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NUMERICAL NORMAL FORMS FOR CODIM 2 BIFURCATIONS OF
FIXED POINTS WITH AT MOST TWO CRITICAL EIGENVALUES∗

YU. A. KUZNETSOV† AND H. G. E. MEIJER‡

Abstract. In this paper we derive explicit formulas for the normal form coefficients to verify
the nondegeneracy of eight codimension two bifurcations of fixed points with one or two critical
eigenvalues. These include all strong resonances, as well as the degenerate flip and Neimark–Sacker
bifurcations. Applying our results to n-dimensional maps, one avoids the computation of the center
manifold, but one can directly evaluate the critical normal form coefficients in the original basis. The
formulas remain valid also for n = 2 and allow one to avoid the transformation of the linear part of
the map into Jordan form.

The developed techniques are tested on two examples: (1) a three-dimensional map appearing
in adaptive control; (2) a periodically forced epidemic model. We compute numerically the critical
normal form coefficients for several codim 2 bifurcations occurring in these models. To compute
the required derivatives of the Poincaré map for the epidemic model, the automatic differentiation
package ADOL-C is used.
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1. Introduction. The study of a family of smooth discrete-time dynamical sys-
tems

x �→ f(x, α), x ∈ R
n, α ∈ R

m,(1.1)

usually starts with the analysis of fixed points. Controlling one parameter, one en-
counters codimension 1 bifurcations of fixed points, i.e., critical parameter values
where the stability of a fixed point changes. Continuation of such a point with re-
spect to a second control parameter leads, generically, to a bifurcation curve. Two
codim 1 bifurcation curves may intersect transversally or tangentially, depending on
the nature of the bifurcations. Generically, at such parameter values a so-called codim
2 bifurcation occurs.

Two main issues are involved here. First, it is desirable to know what one can
expect near a generic codim 2 point, i.e., to have canonical two-parameter local bi-
furcation diagrams for a given codim 2 bifurcation. Such diagrams have been derived
for most of the codim 2 bifurcations of fixed points [14, 17]. Technical tools here are
the center manifold reduction and the transformation to a normal form. Even though
in many cases the bifurcation diagrams are in principle incomplete due to global
phenomena, such as homoclinic or heteroclinic tangencies, many essential features of
these diagrams are determined by the critical normal form coefficients. The second
issue is how to apply these theoretical results to concrete discrete-time dynamical
systems. This requires efficient algorithms for the computation of the critical normal
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NORMAL FORMS FOR CODIM 2 FIXED POINTS 1933

form coefficients on the center manifold in terms of the original n-dimensional map
(1.1). Our paper is devoted to the latter problem for a class of codim 2 bifurcations of
fixed points with at most two critical eigenvalues. Once constructed, such algorithms
provide useful initial guesses where to search for global phenomena in applications.
Let us remark that the genericity of a bifurcation in a given system also requires its
nondegeneracy with respect to actual control parameters, which should unfold the
singularity transversally. We briefly discuss this problem at the end of the paper.

There are three codim 1 bifurcations of fixed points of maps, namely, fold, period-
doubling, and Neimark–Sacker. Encountering such a bifurcation one may use the
formulas for the normal form coefficients derived via the central manifold reduction
in [14, pp. 181–186] to check its nondegeneracy (see also [13] where, however, the re-
sulting expressions can still be simplified). Then there are eleven codim 2 bifurcations
appearing as follows: (1) the critical normal form coefficients of a codim 1 bifurcation
may vanish; (2) we can have strong resonances for the Neimark–Sacker bifurcation;
or (3) more eigenvalues may arrive at the unit circle. In this paper we focus on those
cases where the bifurcating fixed point has no more than two eigenvalues on the unit
circle. The center manifold for such bifurcations is one- or two-dimensional. Normal
forms for all of these cases have been derived long ago. Descriptions of the bifurcations
involved can be found in [1, 3, 2, 14, 17]. However, except for the cusp [13, 14, 5] and
fold-flip [17], no explicit formulas for the critical coefficients in n-dimensional cases
seem to be published. For plane diffeomorphisms, the advantage of our technique is
that the linear part of the map need not be transformed into the Jordan form.

As a counterpart to diffeomorphisms, one may consider the center manifold re-
duction for codim 2 bifurcations of equilibria of vector fields. Explicit formulas for
critical normal form coefficients at all five such codim 2 bifurcations have been derived
in [15]. In the present paper we use a suitably adapted version of the same technique
that combines the normalization with the center manifold reduction. This technique
originated in [8].

The paper is organized as follows. In section 2 we review the codim 1 bifurcations
and give a list of all generic codim 2 bifurcations of fixed points. In section 3 we discuss
technicalities of the center manifold reduction for maps. In section 4, which is the main
part of the paper, we consider eight codim 2 bifurcations with at most two critical
eigenvalues. For each of them, we give a critical normal form and derive its coefficients
in the n-dimensional case. In section 5 we apply the developed techniques to two
examples. First, we consider a three-dimensional map appearing in adaptive control.
Using our analytical methods we are able to explain numerical observations reported
in [9]. Then we study a periodically forced epidemic model and compute numerically
the critical normal form coefficients for several codim 2 bifurcations occurring in this
model. To compute the required derivatives of the Poincaré map, the automatic
differentiation package ADOL-C is used.

2. Codim 1 and 2 bifurcations of fixed points. Write (1.1) at some param-
eter values as

x �→ F (x), F : R
n → R

n,(2.1)

and assume that it has a fixed point x = 0. If the Jacobian matrix A = Fx(0) has
no eigenvalue λ with |λ| = 1, i.e., for a hyperbolic fixed point, the dynamics near
the origin is topologically equivalent to that of the linear map x �→ Ax (Grobman–
Hartman theorem). If eigenvalues with |λ| = 1 are present, the center manifold
theorem guarantees the existence of stable, unstable, and center invariant manifolds
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1934 YU. A. KUZNETSOV AND H. G. E. MEIJER

near the fixed point. On the stable and unstable manifolds, the local dynamics is still
determined by the linear part of the map. In contrast, the dynamics in the center
manifold depends on both linear and nonlinear terms. Not all nonlinear terms are
equally important, since some of them can be eliminated by an appropriate smooth
coordinate transformation that puts the map restricted to the center manifold into
a normal form, at least up to some order. Nonhyperbolic fixed points bifurcate; i.e.,
the dynamics near such points changes topologically under parameter variations. The
birth of extra invariant objects, such as cycles or tori, depends on the critical normal
form. Even though neither the center manifold nor the critical normal form on it are
unique, the qualitative conclusions do not depend on the choices that are made.

