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Executive Summary

The main objective of the present study has been to investigate problems related to shipping
green water on deck of a floating vessel by use of numerical methods. A Navier-Stokes solver
with a free surface capturing scheme, similar to the VOF method (Hirt and Nichols, 1981)
has been applied.

The green water problem occurs when the relative free surface motion exceeds the freeboard
of a floating vessel and the deck of the vessel is wetted. In the present context only FPSO type
vessels, with zero forward velocity have been investigated. Apart from an introduction to the
numerical method and simple tests of the free surface capturing scheme, the study can be
devided into two parts: First, a number of simplified test cases have been investigated, which
are all related to green water loads. These cases only include elements of the full green water
problem and are primarily used as verification of the numerical model. These cases include
dam break, cylinder impact, tank sloshing and wave crest impact on horizontal structures.
Second, three test cases closely related to green water problems have been investigated.
These include wave run-up on a wall, a green water problem with a fixed vessel and a full
green water problem with relative ship motion included. Great effort has been made to
validate and verify the numerical method and all computations have been verified by use
of several computational grids with increasing resolution and validated by comparison to
experimental data.

Results from the dam break and cylinder impact cases document that the numerical model
accurately can predict complicated free surface problems and both water height and pres-
sures/loads compares well with experimental data. The last stage of the dam break problem,
where the water returns from impact with the wall on the opposite side of the tank is very
sensitive to initial conditions, making this part of the problem difficult to reproduce ex-
actly. This is also documented by comparison to results obtained by use of other numerical
methods.

In addition to these cases, tank sloshing and wave crest impact on horizontal structures
have been used for validation of more complicated free surface interaction problems. In the
sloshing case both free surface contours and pressure time history of the water inside the
tank shows good agreement with experimental data. Loads on horizontal rectangular beams
exposed to wave crest impact are also well predicted numerically, as seen by comparison to
experimental data.
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iv Executive Summary

Altogether the validation cases shows good agreement with experimental data and the model
is considered to be applicable for many problems involving complex free surface flows and
wave impact load modelling.

Modelling green water loads has been conducted on both a simplified setup and on a full
green water problem. Visualisations of the free surface contours from a wave run-up and a
simplified 2-D green water case showed good agreement with experimental measurements of
the free surface. In the simplified 2-D green water case, where vessel motions were excluded,
the numerical model was able to predict both water height on deck and pressure loads on a
deck mounted structure very accurately, compared to experimental data. This investigation
also visualised how a small plunging wave encounters the fore part of the FPSO deck and
forms a small void cavity at the corner of the deck, in the initial stage of green water
shipping. This flow behaviour was also reported in the experiments, which further validates
the numerical method.

A full green water problem, including relative ship motion has been investigated in both
2-D and 3-D. In the computations, the relative ship motion has been included by adjusting
the mean free surface level, coupled with the incoming wave, whereby the vertical motion
at the bow of the FPSO is modelled. This model does not include rotational contribution
from the pitch motion, but only includes the vertical component of the pitch motion at the
bow of the FPSO. However, a comparison between computational and experimental water
height on deck showed very favorable agreement. Furthermore, the numerical investigation
showed that the 2-D and 3-D simulations gives almost identical results, illustrating that 3-D
contributions to the deck flow are not so important in the very fore part of the deck. If
the present method proves valid in general, this type of numerical simulation of green water
loads can become an important tool in design for an effective bow shape to reduce green
water loads.



Synopsis

Hovedform̊alet med dette studium har været at undersøge problemer relateret til dæksover-
skylninger ved brug af numeriske metoder. En Navier-Stokes løser, med en VOF metode
(Hirt and Nichols, 1981) til bestemmelse af den frie overflade, er blevet anvendt.

Dæksoverskylninger forekommer n̊ar bølgeelevationen af vandoverfladen overstiger fribor-
det p̊a et flydende fartøj. I dette studium bliver der kun betragtet dæksoverskyldinger p̊a
forankrede FPSO fartøjer. Ud over en introduktion til de numeriske metoder og simple
tests af forskellige fri overflade algoritmer, kan dette studium inddeles i to afsnit: Først
er et antal simple testeksempler blevet undersøgt, som alle er relateret til grønt vand p̊a
dæk. Disse eksempler inkludere dæmnings brud, cylinder kollision, tank sloshing (vold-
somme væskebevægelser) og bølgetop kollision med horisontelle strukturer. Dernæst er
tre eksempler blevet undersøgt som alle er tæt forbundet med dæksoverskyldninger. Disse
inkludere bølgeoverskylning af en fastholdt struktur (væg), simplificeret dæksoverskyldning
med fastholdt skib og en fuld dæksoverskyldning, inklusiv relativ skibsbevægelse. Studiet
har fokuseret meget p̊a verifikation og validering af den numeriske model, alle beregninger
er blevet verificeret med brug af adskillige beregningsnet med forskellig opløsning og resul-
taterne er blevet valideret med eksperimentelle resultater.

Resultaterne fra dæmningsbrud og cylinder kollision med vand dokumenterer at den nu-
meriske model er i stand til nøjagtigt at beregne komplicerede frie overflade strømninger
og b̊ade vandhøjde og tryk/belastninger stemmer godt overens med eksperimentelle re-
sultater. Den sidste del af dæmnings bruddet, hvor vandet returnerer efter kollision med
den modst̊aende væg er meget følsom overfor begyndelsesbetingelser, hvilket gør denne del
vanskelig at reproducere nøjagtigt. Dette er ogs̊a dokumenteret ved sammenligning med
andre numeriske metoder.

Ud over disse eksempler er tank sloshing og bølgetop kollision med horisontale strukturer
blevet anvendt til validering af mere komplicerede fri overflade problemer. I tank sloshing
analysen viser b̊ade visualiseringer af den frie overflade samt tryk tidsserier god overensstem-
melse mellem numeriske og eksperimentelle resultater. I analysen af bølgetop kollision med
horisontelle rektangulære bjælker er der ogs̊a god overensstemmelse mellen beregnede be-
lastninger og eksperimentelle resultater.

Alt i alt viser validerings eksemplerne god overenstemmelse mellem numeriske resultater og
eksperimenter, og konklusionen er at modellen er anvendelig og valideret indenfor mange
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vi Synopsis

strømningsproblemer der involverer komplekse strømninger med fri overflade og bølge be-
lastninger p̊a strukturer.

Modellering af dæksoverskylninger er blevet udført b̊ade p̊a en simplificeret opsætning uden
skibsbevægelser og p̊a et fuldt dæksoverskylnings problem. Visualiseringer af beregnede frie
overflade konturer fra bølgeoverskylning af en fastholdt struktur og af en simplificeret 2-D
dæksoverskylning viste god overensstemmelse med eksperimentelle resultater. I den sim-
plificerede 2-D dæksoverskylning, hvor skibsbevægelser var ekskluderet, var den numeriske
model istand til at beregne b̊ade vandhøjde p̊a dæk og trykbelastning p̊a en dæksstruktur
meget nøjagtigt, sammenlignet med med eksperimentelle resultater. Denne analyse viste
ogs̊a at et lille tomrum bliver dannet ved det forreste hjørne af dækket i den indledende
del af dæksoverskylningen. Dette blev ogs̊a rapporteret i forbindelse med eksperimenterne,
hvilket yderligere validerer de numeriske beregninger.

