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Abstract: Numerical simulation is an important tool which can be used for designing parts and
production processes. Springback prediction, with the use of numerical simulation, is essential for the
reduction of tool try-outs through the design of the forming tools with die compensation, therefore,
increasing the dimensional accuracy of stamped parts and reducing manufacturing costs. In this work,
numerical simulation was used for performing the springback analysis of car body stamping made of
aluminium alloy AA6451-T4. The finite element analysis (FEM) based software PAM-STAMP 2G was
used for performing the forming and springback simulations. These predictions were conducted with
various combinations of material models to achieve accurate springback prediction results. Six types
of yield functions (Barlat89, Barlat2000, Vegter-Lite, Hill90, Hill48 isotropic, and Hill48 orthotropic)
were used in combination with the Voce hardening model. Springback analysis was conducted in
three sections of the formed part; the numerical results were compared with the experimental values.
It was found that the combinations of Barlat’s yield functions and the Voce hardening law were most
accurate in terms of springback prediction. Additionally, it was found that the phenomena that were
investigated, which are required for the determination of the kinematic hardening model, such as the
change of Young’s modulus E, the transient behaviour, work-hardening stagnation, and permanent
softening, were not observed in the aluminium alloy studied.

Keywords: springback; numerical simulation; yield function; aluminium alloy formability

1. Introduction

Automobile manufacturers have started to use new types of high strength steels (HSS, AHSS,
and UHSS) at the end of the last century, with the aim of increasing the passive safety of vehicles
and to reduce vehicle weight to decrease fuel consumption [1–3]. However, these types of steels have
a lower formability in comparison with steels used for deep drawing. The main reason for this is
the higher values of the yield strength and lower ductility of high strength steels [2]. In addition,
aluminium alloys are now widely used in the automotive industry due to advantages, including the
low density, high specific strength, good corrosion resistance, exceptional specific stiffness, and so
forth [1]. The implementation of aluminium alloys in car body production can reduce fuel consumption
and emissions [4]. Both high strength steels and aluminium alloys are more prone to wrinkling and
springback than mild steels [1,5].

Springback in the present refers to a change of shape which is elastically driven. Springback occurs
following a sheet-forming operation when the forming loads are removed from the workpiece—sheet
metal blank. It is usually unwanted, causing problems in the next forming operations, in assembly,
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and in the final product. These problems usually degrade the accuracy, appearance, and quality of the
products being manufactured [2,3,6]. The most common counter measurement against the springback
of car body parts is to design a forming tool with anticipation of springback, thus compensating
springback by die design. However, the amount of compensation is a difficult question even for skilled
tool designers. In practice, this compensation of die is still sometimes done by the “trial and error”
method. This method can be replaced by FEA (finite element analysis)—numerical simulation. With
the use of FEA, it is possible to achieve a more accurate prediction of springback [6–8]. There are other
counter measurements against springback, for example, the stiffening of pressings (use of beads or
embossing), crash forming with pressure pads, the use of variable blank holder force, and so forth [7].

In general, two types of methods are used for springback prediction—finite element analysis
and the analytical model. For example, the analytical model for springback prediction of aluminium
alloys can be found in the work by Gau and Kinzel [9]. Analytical methods usually use simplified
models of real processes. Thus, analytical models are usually not as accurate in predicting springback
as numerical simulations and their use is limited, especially for stampings with complex geometry [10].
The finite element method (FEM) is a well-known tool for the prediction and analysis of sheet metal
deformation. Springback prediction with the use of numerical simulation is not limited by the
geometrical complexity of the stamped part like in the case of the analytical model. However,
the numerical simulation of springback is more sensitive to the accuracy of the input data than
the analytical method. Thus, it is very important to choose the correct input and numerical parameters
in the FEA analysis of springback [11].

