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Numerical prediction of absolute crystallization rates
in hard-sphere colloids

S. Auera) and D. Frenkel
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 8 September 2003; accepted 11 November 2003!

Special computational techniques are required to compute absolute crystal nucleation rates of
colloidal suspensions. Using crystal nucleation of hard-sphere colloids as an example, we describe
in some detail the novel computational tools that are needed to perform such calculations. In
particular, we focus on the definition of appropriate order parameters that distinguish liquid from
crystal, and on techniques to compute the kinetic prefactor that enters in the expression for the
nucleation rate. In addition, we discuss the relation between simulation results and theoretical
predictions based on classical nucleation theory. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1638740#

I. INTRODUCTION

A collection of identical hard spheres is probably the
simplest model system that undergoes a first order freezing
transition. For low packing fractions the particles are in a
liquid state, but when the packing fraction exceeds a value of
49.4% an ordered solid state becomes more stable. This was
first shown in computer simulations by Hoover and Ree1 in
1968. Initially, liquids and solids of hard spheres were purely
theoretical concepts, but in the 1970s and 1980s experimen-
tal realizations of the hard sphere were developed, viz. sus-
pensions of hard, uncharged colloids.2,3 For instance, in
1986, Pusey and van Megen showed that polymethyl-
methacrylate~PMMA! particles stabilized by chemically
grafted polyhydroxystearic acid~PHSA! reproduced closely
the equilibrium phase behavior expected of hard spheres.3

Nowadays other realizations are also known.4,5

Whereas initially the experimental study of hard-sphere
colloids focused on the equilibrium phase behavior, during
the past decade the focus has shifted towards the experimen-
tal study of the phase transition kinetics of hard-sphere
colloids.6–8 Crystallization in colloidal suspensions is inter-
esting because it can be studied in considerable detail. The
major problem of experimental investigations of crystalliza-
tion kinetics in atomic systems is the high speed of nucleus
formation and subsequent crystal growth, as well as the dif-
ficulty of preventing heterogeneous nucleation. Colloidal
particles are much larger than atoms and therefore crystallize
on a time scale that is about ten orders of magnitude longer
than that in atomic systems. Moreover, because of their size,
colloids can be probed by powerful optical methods such as
time-resolved static laser light scattering and confocal mi-
croscopy. In these systems it is also somewhat easier to con-
trol heterogeneous nucleation. In a recent letter9 we reported
a numerical study of the crystallization kinetics in hard-
sphere colloids. This work demonstrated that it is now pos-
sible to make parameter-free predictions of crystal nucleation

rates that could be compared quantitatively with experiment.
Interestingly, there are some significant differences between
the numerical predictions and the experimental results. This
is surprising as so far experiments and computer simulations
of hard spheres agree on almost every physical property~for
an overview see, e.g., Ref. 10!.

In the present paper we give a detailed description of the
numerical techniques that are needed to predict colloidal
crystal nucleation rates. We then proceed to discuss our nu-
merical results in more detail than was possible in Ref. 9.
The rest of this paper is organized as follows: First, in Sec.
II, we briefly review classical nucleation theory~CNT! and
show how it is used for the interpretation of the experimental
data. Next, in Sec. III, we give a detailed description of the
numerical techniques needed for the calculation of a nucle-
ation rate. In Sec. III A we discuss the calculation of the
nucleation barrier and, in Sec. III B, of the kinetic prefactor.
The structure of the crystal nuclei is discussed in Sec. IV.

II. CNT AND NUCLEATION RATE EXPERIMENTS

The main problem when studying crystal nucleation, ex-
perimentally as well as in computer simulations, is that crys-
tal nucleation is an activated process. First, small crystal nu-
clei need to form spontaneously in a supersaturated solution,
but unless their size exceeds a critical value, they will redis-
solve rather than grow. According to CNT the free energy of
a spherical nucleus that forms in a supersaturated solution
contains two terms. The first is a bulk term, which takes care
of the fact that the solid phase is more stable than the liquid.
This term is negative and proportional to the volume of the
nucleus. The second term is the surface term which describes
the free energy needed to create a liquid–solid interface. This
term is positive and proportional to the surface area of the
nucleus. The~Gibbs! free energy of a spherical nucleus of
radiusR has the following form:

DG5 4
3pR3rsDm14pR2g, ~1!

where rs is the number density of the bulk solid,Dm the
difference in chemical potential between the liquid and the
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solid, andg is the liquid–solid surface free energy density.
The functionDG has a maximum atR52g/(rsuDmu) and
the corresponding height of the nucleation barrier is given by

DGcrit5
16p

3

g3

~rsuDmu!2
. ~2!

For small nuclei the surface term dominates and the free
energy increases. Only if this nucleus exceeds a critical size
does its free energy decrease and the liquid start to crystal-
lize. The probability for the formation of a critical nucleus
depends exponentially on its free energy of formation,

Pcrit}exp~2DGcrit /kBT!, ~3!

and the crystal nucleation rate is given by the product ofPcrit

and a kinetic factork, which describes the rate with which a
critical nucleus grows. The corresponding expression for the
nucleation rate from CNT is given by

I 5k expF2
16p

3kBT

g3

~rsuDmu!2G , ~4!

where

k524r lZDSncrit
2/3/l2. ~5!

Here r l is the number density of the liquid,Z
5AuDmu/6pkBTncrit is the Zeldovich factor,DS is a self-
diffusion coefficient,ncrit is the number of particles in the
critical nucleus, andl is a typical diffusion distance for par-
ticles to attach to the critical nucleus. The above expression
for the nucleation rate is the one most commonly used to
analyze crystal nucleation rate experiments. The problem
with the CNT approach is however that, in most cases, nei-
therl nor g are accurately known. Both parameters are used
to fit the experimental observations. The result is often that
estimates for the kinetic prefactor seem unphysical. To illus-
trate the problems that can arise from this approach we give
an example from recent experiments on crystallization in
hard-sphere colloids. In Fig. 1 we show the results from crys-
tallization rate measurements in hard-sphere colloids, per-
formed by two different groups.7,11 For this system the dif-
ference in chemical potential between the two phases can be
calculated accurately from existing analytical expressions for
the equation of state. The curves in the figure result from a
two parameter fit of Eq.~4! to the experimental data.
Palberg12 fitted the data from Harland and van Megen7 and
obtainedg50.5kBT/s2 and l517dNN , while for the data
from Heymann et al.11 he found g50.54kBT/s2 and l
52.8dNN , wheres is the particle diameter anddNN is the
nearest neighbor distance. The functional form is described
well by the CNT expression for the nucleation rate, but the
estimates for the surface free energy are now known to be
rather low.13 In addition, the values of the effective jump
length l seem rather large. However, as the experimental
results could be fitted with Eq.~4!, there was little reason to
doubt the values of the fit parameters thus obtained from
experiment. As the crystal nucleation rate is a difficult quan-
tity to measure there is a clear need for a first principle pre-
diction of a crystal nucleation rate.

In this paper we approach this problem by using a com-
bination of numerical techniques to simulate the crystal
nucleation process. We use umbrella sampling, in combina-
tion with a local bond-order analysis for the identification of
crystal nuclei, to compute the shape and the height of the
nucleation barrier and to study the structure of critical nuclei.
In addition we perform kinetic Monte Carlo simulations to
compute the kinetic prefactor. The resulting nucleation rate
can be compared directly with experiments without any ad-
justable parameter. The numerical techniques are described
in the following.

III. NUMERICAL METHOD

Simulating the crystallization process is a computational
challenge, precisely because crystal nucleation is an acti-
vated process. This implies that the formation of small crys-
tal nuclei in a supersaturated liquid is infrequent but, when it
happens, the process is quite fast, i.e., it proceeds on a time
scale that can be followed in a molecular simulation. For
instance, experimentally measured nucleation rates are typi-
cally on the order ofO(101) to O(106) nuclei per cm3 per s.
We can estimate the number of time steps needed in a mo-
lecular dynamics~MD! simulation to observe one nucleation
event. In a large-scale computer simulation, it is feasible to
study the dynamics ofO(106) particles, but the number of
particles in a typical simulation is some two to three orders
of magnitude less. For an atomic liquid, the volume of a
simulation box containing one-million particles is of order
O(10215) cm3. If one-million nuclei form per second in 1
cubic centimeter, then it will take, on average, 109 seconds
for a nucleus to form in a system of one-million particles. As

FIG. 1. Measured crystal nucleation ratesI as of function of volume fraction
f in a system of hard-sphere colloids. The data are taken from Ref. 7~open
circles! and Ref. 11~filled cubes!. The lines result from a two parameter fit
of Eq. ~4! to the experimental data. The inset shows the dimensionless
nucleation rate densities plotted logarithmically vs 1/(fDm)2. The figure is
taken from Ref. 12.
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the typical time step in a molecular simulation~MD! is on
the order of femtoseconds, this implies that it would take
some 1024 MD time steps to observe a single nucleation
event under experimental conditions.