Et fuldt dæksoverskylnings problem, hvor den relative skibsbevægelse er inkluderet, er blevet
undersøgt i b̊ade 2-D og 3-D. I beregningerne er den relative bevægelse blevet inkluderet ved
at justere den frie overflade, hvorved den relative bevægelse ved forskibet p̊a FPSOen er
blevet modelleret. Denne model inkludere ikke det rotative bidrag fra duvning men kun den
vertikale komposant af duvningsbevægelsen ved forskibet at FPSOen. Sammenligningerne
mellem beregnede og eksperimentelle vandhøjder p̊a dæk viser alligevel god overensstemmelse
p̊a trods af denne simplifikation. Sammenligninger af beregnede 2-D og 3-D resultater viser at
disse næsten er identiske, hvilket illustrerer at strømningen p̊a den forreste del af dækket ikke
er domineret af 3-D bidrag. Hvis den aktuelle metode til bestemmelse af dæksoverskylninger
viser sig at være anvendelig generelt kan den blive et vigtigt værktøj til design af effektive
bovformer til reduktion af dæksoverskylninger.
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Symbols

The symbols used in this thesis are generally explained when they are first introduced. The
following list contains the main symbols used.

Roman Symbols

Ahyd Sectional hydrodynamic damping

A Discretised face normal

B Breadth of vessel

CD Cell CFL number

D Draught of vessel

E Free surface extrapolation operator

FT Forcing function

G Discretised gradient operator

GT Forcing function

H Wave height

I Discretised linear interpolation operator

L Length

Q QUICK operator

R Radius

Re Reynolds number

S Level of submergence

T Wave period

Tres Resonance period

U Characteristic velocity

Vc Cell volume

a Wave amplitude

cg Group velocity

f Transfer function variable

g Gravitational acceleration

h Mean water level
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i, j Cell indices

k Wave number

l Face leg

n Cell normal vector

nfs Cell normal vector at free surface

p Pressure

p̃ Static pressure

t Time

u Velocity vector

w Heave motion

x1,2,3 Cartesian coordinates

zs Vertical ship motion

Greek symbols

α Cell filling degree

α̃ Normalised α

β Inundation of beam element

Γ Cell boundary

γf Switching function

ζ Wave elevation

η Transfer function variable

θ Pitch angle

θf Angle between cell face and free surface

κ Smith correction factor

λ Wave length

ν Kinematic viscosity

ξ Phase

ρ Mass density of water

σ Stress

Φw Transfer function heave

Φθ Transfer function pitch

ϕ Gerenic variable

Ω Cell volume

∇ Gradient operator
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SPH Smooth Partical Hydrodynamics

UQ UltimateQuickest

VOF Volume of Fluid



xiv Symbols



Chapter 1

Introduction to Green Water
Problems

The green water problem has been known in the maritime world for a long time. The
problem arises when a ship, usually in harsh weather conditions, encounters waves that
exceed the freeboard and wet the deck. The term ’green water’ refers to the shipped water
not only consisting of spray from wave crests encountering the ship’s bow or side, but it
also means a solid bulk of sea water (which is usually more green than blue), exceeding
the freeboard and running over the forecastle or side of the ship. In Fig. 1.1 a photo from
offshore Newfoundland illustrates a green water incident on a small supply vessel where the
forecastle is clearly covered with a solid bulk of water. In most green water incidents the

Figure 1.1: Example of green water load on a small vessel.

shipped water will not have any detrimental effect and run off the deck once the shipdeck
exceeds the wave crest. However, in some cases the amount of shipped water can be so large

1



2 Chapter 1. Introduction to Green Water Problems

that it causes damage to deck equipment, plating, structures or cargo being transported
on the deck. For normal merchant vessels, green water incidents are avoided by imposing
operation restrictions, such as minimising the operation speed or altering the course, as
reported by Tan (1969), and by having passive protection on deck, such as breakwaters or
other protective structures.

With the introduction of floating production storage and offloading units (FPSO’s) and
Floating Storage Units (FSU’s) in the offshore industry, the problem of green water loads has
been given increasing attention. And the effort to install FPSO’s in yet harsher environments
have increased the problems related to green water incidents, e.g. Ersdal and Kvitrud (2000).
The FPSO vessels are normally new- or rebuilt tankers, which are moored to an offshore
location and remain in the same location for a period of up to 7-8 years. The vessels
are equipped with sensitive production and piping equipment on deck, and damage to this
equipment, as a result from green water loads, can be very costly in repairs and downtime of
the unit. Some of these vessels are equipped with a turret, which allows for weather-vaning.
The placement of the turret at the bow requires that sensitive production equipment is also
placed at the bow, which increases the risk of damage.

In this chapter the physics of the green water incidents will be introduced, and the major
contributing factors will be analysed. Previous and current studies in the field of green water
loads will be presented, and the scope of the present thesis will be outlined.

1.1 Physics of Green Water Loads

The chain of events leading to shipping water and green water loads has been investigated
for many years. The amount of shipped water is an important parameter, but the dynamics
of this water is equally important, as well as the loads imposed by the water on deck and
deck structures. Many factors play a role in the occurrence and severity of the green water
incidents, and the list includes

• Relative wave motion

• Freeboard height

• Ship motion and forward speed

• Ship’s flare

Some items are closely linked to others, but will here be treated separately to give an overview
of the physics behind green water loading
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1.1.1 Relative Wave Motion and Freeboard Height

The basic parameter to be determined in green water cases is the relative wave motion. In
linear analysis, the water height on deck that causes the load can be found from the relative
wave motion:

rwave(t) = ζ(t) − z(t) (1.1)

where ζ(t) is the incident wave elevation and z(t) is the vertical ship motion. These are
defined as

ζ(t) =
H

2
cos (ωt − kx) (1.2)

z(t) = Az cos(ωt + ξ) (1.3)

where ω is the wave frequency, k is the wave number, Az is the vertical ship motion amplitude
(heave and pitch), and ξ is the vertical ship motion phase angle.

In linear analysis, any exceeding of the freeboard height by the relative wave height (Eq. (1.1))
will lead to an equivalent amount of water on deck. This estimation is the basis of the green
water prediction methods by Ochi (1964) and Fukuda et al. (1973). However, as shown
experimentally by both Buchner (1995a) and Ogawa et al. (1998), exceeding the freeboard
do not necessarily lead to an identical water height on deck.

1.1.2 Ship Motion and Forward Speed

Although ship motion and forward speed are included in the computation of relative mo-
tion, the effects of motion and forward speed have additional influence on the green water
incidents. This is through dynamic amplification of the load that the shipped water im-
poses on the deck structure. Ochi (1964) states that the pressure on the deck associated
with a green water incident corresponds to the static water pressure of the water on deck,
while experiments by Buchner (1994) show that for a frigate, with a large forward speed, a
very significant dynamic amplification may occur where the pressure measured at the deck
exceeds the static water pressure by a factor of 15. This proves that in some cases the
dynamic amplification may be almost neglected, while in others the dynamic amplification
may significantly increase the deck pressure load.
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1.1.3 Ship’s Flare

The presence of flare in the bow region of the ship affects both the relative motion and the
diffraction of the incoming wave. This influences the resulting water height on deck and
the dynamics of the shipped water on the deck. Most methods for determining the relative
motions are based on linear diffraction analysis, where exciting forces on the ship due to the
(undisturbed) waves and the reflected (diffracted) waves are determined. This method only
takes into account the ship’s geometry up to the still water line, and the geometry above
the still water line is not included. It also neglects the effect of dynamic swell, which is the
increase of the water level near the ship as a result of the presence of the hull in the wave.
Buchner (1995a) and Buchner (1996) also showed experimentally that for a moored FPSO,
a change in the bow geometry when more flare is added to the bow above the still water line
may increase the relative motion.

Regarding the resulting water height on deck, Buchner and Voogt (2000) showed, also for
a moored FPSO, that an approximate linear relation exists between the relative exceeding
of the freeboard and the resulting water height on deck and that the factor between them
depends on the flare of the ship’s bow. The experiments clearly showed that the actual
water height on deck, resulting from the relative exceeding of the freeboard, is significantly
reduced with increasing bow flare.