Numerical parameters involve the through-thickness integration scheme (which can be implicit,
explicit, or a combination of both), the number of integration points, the used elements (type, size,
and count), and so forth. Trzepiecinski and Lemu [12] studied the effect of a number of integration
points and integration rules on the springback amount. Their results indicate that at least 5 integration
points must be used to achieve accurate springback prediction. The input parameters involve geometry
(sheet thickness, tool and sheet dimensions, and so forth), process conditions (type of forming method,
tribology, forming forces, forming temperature and speed, and so forth), and material characteristics
(Young’s modulus, yield strength, hardening behaviour, yield function, and so forth) [10,11]. Slota,
Siser, and Dvorak [13] studied the effects of yield functions (isotropic and orthotropic) on the springback
prediction accuracy of aluminium alloys. Their results showed that the orthotropic yield function is
more accurate in predicting springback than the isotropic function. In addition, the effect of the die
radius on springback was studied. They found out that the increase of the bending radius caused a
higher springback of the bend materials. Seo et al. [14] conducted a study to evaluate the effect of
constitutive equations on the springback prediction accuracy. They used two yield functions, Hill48
and Yld2000, in combination with the Yoshida-Uemori hardening model in the finite element (FE)
simulation to predict the springback of the U-bend part and drawn T-shape part. Both parts were
made of TRIP steel. They found out that it is essential to choose the right yield function to get an
accurate prediction of springback. Mulidran et al. [15] conducted a numerical simulation of the
drawing hat-shaped part made of the DP600 and DC04 steels with the use of two forming methods:
drawing with a blank holder and crash forming with a pressure pad. They studied the effect of forming
methods and the various process parameters on springback amount. Their results indicated that the
higher blank holder and pad pressure have positive effects on reducing springback. Additionally,
crash forming with a pressure pad showed lower springback in comparison with drawing with a
blank holder. The work by Jung et al. [16] aimed at studying anisotropic hardening behaviour and
the springback of AHSS steels. They proposed the modified isotropic-kinematic hardening model,
which they used in the simulation of U-bending. Their model showed better results in the predicting
springback in comparison with the isotropic hardening model.

The novelty of this work lies in findings which indicate that the isotropic hardening model is
sufficient for predicting the springback of formed parts made of aluminium alloy. This model is
simpler, and does not need cyclic shear tests. In addition, isotropic hardening models do not use as
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many parameters as kinematic hardening models. The accuracy of springback prediction with use
of the isotropic hardening model was high. In addition, we found out that the phenomenon of the
degradation of Young´s modulus is not present for aluminium alloys which are precipitation hardened,
and that the degradation is not as significant as in AHSS steels (max. 2% degradation of Young´s
modulus for aluminium alloys). Villuendas et al. [17] and Roca et al. [18] studied the effect of plastic
deformation on the changes of Young´s modulus of metallic alloys. They reported that, in aluminium
alloys, there were no appreciable changes in the E value. This conclusion is consistent with our findings.
These changes are related to the dislocation density changes. However, even though the dislocation
density is high, the values of parameter l (length of dislocations) are very low, due to the interaction
between nanometric precipitates and dislocations in the aluminium alloys. The Mott model then
shows that the change of Young´s modulus E is very small. Kinematic hardening models also take
into account other phenomena, such as the transient behaviour, work-hardening stagnation, and the
permanent softening. These phenomena were not observed in the material studied in this work.

These findings have a significant financial impact. For example, it is not necessary to conduct
time-consuming tests on special (expensive) equipment, which are used to determine the parameters
for kinematic hardening models.

In addition, the detailed analysis of a complex shaped part made of aluminium alloy with a
significant thickness of 3 mm, mainly used in car production, was conducted. In most of the studied
literature, the research was done on simply shaped parts.

In this research work, a FEM was used to predict the springback of a car body part made of
aluminium alloy AA6451-T4. The finite element analysis (FEA) was conducted to investigate the
influence of the used yield functions in the numerical simulation on springback prediction accuracy.
Three sections were used for springback evaluation; in these sections, the thickness and part profile
were measured and compared with the experimental results. The experimental results were given
by the automobile manufacturer. Additionally, the computation times for the various yield functions
were compared.

2. Materials and Methods

In the presented work, aluminium alloy AA6451-T4 with a thickness of 3.00 mm was used as
the blank. Mechanical properties were measured by uniaxial and biaxial tensile tests. To obtain the
required data for the FEM model, the specimens for the uniaxial tensile test were cut in three different
orientations (0◦, 45◦, and 90◦ to the rolling direction). Specimens for the uniaxial tensile test were
produced according to the EN 10002-1:2002-11 standards. Several specimens were tested for each
orientation, and the average values of the basic mechanical properties (displayed in Table 1) were
obtained by the formula

Xav =
X0 + 2X45 + X90

4
(1)

where X is the mechanical parameter, and the subscripts denote the orientation of the specimen with
respect to the rolling direction of the sheet. The elastic mechanical properties of the aluminium alloy
are shown in Table 2.

