal prism, their cross-sectional areas expand

to accommodate the increasing discharge.
[37] Field observations and related conceptual models

describing the coupled evolution of salt marshes and channel

networks support the above scenario [e.g., D’Alpaos et al.,

2005; Kirwan and Murray, 2007; Temmerman et al., 2007].

As an example, Figure 8 shows some snapshots of the pro-

gressive development of salt marsh channels obtained by

using the morphodynamic model of D’Alpaos et al. [2005]

that is based on the simplified hydrodynamic model pro-

posed by Rinaldo et al. [1999a, 1999b] (see section 2.2)

which reduces the two-dimensional shallow water equations

to a Poisson boundary value problem. The channels cut

through an idealized rectangular domain, limited by imper-

meable boundaries on the top and on the lateral sides and

flanked by an existing channel on the bottom side. Small

incisions are initiated at sites along the bottom channel and

then progressively grow because of the increase in flowing

discharges enhanced by network development at sites in

which the local bottom shear stress, controlled by water

surface gradients, exceeds a threshold value for erosion. The

model reproduces several observed characteristics of real

tidal networks; however, the simulated channels are only

statistically similar to natural ones [D’Alpaos et al., 2005].

In fact, only statistical parameters like drainage density,

unchanneled length, and area probability distributions are

correctly reproduced, whereas the exact location of each

tidal channel can vary from simulation to simulation.
[38] The dynamics of the system is characterized by a

competition among developing networks to capture the

available watershed area, by the scouring of the channel cross

sections due to the action of the flowing discharges, and by

the feedbacks between network expansion and discharge

concentration at the tips of the network. Similar results

have also been obtained by Fagherazzi and Sun [2004] and

Kirwan andMurray [2007] utilizing process-oriented models

that account for the role of local gradients of a Poisson-

parametrized water surface [Rinaldo et al., 1999a], an

approach which is particularly suitable for shallow tidal areas

of limited extent. Marciano et al. [2005] used the Delft3D

hydrodynamic model, coupled with sediment transport, to

simulate the formation of large-scale tidal patterns in a short

tidal basin.
[39] The process of network incision is agreed to be rather

rapid: Steers [1960] reported a channel headcut growth of

up to 5–7 m yr�1, Collins et al. [1987] observed a headward

erosion of more than 200 m in 130 years, Wallace et al.

[2005] measured a mean extension rate of 6.2 m yr�1, and

D’Alpaos et al. [2007b] documented a mean annual rate of

headward growth of about 11 m yr�1. After an initial stage of

rapid evolution, which gives the network a basic imprinting,

the network structure undergoes a slower elaboration and is

characterized by the adjustment of channel geometry to var-

iations in the local tidal prism through network contractions

and expansions. At equilibrium, the maximum bottom shear

produced by tidal currents is just below the critical value for

erosion at the channels tips, and therefore the channels do not

extend any further. At this point the network displays a dis-

tribution of unchannelized lengths with an exponential trend

[D’Alpaos et al., 2005, 2007b].
[40] The presence of vegetation may promote channel

incision [D’Alpaos et al., 2006; Temmerman et al., 2007] and

influence the planimetric evolution of tidal channels because

of its stabilizing effects on surface sediments and channel

banks [e.g., Redfield, 1972; Garofalo, 1980; Gabet, 1998;

Marani et al., 2002; Fagherazzi et al., 2004b; Kirwan et al.,

Figure 8. Time evolution of planar network configurations
and related watersheds within an ideal rectangular domain lim-
ited by a main channel at the bottom and by otherwise imper-
meable boundaries (dashed lines). Snapshots represent the
evolution in time of the creek networks obtained after (a) 20,
(b) 200, (c) 600, and (d) 1000 model iterations. Shaded areas
represent the watersheds associated to the forming creek net-
works; the portion of the domain in white is drained by the
boundary channel at the bottom side (adapted from D’Alpaos
et al. [2009]. Copyright Elsevier 2009.)
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2008]. Redfield [1965] reports on changes in tidal channel

cross-sectional geometry, through deepening and narrowing,

as a consequence of the vertical accretion and horizontal

progradation of the adjacent vegetated marsh surface. Such

an observation supports the concept of inheritance of the

major features of channelized patterns dissecting the salt

marshes from previously existing sand or mudflat underlying

marsh deposits [e.g., Redfield, 1965; Allen, 2000; Marani

et al., 2003].
[41] Following Redfield [1965], Hood [2006] proposed a

conceptual model of channel growth suggesting that tidal

channels might be the result of depositional rather then ero-

sional features, in a rapidly prograding delta. In particular

environments (Bahìa Blanca Estuary, Argentina) the inter-

action between crabs (Neohelice granulatus) and halophytic

plants (Sarcocornia perennis) favors the formation of salt

marsh creeks [Perillo et al., 2005; Minkoff et al., 2006]. The

bioturbation effects linked to crab-plant interactions exerts,

in this case, a relevant role in driving the development of salt

marsh creeks, thus overcoming water surface gradients.

4.2. Scaling Properties of Tidal Networks

[42] Tidal networks display basic geometric properties

common to natural terrestrial patterns [e.g., Pestrong, 1965;

Fagherazzi et al., 1999; Steel and Pye, 1997; Novakowski

et al., 2004] but lack the scale invariance features that are

peculiar to fluvial channel networks [Rinaldo et al., 1999a,

1999b; Marani et al., 2003; Feola et al., 2005]. A marked

absence of scale-free distributions implies that there is no

similarity of the part and the whole within the tidal landscape,

in sharp contrast to what happens in fluvial basins where

ubiquitous power laws occur [Rodriguez Iturbe and Rinaldo,

1997]. This reflects the many conflicting processes acting at

overlapping spatial scales that affect the relevant morpho-

dynamics, thus hindering simple geomorphic relationships of

the types observed in fluvial basins to hold throughout the

actual range of tidal scales. Analyses claiming the contrary

may indeed have been misled by the subtleties of network

comparisons [e.g., Novakowski et al., 2004]. As pointed out

by Hack [1957], fluvial basins tend to become longer and

comparatively narrower as their size increases:

L � Ah ð9Þ

where A is the total contributing area at any site of a fluvial

basin; h is an exponent typically equal to 0.57; and L is

the embedded mainstream length, defined as the longest

streamwise distance, measured along the network from the

outlet to the watershed divide. Hack’s law does not seem to

be applicable to tidal networks [Feola et al., 2005].
[43] Another relevant morphological measure is intro-

duced by computing the downstream unchannelled length, ‘,
evaluated along the flow streamlines determined through the

steepest descent direction of the water surface from every salt

marsh site to the nearest channel [Marani et al., 2003]. The

properties of the probability density function of this length, ‘,
are physical indices of network capability to drain the basin

and thus provide an appropriate definition of drainage

density. A clear tendency to develop watersheds described

by exponential decays of the probability distributions of

unchanneled lengths has been observed for about 140 water-

sheds within 20 salt marshes in the lagoon of Venice, thereby

confirming the existence of scale-free features.
[44] Salt marsh channels are also highly sinuous, with

meanders that are geometrically similar to their fluvial

counterparts [Marani et al., 2002; Solari et al., 2002;

Fagherazzi et al., 2004b], although displaying character-

istics, such as meander sinuosity, which appear to vary not

only from one salt marsh to another, but also within distances

of a few hundred meters [Marani et al., 2002]. Strong spatial

gradients in discharge favor the development of relevant

spatial gradients of characteristic geometric features (e.g.,

chiefly wavelength and width) whereas the bidirectionality

of the discharge shaping the tidal channels often implies a

meander evolution that departs from terrestrial meanders

[Fagherazzi et al., 2004b]. Solari et al. [2002] indicate that

tidal oscillations give rise to symmetric oscillations of the

point bar-pool pattern around the locations of maximum

curvature, without triggering a net migration of the meander

if the tide is periodic with zero mean. Moreover, salt marsh

channels tend to be characterized by stable planform con-

figurations, with channel migration rates consistently slower

than those experienced by fluvial rivers. This is particularly

the case of channels cutting through densely vegetated

platforms. Dense vegetation, in fact, tends to freeze lateral

channel migration while bank undercutting and slumping

favors the formation and growth of meanders [Redfield,

1972; Garofalo, 1980; Gabet, 1998; Marani et al., 2002;

Fagherazzi et al., 2004b]. Block collapse through a com-

bination of cantilever and toppling failures produces bank

migration [Allen, 1989], whereas the persistence of failed

bank material, which temporarily protects the bank from

erosion, decreases the rates of lateral migration [Gabet,

1998].