Assuming sufficient smoothness of F , we write

F (x) = Ax+
1

2
B(x, x)+

1

6
C(x, x, x)+

1

24
D(x, x, x, x)+

1

120
E(x, x, x, x, x)+O(‖x‖6),

where A = Fx(0) and the components of the multilinear functions B, C, D, and E
are given by

Bi(x, y) =

n∑
j,k=1

∂2Fi(0)

∂ξj∂ξk
xjyk,

Ci(x, y, z) =

n∑
j,k,l=1

∂3Fi(0)

∂ξj∂ξk∂ξl
xjykzl,

Di(x, y, z, u) =

n∑
j,k,l,m=1

∂4Fi(0)

∂ξj∂ξk∂ξl∂ξm
xjykzlum,

Ei(x, y, z, u, v) =

n∑
j,k,l,m,s=1

∂5Fi(0)

∂ξj∂ξk∂ξl∂ξm∂ξs
xjykzlumvs

for i = 1, 2, . . . , n. Here and in what follows ‖x‖ =
√
〈x, x〉, where 〈u, v〉 = ūT v is the

standard scalar product in C
n (or R

n).

It is well known that there are three generic codim 1 bifurcations of fixed points.
We first list the corresponding critical normal forms and their coefficients. These can
be found, for example, in [14]; we will re-derive them in section 4.

2.1. Fold. The matrix A has a simple eigenvalue λ1 = 1 and no other eigenvalues
on the unit circle, while the restriction of (1.1) to a one-dimensional center manifold
at the critical parameter value has the form

w �→ w +
1

2
aw2 + O(w3), w ∈ R

1,

where a �= 0. When the control parameter crosses the critical value, two fixed points
collide and disappear. For the coefficient a we have the expression

a = 〈p,B(q, q)〉,(2.2)

where Aq = q, AT p = p, and 〈p, q〉 = 1.
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NORMAL FORMS FOR CODIM 2 FIXED POINTS 1935

2.2. Flip. The matrix A has a simple eigenvalue λ1 = −1 and no other eigenval-
ues on the unit circle. The restriction of (1.1) to a one-dimensional center manifold
at the critical parameter value can be transformed to the normal form

w �→ −w +
1

6
bw3 + O(w4), w ∈ R

1,

where b �= 0. When the control parameter crosses the critical value, a cycle of period
2 bifurcates from the fixed point. This phenomenon is often called a period-doubling
bifurcation. We have

b = 〈p, C(q, q, q) + 3B(q, (I −A)−1B(q, q))〉,(2.3)

where I is the unit n× n matrix, Aq = −q, AT p = −p, and 〈p, q〉 = 1.

2.3. Neimark–Sacker. The matrix A has simple critical eigenvalues λ1,2 =
e±iθ0 and no other eigenvalues on the unit circle. Assume that

eikθ0 �= 1, k = 1, 2, 3, 4 (no strong resonances).

Then, the restriction of (1.1) to a two-dimensional center manifold at the critical
parameter value can be transformed to the normal form

w �→ weiθ0
(

1 +
1

2
d|w|2

)
+ O(|w|4), w ∈ C

1,

where w is now a complex variable and d is a complex number. Further assume that
the first Lyapunov coefficient

c = Re d �= 0.

Under the above assumptions, a unique closed invariant curve around the fixed point
appears when the parameter crosses the critical value. One has the following expres-
sion for d:

d = e−iθ0〈p, C(q, q, q̄) + 2B(q, (I −A)−1B(q, q̄)) + B(q̄, (e2iθ0I −A)−1B(q, q))〉,
(2.4)

where Aq = eiθ0q, AT p = e−iθ0p, and 〈p, q〉 = 1.

2.4. Codimension 2 cases. The following eleven codim 2 bifurcations can be
met in generic two-parameter families of maps (1.1):

D1 : λ1 = 1, a = 0 (cusp);
D2 : λ1 = −1, b = 0 (generalized flip);
D3 : λ1,2 = e±iθ0 , c = 0 (Chenciner point);
D4 : λ1 = λ2 = 1 (1:1 resonance);
D5 : λ1 = λ2 = −1 (1:2 resonance);
D6 : λ1,2 = e±iθ0 , θ0 = 2π

3 (1:3 resonance);
D7 : λ1,2 = e±iθ0 , θ0 = π

2 (1:4 resonance);
D8 : λ1 = 1, λ2 = −1 (fold-flip);
D9 : λ1 = 1, λ2,3 = e±iθ0 ;
D10 : λ1 = −1, λ2,3 = e±iθ0 ;
D11 : λ1,2 = e±iθ0 , λ3,4 = e±iθ1 .
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1936 YU. A. KUZNETSOV AND H. G. E. MEIJER

At bifurcations D1 and D2 the matrix A has one critical eigenvalue, while at D3–
D8 two critical eigenvalues are present. Cases D9 and D10 require three critical
eigenvalues, while in the last case D11 four critical eigenvalues must be present. In
this paper we focus on the cases D1–D8 with most attention to D2–D7. The critical
coefficients for the cusp case (D1) have been derived in [13, 14], while those for the
fold-flip case (D8) can be found in [17]. Nevertheless, for completeness, we present
formulas for the critical coefficients also in these two cases.

3. Center manifold reduction combined with normalization. Suppose
that (2.1) has a nonhyperbolic fixed point x = 0 and that the map obtained by
restriction to the center manifold is transformed to a normal form

w �→ G(w), G : R
nc → R

nc ,

where nc is the number of the critical eigenvalues (counting multiplicity), or, equiva-
lently, the dimension of the center manifold. Locally the critical center manifold can
be parametrized by w ∈ R

nc :

x = H(w), H : R
nc → R

n.

Since the critical center manifold is invariant, we obtain the following homological
equation for H:

H(G(w)) = F (H(w)).(3.1)

Our aim is to find the coefficients of G at the bifurcation point. We approximate the
center manifold using a power series in w. The coefficients of G and H can then be
found by an iterative procedure.

We write Taylor series for G and H

G(w) =
∑
|ν|≥1

1

ν!
gνw

ν , H(w) =
∑
|ν|≥1

1

ν!
hνw

ν ,

where gν are normal form coefficients and ν = (ν1, ν2, . . . , νn) with ν! = ν1!ν2! · · · νn!
and |ν| = ν1 + ν2 + · · · + νn. From the normal form theory, we know whether gν is
nonzero but we do not know its value. If we expand (3.1) in powers of w, then we
obtain a linear system for each hν

Lhν = Rν ,(3.2)

where L is a matrix defined in terms of the Jacobian matrix A and its critical eigen-
values. The right-hand side of (3.2) depends on the coefficients of F , G, and H of
order less than or equal to |ν|. When Rν involves only known quantities, the equation
has a solution, because either L is nonsingular or Rν satisfies Fredholm’s solvability
condition

〈p,Rν〉 = 0,

where p is any null-vector of the adjoint matrix L̄T . If Rν depends on a critical
coefficient gν of G, then L is singular and the solvability condition gives the expression
for gν .

For codim 2 bifurcations we may need to find hν , while L is singular. Using the
bordering technique we can solve such equations. Let M be a complex singular n× n
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NORMAL FORMS FOR CODIM 2 FIXED POINTS 1937

matrix with the one-dimensional null-space spanned by q, an eigenvector correspond-
ing to a simple eigenvalue 0 of M . Similarly, let p be an eigenvector corresponding to
the eigenvalue 0 of the matrix M̄T . Then we construct the nonsingular (n+1)×(n+1)
matrix (

M q
p̄T 0

)
.