This example illustrates why it will be difficult to com-
pute nucleation rates using conventional MD simulations.
One way around this problem is to simulate a system at a
much higher supersaturation, where the free-energy barrier
for the formation of crystal nuclei is sufficiently low to allow
the system to crystallize spontaneously on a time scale that is
accessible in a MD simulation. The problem with this ap-
proach is that, at such extreme supersaturations, crystalliza-
tion may proceed differently than at moderate supersatura-
tions. For example, at high supersaturations, many crystal
nuclei may form simultaneously and may interact in an early
stage of their development. It then becomes difficult to com-
pare the computed crystallization rates with predictions
based on CNT.

In order to study crystal nucleation at moderate super-
saturation, we exploit the fact that the crystallization rate is
determined by the product of a static term, namely the prob-
ability for the formation of a critical nucleusPcrit , and a
kinetic factork that describes the rate at which such nuclei
grow. We use umbrella sampling to computePcrit and kinetic
Monte Carlo simulations to computek. The computed nucle-
ation rates can be directly compared to experimental data.

In the following we first discuss the calculation of the
cluster size distribution, after that we turn to the calculation
of the kinetic prefactor.

A. Calculation of the cluster size distribution

The probability to form a crystal nucleus of sizen can be
approximated byP(n)5Nn /N, whereNn is the number of
crystal nuclei of sizen in a system containingN particles,14,15

see also Appendix A. The approximation becomes better as
Nn /N becomes smaller, i.e., when the spontaneous formation
of clusters is rare. Knowledge of the ratioNn /N allows us to
define the Gibbs free energyDG(n) for the formation of a
nucleus of sizen,

Nn

N
5exp@2DG~n!/kBT#. ~6!

Before we can calculateNn in a Monte Carlo simulation we
need to have a numerical technique that enables us to distin-
guish between particles in a liquid and solid environment. To
this end, we use a local bond-order analysis which is de-
scribed below.

1. Identification of solid cluster: Local bond-order
analysis

The local bond-order analysis we use was introduced by
Steinhardtet al.16 and applied to study nucleation by Frenkel
and co-workers.17–19The advantage of this analysis is that it
is only sensitive to the overall degree of crystallinity in the
system, but independent of any specific crystal structure.
This requirement is important as otherwise we might force
the system to crystallize in a specific structure. A practical
advantage is that these bond-order parameters are rotation-

ally invariant and that therefore the identification of crystal-
lites does not depend on their orientation in space.

The local bond-order parameters are a measure of the
local structure around a particle and are constructed as fol-
lows. First we define a (2l 11) dimensional complex vector
with the components

qlm~ i !5
1

Nb~ i ! (
j 51

Nb~ i !

Ylm~ r̂ i j !,

where the sum goes over all neighboring particlesNb( i ) of
particle i. Neighbors are usually defined as all particles that
are within a given radiusr q around a particle.Ylm( r̂ i j ) are
the spherical harmonics evaluated for the normalized direc-
tion vectorr̂ i j between the neighbors. The orientation of the
unit vector r̂ i j is determined by the polar and azimuthal
anglesu i j and f i j . The rotationally invariant local bond-
order parameters are then defined as follows:

ql~ i !5S 4p

2l 11 (
m52 l

l

uqlm~ i !u2D 1/2

and

ŵl~ i !5
wl~ i !

~(m52 l
l uqlm~ i !u2!3/2

with

wl~ i !5 (
m1 ,m2 ,m3

m11m21m350

S l l l

m1 m2 m3
D qlm1

~ i !qlm2
~ i !qlm3

~ i !.

The term in large parentheses in the last equation is the
Wigner-3j symbol. In Fig. 2 we show typical distribution
functions of the local bond-order parametersq4 , q6 , ŵ4 , ŵ6

calculated in a Monte Carlo simulation of hard spheres under
conditions close to the coexistence point, where the liquid
and the solid phase are equally stable. The figure illustrates
that there is some separation between the distribution func-

FIG. 2. Distribution functions of the local bond-order parameters:q4 , q6 ,
ŵ4 , andŵ6 from Monte Carlo simulations in a hard-sphere system. Here the
cutoff radiusr q for the local environment of a particle is chosen to be 1.4s,
wheres is the hard-core diameter. This means that we included the first, and
in some cases also the second, nearest neighbors.
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tions obtained from the liquid and those obtained from the
solid. Sometimes, there is even a separation between the
solid structures themselves, a property that we will use later
to distinguish between different solid structures. For the
identification of solidlike particles we have to choose an or-
der parameter that is able to distinguish between the liquid
on the one hand, and all possible solid structures, on the
other. From Fig. 2 we see thatq6 has some of the desired
properties, as the values of the solid phases are all shifted to
higher values compared to the liquid. These order parameters
are sensitive to the degree of orientational correlations of the
vectors that join neighboring particles. In simple liquids we
expect that there are no preferred orientations around a par-
ticle and therefore the correlations decay rapidly. In contrast,
for a particle with a solidlike environment the vectors are
correlated and as a result there should be a clear separation
between distribution functions for the bond-order parameter.
For this reason we can enhance the selectivity of the method
by calculating the correlation function of the vectorsq6 of
neighboring particlesi and j,

q6~ i !•q6~ j !5 (
m526

6

q6m~ i !•q6m* ~ j !,

where the* indicates the complex conjugate. In Fig. 3 we
show the corresponding distribution functions for a hard-
sphere system. Note that we did not attempt to normalize the
dot-product. The relevant solid structures, which for the
hard-sphere system are fcc, hcp, and bcc, yield much higher
values for the dot-product than the liquid. We now define two
neighboring particlesi and j to be connected, if the dot-
product described above exceeds a certain threshold. In the
case of hard spheres this threshold is set to 20. By using this
definition we can correctly identify effectively all particles in
a solid to be solidlike, however also in the liquid it happens
quite frequently that a particle has more than one connection.
To illustrate this, we show in Fig. 4 the distribution functions
for the number of connections per particle. Note, that the
peak for the solid structures is at 12 for fcc, hcp, and around

13 for bcc. These numbers correspond to the first, or first and
second nearest neighbors, which were included in the local
environment. For the bcc structure the peak is slightly shifted
to lower values, which is due to the fact that the bcc structure
is relatively disordered. The bcc lattice of monodisperse
hard-spheres melts spontaneously. We found, however, that a
slightly polydisperse~3%! bcc crystal is mechanically stable.
We used such a crystal to study the bcc bond-order proper-
ties. Thus far, we have no clear separation between solidlike
and liquidlike particles, because the order-parameter distri-
butions overlap. We therefore apply a more stringent crite-
rion to distinguish between solid and liquid. To this end, we
impose a threshold on the number of connections a particle
has with its neighbors. All particles with less connections
than this threshold are considered to be liquidlike. We should
bear in mind that, in a small nucleus, most particles are at the
surface. These should be recognized as solidlike. We found
this is achieved if we choose threshold value between 6 and
8. The present analysis provides us with an unambiguous
local criterion to identify solidlike particles. Finally, we need
a criterion to identify which solid particles belong to a single
cluster. For this purpose, we used a simple distance criterion:
if two solidlike particles are closer than a certain threshold
distance, then they belong to the same cluster. The values
that we choose for this were between 1.5s and 2s.

2. Monte Carlo simulation

To calculate the nucleation barrier, we need to sample
the equilibrium distribution function for the probability
P(n), see Eq.~6!. In Appendix A we derived this probability
to be approximatelyNn /N, whereNn is the number of clus-
ters of sizen in a system containingN particles, see Eq.
~A5!. In the preceding section we illustrated how a local
bond-order analysis can be used to identify clusters in a sys-
tem. We now use these techniques to compute the cluster-
size distribution by Monte Carlo simulation.