In a previous work O’Dea and Walden (1984) investigated the effect of flare on green water
loads, by applying significant flare to traditional ship types, and the conclusion was that the
deck wetness was reduced as a result of the increased flare. In another study by Lloyd et al.
(1985), the effect of flare was also investigated by applying different bow configurations to a
frigate type ship, and they concluded that a heavily flared bow increases the deck wetness.
Though these two conclusions contradict each other, they may still both be true. Since it
is known that flaring of the bow will alter the response of the ship for a given wave, this
can in some cases where the ship motion at the bow comes out of phase with the relative
motion, decrease the relative motion and thus reduce the amount of shipped water, whereas
in other cases, the increased relative motion will increase the relative wave at the bow and
thus increase the amount of shipped water.

To illustrate the disagreement in the maritime community regarding the effect of bow flare
on deck wetness Lloyd et al. (1985) give a list of previous works, and it is clear that there
are many different opinions on this topic, which illustrates the complexity.

1.2 Prediction Methods for Green Water Loads

A number of methods for predicting green water loads have been proposed. This section
gives an overview of the methods. For further literature, Buchner (2002) and Greco (2001)
give good introductions to the field.
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For ordinary ships Ochi (1964) made a probability analysis, estimating the probability of
deck wetness from the freeboard height and the variance of the relative wave motion between
wave and ship’s bow. The method gives a probability distribution for the pressure on deck,
based on the assumption that the pressure on deck corresponds to the static water pressure
of the shipped water.

Hamoudi and Varyani (1998) presented extensive experimental studies to determine prob-
ability levels of deck wetness, for various Froude numbers and wave heights. The number
of incidents was recorded and compared to previous experimental work. The study showed
number of occurrences and loads on a structure placed in the bow region. The experiments
used the S175 container ship model.

Mizoguchi (1989) presented a method for evaluating the water height and the pressure on
deck, based on a combination of experiments and numerical simulation. The water height
of the shipping green water is measured experimentally and used as input for a numerical
simulation of the water flow on the deck. It is assumed that the dynamics of the ship, once
the water has entered the deck area, does not affect the following flow, and the flow on
deck is described by shallow water theory, where the water has a constant velocity over the
depth. The method shows some similarities between computed water heights on deck and
experimentally measured results. The method employs an empirical relation between the
initial water height and the initial pressure, which is needed as an initial condition for the
numerical model.

Using a combination of experimental results and empirical methods, Ogawa et al. (1998)
presented a method for evaluating the water heights on deck, the pressure on deck and
the pressure on structures located on the deck. The experiments were used to evaluate the
relative wave height in front of the ship, and a model for determining flood waves, which were
corrected to include the bow geometry and the pitch angle, was employed to determine the
water height on deck. Pressures on deck were estimated by a method presented by Buchner
(1995b) and load on deck structures by a Wagner based method.

By application of a boundary element method Maruo and Song (1994) made numerical
simulations of ship-wave interaction in the bow region and early stage green water shipping.
The method was designed for highspeed vessels and investigated the effect of the wave
steepness (ratio of wave height to wavelength) on the water shipping. The numerical model
was two-dimensional, and the variation along the ship’s hull was obtained by applying the
model to various cross sections.

Wan and Wu (1999) used a Navier-Stokes solver, with an artificial compressibility scheme,
combined with a volume-of-fluid (VOF) method (Hirt and Nichols, 1981) for free surface
capturing, to model a green water incident. The scheme is simplified to 2-D modelling,
and the (relative) motion of the vessel is not modelled. A single wave is set up in the
computational domain, and the resulting water height and pressure on deck are registered.
No comparison with experimental results is presented.
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Also in the category of Navier-Stokes solvers Fekken et al. (1999) presented a method for
simulating green water incidents where the free surface modelling was based on a VOF type
approach. The interaction between ship and incoming wave was not modelled but instead
a dam break type flow, where the ship motion was neglected, was used to model the water
flow on deck. Thus a water front with zero initial velocity was set up in front of the ship’s
bow where the flow could freely flow onto the deck. The paper presented comparisons to
experiments and concluded that overall physical behaviour of the flow could be predicted,
but that the lack of modelling ship-wave interaction and ship motion limited the applicability
of the method.

In the most extensive experimental work conducted in the field of green water loads, Buchner
(2002) presented experimental investigations of nonlinear relative wave motion, the physics
of water flow onto deck and impact loading on structures located on deck. The work was
aimed at FPSO’s, using moored vessels with tankerlike structures. For the relative motion,
Buchner (2002) documented the importance of including the above waterline bow geometry
in the response of the ship. For the water flow on deck, the effect of bow geometry and flare
was investigated analysing the flow pattern on deck for different bow types and flare angles.
The resulting pressure on deck was also investigated, where the different static and dynamic
effects for deck pressure were isolated and evaluated. Finally, the investigation included the
impact pressure on various deck structures. Numerical simulation of green water loads was
also presented, based on a method presented in Fekken et al. (1999).

Greco (2001) also conducted both experimental and numerical investigations of green water
loads on an FPSO. The experiments included both early stage green water impact, using
wave run-up on a solid wall, and the following impact on a structure. The whole study was
two-dimensional (in the x − z plane) and the dynamic effects from the relative ship-wave
motion were neglected. For the numerical simulation, a fully nonlinear boundary element
method was applied and the results were compared to experimental data.

In Stansberg and Karlsen (2001) an experimental study of green water loads on FPSO’s was
presented, measuring relative wave motion, water level on deck and impact pressures. These
results were in Hellan et al. (2001) compared to numerical simulations, where a 3-D linear
diffraction program was used to analyse the relative wave motion and a dam break model was
used to predict the water flow on deck. The comparison showed some resemblance between
numerical and experimental results. It was concluded that further investigation was needed
to describe the ship-wave interaction and the green water dynamics.

1.3 The Present Work

In this thesis a numerical model with extensive free surface capabilities will be applied to
a number of problems related to green water loads. The model, which is a Navier-Stokes
solver with a free surface capturing scheme implemented to model the free surface, has been
extended by a number of transport schemes. In the first part of the study, the numerical
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model is described and the free surface schemes are evaluated. In the second part, the
Navier-Stokes solver is applied to a number of problems including

• Dam break flow

• Wave impact on cylinder

• Tank sloshing

• Wave loads on horizontal profiles

• Simplified 2-D run-up and green water shipping

• 3-D green water load on an FPSO

All cases are compared to relevant experimental data for validation. The applicability of the
current numerical methods to problems related to green water loads will be discussed and
evaluated.

The general strategy which is used for the numerical simulations consists of three steps.
First, the numerical problems are investigated with several computational grids in order to
investigate the convergence properties of the numerical problems. The obtained results are
discussed and evaluated. Second, since all problems involve free surface flows, visualisations
of the free surface contours are used to investigate the flow properties in order to understand
the flow physics pertaining to the problem. To the extent it is possible, the visualisations
will be compared to available experimental visualisations. Third and last, the main flow
quantities, such as the resulting wave height or water level will be compared to experimental
values. This step is the final validation of the computed results, which should help to
document the applicability of the numerical method to the present problem. From this it
will be possible to comment on the future perspective of the applied model and give guidelines
to future research.

1.3.1 Outline of the Thesis

Apart from the present introduction, the thesis have two main sections, the first is a descrip-
tion of the currently used numerical model, and in the second part the previously mentioned
model problems will be investigated. The overview of the chapters is as follows:

In the first part of the thesis, two chapters describe the applied numerical model. Chapter 2
contains a description of the governing mass and momentum conservation equations. The
general solution procedure is presented, along with a description of the applied spatial and
time discretisation. In Chapter 3 the free surface modelling scheme is delt with, in this case
the volume-of-fluid (VOF) method. Various VOF transport schemes are implemented in the
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numerical model, and a specially constructed test evaluates the performance of the different
schemes.