Thus we are able to solve the system(
M q
p̄T 0

)(
x
s

)
=

(
y
0

)
,

where s is a complex variable. We write x = M INV y. Since the vector on the right-
hand side is orthogonal to the critical eigenspace of the eigenvalue 0, i.e., 〈p, y〉 = 0,
we will find that s = 0. Note that the solution vector x also satisfies 〈p, x〉 = 0; this
property is used to simplify some expressions below.

4. Critical coefficients for codim 2 bifurcations. In this section we list
critical normal forms on center manifolds for all codim 2 bifurcations with at most
two critical eigenvalues as derived in [14]. Since higher-order terms do not affect
subsequent computations, we give only truncated normal forms. Then we apply the
center manifold reduction combined with normalization to derive explicit formulas for
the critical normal form coefficients.

4.1. Cusp. In this case, there is only one critical eigenvalue +1 and the coeffi-
cient a given by (2.2) vanishes. The truncated normal form for this bifurcation is

w �→ w +
1

6
cw3,(4.1)

where w ∈ R
1 is a local coordinate along the one-dimensional center manifold. We

introduce two vectors such that

Aq = q, AT p = p.

Note that we can choose the vectors p and q such that 〈p, q〉 = 1. Collecting the w2

terms in (3.1) we find the equation

(A− I)h2 = −B(q, q).

The matrix on the left-hand side is singular and the right-hand side satisfies Fred-
holm’s solvability condition, since the defining condition for a cusp is a = 〈p,B(q, q)〉 =
0, see (2.2). Therefore we use the bordering technique to solve for h2. Next, we move
on to the cubic terms and obtain

(A− I)h3 = cq − C(q, q, q) − 3B(q, h2).

This is another singular linear system. Using Fredholm’s solvability condition and the
normalization of q with respect to p, we can express the critical coefficient c as

c = 〈p, C(q, q, q) − 3B(q, (A− I)INVB(q, q))〉.(4.2)

The same formula is obtained in [13, 14]. This case is also considered in [5], where
the analysis is unnecessarily complicated.
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1938 YU. A. KUZNETSOV AND H. G. E. MEIJER

4.2. Generalized flip. In this case, there is only one critical eigenvalue −1 and
the coefficient b given by (2.3) vanishes. The truncated normal form is

w �→ −w +
1

120
cw5,(4.3)

where w ∈ R
1 is a properly selected local coordinate along the one-dimensional center

manifold. We can find eigenvectors such that

Aq = −q, AT p = −p, 〈p, q〉 = 1.

Collecting the w2 terms in (3.1) we obtain

(A− I)h2 = −B(q, q),

which is a nonsingular linear system that has h2 = (I−A)−1B(q, q) as unique solution.
We continue with the w3 terms to get

(A + I)h3 = −C(q, q, q) − 3B(q, h2).

This singular system is solvable since

〈p, C(q, q, q) + 3B(q, h2)〉 = 0

according to (2.3). The fourth-order terms in (3.1) give

(A− I)h4 = −(4B(q, h3) + 3B(h2, h2) + 6C(q, q, h2) + D(q, q, q, q)).

This is a nonsingular system and thus we can solve for h4. Finally, the critical coeffi-
cient c appears in the fifth-order terms

(A + I)h5 = cq − (5B(q, h4) + 10C(q, q, h3) + 10B(h2, h3)

+ 15C(q, h2, h2) + 10D(q, q, q, h2) + E(q, q, q, q, q)).

The solvability of this singular linear system implies

c= 〈p, 5B(q, h4) + 10C(q, q, h3) + 10B(h2, h3)
+ 15C(q, h2, h2) + 10D(q, q, q, h2) + E(q, q, q, q, q)〉.(4.4)

If c �= 0, then the generalized flip is nondegenerate.

4.3. Chenciner bifurcation. This bifurcation occurs when there is a pair of
complex eigenvalues with modulus one and the first Lyapunov coefficient vanishes. It
is also assumed that there are no other critical eigenvalues. The truncated normal
form is

w �→ eiθ0w +
1

2
c1w|w|2 +

1

12
d1w|w|4, eikθ0 �= 1 for k = 1, 2, 3, 4, 5, 6.(4.5)

Here w ∈ C
1 is a suitable local complex coordinate on the center manifold. The first

Lyapunov coefficient l1 = Re(e−iθ0c1) vanishes at the codim 2 point, while the value
of its imaginary part may not vanish. We choose complex eigenvectors such that

Aq = eiθ0q, Aq̄ = e−iθ0 q̄,

AT p = e−iθ0p, AT p̄ = eiθ0 p̄.
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NORMAL FORMS FOR CODIM 2 FIXED POINTS 1939

These can be scaled such that 〈p, q〉 = 1. Collecting the wjw̄k terms in (3.1), we find
the following equations to be satisfied:

quadratic (j + k = 2):

(A− e2iθ0I)h20 = −B(q, q),

(A− I)h11 = −B(q, q̄),

(A− e−2iθ0I)h02 = −B(q̄, q̄),

cubic (j + k = 3):

(A− e3iθ0I)h30 = −C(q, q, q) − 3B(q, h20),

(A− eiθ0I)h21 = c1q − C(q, q, q̄) −B(q̄, h20) − 2B(q, h11),

(A− e−iθ0I)h12 = c1q̄ − C(q, q̄, q̄) −B(q, h02) − 2B(q̄, h11),

(A− e−3iθ0I)h03 = −C(q̄, q̄, q̄) − 3B(q̄, h02).

As an intermediate result we find the expression leading to (2.4) for the coefficient c1

c1 = 〈p, C(q, q, q̄) −B(q̄, (A− e2iθ0I)−1B(q, q)) − 2B(q, (A− I)−1B(q, q̄))〉.(4.6)

quartic (j + k = 4):

(A− e4iθ0I)h40 = −[D(q, q, q, q) + 6C(q, q, h20) + 3B(h20, h20) + 4B(q, h30)],

(A− e2iθ0I)h31 = −[D(q, q, q, q̄) + 3C(q, q, h11) + 3C(q, q̄, h20) + 3B(q, h21)

+ 3B(h11, h20) + B(q̄, h30)] + 3c1h20e
iθ0 ,

(A− I)h22 = − [D(q, q, q̄, q̄) + C(q, q, h02) + C(q̄, q̄, h20) + 4C(q, q̄, h11)

+B(h20, h02) + 2B(h11, h11) + 2B(q, h12) + 2B(q̄, h21)]

+ 2h11(c1e
−iθ0 + c̄1e

iθ0),

(A− e−2iθ0I)h13 = − [D(q, q̄, q̄, q̄) + 3C(q̄, q̄, h11) + 3C(q, q̄, h02) + 3B(q̄, h12)

+ 3B(h11, h02) + B(q, h03)] + 3c̄1h02e
−iθ0 ,

(A− e−4iθ0I)h04 = − [D(q̄, q̄, q̄, q̄) + 6C(q̄, q̄, h02) + 3B(h02, h02) + 4B(q̄, h03)] ,

quintic (j + k = 5):

(A− eiθ0I)h32 =d1q − [E(q, q, q, q̄, q̄) + D(q, q, q, h02) + B(h02, h30) + 6B(h11, h21)

+ 3B(h20, h12)+6C(q, h11, h11) + 3C(q, q, h12) + 6C(q, q̄, h21)

+ 6C(q̄, h11, h20) + C(q̄, q̄, h30) + 3C(q, h20, h02) + 2B(q̄, h31)

+ 3B(q, h22) + 6D(q, q, q̄, h11) + 3D(q, q̄, q̄, h20)]

+ 6h21

(
c1 +

1

2
c̄1e

2iθ0

)
.