FIG. 3. Distribution functions of the dot productq6( i )•q6( j ) from Monte
Carlo simulations in a hard-sphere system.

FIG. 4. Distribution functions of the number of connections per particle
from Monte Carlo simulations in a hard-sphere system.
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In all cases we performed Monte Carlo simulations in
the isobaric–isothermal (NPT) ensemble. In this ensemble
the average of a microscopic quantityA is given by

^A&NPT5
* dV* drN A~rN!exp@2b~U~rN!1PV!#

* dV* drN exp@2b~U~rN!1PV!#
,

whereU(rN) is the potential energy of the system with par-
ticle positionsrN. b51/(kBT) is the reciprocal of the ther-
mal energy,N the number of particles, andP the applied
pressure. In a Metropolis Monte Carlo simulation the above
ensemble average is approximated by

^A&NPT'
1

M (
i 51

M

A~r i
N!, ~7!

whereM is the total number of measurements andA(r i
N) the

value of our propertyA associated with configurationr i
N .

In the case of crystal nucleation we need to calculate the
average number of clusters of sizen and Eq.~7! becomes

^Nn&NPT'
1

M (
i 51

M

Nn~r i
N!.

As an example we show the result from a Monte Carlo
simulation in a system of hard spheres. In the simulation we
usedN53375 particles and applied a pressurebPs3516.
At this pressure, the liquid phase is metastable with respect
to the solid, but does not crystallize spontaneously as the
Gibbs free-energy barrier between the two states is too high.
The temperatureT does not play a role in that system. After
equilibrating the system, one could in principle measure the
cluster size distribution after every Monte Carlo move, how-
ever this would be computationally expensive and statistics
would still be poor, as the measurements are strongly corre-
lated. Instead we measure the cluster size distribution after
one trajectory, which consists of 20 moves per particle plus
about ten volume moves. The total length of the simulation
was 100 000 trajectories. In this simulation we could mea-
sure the probability distributionP(n) up to cluster sizes of
n515 particles. The corresponding Gibbs free energy for the
formation of such a cluster is shown in Fig. 6. The formation
of larger cluster was so rare that the statistical accuracy was
too poor. In order to sample larger cluster sizes we needed to
apply the umbrella sampling technique of Torrie and
Valleau,20 which we describe in turn.

3. Umbrella sampling with parallel tempering

The umbrella sampling scheme was proposed to handle
situations where important contributions to the ensemble av-
erage come from configurations whose Boltzmann factor is
small, leading to poor statistical accuracy. The method is
based on the idea that the ensemble average can be rewritten
as follows:

^A&NPT5
* dV* drN A~rN!exp@2b~U~rN!1PV!#W21W

* dV* drN exp@2b~U~rN!1PV!#W~rN!21W~rN!

3
* dV* drN W~rN!exp@2b~U~rN!1PV!#

* dV* drN W~rN!exp@2b~U~rN!1PV!#

5
^A/W~rN!&W

^W~rN!21&W

, ~8!

where we have introduced a, as yet, unspecified weighting
function W(rN)5exp@2bv(rN)#, where v(rN) is the so-
called biasing potential. Instead of performing a Monte Carlo
simulation using the original Boltzmann distribution func-
tion, we now sample phase space according to the biased
distribution function exp@2bU(rN)1PV)]W(rN), which is
indicated by the subscript^¯&W . By specifying the weight-
ing function W we can force the system to sample in that
region of phase space which is important to improve the
statistical accuracy.

In the case of crystal nucleation we can calculate the
ensemble average according to the weighted ensemble, Eq.
~8!, as follows:

^Nn&NPT'
( i

M@Nn~r i
N!/W~r i

N!#

( i
M@W~r i

N!21#
,

where the sum goes over all measurementsM. We now need
to consider the choice of the weighting function.

In Appendix A we showed that the probability for the
formation of a larger cluster is so small, it can be approxi-
mated by the probability to find one cluster of a certain size
in the system, see Eq.~A3!. For this reason we can choose a
bias potential that just controls the size of the largest cluster
in the system. In all cases the bias potential was chosen to be
a harmonic function of the size of the largest cluster in the
system

v@n~rN!#5 1
2kn@n~rN!2n0#2.

The constantkn determines the range of sizes sampled in one
simulation, whereas the minimumn0 determines which clus-
ter sizes are sampled most.

The implementation of the biasing potential in the Monte
Carlo simulation is straightforward. As in the unbiased run
we try to avoid calculating the size of the largest cluster after
every Monte Carlo move. Instead we perform a trajectory of
a certain number of Monte Carlo moves per particle accord-
ing to the unbiased potentialU(rN). We then recalculate the
cluster size and accept or reject the whole trajectory accord-
ing to the pure biasing potential exp@2bDv#, whereDv is
the difference in the biasing potential after and before the
trajectory. This is equivalent to applying the bias potential
after every trial move, but computationally much cheaper.

Intuitively, it might seem easier to sample all cluster
sizes in one run, but it can be shown that this is not the
case,21 mainly because such a simulation would take too
long. Instead we split the simulation into a number of smaller
simulations that were restricted to sample a sequence of nar-
row, but overlapping windows of different cluster sizes. In
practice it turned out that it is best to sample only about 15
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different cluster sizes in one window, to ensure high accu-
racy. This implies that the sequence of minima needed to be
placed in steps of 10,n0510, 20,..., up to sizes slightly
larger than critical cluster size.

In addition we implemented the parallel tempering
scheme of Geyer and Thompson.22 The main reason for us-
ing this scheme is that stacking rearrangements in the nuclei
are very slow. With the parallel tempering scheme the phase
space can be sampled more efficiently. The idea is to run all
the simulations in the different windows in parallel and allow
them to exchange clusters between adjacent windows.

To illustrate this, we consider again the example of the
hard-sphere system. In this case we needed to calculate the
Gibbs free energy of a cluster up to a size of aboutn
5170. We therefore split the simulations into 16 windows,
where the sequence of minima was placed in steps of 10,
n0510, 20,...,160. In order to obtain the 16 starting configu-
rations we grew clusters from the liquid. We always started
from the liquid, applying the bias potential withn0510. Ev-
ery time a cluster was stabilized, the minimumn0 was in-
creased in steps of 10. In the parallel tempering simulation
we started all simulations at the same time, but stopped them
after five trajectories, to allow neighboring windows to ex-
change clusters. Before that, we need to decide which se-
quence we should use to change, either the windowsn0

510 with 20, 30 with 40, and so on, or the sequence 20 with
30, 40 with 50, and so on. This was done by generating a
random number. The actual change between windowsi, j
is accepted according to exp@2b(wn2wo)#, wherewo5ki /
2(ni2n0,i)

21kj /2(nj2n0,j )
2 is the energy of the biasing po-

tential before andwn5ki /2(nj2n0,i)
21kj /2(ni2n0,j )

2 after
the change. In practice it is more convenient to exchange the
minima of the bias potential rather than configurations. This
requires much less communication between different com-
puter nodes. As a result, each initial configuration is able to
reach in principle all cluster sizes in course of the simulation.
In Fig. 5 we show the cluster sizes sampled during one simu-
lation for three configurations, which started with cluster
sizesn0520, 50, and 110. The value for the constant of the
bias potential waskn5k50.15 in all windows. As in the
unbiased run, the length of one trajectory was 20 moves per
particle, plus about 10 volume moves, and in total we per-
formed 100 000 trajectories.

In Fig. 6 we show the results for the Gibbs free energy of
a nucleus obtained from the simulations in each window
~unbiased1biased runs!. The Gibbs free energies in the
different windows are determined up to a constant
DGi(n)/kBT1bi , where the subscripti indicates the number
of the window. In order to determine the constantsbi we
fitted all the free energy estimates in the different windows to
one polynomial inn. This can be done by a linear least-
square fit, where we minimize

x5 (
n51

nmax H (
i 51

nw

wi~n!FDGi~n!2 (
k51

kmax

akn
k2bi G2J .

Here wi(n)51/sDGi (n)
2 is the statistical weight determined

by the variancesDGi (n)
2 of the free-energy measurement and

nw the total number of windows used in the simulation. The

maximum order of the polynomial used waskmax510. The
linear least-square fit can be performed by using the algo-
rithms in Ref. 23. Note that by using a high-order polyno-
mial, we do not assume a functional form of the nucleation
barrier~the barrier might or might not be correctly described
by CNT!. From the unbiased simulation we get the absolute
Gibbs free energy for the formation of a cluster of sizen with
respect to the liquid state. Therefore the constantb1 is
known. In Fig. 7 we show the final result for the calculation
of a nucleation barrier for hard spheres at pressurebPs3

516.