Table 1. The uniaxial tensile test data of the AA6451-T4 sheet [19].

Orientation Yield Strength σy (MPa) Normal Anisotropy r (–)

0◦ 151.28 0.62
45◦ 171.20 0.33
90◦ 163.60 0.80

Average value 164.32 0.52
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Table 2. The elastic mechanical properties of AA66451-T4 [19].

Sample Density, ρ (g·cm−3) Young´s Modulus, E (GPa) Poisson´s Ratio, v

AA6451-T4 2.7 70.0 0.3

The true stress–strain curves obtained in three different orientations (0◦, 45◦, and 90◦ with
respect to the rolling direction) are shown in Figure 1. The tension-compression test (Figure 2)
was started by the tension load as the first part of the full cycle. After a specific crosshead stroke
corresponding to a defined pre-strain level, the load was reversed to compression until it reached the
crosshead displacement according to a given compression strain. Next, reloading in tension direction
was introduced until the crosshead stroke was equal to that in the first tension. The investigated
phenomena, such as the change of Young’s modulus E, transient behaviour, work-hardening stagnation,
and permanent softening, were not observed in the material studied in this work, as we can see from
Figure 2.

ρ −

–

’

 

Figure 1. The experimental stress-strain curves from the tensile test.

ρ −

–

’

 

Figure 2. The cyclic tension-compression experimental curve of AA6451-T4 [19].

The equal biaxial tensile yield stress and the biaxial anisotropy rb are given in Table 3.
The parameters obtained from this test are necessary to determine the advanced yield functions.
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Table 3. The equal biaxial tension test data [19].

Biaxial Yield Stress σb (MPa) Biaxial Anisotropy rb (-)

153.60 0.55

3. Numerical Model

The springback computation was performed using the dynamic explicit code in the PAM-Stamp
2G software. The tool setup imported in the simulation software is shown in Figure 3. The tool consists
of punch, blankholder, and die. The tool is aligned with the global z- axis without a plane of symmetry.
The blank was positioned between the die and blankholder.

σ

’

σ —
σ — σ

Figure 3. The tool geometry in the PAM-Stamp 2G software.

The blank was meshed by the quadrilateral shell elements which were 23 mm in size.
The refinement level of the elements was set to 4 so that the smallest elements after refinement
had a size of 2.875 mm. The number of integration points was set to 11, which is recommended
for springback computation. The friction coefficient was set to 0.08, which responded to the grease
lubrication. The initial meshed blank with a rolling direction is illustrated in Figure 4.

σ

’

σ —
σ — σ

Figure 4. The rolling direction on the initial meshed blank.

The obtained values of the mechanical properties were used as the basic input for the material
model in the FEM simulation. The accuracy of the springback prediction for several yield functions
was investigated by the FEM simulation. The yield function describes the material transition from
the elastic state to the plastic state. It can be described as a function of the area that limits the elastic
area of the multi-axis stress plane. In 1948, Hill introduced the concept of material anisotropy in yield
functions. According to Hill’s plasticity conditions [20], in case of uniaxial load, a local thickness
reduction occurs in a direction sensitive to the sample load. Hill assumed that the direction of the
compression is in line with the direction of zero extension and, therefore, the deformation of the
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narrowed areas is only reflected as a reduction in thickness. This is assumed for the plane strain
(σ1—major stress, σ2—minor stress, and σ3 = 0). If we assumed that the anisotropy axes are identical
with the main guideline strain tensor (σx = σ1, σy = σ2, τxy = 0), it is possible to describe the Hill48
yield function by the formula

2 f (σ) = (G + H)σ2
xx + (F + H)σ2

yy − 2Hσxxσyy + 2Nσ2
xy = 1 (2)

where σxx, σyy, and σzz are stresses in the RD (x), TD (y), and thickness (z) directions, respectively; σxy,
σyz, and σzx are the shear stresses in xy, yz, and zx directions. Parameters F, G, H, and N are material
parameters that describe the anisotropy of the material. If F = G = H = 1, and N = 3, the Hill48 function
is reduced to the von Mises criterion, or as it is called in FEM code, the Hill48 isotropic criterion.
A more common description is based on normal anisotropy in the 0◦, 45◦, and 90◦ directions to the
rolling direction. Then, the material parameters F, G, H, and N can be described by