Having in mind implementation issues, we remark that computational time can be
saved since h21 = h̄12 and h20 = h̄02. Also the vectors h03, h40, h13, h04, and h32

need not be computed to find the critical normal form coefficient. Further, only for
h21 do we need to use the bordering technique.
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1940 YU. A. KUZNETSOV AND H. G. E. MEIJER

Finally, taking into account 〈p, h21〉 = 0, we obtain the expression

d1 = 〈p,E(q, q, q, q̄, q̄) + D(q, q, q, h02) + 6D(q, q, q̄, h11) + 3D(q, q̄, q̄, h20)

+ 3C(q, h20, h02) + 6C(q, h11, h11) + 3C(q, q, h12) + 6C(q, q̄, h21)

+ 6C(q̄, h11, h20) + C(q̄, q̄, h30) + 3B(h20, h12) + 6B(h11, h21)

+ 3B(q, h22) + B(h02, h30) + 2B(q̄, h31)〉.

(4.7)

The Chenciner bifurcation is nondegenerate if the second Lyapunov coefficient l2 =
Re(e−iθ0d1) + 1

2 Im(e−iθ0c1)
2 is nonzero.

4.4. Resonance 1:1. We have 1:1 resonance if there are two eigenvalues equal
to 1 and no other critical eigenvalues exist. The truncated normal form for this
bifurcation is (

w1

w2

)
�→

(
w1 + w2

w2 +
1

2
aw2

1 + bw1w2

)
,(4.8)

where w ∈ R
2 provides a suitable local parametrization of the two-dimensional center

manifold. We can find (generalized) eigenvectors of A such that

Aq0 = q0, Aq1 = q1 + q0

and similarly for the transposed matrix AT

AT p0 = p0, AT p1 = p1 + p0,

so that 〈p0, q1〉 = 〈p1, q0〉 = 1, 〈p0, q0〉 = 〈p1, q1〉 = 0.
Collecting the w2 terms in (3.1), we obtain the singular linear systems

w2
1 : (A− I)h20 = −B(q0, q0) + aq1,

w1w2 : (A− I)h11 = −B(q0, q1) + h20 + bq1,

w2
2 : (A− I)h02 = −B(q1, q1) + 2h11 + h20.

The solvability of these systems requires that their right-hand sides should be orthog-
onal to p0. This gives

a = 〈p0, B(q0, q0)〉, b = 〈p0, B(q0, q1)〉 + 〈p1, B(q0, q0)〉.(4.9)

There is a Neimark–Sacker bifurcation curve emerging from the codim 2 point. If
s = (b− a) a < 0, the bifurcating invariant curve will be stable.

4.5. Resonance 1:2. Here we have two eigenvalues equal to −1 and no other
critical eigenvalues. The truncated normal form is

(
w1

w2

)
�→

( −w1 + w2

−w2 +
1

6
cw3

1 +
1

2
dw2

1w2

)
,(4.10)

where w ∈ R
2 is a suitable local parametrization of the critical center manifold. First

we find generalized eigenvectors of A and AT

Aq0 = −q0, Aq1 = −q1 + q0,

AT p0 = −p0, AT p1 = −p1 + p0,
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NORMAL FORMS FOR CODIM 2 FIXED POINTS 1941

satisfying the same normalization conditions as at 1:1 resonance. Collecting the
quadratic terms in (3.1) we get

w2
1 : (A− I)h20 = −B(q0, q0),

w1w2 : (A− I)h11 = −B(q0, q1) − h20,

w2
2 : (A− I)h02 = −B(q1, q1) − 2h11 + h20.

Notice that the matrix (A − I) is nonsingular, since A has only a double eigenvalue
λ = −1 on the unit circle. Therefore, one can solve these equations for h20, h11, and
h02 in the usual way.

From the cubic terms we will find the equations

w3
1 : (A + I)h30 = cq1 − 3B(q0, h20) − C(q0, q0, q0),

w2
1w2 : (A + I)h21 = dq1 + h30 − 2B(q0, h11) −B(q1, h20) − C(q0, q0, q1),

w1w
2
2 : (A + I)h12 = 2h21 − h30 − 2B(q1, h11) −B(q0, h02) − C(q0, q1, q1),

w3
2 : (A + I)h03 = 3(h12 − h21) + h30 − 3B(q1, h02) − C(q1, q1, q1).

Now we can easily determine the critical coefficient c

c = 〈p0, C(q0, q0, q0) + 3B(q0, (I −A)−1B(q0, q0))〉.(4.11)

The equation for the critical coefficient d involves the vector h30. Taking the scalar
product with p1, we find that 〈p0, h30〉 = −〈p1, 3B(q0, h20) + C(q0, q0, q0)〉 from the
equation at the w3

1 term. Then the solvability of the equation for h21 implies

d = 〈p0, 2B(q0, h11) + B(q1, h20) + C(q0, q0, q1)〉 + 〈p1, 3B(q0, h20) + C(q0, q0, q0)〉.
(4.12)

Note that only the quadratic approximation of the center manifold is computed ex-
plicitly. The nondegeneracy conditions are C1 = 2c/3 �= 0 and D1 = −d − c �= 0. If
C1 < 0, then the critical point is a saddle, if C1 > 0, then the critical point is elliptic.
The coefficient D1 determines the bifurcation scenario under generic perturbations
(see [14] for details).

4.6. Resonance 1:3. Similar to the Chenciner bifurcation, the normal form for
the resonance 1:3 has been studied in the complex form. However, one quadratic
term in the normal form cannot be eliminated due to the appearance of two complex
conjugated eigenvalues which are cubic roots of unity. The truncated normal form is
given by

w �→ eiθ0w +
1

2
bw̄2 +

1

2
cw|w|2, θ0 =

2π

3
,(4.13)

where w ∈ C
1 is a normalizing local coordinate on the center manifold. Now we select

complex eigenvectors such that

Aq = eiθ0q, Aq̄ = e−iθ0 q̄,

AT p = e−iθ0p, AT p̄ = eiθ0 p̄,

and 〈p, q〉 = 1. The quadratic part of the homological equation (3.1) gives

w2 : (A− e2iθ0I)h20 = b̄q̄ −B(q, q),

ww̄ : (A− I)h11 = −B(q, q̄),

w̄2 : (A− e−2iθ0I)h02 = bq −B(q̄, q̄).
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1942 YU. A. KUZNETSOV AND H. G. E. MEIJER

We remark that the first and third equations are complex conjugated, so h̄20 = h02.
Second, since ei2π/3 is an eigenvalue of A, we have a singularity implying that h02

should be found using a bordered system. As before, the solvability condition gives

b = 〈p,B(q̄, q̄)〉.(4.14)

We only collect the z2z̄ terms, since this is all we need to find the critical coefficient c,

(A− eiθ0I)h21 = cq + e−iθ0 b̄h02 − 2B(q, h11) −B(q̄, h20) − C(q, q, q̄).