4. Results and discussion

We performed Monte Carlo simulations in the isobaric–
isothermal ensemble (NPT) to compute the crystal nucle-

FIG. 5. Examples of the cluster size sampled during one simulation. The
different configurations started with clusters of sizesn520, 50, and 110.
Due to the parallel tempering technique, swapping between different win-
dows is possible and the configurations could sample almost all possible
cluster sizes.

FIG. 6. Sequence of measured Gibbs free energiesDGi(n)/kBT1bi from
Monte Carlo Simulations in a system of hard spheres in different windows.
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ation barrier at three different pressuresbPs3515, 16, 17.
The corresponding bulk volume fractions of the liquid are
f50.5207, 0.5277, 0.5343. These state points correspond to
the lower range of supersaturations where hard-sphere nucle-
ation has been studied experimentally. The reason for select-
ing this density regime is that at higher supersaturation the
system starts to crystallize spontaneously on the time scale of
the simulation. Moreover, under those conditions, the as-
sumption of steady-state nucleation is no longer justified, as
nuclei will interact with other nuclei almost as soon as they
are formed. At lower supersaturation the critical nucleus size
becomes very large and the nucleation barrier very high. This
has two consequences, one experimental and one numerical.
Experimentally, nucleation events in this regime become ex-
tremely rare. Numerically, very large system size are needed
to study nucleation in this regime. For both reasons, we de-
cided not to simulate nucleation events in this regime. The
details of the simulation are as described before and the re-
sults are shown in Fig. 8. As expected, with increasing vol-
ume fraction the crystal nucleation barrier decreases. Our
simulation results for the crystal nucleation barrier can be
compared directly to the predictions from CNT for the nucle-
ation barrier, Eq.~1!, or the barrier height, Eq.~2!. For the
hard-sphere system the chemical potential difference can be
calculated accurately using phenomenological equations of
state for the liquid and the solid. The details are described in
Appendix B and the results are shown in Table I. As the
solid–liquid interfacial free energyg of a small crystal
nucleus in a supersaturated liquid is not knowna priori we
use its corresponding value for a flat interface at coexistence.
This value has been calculated in a recent simulation13 for
three different crystal planes. Here we usegav

50.61kBT/s2 which is the average of the three crystal
planes. The results for the barrier height in order of increas-
ing density areDGcrit /kBT527, 15.7, 10.2. These values are
about 30%–50% lower than our numerical estimate. This
discrepancy might be due to the fact that for a small nucleus
in a supersaturated liquid the interfacial free energy is differ-

ent from that of a flat interface at coexistence. For this reason
we also usedg as a fit parameter to our results. UsingR
5(3n/(4prS))1/3 we fitted Eq.~1! to our data. The result
can be seen as the solid line in Fig. 8. As can be seen, the
functional form of the nucleation barrier seems to be de-
scribed well by CNT, but the values for the fit parameter
geff(P515)50.71kBT/s2, geff(P516)50.737kBT/s2, and
geff(P517)50.751kBT/s2 are higher than the coexistence
value and they increase with volume fraction. If we assume
that this dependence is linear, than our simulation results
extrapolate to a value ofgeff(P511.7)50.64kBT/s2 at coex-
istence. For a detailed discussion of the dependence of the
surface free-energy density on the size of the crystal nucleus,
see Ref. 24. In Appendix C we discuss an alternative, ther-
modynamic route to compute the surface free-energy density
for the critical nucleus which yields the same results as our
estimate for the surface free-energy density from above.

Our results for the surface tension can also be compared
to the values extracted from experiments. As already men-
tioned in the introduction, Palberg12 fitted the data from
Harland and van Megen7 and obtainedg50.5kBT/s2 and
for the data from Heymannet al.11 he found g
50.54kBT/s2. These values seem to be rather low. As in the

FIG. 7. Gibbs free energy for the formation of a cluster ofn hard spheres,
after fitting the results for the free energy in the different windows to one
polynomial.

FIG. 8. Calculated free energy barrier for homogeneous crystal nucleation
of hard-sphere colloids. The results are shown for three values of the volume
fraction. The drawn curves are fits to the CNT expression Eq.~1!. The fits
yield the following values:geff(P515)50.71, geff(P516)50.737, and
geff(P517)50.751.

TABLE I. Summary of the simulation results for the calculation of the
nucleation rate for monodisperse hard-sphere colloids. Heref is the volume
fraction of the liquid phase.DG(ncrit) is the measured free energy to form a
cluster of critical sizencrit . f ncrit

1 /D0 is the attachment rate of particles to the

critical cluster divided by the free diffusion coefficient.I * 5Is/D0 is the
reduced nucleation rate andl is the estimated typical jump distance from
the calculation of the attachment rate.Dm is the difference in chemical
potential between the two phases.

f DG(ncrit) ncrit f ncrit

1 /D0 log10@ I * # l Dm

0.5207 43.0 260 189 219.3 0.31 0.34
0.5277 27.8 130 43 213.5 0.46 0.44
0.5342 18.5 75 66 29.14 0.27 0.54
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experiments the particles used had a size polydispersity of
about 5% we repeated our simulations for a suspension with
5% polydispersity. We find that both systems have the same
nucleation barrier at the sameDm.25 Therefore polydispersity
cannot explain the discrepancy. Note that in our simulations
of the polydisperse system we used the semigrand ensemble.
This implies that the difference in chemical potential in the
two phases is equal for all particle radii and the interpretation
of our barrier calculations with CNT is well defined, see also
Appendix C.

B. Calculation of the kinetic prefactor

1. General approach

In atomistic simulations, the kinetic prefactor is usually
calculated using the Bennett–Chandler scheme.26 In the case
where the barrier crossing is relatively diffusive, it is attrac-
tive to use a modification proposed by Ruiz-Monteroet al.27

The principle of both methods is to generate a large number
of independent configurations at the top of the barrier. These
configurations are then used as the starting point for an un-
biased trajectory in which one determines if the nucleus
grows and the system crystallizes, or if it shrinks. From the
number of nuclei that grow and shrink one can extract the
kinetic factor. However, in order to get a reasonable estimate
one has to simulate a rather large number of trajectories. Ten
Wolde et al.28 applied the approach of Ref. 27 to calculate
the gas–liquid nucleation rate in a Lennard-Jones system.
Using over 300 trajectories of about 5000 time steps each,
the resulting value for the transmission coefficient still had a
relative error close to 100%. The reason is that the barrier-
crossing process in a nucleation event is effectively, purely
diffusive. Fortunately, in that limit, we can compute the ki-
netic prefactor directly using the expression:k5Zr liq f nc

1 ,

where f ncrit

1 is the attachment rate of particles to the critical

cluster. The Zeldovich factorZ is already known from the
barrier calculation. In order to computef ncrit

1 , we assume that

the critical cluster grows and shrinks via the diffusive attach-
ment of single particles. We can then define an effective
diffusion constant for the change in critical cluster size,

Dncrit

att 5
1

2

^Dncrit
2 ~ t !&
t

.

Here Dnncrit

2 (t)5@ncrit(t)2ncrit(t50)#2 is the mean square

change in the number of particles in the critical cluster. As
the slope of this change is related to the corresponding at-
tachment rates viâDncrit

2 (t)&/t5( f ncrit

1 1 f ncrit

2 )/2, and as we

know that, at the top of the barrier, the forward and backward
rates are equalf ncrit

1 5 f ncrit

2 , we get

f ncrit

1 5
1

2

^Dncrit
2 ~ t !&
t

. ~9!

This is a general expression for the calculation of the kinetic
factor for diffusive barrier crossing. Using a molecular dy-
namics simulation one only needs to measure the change in
size of the critical cluster as a function of time. The only
restriction is that, during the measurement, the critical
nucleus needs to fluctuate around its critical value. One

therefore needs to run a couple of trajectories and select the
data where this is the case. In the next section we show how
we applied this method to a system of hard-sphere colloids.