F =
r0

r90(r0 + 1)
, G =

1
r0 + 1

, H =
r0

r0 + 1
, N =

(r0 + r90)(1 + 2r45)

2r90(1 + r0)
. (3)

For orthotropic hardening law and the values of anisotropy under 1.0, the Hill90 yield function is
more suitable. This function is considered to be more suitable for aluminium alloys, and it is based on
a non-quadratic transition function. In order to construct this function, the values from the uniaxial
tensile test are deficient. For a complete description of this function, the biaxial test data are also
required. The function can be described as

(

σ1

σ2

)2

+

(

σ2

σ90

)2

+

[

(p + q + c)−
pσ1 + pσ2

σb

](

σ1σ2

σ0σ90

)

= 1, (4)

where σ0 is uniaxial tensile stress in the rolling direction, σ90 is uniaxial tensile stress in the direction
normal to the rolling direction, σb is the stress under the balanced biaxial stress, and the c, p, and q

parameters are defined as follows [21]:

c =
σ0

σ90
+

σ90

σ0
−

σ0σ90

σ2
b

, (5a)

(

1
σ0

+
1

σ90
−

1
σb

)

p =
2R0(σb − σ90)

(1 + R0)σ
2
0

−
2R90σb

(1 + R90)σ
2
90

+
c

σ0
, (5b)

(

1
σ0

+
1

σ90
−

1
σb

)

q =
2R90(σb − σ0)

(1 + R90)σ
2
90

−
2R0σb

(1 + R0)σ
2
0
+

c

σ90
, (5c)

where R0 is the anisotropy value for the uniaxial tension in the rolling direction and R90 is the anisotropy
value for the uniaxial tension in the in-plane direction, perpendicular to the rolling direction.

The Barlat’s material models describe the plastic behaviour of a material in a more detailed way
than Hill’s functions, but the higher number of parameters increases the calculation time. The Barlat89
model needs three parameters for its complete formulation, by which it is possible to describe the
plane strain behaviours. Those parameters are defined in Table 4. The formulation is the following:

f = a|k1 + k2|
M + a|k1 − k2|

M + (2 − a)|2k2|
M = 2σM

e , (6)

where M is the exponent related to the crystallographic structure of the material, and k1 and k2 can be
described as

k1 =
σx + hσy

2
, k2 =

[(

σx − hσy

2

)

+ p2τ2
xy

]1/2

, (7)

where a, h, and p are the material model parameters.



Metals 2018, 8, 435 7 of 15

Table 4. The material constants for the Barlat89 yield function (m = 8.0).

a c h p

1.3033 0.9556 0.9247 0.8465

A more precise function was presented by Barlat in 2003, called Barlat2000, where the linear
transformation method was used. In the FEM software, this function is described by the eight
parameters shown in Table 5. The formulation for this model is as follows:

φ = φ′
(

X′
)

+ φ′′ (X′′ ) = 2σa, (8)

where a is an exponent related to the crystallographic structure of the material and φ′ and φ′′ are two
isotropic functions described as follows [22]:

φ′ =
∣

∣X1
′ − X2

′
∣

∣

α; φ′′ = |2X2
′′ + X1

′′ |α + |2X1
′′ + X2

′′ |α. (9)

Table 5. The material constants for the Barlat2000 yield function (a = 8.0).

a1 a2 a3 a4 a5 a6 a7 a8

1.065173 0.841891 0.960059 0.958652 1.034037 1.027112 0.838988 0.877033

According to several works [23–25], the Vegter yield function should be more suitable for special
steels and aluminium alloys due to its more convenient results. The Vegter criterion describes the
yield locus more accurately from a series of physically tested points. According to Vegter, it is
possible to establish the first quadrant of the yield function on the basis of the basic experimental
measurement. To construct the ellipses, the Bezier interpolations between each point need to be
performed. Every point requires three parameters to be defined, the main stresses σ1 and σ2, and the
strain vector ρ = dε2/dε1. For a complete description of planar anisotropy, it is necessary to obtain
17 parameters from 9 mechanical tests. The mathematical expression of this function is

(

σ1

σ2

)

= (1 − λ)2

(

σ1

σ2

)r

i

+ 2λ(1 − λ)

(

σ1

σ2

)h

i

+ λ2

(

σ1

σ2

)r

i+1

, (10)

where λ is the parameter for the Bezier interpolation subscript, i refers to the first reference point, r and
h refer to a reference point and hinge point, respectively [26].