From (4.14) it follows that 〈p, h02〉 = 0, so that we obtain the expression for c, which
is similar to that of the Neimark–Sacker coefficient if b = 0, cf. (2.4),

c =〈p, C(q, q, q̄) + 2B(q, (I −A)−1B(q, q̄)) −B(q̄, (e2iθ0I −A)INV (b̄q̄ −B(q, q)))〉.
(4.15)

If b �= 0, the real part of c1 = 3
4 (2ei4π/3c − |b|2) determines the stability of the

bifurcating invariant closed curve.

4.7. Resonance 1:4. For this bifurcation the quadratic terms can be eliminated,
but two cubic terms cannot be neglected. The truncated normal form is given using
a normalizing complex coordinate w ∈ C

1 on the center manifold by

w �→ eiθ0w +
1

2
cw|w|2 +

1

6
dw̄3, θ0 =

π

2
.(4.16)

As usual, we select complex eigenvectors such that

Aq = eiθ0q, Aq̄ = e−iθ0 q̄, AT p = e−iθ0p, AT p̄ = eiθ0 p̄, 〈p, q〉 = 1.

The quadratic part of (3.1) gives

w2 : (A + I)h20 = −B(q, q),

ww̄ : (A− I)h11 = −B(q, q̄),

w̄2 : (A + I)h02 = −B(q̄, q̄).

Since ±1 are not the eigenvalues of A, we can easily find h20, h11, and h02. Now as
above we only collect the coefficient in front of the resonant terms:

(A− eiθ0I)h21 = cq − 2B(q, h11) −B(q̄, h20) − C(q, q, q̄),

(A− eiθ0I)h03 = dq − 3B(q̄, h02) − C(q̄, q̄, q̄).

The solvability conditions imply

c = 〈p, C(q, q, q̄) + 2B(q, (I −A)−1B(q, q̄)) −B(q̄, (I + A)−1B(q, q))〉(4.17)

and

d = 〈p, C(q̄, q̄, q̄) − 3B(q̄, (I + A)−1B(q̄, q̄))〉.(4.18)

If d �= 0, then

A0 = −3ic

|d|

determines the bifurcation scenario near the 1:4 point (see details in [14]).
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NORMAL FORMS FOR CODIM 2 FIXED POINTS 1943

4.8. Fold-flip. For completeness, we include here the results from [17], where the
formulas for center manifold reduction for the fold-flip bifurcation have been derived.
This bifurcation is characterized by two simple eigenvalues on the unit circle, one +1
and one −1. The hypernormal form is

(
x
y

)
�→

(
x +

1

2
a0x

2 +
1

2
b0y

2 +
1

6
c0x

3 +
1

2
d0xy

2

−y + xy

)
.(4.19)

The matrix A has the eigenvalues λ1,2 = ±1. Introduce the associated eigenvectors
q1, q2, p1, p2, such that

Aq1 = q1, AT p1 = p1, 〈p1, q1〉 = 1,

Aq2 = −q2, AT p2 = −p2, 〈p2, q2〉 = 1.

First one computes the coefficients a1, b1, e1

a1 = 〈p1, B(q1, q1)〉, e1 = 〈p2, B(q2, q1)〉, b1 = 〈p1, B(q2, q2)〉.

Then we have to compute the quadratic approximation of the center manifold. As
before we use the bordering technique to find

h20 = (A− I)INV (〈p1, B(q1, q1)〉q1 −B(q1, q1)),

h11 = (A + I)INV (〈p2, B(q1, q2)〉q2 −B(q1, q2)),

h02 = (A− I)INV (〈p1, B(q2, q2)〉q1 −B(q2, q2)).

Then as another intermediate result we find the coefficients ci

c1 = 〈q1, C(q1, q1, q1) + 3B(q1, h20)〉,
c2 = 〈q1, C(q1, q2, q2) + B(q1, h02) + 2B(q2, h11)〉,
c3 = 〈p2, C(q1, q1, q2) + B(q2, h20) + 2B(q1, h11)〉,
c4 = 〈p2, C(q2, q2, q2) + 3B(q2, h02)〉.

Provided that e1 �= 0, the coefficients for (4.19) are given by

a0 =
a1

e1
, b0 = b1e1, c0 =

c1
e2
1

, d0 = c2 +
1

e1

(
b1c3 −

1

3
(2e1 + a1)c4

)
.(4.20)

The nondegeneracy conditions are a0, b0 �= 0. If a0 < 0 and b0 > 0, then also
3a0b0 + a0d0 + a2

0b0 − b0c0 �= 0 is required.

5. Examples. In this section we apply the results obtained in the previous sec-
tion to two examples. The first is a map in R

3 from the theory of adaptive control [9].
The second example is a seasonally forced epidemic model [18], defined by a system
of time-periodic ODEs in R

3, for which the Poincaré map and its derivatives have to
be computed numerically. In both examples, we study codim 2 bifurcations of fixed
points.

5.1. Adaptive control map. Consider a model for controlling a single-input/
single-output plant. The process to be controlled is discrete and the control law is
linear. Golden and Ydstie [10] have introduced a specific example where the output
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1944 YU. A. KUZNETSOV AND H. G. E. MEIJER

is regulated to a constant by a low-order feedback. This leads to the following map
G : R

3 �→ R
3:

G :

⎛
⎝ x

y
z

⎞
⎠ �→

⎛
⎜⎝

y
bx + k + zy

z − ky

c + y2
(bx + k + zy − 1)

⎞
⎟⎠ .(5.1)

The coefficient b measures the mismatch between the reference and the real model.
The coefficient k represents an error in the assumption on how strong the output
variable is controlled. Choosing b = 0, k = 1 implies no errors. The coefficient
c comes from the controller design. It is positive to avoid division by zero. For
a control mechanism it is best to have as little complicating behavior as possible.
Since the possible bifurcation sequences are determined by the critical normal form
coefficients, we may choose the constant c to prevent too complex behavior. The
system was studied in [9] numerically near strong resonance points. A derivation of
the map can also be found in this paper.

There are two codim 1 bifurcation curves for fixed points with several codim 2
points. We can compute the second- and third-order derivatives of this map analyti-
cally. This allows us to compute the normal form coefficients for the strong resonances
analytically and to study their dependence on c.

This map has one fixed point given by (x, y, z) = (1, 1, 1−b−k). Local bifurcation
analysis reveals two codim 1 bifurcation curves shown in Figure 5.1. For

bf = 1 −
(

1

2
+

1

4(c + 1)

)
k

the fixed point undergoes a period-doubling, while if

bNS = −
(
c + 1

c + 2

)

and k2 + 4bk < 0, an invariant curve emerges from the fixed point via the Neimark–
Sacker bifurcation.

Starting from k = 0 on the Neimark–Sacker curve and tracing it until we meet the
period-doubling curve, we encounter strong resonances. These occur for the following
values of k:

(1 : 4) k =
2(c + 1)

c + 2
, (1 : 3) k =

3(c + 1)

c + 2
, (1 : 2) k =

4(c + 1)

c + 2
.(5.2)

As is observed in [9], at (k, c) = (1.308 . . . , 0.1) the Neimark–Sacker bifurcation is
degenerate.