The following chapters are all concerned with the investigated problems, which are in some
way related to green water loads. In Chapter 4 two problems are presented. First the dam
break problem is investigated, where one side of an initially retained container of water is
removed, allowing the water to flow into an empty region, and second a cylinder impact with
water at rest is investigated. Chapter 5 contains a description of the sloshing problem with
partially filled tanks. Both the free surface contours and the time histories of the pressure
measured inside the tank will be compared between computations and physical experiments.
Wave-in-deck problems where a wave crest encounters horizontal plate structures are inves-
tigated in Chapter 6. This problem is part of a push-over analysis of offshore platforms and
is not directly related to green water loads. However, the ability of the numerical model to
predict impact loads is an important aspect in green water analysis, so in this way the prob-
lems are related. The first actual green water investigation is presented in Chapter 7. First
a wave run-up problem, which can be seen as an initial stage of the green water problem,
is presented. Next, a simplified green water incident with a steady 2-D FPSOlike structure
is investigated. In this investigation the visualised free surface contours, the resulting water
height on deck, and the resulting pressure of an impact with a deck mounted structure are
compared between computations and experiments. The final green water investigation is
carried out in Chapter 8 where a full green water investigation is conducted. This means the
inclusion of relative ship motions as well as 3-D investigation of green water on an FPSO. The
numerical problem is restricted to only including vertical translating motion of the FPSO,
thus neglecting the influence of rotation. In Chapter 9 some general remarks on the present
study will be made, along with suggestions for further investigation.



Chapter 2

Governing Equations and Solution
Procedure

For modelling the different fluid flow problems in this thesis, a robust and versatile Navier-
Stokes solver with the ability to model complex free surface flows is required. Although
many commercial codes, such as COMET, Fluent and STAR-CD, are available for solving
the Navier-Stokes equations, and also offer various schemes for modelling free surface flows,
the in-house NS3 code has been modified and applied to fluid flow modelling in the problems
regarded in the present context. Although it is not as mature as some of the commercial
codes, the NS3 code offers a lot of flexibility, since the availability of the source code and the
close contact with the main developers offer a freedom in choice of scheme and the possibility
of investigating the efficiency of new models.

The NS3 code was originally developed at the International Research Center for Computa-
tional Hydrodynamics (ICCH Hørsholm, Denmark), and different versions of it have previ-
ously been presented by Mayer et al. (1998), Sørensen et al. (1997) and Kawamura (1998).
In this chapter the governing equations and the solution procedure will be briefly presented.

2.1 Mathematical Model

The modelling of fluid flow can be described by conservation principles, i.e. mass and mo-
mentum conservation. In the following only incompressible Newtonian fluids are used, since
these are sufficient for the type of engineering applications considered here. Incompressibility
implies that the density of the fluid is not dependent on the pressure, and for this type of
fluid, the mass and momentum conservation can, in integral form, be written as

∮

Γ

u · n dΓ = 0 (2.1)

9
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and

∂

∂t

∫

Ω

u dΩ = −
∮

Γ

(u ⊗ u) · n dΓ −
∮

Γ

pn dΓ +
1

Re

∮

Γ

∇u · n dΓ, (2.2)

where n is the outward pointing normal vector at the boundary Γ of a volume element Ω, t
is time, Re is the Reynolds number, u is the Cartesian velocity vector, and ⊗ is the outer
vector product operator. The Reynolds number Re is defined as

Re =
UL

ν
(2.3)

with U and L as characteristic velocity and length parameters, and ν is the kinematic
viscosity. The pressure variable p is defined as the deviation from hydrostatic pressure given
by

p = p̃ + gx3, (2.4)

where p̃ is static pressure, g is gravitational acceleration and x3 is the Cartesian coordinate
in the direction of gravitation.

Eqs. (2.2) - (2.1) are given for an Eulerian grid (e.g. fixed in time) but can be extended to
arbitrary Eulerian-Lagrangian by including grid velocity in the convective term, which is the
first on the right hand side of Eq. (2.2). Various turbulence models have also been imple-
mented in the code, but since turbulent effects are considered negligible for the applications
regarded in this thesis, turbulence modelling is omitted.

2.1.1 Boundary Conditions

In order to render a unique solution of the conservation equations, the problem requires
information about the solution at the domain boundaries. Generally, two types of boundary
condition are applied: Dirichlet and Neumann type condition. The Dirichlet condition states
that

ϕb = r (2.5)

and the Neumann condition that

∂ϕb

∂n
= r, (2.6)

where ϕb is the value at the boundary for the variable ϕ and r is a constant. For pressure
and velocity, the boundary conditions for the different types of outer boundary are given in
Table 2.1.
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Table 2.1: General boundary conditions for pressure and velocity
pb ub

inflow (x1 = inflow)
∂pb
∂n = 0 ui,b = {uinflow, 0}

outflow pb = 0
∂ui,b

∂n
= 0

body surface
∂pb
∂n

= 0 ui,b = 0

symmetry plane (x1 = symm)
∂pb
∂n = 0

∂ui,1

∂n = 0 , ui,2= 0

free surface (see Section 2.3) p̃b = 0
∂u

∂nfs
= 0

2.2 Spatial Discretisation

To solve the governing equations a domain is introduced in which the equations are solved.
This domain can be divided into a number of blocks forming a multiblock domain but,
for simplicity, the discretisation procedure will here be derived for a single block. The
discretisation scheme and the solution routine follow Zang et al. (1994).

When the classic finite volume method is applied, the domain is discretised by subdivision
into smaller non-overlapping control volumes Ωc, also denoted cells. The whole domain
containing all cells is termed the grid or the computational grid. Cartesianbased structured
grids are used in the present method, containing quadrilateral and hexahedral cells for two
and three dimensions respectively. A cell-centered variable arrangement is used for the
discretisation scheme, and the governing equations are solved by use of the primitive variables
of pressure and velocity.

For a cell Ωc with the cell boundary Γc the surface integrals can be discretised as a sum over
the cell faces Γf , and in discrete form the governing equations (Eqs. (2.1) - (2.2)) can be
rewritten as

∑

f

∮

Γf

u · n dΓ = 0 (2.7)

and

∂

∂t

∫

Ωc

u dΩ = −
∑

f

∮

Γf

(u ⊗ u) · n dΓ −
∑

f

∮

Γf

pn dΓ +
1

Re

∑

f

∮

Γf

∇u · n dΓ, (2.8)

where
∑

f Γf = Γc and
∑

c Ωc = Ωc. A collocated arrangement is used where the dependent
variables of velocity and pressure are located at cell centres. Fig. 2.1 illustrates the curvi-
linear discretised domain for a two-dimensional case. The cell faces east, west, south and
north will in the following be denoted e, w, s and n.
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i,j

i,j−1

i,j+1

i+1,ji−1,j

east

north

south

west

i+1,j−1

i+1,j+1

Figure 2.1: Cell layout for 2D structured grid. Cell Ωc shown in bold.

The integrals over control volumes and surfaces for the various terms in Eqs. (2.7) - (2.8)
are evaluated in the following using single-point quadrature.

Divergence Term

The mass equation (Eq. (2.7)) states that the velocity field must be divergence free, and the
face integral can be reduced as

∑

f

∮

Γf

u · n dΓ =
∑

f

uf · Af , (2.9)

where Af is the area weighted face normal vector and uf is the velocity vector at the cell
face f . The interpolation of velocity, from cell centre to cell face, for the mass equation is
discussed in Section 2.4.