2. Application to hard colloidal spheres

In principle, it is straightforward to apply the above
method to the calculation of a kinetic factor for crystal nucle-
ation. However, in the case of hard colloidal spheres one
needs to have a simulation method that generates trajectories
following Brownian dynamics, and the effect of hydrody-
namic interactions also needs to be considered. Trajectories
following Brownian dynamics could be generated using a
kinetic Monte Carlo scheme proposed by Hinson and
Cichocki.29 These authors show that, in the limit of very
small maximum particle displacement,Dxmax→0, the trajec-
tories generated by the kinetic Monte Carlo simulation are
stochastically equivalent to the process described by the
Smoluchowski equation. The limitDxmax→0 means that
simulation time would become infinitely long. However,
Hinson and Cichocki also propose an extrapolation proce-
dure with which this limit can be approached systematically
by repeating simulations with a smaller maximum displace-
ment.

In experiments nucleation rates are usually presented in
dimensionless formI * 5Is5/D0 , wheres is the diameter of
a monomer andD0 the free diffusion coefficient. Therefore
we only need to compute the ratiof ncrit

1 /D0 . First we com-

puted the nucleation barrier using a biasedNPT Monte
Carlo simulation. From these simulations we could deter-
mine the critical cluster size and had generated independent
configurations in which such a cluster was stabilized. We
used these configurations, to perform an unbiased kinetic
NVE Monte Carlo simulation, measuring the size of the
critical cluster as a function of Monte Carlo blocks. In Fig. 9
we show such a measurement atf50.5277(P516). From
these data we then extracted the attachment rate using Eq.~9!

FIG. 9. The development of the sizen of the critical cluster during one
trajectory at volume fractionf50.5277. Here one block is 100 moves per
particle in anNVE Monte Carlo simulation. Note in particular the fluctua-
tions of the cluster size about its critical value.
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~see Fig. 10!. Surprisingly, we see that the attachment rate
has a different short-time and long-time behavior. This im-
plies that, at short times, the diffusion in cluster size is not a
Markov process. As the diffusion of the critical cluster over
the nucleation barrier is on the time scale of the long-time
behavior of the attachment rate, this is the value we have to
use. To test the dependence of our results on the maximum
particle displacement we performed simulations for two dif-
ferent valuesDxmax50.12s and 0.012s. The corresponding
values for the free diffusion coefficients areD0

5^Dxmax
2 &/6. The ratio of the results forf ncrit

1 /D0 in both

simulations is equal to 4.79. Computing the long-time self-
diffusion coefficientDS

L/D05^(r (0)2r (t))2&/6tD0 we get a
ratio in both simulations of 5.07. Therefore the difference in
the results for the attachment rate is mainly due to diffusion.
In our simulations we did not follow the extrapolation pro-
cedure forDxmax→0 described in Ref. 29, as forDxmax

50.012s we are already in a limit where the attachment rate
has effectively reached its limiting value. We justify this by
testing our approach on the calculation of the long-time self-
diffusion coefficient, which will be discussed later. So far in
our simulations we did not take hydrodynamic interactions
into account. However, these are certainly important in dense
colloidal suspensions. As proposed by Medina-Noyola,30 we
corrected for this effect by replacing the free diffusion coef-
ficient D0 by the short-time self-diffusion coefficientDS

S .
We therefore have to multiply our result by a factora
5DS

S/D0 . There are several rather similar functional forms
for this factor proposed in the literature. Here we used the
phenomenological expression (12f/0.64)1.17,31 wheref is
the volume fraction. As a test of our approach, we computed
the reduced long-time self-diffusion coefficientDS

L/D0 . Our
results,DS

L/D052.931023, 2.531023, 2.131023, calcu-
lated at volume fractionsf50.5207, 0.5277, 0.5342, are
within statistical error of experimental data, see e.g., Refs. 32
and 33. For the calculation of the kinetic factor we usually

performed about five trajectories. The length of the trajectory
depends on whether the cluster size fluctuates around the
critical size or not; if not the simulation is stopped. From
these simulations we calculated the attachment rate. The er-
ror estimates vary between a factor of 1 for the larger critical
cluster sizes and a factor of 2 to 3 for the smaller cluster
sizes. In the regime of smaller critical cluster sizes, the fluc-
tuations in cluster size are almost on the order of the critical
cluster size and it becomes therefore more difficult to get a
good estimate. To compare the efficiency of our scheme with
the previous one we need to compare the number of trajec-
tories to run, but also the absolute length of the trajectory
itself. The latter is difficult to compare as different systems
were simulated with different algorithms. However, as the
number of trajectories we used is about two orders of mag-
nitude fewer the power of our scheme is clear.

3. Results and discussion

The results of our calculations of the attachment rate for
the monodisperse hard-sphere system are summarized in
Table I. As experimentally determined values for the kinetic
factor often differ by orders of magnitude from those pre-
dicted by CNT it is important to compare our numerically
computed kinetic factor with the ones predicted by CNT.
From the calculation of the nucleation barrier we saw that
the functional form of the nucleation barrier can be fitted
accurately to the corresponding analytical expression from
CNT. The prediction of the Zeldovich factor from our nu-
merical calculations and CNT are therefore almost identical.
The remaining quantity to compare is the reduced attachment
rate. Using Eq.~5! it is given by

f CNT
1 /D0524~DS /D0!ncrit

2/3/l2.

If we assume thatDS5DS
L , whereDS

L is the long-time dif-
fusion constant, and treatl as a fit parameter to reproduce
our calculated attachment rates, we get values between
l'0.27–0.46s ~see Table I!. This is in the order of the in-
terparticle spacing and therefore close to what we would ex-
pect for a typical jump distance. In contrast to that, experi-
mental estimates yield valuesl52.8– 17s12. The
identification DS5DS

L is justified by the fact that the time
l2/DS

L corresponds to long-time diffusion.
Our simulation results for the nucleation barrier and the

kinetic prefactor allow us to predict the nucleation rates
which can be directly compared to experiments without ad-
justable parameter. In Fig. 11 we show our numerical predic-
tions for the reduced nucleation rate for a monodisperse sus-
pension and a suspension with 5% polydispersity. The latter
results can be compared directly to the experiments. Note
that the polydispersity in Ref. 8 is about 2.5%. As can be
seen from the figure, the dependence of the nucleation rates
on the density of the system is much more pronounced in the
simulations than in the experiments. This discrepancy be-
tween the simulations and experiment is unexpected and sig-
nificant because hard-sphere colloids are among the best
studied experimental realizations of a simple liquid. We
know the structural and thermodynamic properties of hard-

FIG. 10. Attachment rate of particles to the critical cluster at volume frac-
tion f50.5277. The attachment rate for short times is much higher than for
long times. As the diffusion time of a cluster over the nucleation barrier is in
the range of the long time behavior of the attachment rate, this value has to
be used.
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sphere suspensions quite accurately and, more significantly,
these properties tend to be well reproduced by the ideal,
hard-sphere model. Hence, large discrepancies between ex-
periment and simulation cannot be easily dismissed as being
due to uncertainties in the parameters that characterize the
colloidal suspension. Rather, we must envision the possibil-
ity that either our theoretical description of crystallization is
inadequate or that what is measured is not really the steady-
state, homogeneous nucleation rate. In fact, the latter sugges-
tion is not altogether unreasonable, as light-scattering cannot
be used to see the very early stages of crystal nucleation.
Second, the experiments are extremely sensitive to any re-
sidual ordering in the solution that may have survived the
preparation of the experimental system. More experiments
~and simulations! may be needed to resolve this issue.

IV. CLUSTER ANALYSIS

Our simulation techniques also allow us to study the
formation of small crystal nuclei in detail. This is interesting
as already in 1897 Ostwald34 pointed out the role of meta-
stable phases in crystal nucleation when he formulated his
famous step rule. This rule states that the phase that nucle-
ates does not need to be the one that is thermodynamically
most stable. In the recent years there have been several at-
tempts to provide a microscopic explanation35,36 for Ost-
wald’s observation. Alexander and McTague35 argue, on the
basis of Landau theory, that if the differences in the liquid
and solid densities were not too great, then the phase that
would be nucleated from the liquid would be bcc regardless
of the structure of the stable~lowest free energy! phase.
Klein and Leyvraz,36,37showed that for deeply quenched sys-
tems with long-range interactions, the critical droplet can
have a bcc symmetry, but does not have a bcc crystalline
structure. Simulations by ten Woldeet al.18 showed that the

situation can even be more subtle, at least for a Lennard-
Jones system: The core of a stable Lennard-Jones cluster
formed a stable fcc structure while the surface of the nucleus
showed indications of a bcc structure. Thermodynamically
the formation of metastable phases might be explained by
differences in interfacial free energies. The formation of a
bcc-liquid interface might cost less energy than that of a
fcc-liquid interface. In the case of hard spheres it is known
that the fcc phase is the stable structure, but the free energy
difference between the fcc and the hcp structure is very small
(,1023kBT).38,39 This means that thermal fluctuations of
the order ofkBT could transform a cluster of 1000 particles
from fcc to hcp or just cause stacking faults. Note that the fcc
and the hcp structure differ only in the stacking of close-
packed hexagonal crystal planes. For the fcc structure the
stacking is ABC, whereas for the hcp structure the stacking is
AB. If the interfacial free energies of a crystal fcc-liquid,
hcp-liquid or a rhcp-liquid interface are different, than this
could also completely change this picture. Here rhcp refers to
a random stacking of the close-packed hexagonal crystal
planes. The question if small crystal nuclei are more fcc or
hcp like is not clear.