In Appendix A we provide the expressions for the relevant eigenvectors and the
derivatives of (5.1) up to and including the fifth-order.

• Resonance 1:2. A straightforward computation using (4.11), (4.12), and
the expressions from Appendix A yields

C1 =
4(2 + c)2(1 − 3c− 2c2 − 2c3)

(3 + 2c)(1 + c)2
,

D1 =
(2 + c)2(−25 + 51c + 40c2 + 56c3 + 8c4)

(3 + 2c)(1 + c)2
.

For small c up to c ≈ 0.347 the coefficient D1 is negative, while C1 is positive up to
c ≈ 0.271.
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NORMAL FORMS FOR CODIM 2 FIXED POINTS 1945

Fig. 5.1. Local bifurcations of (5.1) for c = 1/10: f (1)—flip (period-doubling), h(1)—Neimark–
Sacker bifurcation of the fixed point. Labels (1 : k) denote the strong resonances; DH1,2 are the
Chenciner points. The codim 2 points are studied in this paper.

• Resonance 1:3. Now we compute c by formula (4.15) and find

Re c1 =
3(2 + c)(−22 − 105c − 76c2 + 155c3 + 237c4 + 111c5 + 18c6)

2(1 + c)2(7 + 9c + 3c2)2
.

Since c > 0 but small, this means that the invariant closed curve existing close to the
1:3 bifurcation is stable.

• Resonance 1:4. This bifurcation has the most complicated bifurcation
sequences. Using (4.17) and (4.18), we get

A0(c) =
(2 + c− 4c2 + 3c3 + 2c4) − i(1 + 36c + 40c2 + 17c3 + 4c4)√

(5 + 6c + 2c2)(1 − 10c + 83c2 + 12c3 + 4c4 + 8c5 + 2c6)
sgn(3 + 2c).

(5.3)

Consider now the case with small positive c. The real part of A0 is always positive.
If we start with c = 0 we find |A0| = 1, and thus we will encounter the bifurcation
sequences IV(a), III(a), III, V, V(a), VI, and VIII (here the labeling from [14] is used).
Actually, for small negative c we are within the unit circle in the A0-plane, and the
dynamics is simple.

• Chenciner bifurcation. For the Neimark–Sacker bifurcation we derive
using (2.4) the following expression for the first Lyapunov coefficient:

l1 = (b(1 + b)2(1 + 2b)(4 + 4b + 3b2) + (4 + 21b + 50b2 + 102b3 + 92b4 − 7b5)k

+ (14b + 72b2 + 79b3 − 3b4)k2 + (1 + 3b)(3 + 5b)k3)

/(2b2(1 + b)((1 + b)2 + k)(b(1 + b)2 + 4bk + k2)).
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1946 YU. A. KUZNETSOV AND H. G. E. MEIJER

For c = 1/10 we have bNS = −11/21 and l1 vanishes at two points, namely, DH1

with k ≈ 1.30064 and DH2 with k ≈ 0.0214 (see Figure 5.1). The first point has been
reported in [9] but not analyzed; the second point was overlooked.

For c = 0.1, b ≈ −.52381, and k ≈ 1.30064, we find e−iθc1 ≈ 0.754395i. As we
have already mentioned, the first Lyapunov coefficient vanishes close to this point. We
compute the derivatives up to fifth order (see Appendix A) and then solve recursively
for hjk. This gives

h20 ≈ (−1.4588 − 1.5723i, 0.5516 + 2.0727i, 1.6970 − 1.7342i),

h11 ≈ (−0.7019,−0.7019, 1.1871),

h30 ≈ (−4.7567 − 2.9281i,−5.3569 + 1.5823i, 4.2621 − 4.3465i),

h21 ≈ (1.5723 − 1.7334i, 1.9215 + 1.1523i, 3.1354 − 2.1245i),

h31 ≈ (−6.4614 + 18.7153i, 9.7894 − 12.2548i, 1.9848 − 3.2357i),

h22 ≈ (5.6473 − 12.5220i, 5.6473 − 12.5220i, 21.4770 − 5.9938i).

Using these values for the second Lyapunov coefficient (4.7) we find d1 ≈ −28.546.
The same procedure can be carried out for the second point yielding d1 ≈ 26720.8.
This implies that both Chenciner bifurcations in (5.1) are nondegenerate.

From a control point of view, coexistence of the fixed point together with stable
attractors is undesirable. In the original paper [9] numerical continuation of fixed
points and computation of one-dimensional stable and unstable manifolds were used.
The coexistence of global stable attractors together with the period-one fixed point
and tangencies of stable and unstable manifolds were then deduced from the phase
portraits. The authors pointed out that it was difficult to characterize the bifurca-
tions near the codim 2 points. However, first, we computed the critical normal form
coefficients symbolically and thus we were able to check that these are indeed non-
degenerate codim 2 bifurcations. Second, we were able to verify the hypothesis that
some global bifurcations occurred. Since these are present in the normal form for
certain values of the critical normal form coefficients, by continuity they should also
be observed away from the resonances. The analysis showed that a specific choice of
c > 0 may lead to more desirable bifurcation sequences.

5.2. Example: SEIR-model. The SEIR epidemic model describes the spread
of a nonlethal disease in a large population, which is divided into four classes: sus-
ceptible (S), exposed (E), infective (I), and recovered (R). Let us briefly introduce
the model (see [6] for details and references). New susceptibles are “born” with the
growth rate μ; β is the contact rate between susceptibles and infectives. The exposed
become infective with the rate α and the infectives recover with the rate γ. This gives⎧⎨

⎩
Ṡ =μ− μS − βSI,

Ė =βSI − (μ + α)E,

İ =αE − (μ + γ)I,

(5.4)

and R = 1−S −E − I. In [18] effects of a seasonal variation of the contact rate with
other parameters constant,

β = β0(1 + δ cos(2πt)),

were studied numerically by considering the Poincaré map

P : (S(0), E(0), I(0)) �→ (S(1), E(1), I(1)).(5.5)
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NORMAL FORMS FOR CODIM 2 FIXED POINTS 1947

Fig. 5.2. Bifurcation diagram of the SEIR-model. Labels t(k)(f (k)) denote fold (flip) bifurcation
of period-k cycles. Point C corresponds to the cusp bifurcation of period-2 cycles; D1,2 are the
degenerate flip points. The codim 2 points are studied in this paper.

For measles the characteristic parameters are μ = 0.02, α = 35.842, and γ = 100.
A bifurcation diagram in two parameters (β, the mean value, and δ, the degree of
seasonality) was obtained. Codim 2 bifurcations, namely, cusps and degenerate flips,
were found.