It is possible to use a simplified formula—Vegter-Lite. For this optional model, only 7 parameters
from three mechanical tests (uniaxial tensile test, hydraulic bulge test, and the measurement of
anisotropy) need to be defined. In this model, the second order Bezier interpolation is replaced by the
second order NURBS interpolation, and the weight factor w—that controls the position of the curve
between the points—is introduced. The formula for this model is

(

σ1

σ2

)

=

(1 − λ)2

(

σ1

σ2

)r

i

+ 2λ(1 − λ)

(

σ1

σ2

)h

i

+ λ2

(

σ1

σ2

)r

i+1

(1 − λ)2 + 2wλ(1 − λ) + λ2
. (11)

To fully define the material behaviour, the hardening curve of the material is also required.
The Voce hardening curve gives the best correlation with the experimental results at an orientation of
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0◦ from the rolling direction. This law provides a sufficient description of the elastic behaviour for
aluminium alloys. The Voce hardening law is given by the equation

σy

(

εp

)

= A − Be−Cεp , (12)

where A, B, and C are parameters defined in Table 6.

Table 6. The parameters for the Voce hardening curve.

A (MPa) B (MPa) C (–)

359.093260 169.310139 9.374256

To determine the failure criteria, Keller´s and Goodwin´s forming limit curve (FLC) model
was used [27]. This empirical formula was obtained from experimental trials, and requires only
two parameters: the thickness of the material and the strain hardening coefficient. The formula can be
written as follows:

ε10 =
(23.3 + 14.13t0)n

0.21
, (13)

where t0 is the initial thickness of the sheet and n is the strain hardening coefficient.
The simulation process consisted of three operations (stamping, trimming, and springback).

Stamping was carried out as one continuous process in which the die moved at a speed of 100 mm/s.
The blank was positioned between the die and the blankholder during holding. The die movement
was set in the −z-direction at 300 mm until the blank was clamped. Subsequently, a blankholding
force of 1900 kN was applied. The die and blankholder moved in the −z-direction until the tool was
closed. After the part was fully formed, the trimming operation was performed. The trimming curve
is shown in Figure 5.

𝜀10 = (23.3+14.13𝑡0)𝑛0.21

−
−

Figure 5. The trimming curve on the punch.

4. Results

The results obtained from the numerical simulation were compared with the experimental ones.
The springback was measured using locked nodes of the model. The stamped part profile and thickness
were evaluated in three sections displayed in Figure 6. Section 1 is located on the right side of the part.
This section passes through the hole, and due to the complex shape of the stamped part, the effect of
the springback is quite significant in this area. The hole also runs through Section 2; this section is
located on the left side of the part. The third section is located between section one and two. Figure 6
also shows the centres of the coordination systems used for profile evaluation. These centres were key
for assembly purposes.
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𝜀10 = (23.3+14.13𝑡0)𝑛0.21

−
−

Figure 6. The sections used for profile and thickness evaluation.

4.1. Profile Analysis

The profile of the part was measured before and after springback. Since the stamped part copies
the shape of the die, the profiles after stamping were almost identical for every material model. Good
correlation of the experimental and numerical results can be observed after stamping. The comparison
of the experimental results and the FEM simulation after springback for each section is shown in
Figure 7. Subsequently, the FEM results for each yield function after springback were also compared.

 

 

𝑋𝑎𝑣 = |𝑋𝐿|+|𝑋𝑅|2

Figure 7. The comparison of the part profile from FEM simulation after springback with the
experimental results after stamping and springback in (a) Section 1; (b) Section 2; (c) Section 3.