Experiments by Puseyet al.40 and Elliotet al.41 indicate
that the fcc structure is favored. Whereas in the microgravity
experiments by Zhuet al.42 they found that small nuclei have
a rhcp structure. To resolve this question we analyzed the
structure of small nuclei that were generated in our simula-
tions. From a direct inspection of the nuclei we found that
the structure of the nuclei is rhcp~see Fig. 12!. In order to be
able to carry out the stacking analysis the nuclei needed to
have a size of at least 150 particles, otherwise the number of
layers is too small. To study the structure of even smaller
nuclei we performed a local bond-order analysis as described
in Sec. III A 1. We set up a set of vectors,vrhcp, vbcc, vicovliq ,
which contain the characteristic distribution functions of the
relevant lattice structures, i.e., rhcp, bcc, ico, and the liquid
structure, see also Fig. 2. In our simulation the distribution
functions for the cluster were also calculated. The corre-
sponding vector isvcl . The vectorvcl was then decomposed
by minimizing the differenceD,

D5$vcl2~ f rhcpvrhcp1 f bccvbcc1 f icovico1 f liqvliq!%2.

The coefficientsf rhcp, f bcc, f ico , f liq are a measure for the
type of order in the system. If we apply this analysis to an
equilibrated bcc crystal, we would getf bcc51 and zero for
the others. In Fig. 13 we show the results forf rhcp, f bcc, f ico ,
and f liq as a function of the size of the largest cluster in the
system atP515. The results forP516 are qualitatively
similar. The figure shows that bcc and icosahedral structures
play no role in the nucleation process. Small clusters are
fairly disordered and have an appreciable liquidlike signa-
ture. The figure shows that the rhcp signature is dominant for
all cluster sizes.

V. CONCLUSIONS

As should be clear from the preceding sections, special
numerical techniques are needed to study homogeneous crys-
tal nucleation under ‘‘experimental’’ conditions. We de-
scribed these techniques in some detail, in order that the

FIG. 11. Reduced nucleation ratesI * 5Is5/D0 as a function of the volume
fraction of the metastable liquid. The simulation data for monodisperse col-
loids are indicated by the*—the drawn curve joining the simulation points
is meant as a guide to the eye. In the same figure we show the experimental
results of Ref. 6~L!, Ref. 7 ~s andd!, Ref. 32~n!, and Ref. 8~.!. We
also performed simulations on model systems that have the same polydis-
persity ~5%! as the experimental systems. These simulation results are de-
noted by the filled squares.
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reader may assess their validity. We stress that the techniques
described in this paper are not ‘‘merely’’ numerical recipes.
On the contrary, in all cases, the physical approximations
behind the techniques are of crucial importance. Therefore,
this paper focuses more on the physics of nucleation than on
the numerics. The examples that we describe in this paper
have been included for two reasons:~a! to illustrate the use
of the techniques that we describe and~b! to provide more
detailed tabular material than could be included in earlier
brief communications.9,25

We wish to stress that the methods described in this pa-
per are not fully satisfactory for several reasons. First of all,
it is one of our aims to investigate the pathway for crystal
nucleation. Ideally, such a study should be performed with-
out making anya priori assumptions about the order param-
eters that can act as ‘‘reaction coordinates.’’ In fact, the ap-
proach proposed by Chandler and co-workers43 provides, in
principle, such an unbiased scheme. However, for the present
problem, we were thus far unable to implement that scheme
in a way that would not be prohibitively costly.

Second, we should caution the reader against a too literal
interpretation of the nucleation barriers that we determine. A
different choice of order parameters would have resulted in a
different shape of the nucleation barrier. However, its height
should hardly be sensitive to this choice. Most importantly,
the absolute nucleation rate, i.e., the one object that can be
determined unambiguously in experiments, should not de-
pend at all on our choice of order parameter. A poor choice
of order parameters will make our simulations very ineffi-
cient but, given enough computing power, the resulting
nucleation rate should still be correct.
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APPENDIX A: DISTRIBUTION OF CLUSTER SIZES
IN EQUILIBRIUM

The distribution of cluster sizes can be derived micro-
scopically from statistical mechanics. The derivation is based
on Refs. 14, 15, and 19. The partition function of a system
containingN particles in a volumeV at temperatureT is
given by

Q~N,V,T!5
1

L3NN!
E drN exp@2bU~rN!#.

HereU(rN) is the potential energy of the configuration with
coordinatesrN andL5h/A2pmkT is the thermal de Broglie
wavelength. Now we assume that we have a criterion, that
enables us to identify a cluster in our system. We then define
a functionwn(rn) such that

wn~rn!5H 1 if all n particles belong to the cluster,

0 otherwise.

In addition, we define a functionwr(r
N)5P i 5n11

N @1
2wn11(rn,r i)#, which ensures that all other particles do not
belong to the cluster

wr~rN!

5H 1 if no other particle belongs to the cluster,

0 if any other particle belongs to the cluster.

FIG. 12. Snapshot of a cross section of a critical nucleus of a hard-sphere
crystal at a liquid volume fractionf50.5207. The figure shows a three-layer
thick slice through the center of the crystallite. Solidlike particles are shown
in light gray~yellow! and liquid-like particles in dark gray~blue!. The layers
shown in the figure are close-packed hexagonal crystal planes. The stacking
shown in this figure happens to be fcc-like, i.e., ABC stacking—however,
analysis of many such snapshots showed that fcc and hcp stackings were
equally likely.

FIG. 13. Structure analysis of~pre!critical crystal nuclei. The figure shows
the relative weight of the structural signatures for rhcp, bcc, icosahedral, and
liquidlike ordering in hard-sphere crystal nuclei of sizen.
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We can then define a partition function for a system that
contains at least onen-particle cluster

Qn~N,V,T!5
1

L3nn!

1

L3~N2n!~N2n!!

3E drnE drN2n wn~rn!wr~rN!

3exp@2bU~rn,rN2n!#,

where we have used the fact that there areN!/(n!(N2n)!)
ways to select ann-particle cluster. Note that the remaining
particles may still form additional clusters of sizen. The
productwn(rn)wr(r

N2n)51, only if all rn particles belong to
the specified cluster and all the otherrN2n do not. We now
rewrite the potential energy of the system as the sum of
contributions from the particles in the clusterUn(rn) and the
contribution from all other particlesUN2n(rN2n), plus the
contribution from the interactions between particles in the
cluster and the othersUn,N2n(rn,rN2n). The partition func-
tion then becomes

Qn~N,V,T!5
1

L3nn!

1

L3~N2n!~N2n!!

3E drN2n exp@2bUN2n~rN2n!#

3E drn wnwr exp@2bUn~rn!#

3exp@2bUn,N2n~rn,rN2n!#.

We can now define effective potentials for all the particles in
the cluster

Un85Un2kT ln@wn#,

and the interaction between cluster particles and the others

Un,N2n8 5Un,N2n2kT ln@wr #,

yielding

Qn~N,V,T!5
1

L3~N2n!~N2n!!

1

L3nn!

3E drN2n exp@2bUN2n~rN2n!#

3E drn exp@2bUn8#exp@2bUn,N2n8 #.

Multiplication of the right-hand side by Q(N
2n,V,T)/Q(N2n,V,T) gives

Qn~N,V,T!5
1

n!L3n
Q~N2n,V,T!