5. COUPLING VEGETATION AND SEDIMENTARY
PROCESSES IN SALT MARSHES

[45] Salt marsh macrophytes maintain the elevation of

marshes by trapping inorganic sediments [e.g., Gleason

et al., 1979; Leonard and Luther, 1995; Li and Yang, 2009]

and through direct deposition of organic sediments [e.g.,

Turner et al., 2001; Nyman et al., 2006; Langley et al., 2009;

Neubauer, 2008]. Both trapping and organic deposition is

positively correlated with plant biomass [e.g., Gleason et al.,

1979; Li and Yang, 2009; Morris et al., 2002], which is

controlled, in part, by the elevation of the marsh platform

[e.g., Morris et al., 2002]. Thus there is a strong feedback

between the elevation of salt marshes and marsh vegetation

(Figure 9).
[46] In salt marsh models all these feedbacks are expressed

through process-based equations, which can be implemented

in a code using numerical schemes having different levels of

approximation and complexity. Here we provide a detailed

description of the key equations used for the coupling

between vegetation and sedimentary processes.
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5.1. Feedbacks Between Marsh Vegetation
and Platform Elevation

[47] The biomass of salt marsh macrophytes is a func-

tion of a number of factors, including tidal amplitude [e.g.,

Kirwan and Guntenspergen, 2010], latitude, temperature

[McKee and Patrick, 1988; Kirwan et al., 2009], sediment

supply [Fragoso and Spencer, 2008], and CO2 concentration

[Langley et al., 2009]. In a single estuary, however, there is

typically a distinct elevation range that is occupied by marsh

vegetation [e.g., Redfield, 1972; Orson et al., 1985; Morris

et al., 2005], with marsh vegetation occupying elevations

approximately between mean sea level and mean high tide

[McKee and Patrick, 1988; Kirwan and Guntenspergen,

2010] (Figure 9). The biomass and productivity of macro-

phytes varies strongly within this window [e.g.,Morris et al.,

2002; Spalding and Hester, 2007].
[48] In a given estuary with relatively constant tidal

amplitude, temperature, and sediment supply, marsh eleva-

tion is the dominant factor in determining plant biomass [e.g.,

Morris et al., 2002]. For example,Morris et al. [2002] found

that at North Inlet, South Carolina, Spartina alterniflora was

most productive at sites 55 cm below mean high tide (in a

location where the tidal amplitude was �60 cm).
[49] Because plants are most productive at some optimum

elevation in relation to mean high tide, a negative feedback

between plant growth, sea level rise, and sedimentation can

occur [e.g., Morris et al., 2002]. If the marsh elevation is

lower than the optimum elevation, an increase in the depth of

flooding during tides leads to a decrease in plant productivity

and therefore a decrease in sedimentation.
[50] On the basis of these observations, Morris et al.

[2002] put forward the following equation relating standing

biomass of halophyte vegetation, B, to the difference

between mean high tide and marsh elevation, D:

B ¼ aDþ bD2 þ c ð10Þ

where the parameters a, b, and c depend on vegetation type

and marsh location.
[51] This equation provides a simple quantitative feedback

between salt marsh ecology (vegetation biomass) and mor-

phology (marsh elevation), and forms the basis for several

models of salt marsh evolution [Mudd et al., 2004; D’Alpaos

et al., 2005; Morris, 2006; Kirwan and Murray, 2007;

Mariotti and Fagherazzi, 2010].
[52] Following this model, an increase in the rate of sea

level rise would lead to the drowning of the marsh: eventu-

ally the marsh would become too deep for vegetation to

survive. Fagherazzi et al. [2006] and Marani et al. [2007]

concluded that this negative feedback is responsible for the

bimodal distribution of elevations in typical estuaries with

vegetated marshes situated near mean sea level and unvege-

tated mudflats below.
[53] The model ofMorris et al. [2002] was derived in tidal

marshes dominated by Spartina spp. Elsewhere, for example,

in Mediterranean and northern European marshes, inter-

specific competition among numerous halophytic species

determines biomass to be an increasing function of elevation

[Marani et al., 2004; Silvestri et al., 2005].
[54] For example,Marani et al. [2010] use a logistic model

for the vegetation biomass:

dB

dt
¼

r zð ÞB

d
d � Bð Þ � m zð ÞB ð11Þ

where the biomass B = pd is expressed as the product of

vegetation fractional cover, p, and the carrying capacity of

the system, d (maximum biomass per unit area); and r and m

are the reproduction and mortality rates of the halophytic

plants, which depend on the marsh elevation z. By assigning

specific functions to r and m the two observed trends of

vegetation biomass reaching a maximum for a determined

elevation [Morris et al., 2002] or always increasing with

elevation [Silvestri et al., 2005] can be simulated within the

same framework.

5.2. Inorganic Sedimentation Enhanced by Marsh
Vegetation

[55] The presence of plants on the marsh surface can

enhance inorganic sedimentation. Gleason et al. [1979] mea-

sured sedimentation rates as a function of stem density in an

Figure 9. Schematic showing the relationship between
mean high tide, biomass, and the roots:shoots ratio. The
cartoons are based on measurements at North Inlet, South
Carolina [Morris et al., 2002; Mudd et al., 2009].
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experimental apparatus and found that sediment deposition

(measured by the total volume of sediment deposited over a

fixed number of waves) increased by over 50% if stem den-

sity was increased from 27 stems per m2 to 108 stems per m2.

Morris et al. [2002] measured accretion rates on both control

and fertilized plots and found that accretion rates on fer-

tilized plots were 0.71 cm yr�1 compared to accretion rates

of 0.51 cm yr�1 on unfertilized plots; fertilized plots had a

mean aboveground biomass production of 3280� 300 g m�2

compared to 780 � 50 g m�2 in control plots. The increase

in sedimentation on fertilized plots was entirely due to

enhanced inorganic sedimentation brought about by the

denser plant canopy. Morris and Bradley [1999] found that

fertilized sites had lower organic matter content in the top

5 cm of sediment caused by dilution due to increased inor-

ganic sedimentation.
[56] Inorganic sedimentation can occur through natural

settling of suspended particles and through the direct cap-

ture of particles on plant stems [e.g., Yang et al., 2008]

(Figure 10). Particle settling is also closely linked to the

marsh plants influence on velocity and turbulence within

tidally induced floods. Leonard and Luther [1995] measured

velocity and turbulent intensity within marsh canopies and

found both these quantities reduced with increasing stem

densities. Leonard and Croft [2006] measured turbulent

kinetic energy (TKE) in marsh canopies and found that it

decreased with increasing stem density. Similarly, Neumeier

and Amos [2006] found that TKEwas reduced near the marsh

surface within vegetated canopies and concluded this would

lead to enhanced sedimentation; this result has been corrob-

orated by laboratory studies [Neumeier, 2007]. The next

generation of salt marsh models should use the data provided

by these studies to better reproduce turbulence characteristics

in presence of vegetation.
[57] Nepf [1999] derived a relationship between TKE per

unit mass of water (k), the drag coefficient CD of emergent

vegetation (idealized as an array of cylinders), and the

physical characteristics of the marsh vegetation; namely, the

stem diameter, dc, and the projected area of the plants per unit

volume, a:

K ¼ a2
ku

2 CDadcð Þ2=3; ð12Þ

where ak is a coefficient reported to be 0.9 by Nepf [1999]

and u is the flow velocity on the marsh. In equation (12)

the bulk drag coefficient CD decreases as the element spac-

ing decreases or adc increases, therefore reducing the TKE

when a thick vegetation canopy is present.
[58] In fact, the drag coefficient is also related to the

characteristics of marsh vegetation. Tanino and Nepf [2008]

found that the drag coefficient in an array of emergent

cylinders can be described as

CD ¼ 2
a0

Rec
þ a1

� �

; ð13Þ

where a1 is a function of the solid fraction of stems within the

flow. The solid fraction is the area of a single cylinder in

cross section times the number of cylinders per unit volume,

or padc /4. The Reynolds number based on the plant stems,

Rec, is a function of flow velocity, the diameter of the

stems, and the kinematic viscosity of water: Rec = udc /n. The

stem diameter and projected area per unit volume of marsh

vegetation has been found to follow power law functions of

biomass [Mudd et al., 2004, 2010]:

ac ¼ aBb ð14Þ

dc ¼ mB8 ð15Þ

where B (M L�2) is the biomass per unit area of marsh

macrophytes and a, b, m, and 8 are empirical coefficients.
[59] Turbulence helps to maintain particles in suspension

so reductions in turbulent kinetic energy may enhance parti-

cle settling on salt marshes [e.g., Leonard and Luther, 1995;

Nepf, 1999; Christiansen et al., 2000; Leonard and Croft,

2006]. The upward velocity of sediment particles, wup, can

be determined by the Rouse equation [e.g., Christiansen

et al., 2000; Orton and Kineke, 2001]:

wup ¼ kvk

ffiffiffiffiffi

t

rw

r

ð16Þ

Figure 10. Cartoon showing plants capturing suspended particles and affecting particle settling rates.
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where kvk is von Karman’s constant, assumed to be 0.38,

t is the shear stress, and rw is the density of water. Several

authors correlated shear stress to total kinetic energy:

t ¼ wk ð17Þ

where w is a constant of proportionality found to vary

between 0.19 and 0.21 [Kim et al., 2000; Soulsby and Dyer,

1981; Stapleton and Huntley, 1995].
[60] Particle settling can then be calculated by subtracting

the upward particle velocity caused by turbulence from the

settling velocity of particles in still water. Turbulence is

produced in stem wakes [Nepf, 1999; Neumeier, 2007], but

this is counteracted by a reduction in velocity due to

increased drag. The net effect of denser vegetation is to

reduce turbulent kinetic energy [e.g., Mudd et al., 2010].
[61] Particles suspended in tidal waters can also be cap-

tured directly by plant stems and leaves [e.g., Palmer et al.,

2004; Li and Yang, 2009]. Li and Yang [2009] measured

particle capture on a Spartina alterniflora marsh near

Shanghai, China, and found it to increase with increasing

stem density. Palmer et al. [2004] conducted laboratory

experiments and determined that particle capture was a

function of stem diameter, stem density particle diameter,

flow velocity, the concentration of suspended sediment (C),

and flow depth. Because stem diameters and stem densities

can be related to aboveground biomass (B) [e.g., Morris and

Haskin, 1990; Mudd et al., 2004, 2010], the rate of mass

directly captured by plant stems per unit area of the marsh

(Qc) can also be related to biomass and flow characteristics

[D’Alpaos et al., 2006; Mudd et al., 2010]:

Qc ¼
ak

n
g
mg�sChu1þgBbþ8 g�sð Þdp

s; ð18Þ

where h is the flow depth; k, g, and s are empirical coeffi-

cients; and dp is the diameter of suspended sediment parti-

cles. Using a numerical model that accounted for both

particle capture and enhanced settling due to marsh vegeta-

tion, Mudd et al. [2010] concluded that in typical marshes

(with flow velocities ≤ 0.2 m s�1), settling will dominate

inorganic sedimentation.
[62] Currents on the marsh platform are typically too

weak to cause erosion [e.g., Christiansen et al., 2000; Wang

et al., 1993], but vegetation can focus flow around patches

[e.g., Bouma et al., 2009] and in channels [e.g., Temmerman

et al., 2005a, 2007], leading to enhanced erosion.

6. MODELING BELOWGROUND ORGANIC
PRODUCTION

[63] Plant biomass affects the accumulation of sediments

and subsequent salt marsh evolution by trapping mineral and

organic particles previously suspended in the water column,

by contributing aboveground plant litter to the surface, and

by the direct inputs of belowground organic matter as the

result of belowground root production, turnover, and

decomposition [Morris and Bowden, 1986]. Most salt marsh

models, however, ignore belowground production.

[64] It is clear that, under certain conditions, belowground

production, and subsequent organic matter accumulation, can

account for a relatively large fraction of marsh accretion.

Callaway et al. [1997] measured organic content and 137Cs-

derived accretion rates in three Spartina alterniflora domi-

nated salt marshes in the northern Gulf of Mexico and found

that organic accretion ranged between 7.7% and 21.8% of

total accretion (by mass). Nyman et al. [2006] found that

organic accretion could reach up to 40% of the total accretion

rate in Spartina alterniflora and Spartina patens dominated

saltwater sites in Louisiana. Chmura et al. [2003] reviewed

24 studies of organic matter accumulation on 85 salt marsh

sites across a broad geographic area (the Gulf of Mexico, the

northeastern Atlantic, the Mediterranean, the northeastern

Pacific, and the northwestern Atlantic) and determined an

organic matter accumulation rate as high as 1713 g m�2 yr�1

at a site in Louisiana.
[65] Despite the relative lack of data, an expanding interest

in issues in which belowground processes are critically

important (i.e., salt marsh evolution and marsh sustainability

in the face of sea level rise) has led to the development

of some evolution models that do simulate belowground

production. To do so, the modeler is confronted with three

challenges: (1) the development of algorithms that describe

the rate of belowground production, (2) simulating the dis-

tribution of roots within the sediment column, and (3) the

development of algorithms that define the rate and proportion

of root-derived organic matter that is incorporated into the

sediment matrix and contributes to marsh elevation change.
[66] The rate at which dead roots are incorporated into

marsh sediments is related to aboveground biomass, and can

be stated as

M ¼ G�
∂Bag

∂t
ð19Þ

where M is a mortality rate in (M L�2 T�1); G is a growth

rate (M L�2 T�1); and Bag is aboveground biomass. Below-

ground mortality can then be calculated by determining the

roots:shoots ratio of the dominant marsh macrophyte under

a variety of environmental conditions. Mudd et al. [2009]

reported that belowground biomass of Spartina alterniflora

increased with increasing aboveground biomass in North

Inlet, South Carolina. In contrast, the roots:shoots ratio at that

site was inversely related to aboveground biomass [Mudd

et al., 2009] (Figure 9); this relationship could be approxi-

mated by a linear function:

Bbg

Bag

¼ qbgDþ Dmbm ð20Þ

where Bbg is belowground biomass and qbg and Dmbm are

the slope (L�1) and the intercept (dimensionless) of the rela-

tionship between the roots:shoots ratio and the depth below

MHHW. This relationship is likely site-specific: Darby and

Turner [2008a, 2008b] found that fertilization of Spartina

alterniflora in Louisiana resulted in increased aboveground

biomass but had no effect on belowground biomass. Because

aboveground biomass is related to the elevation of the marsh
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platform, this elevation also controls belowground biomass.