Transient Term

For the transient term, i.e. the time derivation term in Eq. (2.8), the cell integral can be
reduced to

∂

∂t

∫

Ωc

u dΩ =
∂

∂t
Vcuc, (2.10)

in which Vc is the cell volume and uc is the velocity vector at the cell centre.
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Convective Term

The fluid transport (convection) term can be reduced to

∑

f

∮

Γf

(u ⊗ u) · n dΓ =
∑

f

∮

Γf

u(u · n) dΓ

=
∑

f

Qf(uc)Fi.
(2.11)

Here uf is the face value of the velocity, Fi is the face flux defined as

Fi = ui · Ai, (2.12)

and Qf represents an interpolation scheme for determining the velocity at the face from the
cell centre values. The QUICK scheme (Leonard, 1991) is applied in the present model, and
for the east face (e) of cell i, j (see Fig. 2.1) it gives

Qe(ui,j) =
1

2
(ui,j + ui+1,j) −

1

8
(ui−1,j − 2ui,j + ui+1,j). (2.13)

Pressure Term

For the pressure, the face integral can be reduced to

∑

f

∮

Γf

pn dΓ =
∑

f

If (pc)Af , (2.14)

where the linear interpolation operator If is applied to the pressure to find the values at the
cell faces. If gives the value at the east face of the i, j cell by

Ie(pi,j) =
1

2
(pi+1,j + pi,j). (2.15)

Diffusion Term

The final term in the momentum equation is the diffusion term, which is numerically inte-
grated from

1

Re

∑

f

∮

Γf

∇u · n dΓ =
1

Re

∑

f

Gf(uc) · Af , (2.16)
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where Gf is an operator which evaluates the gradient of uc, including cross derivative terms,
at the cell face f . In the 2-D case for the east face e of cell i, j, the operator Gf gives

Ge(ui,j) =
Ai,j,e

1
2
(Vi,j + Vi+1,j)

(ui+1,j − ui,j)

+
1
4
(Ai,j,s + Ai,j,n + Ai+1,j,s + Ai+1,j,n)

1
2
(Vi,j + Vi+1,j)

· 1

4
(ui,j+1 − ui,j−1 + ui+1,j+1 − ui+1,j−1).

(2.17)

2.2.1 Discretisation of Boundary Conditions

For the general variable ϕ the linear interpolation scheme I(ϕ) and the QUICK scheme Q(ϕ)
are, for a Dirichlet type boundary condition where the boundary condition ϕb is implicitly
known, given by

Ib(ϕ) = Qb(ϕ) = ϕb, (2.18)

which means that the Dirichlet condition is given directly from Eq. (2.5) and Eq. (2.18).

The gradient operator determines the boundary cell value based on second order one-sided
differences, and is for the east face of cell i, j, for the same Dirichlet condition, given by

Gb(ϕ)i,j,e =
Ai,j,e

3
2
Vi,j − 1

2
Vi−1,j

(

8

3
ϕb −

9

3
ϕi,j +

1

3
ϕi−1,j

)

+
3
4
(Ai,j,s + Ai,j,n) − 1

4
(Ai+1,j,s + Ai+1,j,n)

3
2
Vi,j − 1

2
Vi−1,j

(

3

4
(ϕi,j+1 − ϕi,j−1)

−1

4
(ϕi−1,j+1 − ϕi−1,j−1)

)

.

(2.19)

Moreover, the value at the boundary ϕb for the Neumann condition can be found by solving

Gb(ϕ) · Ab = r. (2.20)

2.3 Free Surface Modelling

The free surface is described by a volume-of-fluid (VOF) method. A further description
of VOF methods and the associated transport schemes used for the solution of the VOF
equation is given in Chapter 3.
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In this type of free surface modelling, the computational grid is extended above the free
surface in order to be able to capture the free surface at all time steps. For the free surface,
a special scheme has been implemented to enforce the free surface boundary conditions. For
general free surface flows, the dynamic free surface boundary condition states equilibrium of
stresses across the interface

σliq
ij nj = σgas

ij nj + γκni, (2.21)

where the superscript liq and superscript gas indicate quantities for liquid and gas, respec-
tively, nj is the outward pointing normal vector for the free surface, γ is the surface tension
coefficient and κ is the surface curvature. σij is the stress tensor defined as

σij = ν

(

∂ui

∂xj

+
∂uj

∂xi

)

− p̃δij , (2.22)

where δij is Kronecker’s delta. However, in the applications considered in the present work,
the viscous boundary layer on the free surface and the effect of surface tension can be
considered negligible, which gives the following condition for pressure:

p̃ = 0. (2.23)

Since the pressure variable which is solved for includes gravitational acceleration, the follow-
ing boundary condition is imposed:

pn+1
fs = −g(xn+1

fs − xfs,0), (2.24)

where pn+1
fs is the pressure on the free surface at the new time step, xn+1

fs is the free surface
location at the new time step n + 1, and xfs,0 is the initial free surface location.

For the velocity, the general kinematic boundary condition (Eq. (2.21)) imposes a Dirichlet
type condition on the free surface. However, since near surface boundary layers are consid-
ered negligible, no boundary condition is present for velocity. In order to find values at the
cell face for the velocity field near the free surface, an extrapolation scheme is applied which
satisfies the homogeneous Neumann condition on the free surface, i.e.

∂u

∂nfs

= 0, (2.25)

where nfs is the normal vector to the free surface.

2.3.1 Discretised Free Surface Boundary Conditions

The discretisation of the free surface is shown in Fig. 2.2. When the Laplace operator is
constructed for solving the pressure Poisson equation or the Poisson equation for the velocity
correction (see Section 2.4), the values of a variable ϕ at the north cell face for cell i, j are
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found by second order one-sided extrapolation, i.e. by forcing a second order polynomial
through the values at i, j and i, j − 1 along with the value in the free surface location. The
operator which satisfies the inhomogeneous Dirichlet condition (Eq. (2.5)) gives the following
value at the north cell face:

EV D,n(ϕc) =
1

3 + 8l + 4l2
(

(9l + 6l2)ϕi,jAi,j,n + (−1 − 2l2)ϕi,j−1Ai,j,s + 3r)
)

, (2.26)

where EV is the operator for the value at the face nearest to the free surface, and l is the
distance from the face to the discretised free surface (see Fig. 2.2). The derivative operator,
which satisfies the same inhomogeneous Dirichlet condition on the discretised free surface
location, gives the following in the face normal direction:

EDD,n(ϕc) =
1

3 + 8l + 4l2
(

(−9 + 4l)ϕi,jAi,j,n + (1 − 4l2)ϕi,j−1Ai,j,s + 8r)
)

, (2.27)

Similarly, the operator, leading to the value at the face that satisfies the homogeneous
Neumann condition (Eq. (2.6) with r = 0) on the free surface is given by

EV N,n(ϕc) =
1

8 + 8l
((9 + 12l)ϕi,jAi,j,n + (−1 − 4l)ϕi,j−1Ai,j,s)) , (2.28)

Finally, the operator leading to the derivative of the value in the face normal direction that
satisfies the homogeneous Neumann condition at the free surface is given by

EDN,n(ϕc) =
1

8 + 8l
((9 + 12l)ϕi,jAi,j,n + (−1 − 4l)ϕi,j−1Ai,j,s)) , (2.29)

These operators (EV D, EDD, EV N and EDN ) are all used implicitly in the solution of the
Poisson equations. In cases where the cell opposite to the face (in this case i, j − 1) is not a
fluid cell, a first order extrapolation scheme is applied.

2.4 Time Discretisation

For the time integration a semi-implicit scheme, similar to that of Zang et al. (1994), is em-
ployed. The scheme uses both implicit and explicit terms for discretisation of the dependent
variables, where an Adams-Bashforth method is applied to the explicit terms, and a Crank-
Nicholson method is applied to the implicit terms. The general solution procedure follows
a fractional step approach where an intermediate velocity field is first found by solving the
discretised momentum equation. Next step is solution of a corrector equation in order to
obtain a divergence free velocity field which satisfies the mass conservation equation. Finally,
the pressure is found by solving a Laplace equation, formulated by taking the divergence of
the momentum equation.

Although a number of methods of implicit and explicit discretisations of the convective and
the diffusive terms have been implemented in the code, the present study uses only the
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Figure 2.2: Discretisation of the free surface.

following formulation for the discretised momentum equation:

Vc

∆t
(u∗

c − u
n
c ) = −

(

3

2
Qf (u

n
c )If (u

n
c ) − 1

2
Qf(u

n−1
c )If (u

n−1
c )

)

· Af

−
(

3

2
If (p

n
c ) − 3

2
If(p

n−1
c )

)

Af +
1

2Re
(Gf (u

∗

c) + Gf (u
n
c )) · Af

(2.30)

where superscript n and n−1 indicate values at time levels n and n−1, respectively. Superscript ∗

denotes the first prediction of values at the new time level. For simplicity summation over
cell faces (

∑

f ) is omitted from all terms on the right hand side.