3E drn^exp@2bUn,N2n8 #&exp@2bUn8#,

~A1!

where we have defined a potential of mean force

^exp@2bUn,N2n8 #&

5
* drN2n exp@2bUn,N2n8 #exp@2bUN2n~rN2n!#

~N2n!!L3~N2n!Q~N2n,V,T!
.

It is the average potential the particles in the cluster feel due
to the interactions with all other particles. We define now the
partition function of ann-mer as

qn~V,T!5
1

n!L3n E drn^exp@2bUn,N2n8 #&exp@2bUn8#.

~A2!

Note thatqn(V,T,m) is the partition function of a cluster in
which the interaction with the remaining (N2n) molecules
is included in the factor̂ exp@2bUn,N2n8 #&. The interaction
with possible other clusters is also included as such clusters
can still exist in the remaining (N2n) particles. The parti-
tion function Eq.~A1! can then be written as

Qn~N,V,T!5Q~N2n,V,T!qn~V,T!.

The probability to find at least one cluster of sizen is then
given by

Pn5
Qn~N,V,T!

Q~N,V,T!
5

Q~N2n,V,T!

Q~N,V,T!
qn~V,T!.

As the free energy of the system is given byF
52kT ln@Q#, the above equation becomes

Pn5qn~V,T!exp@2b~F~N2n,V,T!2F~N,V,T!!#.

Using

F~N2n,V,T!'F~N,V,T!2S ]F

]ND
V,T

n

it follows that

Pn5qn~V,T!exp@1bmn#.

The problem with this definition of the probability is that it
depends on the volumeV. To see this we rewrite Eq.~A2!

qn~V,T!5
1

n!L3n E drn exp@2bUeff#,

where we defined an effective potentialUeff5^Un,N2n8 &1Un8 .
Rewriting the partition function in terms of the center of
mass of the cluster yields

qn~V,T!5
n3

n!L3n E dRCME dr 8n21 exp@2bUeff#.

Performing the integral over the center of mass and defining
a partition function of the cluster in terms of the internal
coordinates we get

qn5
V

Ln
3

3qn
internal,

whereLn5h/A2pnmkTis the de Broglie wavelength of the
cluster and
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qn
internal5

n3/2

L3~n21!n!
E dr 8n21 exp@2bUeff#.

It is better to define an intensive probability distribution

Pn

N
5

1

rLn
3

qn
internalexp@2bmn#,

wherer is the number density of the system. For rare clusters
we can write the probability as

Pn5pn~1!1pn~2!1¯'pn~1!, ~A3!

wherepn( i ) is the probability that there are exactlyi clusters
of sizen. If we assume that the formation of different clus-
ters is uncorrelatedpn( i )5@pn(1)# i , then we can neglect
higher order terms provided the probabilities are small,
pn(1)!1. As the average number of clusters of sizen is
equal to

Nn51pn~1!12pn~2!13pn~3!1¯ ~A4!

we can write in the case of rare clusters

Pn

N
'

Nn

N
5

1

rLn
3

qn
internalexp@2bmn#. ~A5!

We note that this is a classical result and should not depend
on Planck’s constanth, and, in fact it does not, as the ideal
gas part of the chemical potential

m5mex1kT ln@L#

cancels theh in Ln .
The main point of Eq.~A5! is that we can write down a

microscopic expression for the equilibrium number of
n-clusters if this number, which is equal to the probability of
finding one cluster of sizen, is much less than one. Using
Eq. ~6! this in turn defines an intensive Gibbs free energy of
the cluster where the reference state is the homogeneous
phase,

Nn

N
5exp@2DG~n!/kBT#. ~A6!

This is the key relation which enables us to compute a nucle-
ation barrier in a Monte Carlo simulation.

APPENDIX B: CALCULATION
OF THE CHEMICAL POTENTIAL

Here we describe the calculation of the chemical poten-
tial for the monodisperse hard-sphere system. For the calcu-
lation of the chemical potential of the two phases, we per-
formed a thermodynamic integration. The Helmholtz free
energyF, per particle and in units of the thermal energykBT,
of a liquid is determined by integrating the equation of state,
starting from low densities, where the fluid behaves like an
ideal gas,21

F~r!

NkBT
5

F id~r!

NkBT
1

1

kBT E
0

r

dr8S P~r8!2r8kBT

r82 D ,

whereP(r) is the pressure andF id(r)/NkBT5 ln(r)21 the
free energy of an ideal gas at densityr. The corresponding
chemical potential is given by

m~r!

kBT
5

F~r!

NkBT
1

P~r!

rkBT
.

The calculation of the chemical potential of the solid is
slightly more complicated. The reason is that it is not pos-
sible to perform the integration from the ideal gas limit, as
the solid melts at lower densities. One has to calculate the
excess free energy of a solid at a reference density where the
solid is stable, which requires a different thermodynamic in-
tegration technique, the so-called Einstein integration. The
idea is to transform the solid reversibly into an Einstein crys-
tal, where the atoms are coupled harmonically to their lattice
sites. The free energy can be calculated very precisely and
we use the results from Polsonet al.44 for the excess free
energy of a~defect free! hard-sphere solid at coexistence:
Fex(rcoex51.0409)/NkBT55.918 89. From the above equa-
tion we can then calculate the chemical potential of the solid
at any other density according to

m~r!

kBT
5

F id~r!

NkBT
15.918 891

1

kBT E
rcoex

r

dr8

3S P~r8!2r8kBT

r82 D 1
P~r!

rkBT
.

For the equation of stateP(r) we used the analytical expres-
sions by Hall45 for the liquid and the solid. The integration
was performed numerically.

APPENDIX C: SURFACE FREE ENERGIES
OF CRITICAL NUCLEI

In general, the value of the surface tension~or, more
generally, surface free-energy density! depends on the crite-
rion used to define the surface of a cluster. However, in the
special case that we consider a critical nucleus, there exists a
thermodynamic relation between the height of the nucleation
barrier and the surface free-energy density associated with
the thermodynamic surface of tension. Below, we derive this
relation.

Consider two systems. System I contains the homoge-
neous, metastable phaseb. System II contains the parent
phase~b! in unstable equilibrium with a critical nucleus of
phasea. We consider the general case that the parent phase
is ann-component mixture. The height of the nucleation bar-
rier can be computed in several ways~depending on the ther-
modynamic variables that we keep fixed!. For instance, for a
system at constant pressure and temperature, the nucleation
barrier is given by the difference in Gibbs free energy be-
tween states II and I. To compute this barrier, we first evalu-
ate the difference in the internal energy

DU5U II2U I. ~C1!

The internal energy of system I is given by

U I5TISI2pIVI1(
i 51

n

m i
INi , ~C2!
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wherem i
I is the chemical potential of componenti in state I.

As state II is also in equilibrium~be it an unstable one!, the
chemical potentials of all species are also constant through-
out the system—even though the system itself is inhomoge-
neous. The internal energy of system II is given by

U II5TIISII2pa
IIVa

II2pb
IIVb

II1gA1(
i 51

n

m i
IINi

5TIISII1~pb
II2pa

II !Va
II2pb

IIVII1gA1(
i 51

n

m i
IINi . ~C3!

We consider the situation that the nucleus is formed at
constant pressure and temperature. In that case,pI5pb

II5p,
TI5TII5T and m i

I5m i
II5m i . The last equality follows be-

cause the chemical potential in the parent phase is a function
of P andT only. The difference between the internal energies
of systems I and II is then given by

DU5TDS1~p2pa
II !Va

II1gA2pDV, ~C4!

where DS5SII2SI and DV5VII2VI. Note that the terms
involving the chemical potentials drop out of the expression
for DU. The expression for the nucleation barrier then be-
comes

DG5DU1pDV2TDS5~p2pa
II !Va

II1gA. ~C5!

This equation holds for every dividing surface. Moreover, we
have not made any approximations concerning the compress-
ibility of either phase, nor concerning the interfacial free
energy. If we choose the surface of tension as the dividing
surface, then we can use the Laplace equation (Dp
52gs /Rs) to express the height of the barrier as

DG5
4

3
pRs

2gs5
2p

3
DpRs

3. ~C6!

In what follows, it will turn out to be convenient to express
the surface tensiongs in terms of the barrier heightDG and
the Laplace pressureDp

gs5S 3

16p D 1/3

DG1/3Dp2/3. ~C7!