Nyman et al. [2006], for example, found that root growth

increased if flooding depth increased, but did not report

aboveground biomass at their sampling sites.
[67] Of the salt marsh models that mechanistically simulate

belowground production within a sediment column, most

[i.e., Callaway et al., 1997; Rybczyk et al., 1998; Cahoon

et al., 2003; Mudd et al., 2009; Kairis and Rybczyk, 2010]

are derivative of Morris and Bowden’s [1986] single-year

sediment cohort model, originally developed for a freshwater

tidal marsh on the North River, Massachusetts. One advan-

tage of the cohort approach is that this framework can sim-

ulate the percent sediment organic matter and bulk density

with depth, and this output can be compared to actual sedi-

ment cores for model calibration and validation. In Morris

and Bowden’s [1986] original model, simulated live root

biomass within a vertical sediment column was assumed to

be greatest at the surface and to decrease exponentially with

depth and defined as

R ¼ R0 e
�kDð Þ ð21Þ

where R is the root biomass (g cm�2) at depth D (cm); Ro

equals the weight of roots at the sediment surface (g cm�2);

and k is root distribution parameter (cm�1). The parameter k

essentially describes the exponential root distribution with

depth (greatest at the surface). The integrated root biomass

over all depths is defined as the integral of equation (21):

Ri ¼

Z

R0e
�kDð ÞdD ð22Þ

where Ri is defined as the total live root biomass in the soil

column (g cm�2). By specifying Ri (usually as a function of

aboveground biomass) and assuming that all live below-

ground biomass is contained with a known rooting depth, one

can then use equation (22) to solve for Ro and k [Morris and

Bowden, 1986].
[68] Labile organic matter, because it decays, does not

contribute to marsh accretion, and deposition of low-density,

uncompacted organic sediments is offset by compaction. The

change in organic carbon can be modeled as

∂Cl

∂t
¼ �klCl þ mcl ð23Þ

where the subscript l refers to the labile pool; C (M L�3) is

the organic carbon per unit volume; m (M L�3 T�1) is the

mortality rate per unit volume (M is equal to m integrated

over the depth of the rooting zone); kl is the decay coefficient;

and cl is the fraction of dead root matter that is labile. Decay

rates depend on a number of factors, including (possibly)

sulfate concentration and oxygen supply [e.g., Silver and

Miya, 2001]; many of the factors proposed to control the

rate of organic matter decay vary with the depth below the

sediment surface. Some authors have suggested depth-

dependent decay coefficients [Conn and Day, 1997; Rybczyk

et al., 1998]. Others, however, have conductedmeasurements

of decay in marsh sediment that show no depth dependence

[e.g., Blum, 1993].

[69] Compaction can be modeled as [e.g., Gutierrez and

Wangen, 2005]:

E ¼ E0 � CI log
seff

s0

� �

ð24Þ

where E (dimensionless) is the void ratio; CI (dimensionless)

is the compression index; E0 (dimensionless) is the void ratio

at the reference stress, s0 (M T�2 L�1); and seff (M T�2 L�1)

is the effective stress. The long-term rate of vertical accretion,

in units of length per time, is determined by dividing the

rate of accumulation of refractory organic material by the

density of compacted organic material [e.g., Mudd et al.,

2009]. Assuming that all root material is made of refractory

carbon and that compressed organic material has a density of

0.1 g cm�3, the maximum vertical accretion rate from

organic sediments is approximately 1.7 cm yr�1, based on

Chmura et al.’s [2003] highest reported organic accumula-

tion rate.Mudd et al. [2009], using a model that incorporated

compaction, organic decay, and measured productivity

and mortality of Spartina alterniflora at North Inlet, South

Carolina, United States, calculated a theoretical maximum

organic accumulation rate of �2200 g m�2 yr�1.
[70] Kirwan et al. [2009] found that among North

American marshes, Gulf Coast and southwest Atlantic mar-

shes were the most productive, corroborating the results of

Chmura et al. [2003]. Kirwan et al. [2009] estimated that an

increase of 4°C could boost productivity by up to 40%, but

even if this increase in productivity was mirrored in the

production of belowground biomass, this would mean a

maximum rate of vertical accretion from organic sediment of

2.4 cm yr�1. This productivity gain could potentially be

enhanced because of greater atmospheric CO2; Langley et al.

[2009] compared the production of fine roots in plots with

ambient CO2 and plots with CO2 of ambient +340 ppm and

found that fine root production increased by 75% and 35%

over two field seasons in the plots with elevated carbon

dioxide. Again assuming all of this additional root matter was

refractory carbon, and assuming a compacted density of

organic matter of 0.1 g cm�3, one could estimate the maxi-

mum possible vertical accretion rate due to organic sedi-

mentation as 4.2 cm yr�1. This rate, however, should be

considered extreme as organic sediments are highly com-

pressible [e.g., Mesri et al., 1997] and organic material typ-

ically contains 20–90% labile carbon, as indicated by the

steep decline in organic material content with depth found

in virtually all marsh cores [e.g., Sharma et al., 1987].

7. SALT MARSH LANDSCAPE-SCALE ECOSYSTEM
MODELING

[71] The objective of an ecosystem-based landscape

model is to minimize the computation of physical processes

in order to expand the resolution and forecast of the resultant

effects on biological systems. Given their relative simplicity,

ecosystem-based models can be applied at high resolution to

large areas and study the spatial interactions among different

ecosystem units. The use of spatially explicit models thus
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expands our understanding of geographical and temporal

gradients in salt marsh ecosystems [Fitz et al., 1996].
[72] Ecosystem models couple organisms (mainly plants)

with their environment by directly or indirectly considering

hydrodynamics and water quality parameters (e.g., sediment

loads, nutrients, and other biological active particles). Mod-

els based on direct calculations simultaneously compute

flow, water quality, and biological processes in the same time

step. This allows for explicit feedback mechanisms and

interactions with results readily available at each time step,

but require computational elements of similar size that result

in long simulation times. An example of a direct-calculation

model is the Coastal Ecological Landscape Spatial Simula-

tion model (CELSS) [Costanza et al., 1990; Costanza and

Ruth, 1998; Sklar et al., 1985] which includes several envi-

ronmental forcing (subsidence, sea level rise, river discharge,

and climate variability).
[73] Subsequent efforts using the same direct-calculation

approach resulted in the Barataria-Terrebonne Ecological

Landscape Spatial Simulation model (BTELSS) [Reyes et al.,

2000] which focused on historical trends in land loss and

habitat change for coastal Louisiana. The BTELSS model

consists of an explicit hydrodynamic module with water and

particle flow and ecological algorithms modeling critical

environmental parameters. For example, the change (p) in

plant biomass (B) at a particular cell is computed with the

following set of equations:

dB

dt
¼ pB

p ¼ P � 8Bþ lBþ gBð Þ
P ¼ mP � F S � Z � T=Tmaxð Þ

ð25Þ

where change in plant biomass is the result of plant produc-

tion (P) minus changes in biomass due to translocation (8),

litterfall (l), and respiration (g) rates; and plant production

(P) is calculated synergistically in response to daily salinity

(S), flooding (Z), and temperature (T ) parameters.
[74] Other direct-calculation ecological models include

those of Martin et al. [2002] which examined the effects of

large fresh water discharges on salt marsh restoration and

Reyes et al. [2003, 2004a, 2004b] who predicted vegetation

responses to the cumulative effects of small river diversions

in combination with accelerated sea level rise.
[75] The indirect-calculation models are easier to imple-

ment and present substantial decreases in computation time.

These models first compute the hydrodynamics and water

quality, which are then used to simulate biological processes.