The terms containing values at the new time level can be isolated on the left hand side of
Eq. (2.30), which gives

Vc

∆t
u

∗

c −
1

2Re
Gf (u

∗

c) · Af =
Vc

∆t
u

n
c −

(

3

2
Qf (un

c )If (u
n
c ) − 1

2
Qf(u

n−1
c )If (u

n−1
c )

)

· Af

−
(

3

2
If (p

n
c ) − 3

2
If (p

n−1
c )

)

Af +
1

2Re
Gf(u

n
c ) · Af .

(2.31)

When Eq. (2.31) is solved intermediate values for velocities are obtained, which does not
satisfy the mass conservation equation. Therefore the velocity field is corrected by the field
φ, which is found by solving the following Poisson equation:

∑

f

Gf(Gc(φ)) · Af = −
∑

f

If (u
∗

c) · Af , (2.32)
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where Gc is the gradient operator that determines the gradient of the field at the (i, j) cell
centre by

Gc =
1

2Vc

[(ui+1,j + ui,j)Ai,j,w − (ui−1,j + ui,j)Ai,j,e

+(ui,j+1 + ui,j)Ai,j,n − (ui,j−1 + ui,j)Ai,j,s] .

(2.33)

When φ has been found the velocity field can be corrected at the new time step by

u
n+1
c = u

∗

c − Gc(φ). (2.34)

Finally, the pressure field must be computed at the new time level. This is done by taking
the divergence of the momentum equation, which gives the following Poisson equation for
pressure:

∑

f

Gf(Gc(p
n+1)) · Af = −

∑

f

Gf (
∑

f

[Qf (u
n+1
c )If(u

n+1c) · Af ]) · Af

+
∑

f

Gf(
∑

f

[
1

Re
Gf(u

n+1
c ) · Af ]) · Af .

(2.35)

2.4.1 Equation Solvers

The first estimate of velocities at the new time step (the predictor step), found from
Eq. (2.31), result in a linear equation system, which is solved by applying an iterative
solver, using Gauss-Seidel line relaxation. The Poisson equations for the velocity correc-
tor φ and for the pressure p are solved by using the plane-ILLU (Incomplete Line Lower
Upper decomposition) solver applied on a V-cycle multigrid method.

Overall Solution Procedure

The overall solution procedure for the Navier-Stokes solver can be described by the following
steps:

• Predictor step
Solve the discretised momentum equation (Eq. (2.31)) using the iterative Gauss-Seidel
solver to obtain estimates of velocities u∗

c at the new time step.

• Corrector step 1
Solve the Poisson equation (Eq. (2.32)) for the velocity corrector φ.

• Corrector step 2
Correct the intermediate velocity field u∗

c by φ using Eq. (2.34), so that un+1
c is diver-

gence free.
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• Compute pressure
Solve the Poisson equation for pressure (Eq. (2.35)) at the new time step using the
multigrid Poisson solver.

Before the solution method is applied to some benchmark tests, the free surface modelling
scheme and different VOF transport algorithms are investigated in the following chapter.
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Chapter 3

Free Surface Modelling

When free surface flows are modelled, a number of techniques are available to compute
the interface. This chapter briefly outlines the various options with regard to free surface
handling and describes the methods implemented in NS3.

In general, the existing methods for handling free surfaces and fluid interfaces in CFD can
be divided into two groups (Ferziger and Perić, 1997):

• Surface tracking

• Surface capturing

The surface tracking methods are characterised by an explicit representation of the surface.
This is normally done by adapting the grid to the free surface and updating the grid at each
time step to track the new location of the free surface by use of a height function to describe
the vertical height of the free surface location. The drawback of the surface tracking methods
is the inability to handle complex surface geometries and overturning waves. This makes
the surface tracking methods unable to model the wave pattern of for instance high-speed
crafts, in which case overturning waves are expected or breaking waves in general. Surface
tracking is still widely used in ship CFD when effects of overturning or breaking waves are
considered negligible.

The surface capturing methods use a different approach. A number of schemes are available,
and all use an implicit representation of the interface which is then captured as part of
the solution algorithm. This requires that the computational grid extends above the region
containing fluid in order to be able to capture the surface throughout the computation. In
cases of moving structures or boundaries, the surface capturing methods can also be coupled
with Lagrangian grids, forming a type of arbitrary Lagrangian Eulerian (ALE) method, by
which a structure is tracked by the grid (Lagrangian) and the grid in the remaining domain
is moved along.

21
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The most common schemes for surface capturing are the marker-and-cell method (MAC)
(Harlow and Welch, 1965), the level-set method (LSM) (Osher and Sethian, 1988) and the
volume-of-fluid method (VOF) (Hirt and Nichols, 1981). In the MAC scheme, massless
particles are introduced in the liquid filled part of the domain, and the particles are tracked
as part of the solution procedure. The level-set method introduces a scalar which defines the
minimum distance in the domain to the fluid interface. The scalar is integrated in time by
solving a transport equation. The VOF method introduces a scalar which defines the filling
degree of each cell. This field is also integrated in time by solving a transport equation.
The main advantage of the surface capturing methods is their ability to capture complex
surface geometries with overturning or breaking waves and splashing, but the drawback is
the possibility of numerical instability, diffusivity (with blurred interface) or grid alignment.
However, these issues have been dealt with in many recent implementations using VOF
schemes (Repetto, 2001; Muzaferija et al., 1998; Ubbink, 1997), and in general the surface
capturing methods show promising results.

In the present study surface capturing, by application of the VOF method is used. The NS3
code also has a surface tracking scheme implemented, as reported in Mayer et al. (1998),
but since all problems in the present thesis involve complex free surface geometries, surface
tracking methods are not applied and will not be further described here.

3.1 The Volume-of-Fluid Method

The basis of the volume-of-fluid method is that to each cell an additional scalar is assigned
which is the VOF (or volume fraction) value giving the degree of filling for the cell. A cell
with a volume fraction value of 0 is void, and a volume fraction value of 1 equals a full cell.
If the value is between 0 and 1 the cell contains a free surface, i.e.

α =
Volume of fluid in cell

Total cell volume
(3.1)

where α is the volume fraction and 1-α is the volume fraction of the void or the air in the
cell. Initially, all cells are given a volume fraction value, and at each time step a transport
equation is solved to find the distribution of fluid at the new time step:

∂α

∂t
+ ∇ · αu = 0 (3.2)

where t is time and u is the velocity vector.