We used CONTENT [16] to recompute the codim 1 bifurcation curves obtained
in [18] and to locate the codim 2 points (see Figure 5.2):

Point Parameter Coordinates
C δ ≈ 0.5327 S ≈ 0.02229

β0 ≈ 5928 E ≈ 0.1887 × 10−7

I ≈ 0.5499 × 10−8

D1 δ ≈ 0.03815 S ≈ 0.05029
β0 ≈ 2015 E ≈ 5.3301 × 10−4

I ≈ 1.8846 × 10−4

D2 δ ≈ 0.1328 S ≈ 0.03566
β0 ≈ 3019 E ≈ 4.9463 × 10−4

I ≈ 1.6794 × 10−4

The Poincaré map (5.5) was computed using the Runge–Kutta–Fehlberg integration
method of order 7–8 with the absolute step tolerance 10−14. The derivatives of the
Poincaré map were obtained with the same accuracy as the Poincaré map using the
automatic differentiation package ADOL-C [11] (see Appendix B). Then the formulas
for the critical normal form coefficients derived in section 4 were implemented in
MATLAB.

Instead of the original SEIR-model (5.4), we used an equivalent system for s =
logS, e = logE, and i = log I. When the variables are small, integrating this equiva-
lent system is numerically more stable.
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1948 YU. A. KUZNETSOV AND H. G. E. MEIJER

For the critical normal form coefficients (2.2) and (4.2) we have found

Cusp : a ≈ −7.53 × 10−7, c ≈ −0.224.(5.6)

We see that the cusp point is indeed nondegenerate, so that precisely three cycles of
period 2 exist for nearby parameter values.

For the degenerate flip points we have obtained using (2.3) and (4.4) the following
values:

D1 : b ≈ −2.33 × 10−6, c ≈ 0.764,

D2 : b ≈ −1.49 × 10−5, c ≈ −0.0313.

Thus, these points are nondegenerate and one fold bifurcation curve t
(2)
k emanates

tangentially to f (1) from each codim 2 point Dk for k = 1, 2 (see Figure 5.2).

Now consider the region enclosed by f (1), t
(2)
1 , and t

(2)
2 . Here two different stable

period-two attractors coexist, one with two-yearly outbreaks, the other with yearly

outbreaks. One comes from the curve t
(2)
1 originating in D1. The other is a result of

the period doubling when crossing f (1). This region exists, because the coefficients c
of D1 and D2 have opposing signs.

Since we verified the nondegeneracy numerically, this implies that we indeed deal
with codim 2 points. So near the codim 2 points D1,2 and C no other bifurcations
exist, and the picture is complete.

6. Discussion. In this paper we have derived the explicit formulas for the normal
form coefficients to verify the nondegeneracy of codim 2 bifurcations of fixed points
with one or two critical eigenvalues. In many previous studies, the nondegeneracy of
such points was merely assumed. Applying our results to n-dimensional maps, one
avoids the computation of the center manifold, but can directly evaluate the critical
normal form coefficients in the original basis. Note that the formulas remain valid
also for n = 2 and allow one to avoid the transformation of the linear part of the map
into Jordan form. Thus they can also be useful in the analysis of planar maps.

The derived formulas are suitable for a direct implementation in any symbolic
manipulation or numerical package supporting complex arithmetic. We plan to im-
plement these formulas for the Map class of dynamical systems in the next version of
CONTENT [16].

Normal form coefficients for the remaining three codim 2 bifurcations of fixed
points (cases D9, D10, and D11 from section 2) can be easily obtained using the same
normalization techniques. These formulas will be reported elsewhere, together with
the detailed bifurcation analysis of the corresponding unfoldings.

Analysis of codim 2 bifurcations of limit cycles is a more delicate problem. The
derived formulas above for the normal form coefficients can be applied also in this
case, provided that all necessary derivatives of the Poincaré map are computed at its
fixed point corresponding to the limit cycle. For nonstiff ODEs, this can be achieved
either by integrating appropriate variational equations or using automatic differen-
tiation. This gives the full derivatives of the T -shift along the orbits of the system,
which should then be projected to the Poincaré cross section (see [17] for the first-,
second-, and third-order derivatives). For stiff ODEs, this approach will not work,
since even accurate computation of the Poincaré map may be problematic. In such
cases, numerical techniques based on discretized boundary-value problems (BVPs)
with the piecewise polynomial approximation of solutions and the orthogonal collo-
cation proved to be suitable for the continuation of limit cycles and their bifurcations
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[7]. Development of robust numerical methods for the normal form analysis of limit
cycle bifurcations which fit into the BVP framework remains an important research
area.

Finally, let us mention that the full verification of the genericity of a codim
2 bifurcation would require not only establishing its nondegeneracy at the critical
parameter values but also a careful analysis of how the system depends on parameters.
Here we have not aimed at verifying the transversality of the bifurcations with respect
to parameters. Nevertheless, the normalization technique used in the paper allows for
a generalization to parameter-dependent maps, so that canonical unfolding parameters
could be expressed in terms of the actual system parameters (see [17] for the fold-flip
case and [4, Section 11], where some of the codim 2 cases for vector fields have been
treated). In practice, a codim 2 singularity is often detected while computing codim
1 bifurcation curves. In such cases, the transversality with respect to parameters may
be deduced from the tangency or transversality of these curves in the parameter plane
at the codim 2 point.

Appendix A. Here we give the expressions of the eigenvectors on the Neimark–
Sacker curve along which all four codim 2 bifurcations occur. We fix c = −( 2b+1

b+1 )
rather than b, since this simplifies formulas. The equivalent expressions can easily be
computed.

The Jacobi matrix at the fixed point is

A =

⎛
⎜⎝

0 1 0
b 1 − b− k 1

k(1 + b)
k(1 + b)(1 − b− k)

b
1 + k +

k

b

⎞
⎟⎠

with eigenvalues

λ1 =
2b + k −

√
k(4b + k)

2b
, λ2 =

2b + k +
√
k(4b + k)

2b
, λ3 = −b.

If k2 + 4bk < 0, then the eigenvectors corresponding to λ1 are

q =

(
−k(3b + k) + (b + k)

√
k(4b + k)

2kb(b + 1)
,
−k +

√
k(4b + k)

2k(b + 1)
, 1

)T

,

p =
1

α

(
−1

2
(k +

√
k(4b + k)),− 1

2b
(k(2b + 1) +

√
k(4b + k)), 1

)T

,

where

α =
(1 + b + k)(k + 4b) − (1 + 3b + k)

√
k2 + 4b

2b(1 + b)
.

Then the derivatives are given by

B(p, q) =

⎛
⎜⎜⎜⎜⎜⎝

0
p2q3 + p3q2

(1 + b)(2 + 3b)k

k
(p1q2 + p2q1) +

2(1 + b)(2 + 3b)k(1 − b− k)

b2
p2q2

+
(1 + b)(1 + 2b)k

b2
(p2q3 + p3q2)

⎞
⎟⎟⎟⎟⎟⎠ .D
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It is easy to see that for the third- and higher-order tensors only the third component
will be nonzero. We write

C(p, q, r) =

⎛
⎜⎜⎜⎝

0
0

3∑
i,j,k=1

Cijkpiqjrk

⎞
⎟⎟⎟⎠ ,

where at least two indices of Cijk are equal to two, otherwise the coefficient is zero.
We have

C122 = C212 = C221 =
2(1 + b)2(4 + 7b)k

b2
,

C222 =
6(1 + b)2(4 + 7b)k(1 − b− k)

b3
,

C322 = C232 = C223 =
2(1 + b)2(1 + 2b)(4 + 5b)k

b3
.