The deviations from the experimental results were measured on the left and on the right side of
the sections. For assembly purposes, the deviation was measured in mm. Due to the difficulty of using
conventional methods for springback measurement, the MATLAB system was implemented into the
evaluation process. A simple program in the MATLAB environment was developed by the authors,
which made it possible to measure the springback more accurately and easily. At first, a section was
imported into the program, and the coordinate system was defined. Then, by selecting one point on
the arm, a straight line parallel to the X-axis was created. Further points could only be created on this
line, and the distance between each point was evaluated.
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Figure 8 shows the experimental results and results from the numerical simulation in Section 1.
Deviation from the experimental results for every yield function is shown in Table 7. A positive
value means that the numerical simulation predicted a higher springback value than the experimental
ones, and a negative value means that the simulation value was lower than the experimental ones.
From these values, the average value of springback was calculated by the following equation:

Xav =
|XL|+ |XR|

2
, (14)

where XL is the offset for the left side of the part and XR is the offset for the right side of the part.

  

t t t e Off

− 5 

−  − 3 

c − − 9 

−

Figure 8. The comparison of the yield functions in Section 1.

Table 7. The results of springback in Section 1.

Yield Function
Left Side Offset

(mm)
Right Side Offset

(mm)
Yield Function

Left Side Offset
(mm)

Right Side Offset
(mm)

Barlat2000 +3.36 +0.88 Barlat89 −1.28 +1.15
Hill90 −2.14 +3.77 Hill48 isotropic −9.29 +3.53

Hill48 orthotropic −1.85 +4.51 Vegter-Lite −1.67 +1.59

The lowest average deviation of 1.21 mm was measured when the Barlat89 yield function was
used. Yield functions Barlat2000 and Vegter-Lite had average deviations of 2.12 and 1.63, also showing very
good correlation with the experimental results. The highest average deviation of 5.44 mm was measured
for the isotropic Hill48 yield function. In this function, the anisotropy of the material was not considered.

In Section 2 (Figure 9), greater deviation of the numerical springback values from the experimental
ones can be seen on the right side of the profile. The reason is the shape of the part. Springback did not
appear so significantly on the left side of the part where the material is compressed. The results are
displayed in Table 8. In this section, the material model with the Vegter-Lite yield function showed
the lowest average value of deviation: 2.65 mm. The Barlat89 yield function with 2.68 mm average
deviation also shows good correlation. The other material models show very similar results, but the
isotropic Hill48 method shows the highest deviation (3.51 mm) from the experimental results.

−
− −
− −

  

−

Figure 9. The comparison of yield functions in Section 2.
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Table 8. The results of springback in Section 2.

Yield Function
Left Side Offset

(mm)
Right Side Offset

(mm)
Yield Function

Left Side Offset
(mm)

Right Side Offset
(mm)

Barlat2000 +0.45 +5.79 Barlat89 −0.20 +5.15
Hill90 +1.62 +4.48 Hill48 isotropic +1.56 +5.46

Hill48 orthotropic +3.78 +2.21 Vegter-Lite +0.04 +4.90

In the third section, the deviation was measured only on the right side because, on the left side,
the deviation was too low, as shown in Figure 10. In this section, the best correlation was achieved
with the Barlat yield functions, where the Barlat2000 deviation was 0.21 mm and the Barlat89 deviation
was 0.32 mm. The highest deviation of 5.26 mm was measured for the isotropic Hill48 yield function.
The results for all the material models are shown in Table 9.

 

− −
−

–

Figure 10. The comparison of yield functions in Section 3.

Table 9. The results of springback in Section 3.

Yield Function Right Side Offset (mm) Yield Function Right Side Offset (mm)

Barlat2000 −0.21 Barlat89 −0.32
Hill90 −0.75 Hill48 isotropic +5.26

Hill48 orthotropic +0.37 Vegter-Lite +1.97

4.2. Thickness Analysis

The next investigated parameter in this work was thickness, which was also measured in
mentioned sections. The thickness of the material can significantly influence the accuracy of the FEM
prediction. Since shell elements, which were used in this work, are suitable for thicknesses up to 1 mm,
the volume element should give better results. However, in the FEM software, it is possible to define
the volume elements for only the Hill48 and Barlat2000 yield functions. For comparison purposes of
all previously mentioned yield functions, the models must have shell elements. Figures 11–13 show
comparisons of the experimental and FEM results in each section.

− −
−

–

  

Figure 11. The thickness distribution in Section 1.
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− −
−

–

  

Figure 12. The thickness distribution in Section 2.

  

0 9  0  c ent

1  0 

2  1 

3  0 
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Figure 13. The thickness distribution in Section 3.