Among the most used models based on indirect calcula-

tions is the Sea Level Affecting Marshes Model (SLAMM)

[Park et al., 1986, 1989; J. Clough and R. A. Park, SLAMM

5.0.2 technical documentation, October 2008, available at

http://www.warrenpinnacle.com/prof/SLAMM].
[76] SLAMM is a spatial model that simulates the domi-

nant processes in wetland conversions and shoreline mod-

ifications during long-term sea level rise (SLR) and has been

used to simulate the effects of accelerated SLR on ecosystem

services including biological productivity and water quality

improvement of tidal wetlands [Craft et al., 2009]. SLAMM

simulates five primary processes that affect wetland fate as

sea level rises: inundation, erosion, overwash, salinity, and

soil saturation. Model inputs consist of a digital elevation

model (DEM), tidal data, rates of wetland vertical accretion,

maps indicating the distribution of wetland vegetation, and

published predictions of sea level rise [Church et al., 2001].
[77] In addition to submergence, tidal wetlands can

undergo habitat conversion as sea level rises and salt water

intrudes into brackish and freshwater wetlands, transforming

them to more saline marshes. This is important in river-

dominated estuaries where the mixing of freshwater and

seawater interact to produce a gradient of tidal wetlands,

from salt marshes near the open ocean to tidal freshwater

marshes and forests in the upper reaches of the estuary. Salt

water intrusion is modeled in SLAMM using a “salt wedge”

approach based on long-term freshwater discharge and cross-

sectional area of the estuary.
[78] Simulation results can be combined with site-

(wetland-) specific measurements of ecosystem services to

predict how sea level rise will affect delivery of wetland-

dependent ecosystem services to coastal landscapes and

communities [Craft et al., 2009].
[79] SLAMM was used to simulate the effects of SLR

on carbon (C) sequestration and water quality improvement

(denitrification) in the Altamaha River Estuary, Georgia,

United States. The simulations, using the IPCC A1B mean

sea level rise scenario, predict that forest and tidal freshwater

marsh will decline by 24% and 38%, respectively, by 2100

(Figure 11). Salt marsh is predicted to decline by 8%whereas

brackish marsh area increases by 4%. The model predicts

large increases in transitional salt (high) marsh, tidal flat, and

estuarine open water as sea level rises. Delivery of ecosystem

services related to water quality improvement (denitrifica-

tion) and carbon (C) sequestration declines as salt marsh

is submerged and forest and freshwater marsh convert to

brackish marsh habitat.
[80] Overall, in the estuary model, results show that tidal

wetland area is reduced by 12%, whereas denitrification

and C sequestration are reduced by 10% and 19%, respec-

tively. The disproportionately large decrease in denitri-

fication is attributed to loss of tidal forests which have high

rates of denitrification relative to the more saline wetlands.

The results of this example illustrate one way of coupling

ecosystem-based studies of wetland structure and function

with landscape models such as SLAMM to predict how

the delivery of wetland ecosystem services will change in

response to sea level rise in the coming century.

8. SALT MARSH EVOLUTION AND SEA LEVEL RISE

[81] At the most fundamental level, a marsh must gain

elevation at a rate faster than or equal to the rate of sea level

rise to maintain its vertical position in the intertidal zone

[Reed, 1995]. Historically, rates of sediment deposition and

organic accretion have been similar to rates of sea level rise in

most marshes worldwide. Long-term accretion rates derived

from measurements of Pb-210 indicate that sea level rates

and accretion rates have been similar over approximately the

last century and that accretion rates are fastest in regions with
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rapid sea level rise [Friedrichs and Perry, 2001; French,

2006]. Direct measurements of elevation change on annual

to decadal time scales also suggest a connection between

marsh accretion and sea level; most salt marshes and man-

groves around the world are accreting faster than or equal to

the rate of historical sea level rise plus any local subsidence

[Cahoon et al., 2006]. Indeed, sediment cores from many

marshes reveal stratigraphic properties that change little over

a few thousand years during periods of relatively slow sea

level rise [e.g., Redfield, 1965].

8.1. Feedbacks Between Accretion, Submergence,
and Sea Level Rise

[82] Observations of long-term stability and platform

maintenance inspire conclusions that marsh ecosystems must

be capable of rapidly adjusting to changes in rates of sea level

rise [Friedrichs and Perry, 2001]. Several processes, both

biological and physical, are likely responsible for the tight

coupling between sea level and marsh accretion. From a

purely physical perspective, sediment deposition rates on the

marsh platform are largely controlled by the duration and

frequency of tidal flooding [Marion et al., 2009]. Rates of

mineral deposition are highest in low-elevation salt marshes

that are inundated for long periods of time and lowest in high-

elevation marshes that are periodically flooded [Pethick,

1981; Bricker-Urso et al., 1989]. Similarly, rates of deposi-

tion at a single location within a salt marsh are highest when

tides and inundation depths are highest [Temmerman et al.,

2003b]. Therefore, if an increase in the rate of sea level rise

is accompanied by more extensive platform flooding, min-

eral deposition rates will increase. More recent work suggests

that this feedback is enhanced by growth characteristics of

marsh macrophytes. Long-term measurements of Spartina

alterniflora, for example, demonstrate that its productivity is

strongly correlated to interannual variations in sea level

[Morris et al., 2002] and that it grows fastest at relatively low

elevations within the intertidal zone [Mudd et al., 2009].

Feedbacks between flooding and accretion are less under-

stood for organic rich marshes, though organic matter decay

rates are likely slower in frequently flooded, anaerobic soils.

Finally, sediment eroded from one portion of a marsh can be

a source of sediment aiding vertical accretion in surviving

marshland. For example, eroding marsh edges often have

levees just behind the point of wave impact. Similarly,

expansion of channel networks in response to accelerated sea

level rise may deliver more sediment to portions of the plat-

form that were previously sediment deficient [D’Alpaos

et al., 2007a; Kirwan et al., 2008]. These types of ecogeo-

morphic feedbacks likely explain the persistence of wetlands

within the intertidal zone over thousands of years in the

stratigraphic record [Redfield, 1965] and observations of

accretion rates that are highest in regions with historically

high rates of sea level rise [Friedrichs and Perry, 2001].
[84] Nevertheless, widespread observations of marsh sub-

mergence today indicate that there are limits to the ability of

ecogeomorphic feedbacks to preserve the position of a marsh

Figure 11. SLAMM simulation of effects of accelerated SLR on tidal marshes of the Altamaha River,
Georgia. The simulation was run using the SRES A1B scenario that assumes a 52 cm increase in sea level
by 2100. The coarse vertical resolution of the NED data set results in the linear pattern (i.e., striping) of wet-
land migration observed during the simulation [from Craft et al., 2009]. Used by permission.
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within the intertidal zone. Stratigraphic evidence and tidal

gauge records indicate that sea level rise rates were less than

1 mm yr�1 for most of the last 2000 years and began accel-

erating toward modern rates of about 2–3 mm yr�1 in the

18th or 19th centuries [Donnelly et al., 2004; Church and

White, 2006; Jevrejeva et al., 2008; Gehrels et al., 2008].

Perhaps in response, marshes around the world appear to be

degrading. The replacement of high marsh vegetation by low

marsh vegetation in some salt marshes in New England

began at roughly the same time sea level began to accelerate

[Donnelly and Bertness, 2001]. Marsh elevations appear to

be deepening relative to sea level in South Carolina [Morris

et al., 2005], channel networks appear to be expanding in

South Carolina, New York, and Maryland [Kearney et al.,

1988; Hartig et al., 2002; Hughes et al., 2009], and large

amounts of marshland are being converted to open water in

Louisiana, Maryland, Italy, and southeastern England [e.g.,

Reed, 1995; Day et al., 1999; Kearney et al., 2002; van der

Wal and Pye, 2004]. In fact, historical rates of marsh loss

correlate with historical changes in relative sea level rise rates

in coastal Louisiana and the Chesapeake Bay Estuary

[Stevenson et al., 1986; Swenson and Swarzenski, 1995].
[85] Determining the influence of sea level acceleration

remains difficult, however, since the effects of sea level rise

alone cannot be isolated in natural wetlands. Sediment supply

also exerts a strong control on marsh expansion and decline.