We stress that, for every component, the chemical potentials
in the parent phase and in the critical nucleus are the same.
In the absence of the Laplace pressure, the chemical poten-
tials in phasea would be lower than those in phaseb. The
effect of the Laplace pressure is to compensate this differ-
ence for every componenti. At first sight, it would seem that
the computation ofDp is an intractable problem for a mul-
ticomponent system—to satisfy the condition thatm i

a5m i
b

for all i, it is not enough to compress phasea; we should also
change its composition. The problem is greatly simplified if
we make use of the semigrand canonical ensemble. In the
semigrand ensemble, the independent variables that describe
the state of ann-component system are: the temperatureT,
the pressureP, the total number of particlesN and the set of
n21 differences in the chemical potential (Dm i) between a
reference species~say, species 1! and all other speciesiÞ1.
The number of componentsn can be infinite.

At coexistence, the chemical potentials of all speciesi in
the two phases, are equal:m i

a5m i
b . In the notation of the

semigrand ensemble, this means that, at coexistence, the
temperature and pressure of the two phases are equal, as are
all Dm i , and finally also the chemical potentialm1 of the
reference compound. Now consider what happens if we su-
persaturate the parent phase, for instance by compression
~the analysis for the case of supercooling follows by anal-
ogy!. In the semigrand ensemble we perform this supersatu-
ration by increasingP, while keepingT and allDm i constant.
Note that this route need not correspond to the physical route
for supersaturation. The reason is the physical route is~usu-
ally! to supersaturateat constant composition. But in that
case, allDm i change by different amounts, and this is pre-
cisely the factor that complicates the analysis of nucleation
in multicomponent systems.

Suppose that we have compressed the system up to a
pressurePb where m1 ~and thereby allm i) in the parent
phase have increased by an amountDmb. An equal compres-
sion of the phasea leads to an increaseDma in the chemical
potential of all species in that phase. Obviously,Dma is less
than Dmb, because beyond coexistence, phaseb is meta-
stable. However, we can compress phasea to a higher pres-
surePa such that

Dma~Pa!5Dmb~Pb!. ~C8!

Note that, as we are working in the semigrand ensemble
where we keep allDm i constant, we have thus achieved
equality of the chemical potentials in the two phases forall
species in the multicomponent mixture. In homogeneous
nucleation, it is the Laplace pressureDp that ensures that the
chemical potential of every individual species is equal inside
and outside the critical nucleus. We can therefore make the
immediate identification,

Dp5Pa2Pb . ~C9!

Of course, once we have determined the pressurePa , then
the density and composition of phasea follow.

In a simulation, we can solve equation~C8! by making
use of the fact that, for a semigrand ensemble we have the
following relation:

]m1

]P
5

V

N
. ~C10!

We can compute the average volumeV in a semigrand simu-
lation, and hence we can obtainDm by integration. Our ex-
pression for the Laplace pressure then becomes

E
Pcoex

Pb1Dp

^V~P!&a dP5E
Pcoex

Pb

^V~P!&b dP. ~C11!

This can also be written as

E
Pb

Pb1Dp

^V~P!&a dP5Dmb~Pb!, ~C12!

For an incompressible system, we can simplify this expres-
sion further, but we will not do this here. Once we have
computedDp, we can estimate the interfacial free-energygs

by using our numerical information about the nucleation bar-
rier DG, using Eq.~C7!,

gs5S 3

16p D 1/3

DG1/3Dp2/3.

3028 J. Chem. Phys., Vol. 120, No. 6, 8 February 2004 S. Auer and D. Frenkel

Downloaded 09 May 2007 to 145.18.109.185. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



1W. Hoover and F. Ree, J. Chem. Phys.49, 3609~1968!.
2A. Vrij et al., Faraday Discuss. Chem. Soc.76, 19 ~1983!.
3P. Pusey and W. van Megen, Nature~London! 320, 340 ~1986!.
4A. van Blaaderen and P. Wiltzuis, Science270, 1177~1995!.
5M. Rutgers, J. Dunsmuir, J. Xue, W. Russel, and P. Chaikin, Phys. Rev. B
53, 5043~1995!.

6K. Schätzel and B. Ackerson, Phys. Rev. E48, 3766~1993!.
7J. Harland and W. van Megen, Phys. Rev. E55, 3054~1997!.
8C. Sinn, A. Heymann, A. Stipp, and T. Palberg, Prog. Colloid Polym. Sci.
118, 266 ~2001!.

9S. Auer and D. Frenkel, Nature~London! 409, 1020~2001!.
10W. van Megen, Transp. Theory Stat. Phys.24, 1017~1995!.
11A. Heymann, C. Stipp, C. Sinn, and T. Palberg, J. Colloid Interface Sci.

206, 119 ~1998!.
12T. Palberg, J. Phys.: Condens. Matter11, 323 ~1999!.
13R. Davidchack and B. Laird, Phys. Rev. Lett.85, 4751~2000!.
14H. Reiss and R. Bowles, J. Chem. Phys.111, 7501~1999!.
15P. R. ten Wolde, Ph.D. thesis, University of Amsterdam, Amsterdam, The

Netherlands, 1998.
16P. L. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B28, 784

~1983!.
17J. S. van Duijneveldt and D. Frenkel, J. Chem. Phys.96, 4655~1992!.
18P. R. ten Wolde, M. Ruiz-Montero, and D. Frenkel, Phys. Rev. Lett.75,

2714 ~1995!.
19P. R. ten Wolde, M. Ruiz-Montero, and D. Frenkel, Faraday Discuss.114,

9932 ~1996!.
20G. Torrie and J. Valleau, Chem. Phys. Lett.28, 578 ~1974!.
21D. Frenkel and B. Smit,Understanding Molecular Simulations: From Al-

gorithms to Applications~Academic, San Diego, 1996!.
22C. Geyer and E. Thompson, J. Am. Stat. Assoc.90, 909 ~1995!.
23W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,Numerical Recip-

ies ~Cambridge University Press, Cambridge, 1992!.

24A. Cacciuto, S. Auer, and D. Frenkel, J. Chem. Phys.119, 7467~2003!.
25S. Auer and D. Frenkel, Nature~London! 413, 711 ~2001!.
26D. Chandler, J. Chem. Phys.68, 2959~1978!.
27M. Ruiz-Montero, D. Frenkel, and J. Brey, Mol. Phys.90, 925 ~1997!.
28P. R. ten Wolde, M. Ruiz-Montero, and D. Frenkel, J. Chem. Phys.110,

1591 ~1999!.
29B. Cichocki and K. Hinson, Physica A166, 473 ~1990!.
30M. Medina-Noyola, Phys. Rev. Lett.60, 2705~1988!.
31J. S. van Duijneveldt and H. N. W. Lekkerkerker, inScience and Technol-

ogy of Crystal Growth, edited by J. P. van der Ecrden and O. S. L.
Bruinsma~Kluwer-Academic, Dordrecht, 1995!.

32Z. Cheng, Ph.D. thesis, Princeton University, Princeton, 1998.
33W. van Megen and S. M. Underwood, Phys. Rev. E49, 4206~1994!.
34W. Ostwald, Z. Phys. Chem., Stoechiom. Verwandtschaftsl.22, 289

~1897!.
35S. Alexander and J. McTague, Phys. Rev. Lett.41, 702 ~1978!.
36W. Klein and F. Leyvraz, Phys. Rev. Lett.57, 2845~1986!.
37W. Klein, Phys. Rev. E64, 056110~2001!.
38S. Pronk and D. Frenkel, J. Chem. Phys.110, 4589~1999!.
39S. Mau and D. Huse, Phys. Rev. E59, 4396~1999!.
40P. Puseyet al., Phys. Rev. Lett.63, 2753~1989!.
41M. Elliot, S. Haddon, and W. Poon, J. Phys.: Condens. Matter13, 553

~2001!.
42J. Zhuet al., Nature~London! 387, 883 ~1997!.
43P. Bolhuis, D. Chandler, C. Dellago, and P. Geissler, Annu. Rev. Phys.

Chem.53, 291 ~2002!.
44J. M. Polson, E. Trizac, S. Pronk, and D. Frenkel, J. Chem. Phys.112,

5339 ~2000!.
45K. Hall, J. Chem. Phys.57, 2252~1970!.

3029J. Chem. Phys., Vol. 120, No. 6, 8 February 2004 Crystallization rates in hard-sphere colloids

Downloaded 09 May 2007 to 145.18.109.185. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