Within the VOF methods two different approaches are possible: one is to neglect the effect
of air in surface and void cells and only solve the RANS equations in the cells with a volume
fraction value different from 0 (one-fluid approach), and the other is to solve the RANS
equations in all cells, treating the interface as a shift in fluid properties (two-fluid approach).
The present study is based on a one-fluid approach, but the equations and derivations can
easily be extended to a two-fluid approach, for a further description see Ubbink (1997). The
boundary conditions for the free surface are described in Chapter 2. Moving grids can be
applied in combination with the VOF method but are not used in this study.
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3.1.1 Discretised Equations

In integral form over the control volume and with time step δt, Eq. (3.2) is written as

∫ t+δt

t

(
∫

Ω

∂α

∂t
dΩ

)

dt +

∫ t+δt

t

(
∫

Ω

∇ · αu dΩ

)

dt = 0 (3.3)

In a constant volume cell (labelled c) where Ωc is the volume, the first term of Eq. (3.3) can
be reduced to

∫ t+δt

t

(∫

Ω

∂α

∂t
dΩ

)

dt =

∫ t+δt

t

(

∂α

∂t
Ωc

)

dt

=
(

αt+δt
c − αt

c

)

Ωc

(3.4)

Gauss’ theorem can be applied to the volume integral in the second term (convection term)
of Eq. (3.3):

∫

Ω

∇ · αu dΩ =

∮

∂Γ

α dΓ · u ≈
n

∑

f=1

αfAf · uf =
n

∑

f=1

αfFf (3.5)

where dS is the surface area vector, f indicates the face value, Af is the discretised face area
vector and n is the number of faces. Ff is the volumetric flux defined as

Ff = Af · uf (3.6)

To calculate the time integral of Eq. (3.5) the formulation of Versteeg and Malalasekera
(1995) is introduced:

∫ t+δt

t

(

n
∑

f=1

αfFf

)

dt =

n
∑

f=1

(

(1 − η) [αfFf ]
t + η [αfFf ]

t+δt
)

δt (3.7)

where η is a weighting factor for time integration. The following are most commonly used:
η = 0 for explicit calculations, η = 1 for implicit calculations and η = 1

2
for a Crank-Nicholson

type scheme. Here the Crank-Nicholson scheme is used.

The second term on the right hand side of Eq. (3.7) shows that a velocity field at the new
time step is needed as part of the solution to the implicit VOF equation. In the present
implementation, the new α field is found before the normal solution algorithm is started,
where velocity and pressure are integrated to the new time step. This means that F t+δt

f is
not available at the time when Eq. (3.7) is solved. Since the variation in F can be considered
negligible compared to the variation of α, the volumetric flux of the previous time step can
be used. An Adams-Bashforth scheme is applied, which is used to give an estimate of the
flux field at t + δt as

F t+δt
f,AB =

(

3

2
u

t − 1

2
u

t−δt

)

· Af , (3.8)



24 Chapter 3. Free Surface Modelling

where F t+δt
f,AB is the flux field at the new time step predicted by the Adams-Bashforth scheme.

In the following this flux field will just be denoted Ff . This gives the following formulation
of Eq. (3.7):

(

αt+δt
c − αt

c

)

Ωc =

n
∑

f=1

1

2

(

αt
f + αt+δt

f

)

Ffδt (3.9)

Hence, the final formulation for the volume fraction at time step t + δt becomes:

αt+δt
c = αt

c −
1

Ωc

n
∑

f=1

1

2

(

αt
f + αt+δt

f

)

Ffδt (3.10)

In the following section, the different schemes for calculating the volume fraction at the cell
faces (αf) are described.

3.2 Volume Fraction Differencing Schemes

To have a common reference throughout the computational domain, the definition of the cell
arrangement is shown in Fig. 3.1. Here αD is the volume fraction of the donor cell, αA is the
volume fraction of the acceptor cell and αU is the volume fraction of the upwind cell. αf is
the volume fraction at the face between the donor and acceptor cells. The figure only shows
the cell arrangement in one dimension, but can be extended to two and three dimensions.

Figure 3.1: Cell arrangement definition.

The schemes considered here are based on normalised variables (NV) (Leonard, 1991). The
definition of a normalised variable is:

α̃ =
α − αU

αA − αU

(3.11)
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Figure 3.2: Normalised variable diagram (NVD) with CBC.

The normalized donor cell centre value is given from Eq. (3.11):

α̃D =
αD − αU

αA − αU

(3.12)

where αD is the donor cell volume fraction and α̃D is the normalised value of the donor
cell volume fraction. A normalised variable diagram is a graphical way of showing how the
normalised volume fraction at the cell face (α̃f) is calculated from the normalised donor
cell centre value (α̃D). Fig. 3.2 presents a sketch of a normalised variable diagram with
the boundaries for upwind and downwind differencing. These boundaries constitute the
Convection Boundedness Criteria (CBC) (Gaskell and Lau, 1988) for implicit calculations
assuring local boundedness, and they are shown in the shaded region.

The mathematical formulation of the CBC for implicit calculations is

α̃f = α̃D For α̃D < 0 or α̃D > 1

α̃D ≤ α̃f ≤ 1 For 0 ≤ α̃D ≤ 1
(3.13)

This only preserves local boundedness for implicit flow calculations, and in Leonard (1991)
it was shown that the CBC for explicit flow calculations can be derived. The explicit CBC
are based on the cell Courant-Friederich-Lewy (CFL) number, which is defined as

CD =
∆t Fcell

ΩD

(3.14)

where ∆t is the time increment, Fcell is the total flux out of the cell (considered positive)
and ΩD is the total volume of the donor cell. CD is the cell CFL number. The CBC for
explicit flow calculations, for multidimensional flow, are then defined as

α̃f = α̃D For α̃D < 0 or α̃D > 1

α̃D ≤ α̃f ≤ min

{

1,
α̃D

CD

}

For 0 ≤ α̃D ≤ 1
(3.15)
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Figure 3.3: NVD for explicit calculations with CBC

This boundedness criterion in shown in Fig 3.3, and it is valid for both 1-D, 2-D and 3-D
calculations. For 1-D, CD reduces to Cf , which is the face CFL number. The upper limit
for this new CBC corresponds to the Hyper-C differencing scheme (Leonard, 1991).

All schemes based on normalised variables use the upwind value when α̃D < 0 or α̃D > 1.
For values 0 ≤ α̃D ≤ 1, the resulting normalised face volume fraction (α̃f ) with the schemes
is shown in Table 3.1.

Scheme α̃�

Hyper-C Min
{

1, α̃D

CD

}

UltimateQuickest Min
{

8CDα̃D+(1−CD)(6α̃D+3)
8

, α̃f,Hyper-C

}

CICSAM γf α̃f,Hyper-C + (1 − γf)α̃f,UQ

HRIC

{

2α̃f for α̃D ≤ 0.5

1 for α̃D > 0.5

Table 3.1: Volume fraction schemes (0 ≤ α̃D ≤ 1)

The Hyper-C scheme is identical to the downwind boundary of the CBC for explicit calcula-
tions and thus very compressive, which means that the scheme will always keep the interface
very sharp. The UltimateQuickest scheme is derived from the QUICK upwind scheme, which
is diffusive, and thus makes the interface extend over many cells. The CICSAM consists of
a blend of the Hyper-C scheme and the UltimateQuickest scheme, using a weighting factor
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(γf) which depends on the orientation of the interface with respect to the cell face and is
defined as

γf =
cos(2θf) + 1

2
(3.16)

where

θf = arccos

∣

∣

∣

∣

(∇α)D · df

|(∇α)D| |df |

∣

∣

∣

∣

(3.17)

In Fig. 3.4 the switching function is shown as a function of the angle between the interface
and the face normal (θ). (∇α)D is the gradient of the volume fraction field and df is the
face normal (see Fig. 3.1).

In the HRIC scheme, a correction for the interface orientation and for the CFL number
is also made. The interface correction, like for the CICSAM scheme, is according to the
angle between the interface and the face normal θ and interpolates between the upwind and
downwind values (Fig. 3.4):

α̃∗

f =
√

cos θ α̃f +
(

1 −
√

cos θ
)

α̃D (3.18)

where the upwind value is α̃D, the downwind value is given in Table 3.1 and the switching
function is fswitch =

√
cos θ. The HRIC scheme takes the CFL number into account according

to

α̃∗∗

f =











α̃∗

f if CD < 0.3

α̃D if CD > 0.7

α̃D +
(

α̃∗

f − α̃D

)

0.7−CD

0.7−0.3
otherwise

(3.19)

and the resulting value is α̃∗∗

f .

The normalised variable diagrams of all four schemes are shown in Fig. 3.5.