A pulse of sediment can lead to a wide range of feedbacks

that encourage marsh expansion [e.g., Mudd, 2011]. Sedi-

ment supply reduction and increased subsidence rates are at

least partially responsible for marsh loss in Chesapeake Bay,

coastal Louisiana, and Venice Lagoon marshes [Kearney

et al., 2002; Reed, 1995; Marani et al., 2007]. The main

cause of loss of coastal wetlands in the Mississippi Delta is

the isolation of the river from the delta trough the construc-

tion of levees, which dramatically reduced sediment inputs to

the salt marshes [Day et al., 2005]. Moreover, identifying sea

level rise as the primary driver of marsh loss is complicated

by observations that some marshes are submerging despite

vertical accretion rates that exceed relative rates of sea level

rise [Kirwan et al., 2008] and that most marshes today have

elevations increasing faster than historic rates of sea level rise

[Cahoon et al., 2006]. In fact, Kirwan and Temmerman

[2009] concluded that factors other than historical sea level

acceleration were most likely responsible for widespread

patterns of marsh submergence.

8.2. Simulating Marsh Evolution Under Sea Level Rise

[86] Numerical models may help determine the direct

influence of sea level rise on marsh survival since they offer

the distinct advantage of being able to isolate sea level as a

forcing variable. Models of platform elevation, for example,

show a tendency for marshes to become deeper within the

tidal frame in response to an increase in the rate of sea level

rise alone [e.g., French, 1993; Allen, 1995] and can become

too deep to support vegetation growth at high rates of sea

level rise (i.e., >10 mm yr�1) [Morris et al., 2002]. While

these models show vegetated intertidal surfaces to be rela-

tively resilient to changes in sea level, D’Alpaos et al.

[2007a] suggest that relatively small changes in platform

elevation can lead to channel network expansion, and dis-

turbance to vegetation can trigger rapid marsh degradation

[Marani et al., 2007; Kirwan et al., 2008].
[87] Although a wide variety of numerical models exists

[see also Kirwan and Temmerman, 2009, and references

therein], most are based on the assumption that marsh

accretion rates should increase with inundation due to sea

level rise:

dz

dt
¼

k

z
ð26Þ

where dz/dt represents the change in marsh elevation through

time (i.e., its accretion rate) and 1/z is a proxy for the duration

and frequency of inundation. At its most basic level,

equation (26) predicts that a decrease in elevation relative to

sea level, z, will be accompanied by an increase in the

accretion rate. The processes actually responsible for this

relationship (implicitly incorporated into k) vary between

models and include many of the biological and/or physical

feedbacks discussed in earlier sections (e.g., sections 5

and 8.1). In particular, vertical elevation adjustment in most

recent models is accomplished primarily through the sedi-

mentation-inundation feedback and the enhanced growth of

plants with moderate increases in inundation and its effect

on mineral sediment trapping and organic accretion.

8.3. Multiple Stable Equilibria

[88] Several basic patterns evolve out of any model that

relies on an inundation-dependent accretion scheme. First,

when sea level rise rates are constant a marsh will asymp-

totically evolve toward an elevation where accretion rates are

in equilibrium with sea level. If initial marsh elevations are

relatively low (i.e., frequently inundated), accretion is rapid

and the surface builds higher in the tidal frame. If marsh

elevations are relatively high (i.e., infrequently flooded),

accretion is slow, and sea level rise causes the marsh surface

to become lower in the tidal frame. Morris et al. [2002]

explain that the particular equilibrium elevation is con-

trolled by the rate of sea level rise, the amount of sediment

available for mineral accretion, and the rate of vegetation

growth. Where mineral sediment concentrations decrease

with distance from the channel or marsh edge, equilibrium

elevations would be expected to decrease toward the marsh

interior, resulting in a leveed, gently sloping marsh surface

[Mudd et al., 2004]. Conversely, for a marsh dominated by

organic accretion, the marsh platform would be expected to

evolve toward a flat intertidal surface.
[89] Since marsh elevations evolve toward a condition

where vertical accretion balances sea level rise, the equilib-

rium solution of equation (26) can be rewritten as

m ¼
k

z
ð27Þ

where m represents the rate of sea level rise. Following

Morris et al. [2002], a change in the rate of sea level rise must

be accompanied by a change in marsh elevation. For an

acceleration in the rate of sea level rise, the elevation of the
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marsh (z) must decrease in order to maintain equilibrium.

Therefore, at the most basic level, an increase in the rate of

sea level rise would be expected to cause an increase in

platform flooding as the marsh surface becomes lower rela-

tive to sea level. This numerical behavior has been widely

observed in field-based studies. Donnelly and Bertness

[2001], for example, observed that vegetation character-

istics of low-elevation marshland replaced high marsh veg-

etation immediately following the onset of sea level

acceleration around 1900 AD. Similarly, elevation distribu-

tions at North Inlet appear to indicate a gradually submerging

marsh [Morris et al., 2005], while nearby tidal channels are

expanding [Hughes et al., 2009].
[90] Of course, imbedded in k, can be many ecogeo-

morphic feedbacks that are also related to the elevation of the

marsh platform and its effect on inundation (see section 5).

Plant growth, for example, is a nonlinear function of marsh

elevation, where there is an optimum elevation for plant

productivity [Morris et al., 2002]. Consequently, models

of marsh elevation change that incorporate plant effects

have multiple stable equilibria [Marani et al., 2007, 2010]

(Figure 12). In particular, the stable equilibrium for an

intertidal surface covered by plants is much shallower than

the stable equilibrium for a surface where plants are absent.

As a result, disturbance to vegetation will tend to promote a

transition toward the unvegetated equilibrium state, charac-

terized by a lower elevation relative to sea level and more

frequent inundation. At high rates of sea level rise, the

equilibrium depth of an unvegetated surface may be subtidal

and/or too erosive for vegetation to grow back. In this case,

disturbance to vegetation on an otherwise stable intertidal

surface would cause a marsh to submerge beyond depths

capable of supporting vegetation and therefore shift to an

alternative stable state that will never again support plant

growth [Kirwan and Murray, 2007; Marani et al., 2007;

Kirwan et al., 2008].

8.4. Lags Between Sea Level and Morphologic Change

[91] The idea that marshes must become more inundated

before they can accrete at faster rates leads to a common

observation in numerical experiments that there is a lag

between changes in sea level and morphology [French, 2006;

Kirwan and Murray, 2008a; Kirwan and Temmerman, 2009;

D’Alpaos, 2011]. As a brief example, models of salt marsh

evolution suggest that in response to a step change in the rate

of sea level rise from 1 to 3 mm yr�1, a marsh will lose about

10 cm of elevation relative to sea level before accretion rates

equilibrate to the new rate of sea level rise. If sea level is

rising at 3 mm yr�1, then in the absence of deposition, it

would take 33 years to deepen 10 cm and equilibrate. Of

course, the marsh is also building elevation during this time,

so the adjustment period (i.e., the lag) is actually much longer

(�100 years) [Kirwan and Temmerman, 2009] (Figure 13).