In a similar manner we find

D(p, q, r, s) =

⎛
⎜⎜⎜⎝

0
0

3∑
i,j,k,l=1

Dijklpiqjrksl

⎞
⎟⎟⎟⎠ ,

where at least three indices of Dijkl are equal to two, otherwise the coefficient is zero.
We have

D1222 = D2122 = D2212 = D2221 =
6(1 + b)2(8 + 24b + 17b2)k

b3
,

D2222 =
24(1 + b)2(8 + 24b + 17b2)k(1 − b− k)

b4
,

D3222 = D2322 = D2232 = D2223 =
24(1 + b)2(1 + 2b)(2 + 3b)k

b4
.

And finally the fifth-order tensors are given by

E(p, q, r, s, t) =

⎛
⎜⎜⎜⎝

0
0

3∑
i,j,k,l,m=1

Eijklmpiqjrksltm

⎞
⎟⎟⎟⎠ ,

where

E12222 = E21222 = E22122 = E22212 = E22221 =
24(1 + b)3(16 + 52b + 41b2)k

b4
,

E22222 =
120(1 + b)3(16 + 52b + 41b2)k(1 − b− k)

b5
,

E32222 = E23222 = E22322 = E22232 = E22223 =
24(1 + b)2(1 + 2b)(16 + 44b + 29b2)k

b5
,

and all other coefficients are zero.
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Appendix B. In section 5.2 we have studied codim 2 bifurcations of periodic
solutions in the epidemic model. For the analysis we needed third- or even fifth-order
derivatives of the Poincaré map. These numerical data can be obtained using ADOL-C
[11], a package for automatic differentiation, that is more accurate and efficient than
finite differences or integrating variational equations. Here we describe how we have
used this package and give an example code.

We start with a solution Y = Y (t) of a T -periodic ODE

Ẏ = f(Y, t), Y ∈ R
n.

A periodic solution corresponds to a fixed point of the Poincaré (period) map Y (0) �→
Y (T ) = P (Y (0)). Continuation of codim 1 bifurcations of fixed points can be done,
for instance, in CONTENT [16]. Continuation using ADOL-C has been explored in
[12]. Thus we may encounter a codim 2 bifurcation. To perform the normal form
analysis of the codim 2 bifurcation, we need the derivatives of the Poincaré map. For
most cases, third-order derivatives are sufficient, but for some cases fifth-order tensors
are required. These may be programmed as follows.

First the variables and parameters are initialized and then the active section is
marked with the command trace on. The initial point Y (0) is passed by overloading
to a variable which is of type adouble defined by ADOL-C. Then we integrate the
system until time T and get the final point Y (T ). This point is passed on to a pas-
sive variable, again by overloading, and we mark the end of the active section with
the command trace off. Now the derivatives can be obtained with the command
tensor eval and stored for the computation of the critical normal form coefficients.1

The following code in C++ shows how the third-order derivatives for the cusp of sec-
tion 5.2 can be computed.

Note that here we treat the periodic case only. For autonomous systems, the
total derivative of the flow can be computed with ADOL-C and then projected on a
Poincaré cross section, see [17].

/*--------------------------Example code--------------------------*/

#include <math.h>

#include "adouble.h" // these ADOL-C files should be accessible from

#include "drivers.h" // the compiling directory

#include "taylor.h"

#include "adalloc.h"

#include "util.c" // the function onestep is programmed in util.c

#define ny 3 // ny is the phase dimension

#define np 5 // np is the number of parameters

int i;

double TIME,PERIOD,STEP;

double Y[ny],YSEC[ny],PAR[np];

/*--------------------------initializations-----------------------*/

void init(double *TIME, double *PERIOD, double *STEP, double *Y,

double *PAR){

*TIME = 0;

*PERIOD = 2.00000000E+00;

*STEP = 1E-03;

1We did this computation in MATLAB.
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1952 YU. A. KUZNETSOV AND H. G. E. MEIJER

Y[0] = 0.00350065958911; // This is the cusp point from

Y[1] = 0.00119618571534; // section 5.2

Y[2] = 5.444402484663578E-04;

PAR[0] = 2.00000E-02;

PAR[1] = 3.58420E+01;

PAR[2] = 5.92846844109E+03;

PAR[3] = 1.00000E+02;

PAR[4] = 0.535277498805;

}

*--------------------------Main Program--------------------------*/

int main() {

init(&TIME, &PERIOD, &STEP, Y, PAR);

trace_on(1);

adouble *ay; // define computational variables

ay = new adouble[ny];

for (i = 0; i<ny; i++) ay[i] <<= Y[i]; // pass initial values

i=1;

do {

if(TIME+STEP-PERIOD >0){ // stop if time == period

STEP = PERIOD-TIME;

i=0;

}

onestep(&STEP, &TIME, PAR, ay); // make one time step

} while(i!=0);

for (i = 0; i<ny; i++) ay[i] >>= YSEC[i]; // pass final values

delete[] ay;

trace_off();

poincare(Y);

}

The function onestep should be written such that the adouble ay is passed to an-
other adouble. In our code we assumed that a one-step integration method is used.
This can be easily adjusted to multistep methods. Note also that the stepsize STEP is
assumed to be automatically adjusted in onestep according to predefined tolerances.

/*---------------------Obtain the derivatives-----------------------*/

void poincare(double *Y) {

int i,j,k,p,dim;

int d=4;

int* multi = new int[d];

double** S = new double*[ny];

for (i = 0; i < ny; i++) {

S[i] = new double[ny];

for (j = 0; j < ny; j++){

S[i][j] = (i==j)? 1.0:0.0;

}

}

dim = binomi(ny+d, d);
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double** tensors;

tensors = myalloc2(ny, dim);

tensor_eval(1, ny, ny, d, ny, Y, tensors, S);

double* tensor = new double[dim];

double DERIV[ny+1][ny+1][ny+1][ny+1];

multi[0] = 0;

for (i = 0; i < ny+1; i++) {

for (j = i; j < ny+1; j++) {

for (k = j; k < ny+1; k++) {

multi[1] = k;

multi[2] = j;

multi[3] = i;

tensor_value(d, ny, tensor, tensors, multi);

for (p = 0; p < ny; p++) DERIV[p][k][j][i]=tensor[p];

}

}

}

delete[] multi;

free(tensors);

free(tensor);

}

The variable DERIV will contain the required information as follows:

DERIV[p][i][0][0] =
∂Pp(Y (0))

∂Yi
, i ≥ 1,

DERIV[p][i][j][0] =
∂2Pp(Y (0))

∂Yi∂Yj
, i ≥ j ≥ 1,

DERIV[p][i][j][k] =
∂3Pp(Y (0))

∂Yi∂Yj∂Yk
, i ≥ j ≥ k ≥ 1,

where the indices i, j, k are nonincreasing and p denotes the component of P . Thus,
only one half of the derivatives is stored, which causes no problems if the map P
is smooth enough. These derivatives may be stored in a file for further analysis in
MATLAB.
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