From the results of the thickness distribution in the individual sections, it is clear that the material
models with the Barlat (Barlat89 and Barlat2000) yield functions, and the Vegter-Lite yield function
shows very similar results. Although the description of the yield function and the amount of data
needed for their definition is different between those models, the results of the thickness distribution
were practically the same. The Hill48 model, either isotropic or orthotropic, exhibited significant
deviations. The average values of thickness are shown in Table 10. The experimental results show a
higher average thickness than the thickness data obtained by the FEM simulation.

Table 10. The comparison of the average thickness of each section.

Barlat2000 Barlat89 Vegter-Lite Hill90 Hill48 Orthotropic Hill48 Isotropic Experiment

Section 1 2.825 2.828 2.826 2.828 2.834 2.858 2.980
Section 2 2.856 2.847 2.853 2.852 2.847 2.859 2.991
Section 3 2.809 2.810 2.792 2.798 2.797 2.809 2.990

4.3. Computation Time

With the increased complexity of the yield function formulation and, thus, with the increased
number of necessary variables, the calculation time was increased. For the Hill48 isotropic model,
where the anisotropy of material was not considered, the computation took around 13 h and 47 min.
For the Hill48 orthotropic and Hill90 models, where the anisotropy of the material was considered,
the computation time took 14 h. In the Barlat yield functions, where the material’s crystallographic
structure was considered, the computation time increased significantly to around 15 h and 20 min.
The Vegter-Lite yield function achieved a similar accuracy and computation time as the Barlat material
models. Figure 14 shows the comparison of the computation times for each yield function.
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Figure 14. The computation time comparison.

5. Conclusions

The accuracy of the springback prediction is one of the most challenging problems in the
numerical simulation of forming processes. In the present article, the influence of the yield function
on the accuracy of springback prediction with the use of numerical simulation was investigated.
Three sections were defined on the formed part. In these sections, the thicknesses of the profile of
the stamped part after springback calculation were evaluated. After the stamping operation, for all
the examined yield functions, the sheet metal copied the shape of the die. Visible differences can be
seen after cutting and springback calculation. The results of the Barlat2000, Barlat89, and Vegter-Lite
yield functions were in good correlation with the experimental results. Hill’s yield functions (Hill90,
isotropic Hill48, and anisotropic Hill48) were not as accurate as the yield functions mentioned above.
Barlat’s yield functions takes into account the material’s crystallographic structures. The Barlat89
yield function, with an average deviation of 1.40 mm from experimental results of springback, is not
suitable for materials with strong anisotropy [26]. Additionally, this model cannot capture the change
of yield stress and the Lankford coefficient values. However, the advantage of this function lies in
its simple mathematical description, and in the ability of the accurate plastic behaviour prediction
(yield locus) of aluminium alloys, thus, the results of the Barlat89 model are more accurate than the
results obtained with the use of Hill’s yield functions. The Barlat2000 yield function is an improved
version of the Barlat89 model, but the description of this improved model in the numerical simulation
is more difficult. This is the reason why this function is not used as much in industrial practice.
The experimental thickness values were higher than the predicted ones in all cases. From the results of
the thickness distribution in the individual sections, it is clear that the yield functions of the Barlat’s
family and Vegter-Lite yield function show very similar results. Although the description of the yield
function and the amount of data needed for their definition is different between those models, the
results of the thickness distribution were practically the same. The Hill48 model, either isotropic
or orthotropic, exhibited significant deviations. This can be attributed to the shell elements used in
the numerical simulation or to the Voce isotropic hardening law. However, the Voce hardening law
exhibited good correlation with the experimentally measured FLC (forming limit curve). One of the
results of the work is that the combination of the isotropic hardening law with the isotropic yield
function did not achieve accurate springback prediction results. The combination of more advanced
yield functions (Barlat2000, Barlat89 and Vegter-Lite) with the isotropic Voce hardening law improved
the accuracy of the springback prediction, but the computation time was increased by approximately
an hour. Additionally, it was found out that the investigated phenomena which are required for the
determination of the kinematic hardening model, such as the change of Young’s modulus E, transient
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behaviour, work-hardening stagnation, and permanent softening, were not observed in the aluminium
alloy studied in this work. Our research confirmed that in aluminium alloys, there are no appreciable
changes in the Young’s modulus value.
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