As a consequence, marshes are always moving toward, but

never reaching, equilibrium with a continuously varying

sea level rise typical of real eustatic oscillations [French,

2006; Kirwan and Murray, 2008a] (Figure 13b). Moreover,

simulated marshes never reach equilibrium with a con-

tinuously accelerating rate of sea level rise. In scenarios of

future acceleration, accretion rates mimic sea level rise rates

that occurred about 30–40 years previously [Kirwan and

Temmerman, 2009] (Figure 13a).
[92] Similar lags between sea level and marsh adjustment

will arise in any system where accretion is a positive func-

tion of inundation. More detailed analysis suggests that the

duration of adjustment is not strongly dependent on the

amplitude of sea level change [Kirwan and Murray, 2008a;

Kirwan and Temmerman, 2009]. Abundant sediment avail-

ability appears to reduce the lag. Marshes with high mineral

sediment inputs adjust more quickly than sediment deficient

ones, leading to a spatially heterogenous pattern where marsh

areas adjacent to channels adjust quickly to sea level,

whereas interior marshland lags behind [D’Alpaos, 2011]

(Figure 13c).
[93] The temporal lag between sea level change and

platform elevation has several implications for interpreting

measurements of marsh processes today. First, because the

marsh never reaches a stable equilibrium with a continuously

oscillating or accelerating rate of sea level rise, measure-

ments of vertical accretion and/or elevation change are highly

context dependent. In particular, short-term measurements of

elevation change (e.g., from SETs or 137Cs) that are less than

the historical rate of sea level rise do not necessarily mean

that the marsh is incapable of surviving sea level rise; instead

they may simply indicate that a marsh is moving toward a

deeper equilibrium [French, 2006; Kirwan and Murray,

2008a]. Similarly, if we interpret 20th century sea level

acceleration as a step change [Donnelly et al., 2004; Gehrels

et al., 2008], then observed lags on the order of 50–200 years

suggest that marshes have been out of equilibrium with

Figure 12. Alternative stable elevations (z) for a hypoth-
etical Spartina alterniflora dominated salt marsh under his-
torical rates of sea level rise. Subtidal platform elevations
are stable at high rates of RSLR, whereas intertidal elevations
are stable at low rates of RSLR. As in the work of Fagherazzi
et al. [2006], intermediate elevations are unstable and rapidly
evolve toward either a high intertidal salt marsh or a bare
subtidal flat. The hypothetical case in which no biological
activity is present is described by the dashed curve and
demonstrates that stable intertidal elevations can only be
accounted for with the presence of vegetation. (Figure and
caption are from Marani et al. [2007]).
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patterns of inundation for most of the 20th century and may

just now be approaching a new equilibrium state. Alterna-

tively, if recent increases in sea level rise rates are interpreted

as a gradual acceleration, then properties of the marsh are

always a few decades behind the physical conditions driving

the change. In that case, observations of marsh adjustment

such as transgression of plant zonation or expanding channel

networks are underestimated, and more change should be

expected even if rates of sea level rise were to stabilize

[Kirwan and Murray, 2008a].

8.5. Threshold Sea Level Rise Rates for Marsh Survival

[94] While models of salt marsh evolution generally point

to ecosystem resiliency, widespread observations of marsh

submergence indicate that under some conditions, marshes

simply cannot survive. In particular, marshes in estuaries

with low tidal ranges and little mineral sediment appear to

be vulnerable [Reed, 1995]. One limit to the survival of

intertidal wetlands is the growth of vegetation itself. In the

absence of vegetation, a number of ecogeomorphic processes

(e.g., peat collapse, wave and channel erosion, and lack of

accretion) lead to the rapid loss of elevation, precluding the

return of vegetation [DeLaune et al., 1994; Fagherazzi et al.,

2006; Marani et al., 2007; Kirwan et al., 2008]. Thus for a

marsh to maintain its position in the intertidal zone, its ele-

vation must never become so low that vegetation dies.
[95] Kirwan et al. [2010] summarized the conditions that

lead to platform submergence in five numerical models and

found that threshold rates of sea level rise for marsh survival

vary by more than 2 orders of magnitude depending on an

estuary’s tidal range and sediment availability (Figure 14).

At low tidal ranges and suspended sediment concentrations,

marshes submerged at rates of sea level rise of only a few mil-

limeters per year. However, under more favorable conditions,

Figure 13. (a) Modeled response of marsh accretion rates to the last millennium of sea level change, sim-
ulated by the model of Kirwan and Murray [2007], demonstrating multidecadal lags between sea level
change and marsh response. Sea level rise rates, denoted by the heavy solid line, are from van de
Plassche et al. [1998]. Modified from Kirwan and Murray [2008a]. (b) Modeled accretion rates take on
the order of 100 years to equilibrate to step changes in the rate of sea level rise. These experiments began
with a marsh surface in equilibrium with a 1 mm yr�1 rate of sea level rise. Sea level rise rates increased
abruptly to 3, 5, or 10 mm yr�1 at time zero. Black line, Morris et al. [2002] model; dashed line,
Temmerman et al. [2003a, 2003b] model. Source: Kirwan and Temmerman [2009]. Copyright Elsevier
2009. (c) Comparison of local time lags between rates of marsh accretion and sea level rise for different
sediment supply and sea level scenarios. The color scale represents the time intervals necessary for
adjustment of different portions of the marsh. Clockwise from top: step change in the rate of SLR from R
= 1 mm yr�1 to R = 3 mm yr�1, C0 = 50 mg L�1; step change in the rate of SLR from R = 3mm yr�1 to R =
10 mm yr�1, C0 = 50 mg L�1; and step change in the rate of SLR from R = 1 mm yr�1 to R = 3 mm yr�1,
C∗0 = C0/2. Source: D’Alpaos [2011]. Copyright Elsevier 2009.
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modeled marshes could survive several centimeters of sea

level rise per year. Variation between models is surprisingly

low given that they were designed to represent marshes

from around the world (e.g., Venice Lagoon (Italy), North

Inlet (South Carolina), and Scheldt Estuary (Belgium-

Netherlands)) and consequently incorporate different domi-

nant processes and approaches to modeling ecogeomorphic

feedbacks (two treat organic accretion in detail while others

treat mineral accretion in detail, and one does not model

vegetation growth at all). Apparently, the coupling between

inundation and accretion that is generally common to all

models (k in equation (26)) leads to similar results regardless

of the actual processes that are responsible for such a link or

how they are modeled [Kirwan and Temmerman, 2009].
[96] Although wave erosion is not incorporated into these

particular simulations, its effect is likely to enhance the

threshold condition by introducing a positive feedback

between inundation and erosion. In relatively shallow water,

an increase in inundation leads to a decrease in bottom fric-

tion and therefore an increase in erosion rate and further

platform lowering [Fagherazzi et al., 2006]. Although veg-

etation growth can mitigate the feedback, when sea level rise

lowers platform elevations so that vegetation cannot grow,

waves quickly erode low intertidal surfaces into ones that are

permanently inundated and incapable of regrowing vegeta-

tion [Marani et al., 2007]. In fact, this process is likely

responsible for the bimodal distribution of elevations in

coastal lagoons where very few surfaces are at low intertidal

elevations [Fagherazzi et al., 2006].

8.6. Predictions for the Future

[97] The threshold rates of sea level rise identified in the

previous section (Figure 14) offer insight into how coastal

wetlands will respond to future sea level rise. As a first

approximation, the fate of any particular marsh can be eval-

uated simply by knowing the suspended sediment concen-

tration and tidal range of the estuary. Using the Plum Island

Estuary, Massachusetts, United States, as an example (SSC =

1 mg L�1 and TR = 3 m), the model ensemble predicts a

threshold rate of sea level rise of 4 mm yr�1. While stable at

historical rates of relative sea level rise (�3 mm yr�1 locally),

even a slight acceleration would push marshes in this estuary

into the unstable portion of the graph. On the other hand, with

high sediment availability (e.g., Yantze River Delta, China;

SSC = 1000 mg L�1 and TR � 5 m), the modeling frame-

work predicts marshes to be stable at virtually any realistic

sea level rise rate. Kirwan et al. [2010] conclude that while

a moderate IPCC style acceleration in the rate of sea level

rise would threaten marshes in a few estuaries, most would

remain stable. However, faster accelerations in the rate of sea

level rise (>1 m by 2100 [Rahmstorf, 2007]) would submerge

all but the most sediment rich marshes [Kirwan et al., 2010].
[98] Although point-based models of vertical elevation

change converge to fairly similar results (Figures 14 and

15a), there is considerably less confidence in how elevation

trajectories will vary spatially, particularly where influenced

by waves and vegetation zonation. High marshes are subject

to different processes than low marshes (e.g., the role of

organic accumulation increases with elevation), and vegetation

Figure 14. Predicted threshold rates of sea level rise, above which marshes are replaced by subtidal envir-
onments as the stable ecosystem. Each point (open circles) represents the mean threshold rate (�1 SE) pre-
dicted by five numerical models as a function of suspended sediment concentration and spring tidal range.
Pink line denotes thresholds for marshes modeled under a 1 m tidal range, blue line denotes 3 m tidal range,
and the green line denotes 5 m tidal range. Modified from Kirwan et al. [2010].
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species with different tolerance to flooding interact in ways

that can enable or inhibit survival of neighboring species

[Morris, 2006]. Moreover, point-based models miss poten-

tially important interactions between different portions of the

marsh system. For example, channel erosion that accom-

panies platform deepening may bring extra sediment to

interior portions of the marsh platform [D’Alpaos et al.,

2007a; Kirwan et al., 2008]. Alternatively, gradual platform

submergence may be accelerated by the positive feedback

between inundation and wave erosion [Fagherazzi et al.,

2006; Marani et al., 2007]. Incorporating these types of

complexities, common in real intertidal systems, remains

an important goal for the next generation of salt marsh

models.
[99] Existing spatially explicit models help solve some

of these problems. Large-scale, landscape-style models con-

sider separately the evolution of different vegetation types,

and some treat organic accumulation in detail [e.g., Reyes

et al., 2000; Craft et al., 2009; Kairis and Rybczyk, 2010].

These models document the transgression of vegetation

zones and demonstrate that loss of a particular type of marsh

occurs well before the complete drowning of all marshland

[Craft et al., 2009; Reyes et al., 2000; Kirwan and Murray,

2008b; Kairis and Rybczyk, 2010] (Figure 11). Although

salt marsh edge erosion is not comprehensively treated [e.g.,

Mariotti and Fagherazzi, 2010], landscape models offer

insight into the potential expansion of marshes in the upslope

direction. Simulations on the Georgia Coast, for example,

suggest that brackish marshes and shrub-marsh transition

areas will expand [Craft et al., 2009]. Similarly, simulations

on the Fraser River Delta, Canada, predict that, in the absence

of dykes, marsh expansion would more than account for loss

of salt marsh due to sea level rise over the next century

[Kirwan and Murray, 2008b]. Nevertheless, treatments of

processes in these landscape-scale models are necessarily

simplistic and in some cases may overestimate predicted

change [Kirwan and Guntenspergen, 2009]. More detailed,

process-based models consider important interactions

between the channel network and marsh platform, between

wave erosion and vertical accretion, and the competition

between marsh erosion at the seaward edge and marsh

expansion at the landward edge. However, at present, these

tend to be most suitable for exploring the general evolution of

a schematic wetland or simulating a very specific location.

9. CONCLUSIONS

[100] The first generation of models of salt marsh evolution

simulated deposition and accretion processes only along

the vertical dimension (point models [see Allen, 1994;

Woolnough et al., 1995]). These models are simple and of

great conceptual value, but fail to represent the richness of the

marsh landscape. In recent years, several researchers intro-

duced the spatial distribution of sediment fluxes and vege-

tation characteristics in their modeling frameworks. Existing

spatial models range, with increasing complexity, from sim-

ple empirical models that predict sedimentation patterns as a

function of topographic variables [Temmerman et al., 2003a]

to physically based models that simulate water and sediment

flow paths on the basis of simplified hydrodynamic schemes

[D’Alpaos et al., 2007a; Rinaldo et al., 1999b] or on the basis

of a full hydrodynamic description of the feedbacks between

tidal flow and vegetation [Temmerman et al., 2005b]. All of

these approaches have their potentials and limitations. For

example, the numerically simpler models allow the compu-

tation of long-term morphological changes as the result of

platform sediment fluxes and the interaction with other eco-

geomorphological units of tidal marshes, such as the channel

dynamics [D’Alpaos et al., 2007a]. Complex hydrodynamic

modeling provides an opportunity to gain fundamental

Figure 15. Response of (a) marsh elevation and (b) accre-
tion rate to a conservative sea level acceleration (IPCC
A1B scenario [Bindoff et al., 2007]) as predicted by five
point models of salt marsh evolution. The heavy blue line
denotes sea level at spring high water (Figure 15a) or the
sea level rise rate (Figure 15b). Since sea level rise rates
tend to exceed accretion rates, marsh elevations adjust to
sea level acceleration by becoming lower relative to sea
level (i.e., more inundated) (Figure 15a), which enhanced
vertical accretion (Figure 15b). (Experimental conditions:
spring tidal range = 1 m, suspended sediment concentration =
30 mg L�1) [from Kirwan et al., 2010].

Fagherazzi et al.: NUMERICAL MODELS OF SALT MARSH EVOLUTION RG1002RG1002

21 of 28



insights in sediment flux mechanisms, such as the role of

vegetation-flow interactions [Temmerman et al., 2005b].
[101] A key component of numerical models of salt marsh

evolution is the coupling between geomorphology and ecol-

ogy. This coupling must be quantitative, i.e., described by

process-based equations that can be included in numerical

codes. Moreover, the parameters of these equations should be

derived by field or laboratory experiments. In sections 5 and

6 we presented a brief overview of the parametric equations

currently used in salt marsh models, but these studies are still

in their infancy, and more research is clearly needed to

address the influence of biota on morphology and sediment

transport. In fact, several of the expressions used in current

models were derived for specific geographical locations, and

their inclusion in global models is of doubtful validity. The

first interdisciplinary studies involving engineers, biologists,

and geologists have started to address these important feed-

backs, providing the basic blocks for the next generation of

marsh models [see, e.g., Mudd et al., 2009; Kirwan et al.,

2009; Fagherazzi et al., 2011].
[102] Sediment transport dynamics in current models of

salt marsh evolution are extremely simplified and are only a

starting point for the representation of these systems. More

refined models will need to account for complex erosive and

depositional processes in cohesive sediments, the effect of

biota on sediment transport processes, the sedimentology of

organic matter, and the effect of grain size distribution on

erosion and deposition.
[103] Most of the models presented in this review describe

the morphological evolution of salt marshes as a continuous

process regulated by slowly varying inputs of sediment and

sea level rise. In reality both erosion and deposition are sto-

chastic in nature, with infrequent events like storms, hurri-

canes, and heavy rainfalls producing most of the geomorphic

work. Storms trigger wave attack of marsh boundaries and

removal of the vegetation mat [Priestas and Fagherazzi,

2011], as well as enhance sediment remobilization in the

subtidal area leading to high transport and deposition on the

marsh surface [Mariotti and Fagherazzi, 2010]. The inclu-

sion of the variability of external drivers in salt marsh models

is still in a primordial phase [see, e.g., Rybczyk and Cahoon,

2002], and more research is clearly needed on this important

topic.
[104] A few conclusions arise from the applications of

marsh models to climate change and the dynamics of sea

level rise. First, the point-based vertical evolution models

clearly indicate that large swaths of marshland will persist

under conservative projections of sea level rise during the

next century, but will submerge under faster scenarios. In

either case, sea level change will be accompanied by a low-

ering of platform elevations that will lead to a migration of

vegetation zones, and landscape models predict the loss of

some vegetation types. More detailed geomorphic models

predict that platform lowering will be accompanied by an

expansion of the channel network, wave scour, and lateral

erosion of the marsh edge. However, these models are for

now unable to discern between a few basic outcomes. For

example, the models presented herein cannot determine

whether upland expansion of marshes can compensate for

erosion of the salt marsh edge and vertical submergence of

the platform. They cannot quantify the relative importance

of the sediment delivery to the marsh interior from an

expanding channel network or the positive feedback between

wave erosion and inundation.
[105] Further studies are also needed for uncertainty

quantification and error estimation of the model results. In

fact, several of the numerical frameworks presented herein

are based on simplified assumptions, on sparse data sets very

often site-specific, and on parameters that might display high

variability in nature.
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