The result from the interface capturing schemes is the normalised face volume fraction, from
which the actual face volume fraction can be calculated:

αf = α̃fαA + (1 − α̃f)αU (3.20)

This can be rewritten as

αf = βfαA + (1 − βf)αD (3.21)

where

βf =
α̃f − α̃D

1 − α̃D

(3.22)
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CICSAM switching function

upwind value (UltimateQuickest)

downwind value (Hyper-C)

180160140120100806040200

1

0

HRIC switching function

upwind value (α̃D)

downwind value (α̃f)

θ (Deg)
180160140120100806040200

1

0

Figure 3.4: Switching functions for CICSAM (top) and HRIC.
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CFL = 0.75
CFL = 0.50
CFL = 0.25

α̃f

α̃D

Hyper-C

10

1

0

CFL = 0.75
CFL = 0.50
CFL = 0.25

α̃f

α̃D

UltimateQuickest

10

1

0

Θ = 90o
Θ = 45o
Θ = 0oα̃f

α̃D

CICSAM (CFL = 0.25)

10

1

0

Θ = 90o
Θ = 45o
Θ = 0oα̃f

α̃D

HRIC (CFL = 0.25)

10

1

0

Figure 3.5: NVD’s for Hyper-C, UQ, CICSAM and HRIC

The schemes described here are not fully bounded, meaning that the resulting α values
might yield αt+δt < 0 or αt+δt > 1. The original VOF method (Hirt and Nichols, 1981) use
a filtering technique where the unbounded volume fraction values were reset to either 0 or
unity after each update. It was assumed that the errors introduced here would cancel out.

The CICSAM scheme adopts a more consistent approach where the magnitude of the un-
boundedness is used to either upwind or downwind the scheme more, depending on the
nature of the unboundedness. If a cell is filled beyond a value of 1 the scheme corrects the
predicted inflow, so that the resulting value is bounded (= 1), and similarly for resulting
values below 0. This approach is labelled the corrector step and a full description is given
in Ubbink (1997).
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3.2.1 VOF Cleaning Routine

As described in Chapter 2, the mass and momentum equations are only solved for the fluid
(water) phase, and the interaction between gas (air) and fluid is neglected. So velocity and
pressure in void cells are reset to zero after each time step. However, in order to be able
to find values at cell faces for cells in the free surface region, an extrapolation scheme is
applied where velocity and pressure from full cells (α > 0.5) are extrapolated to surface cells
(α < 0.5). This requires a sharp interface where the free surface is located in a single cell in
the transition from full to void cells, in order to be able to track cells in the surface region.
Therefore, pressure and velocity are not computed for cells outside the first layer of surface
cells. If these cells still contain a small α value, even after the boundedness schemes in the
corrector step, the value is ’cleaned’, i.e. reset to 0. The same step is performed for cells in
the fluid region where a cell with α < 1 which is not next to a surface cell will be reset to 1.
This cleaning routine is performed in order to avoid having cells in the computational domain
which have a non-zero α value, but are inactive in the sense that the mass and momentum
equations are not solved for the cell. The cleaning routine will only have an insignificant
effect on the total conservation of the α field, except in cases where large fluid detachments
and overturning waves are very extensive. An example of a problem of conserving the α
field is given in Chapter 5, where fluid sloshing in a tank results in fluid detachments and
breaking waves in a small confined space.

In the following, various surface capturing schemes are evaluated by use of a simple convec-
tion test.

3.3 Convection Test

To aquire a measure of how well the various surface capturing schemes perform, a simple
convection test is used. The test consists of convecting an initial circular volume fraction
field across a mesh which is a regular, uniform 200 × 100 grid as shown in Fig. 3.6. An
initial volume fraction field is placed in the lower left corner and then convected through the
mesh by a time-independent oblique velocity field. The volume fraction field should ideally
be convected to the upper right corner with an unchanging profile.

The tests are all made with a CFL number of 0.15. In Fig. 3.7 the resulting volume fraction
field, after convection through the 200×100 grid, is shown for CICSAM and Hyper-C together
with the initial volume fraction distribution. The figure shows that both schemes do not
preserve the interface fully, Hyper-C transforms it into a step profile and CICSAM aligns
the interface, to some extent, with the mesh.

In Fig. 3.8 the convection test is shown for HRIC and UltimateQuickest. The HRIC scheme
shows a significant smear, which gives the interface at least two cells from void to full cells,
and grid alignment is also seen in the figure. The UltimateQuickest scheme is even more
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Figure 3.6: Setup for convection test (200 × 100 grid cells)

diffusive, due to the high degree of upwinding used in the scheme. However, this is the feature
needed in the CICSAM scheme when the field gradient is normal to the flow direction. On
its own the scheme does not preserve a sharp interface in multiple dimensions, so neither
HRIC or UltimateQuickest are considered to be preferred options for interface capturing.

The original Hirt-Nicholson VOF method was also tested in the oblique velocity field. This
produced an unphysical deformation of the volume fraction field and created flotsam (’float-
ing wreckage’) and jetsam (’jettisoned goods’) (Noh and Woodward, 1976). In other studies
(Rudman (1997), Ubbink (1997)) this has been avoided by either operator splitting or a
corrected multidimensional scheme, which has not been implemented here.

From all the tested transport algorithms, the CICSAM and Hyper-C schemes showed the
most promising results. All methods have been implemented in the NS3 code, but for
general purposes the CICSAM method is considered to be the best option. In the following,
all computations utilise the CICSAM scheme.
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Initial volume frac-
tion distribution

Final volume frac-
tion distribution
(CICSAM)

Final volume frac-
tion distribution
(Hyper-C)

Figure 3.7: Initial and final volume fraction fields for convection test with CICSAM and
Hyper-C schemes. Colour field representation of the volume fraction α shown left, and
isoline (with the isoline value α = 0.5) shown right. (CD = 0.15).
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Initial volume frac-
tion distribution

Final volume frac-
tion distribution
(HRIC)

Final volume frac-
tion distribution
(UltimateQuickest)

Figure 3.8: Initial and final volume fraction fields for convection test with HRIC and
UltimateQuickest schemes. Colour field representation of the volume fraction α shown left,
and isoline (with the isoline value α = 0.5) shown right. (CD = 0.15).
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Chapter 4

Initial Numerical Tests

Results from the NS3 code have previously been published, (Mayer et al. (1998) and Kawa-
mura (1998)) where a surface tracking scheme, using an adaptive mesh at the free surface
boundary, was applied. However, the free surface capturing scheme, on the basis of the
CICSAM-VOF method, has not been implemented until recently, and to test the robustness
and accuracy of the numerical scheme two simple test cases have been set up. The first
test is a dam break problem and the second test is a cylinder impact case. Further, the
dam break flow have in some publications (Buchner, 1995a; Mizoguchi, 1989) been used as
a description of the deck flow during green water incidents and is therefore also of interest
here.

4.1 Dam Break Problem

The dam break problem is a classical mathematical problem, which was first introduced by
Stoker (1957). The problem consists of having an enclosed space filled with water. The
barrier to one side is then removed and the water can freely flow into the void.

The dam break problem was investigated experimentally by Zhou et al. (1999). The experi-
ments setup is shown in Fig. 4.1, with an initial water height (h) behind the flap equal to 600
mm, in a tank 1 m in width. The test was initiated when the flap was lifted, and the water
could freely flow into the void, and impact on the wall on the right side of the tank. The
flow kinematics were measured during the experiments, by use of two water height probes
(H1 and H2), located 2725 mm and 2228 mm from the left end of the tank, respectively, and
a pressure gauge (P2) which was mounted on the right wall of the tank, with the centre of
the gauge placed 160 mm from the bottom of the tank and with a gauge diameter of 90 mm.

In Colicchio et al. (2001) a comparison between the same experimental results and three
different numerical methods was presented. The three schemes applied were: A boundary

35
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Figure 4.1: Sketch of dam break problem ([mm]).

element method, a level set method and the smooth particle hydrodynamics method. These
numerical methods showed good agreement with the experiments for the main part of the
simulation and the numerical results will also be compared to the present simulation in
Section 4.1.3.

4.1.1 Numerical Setup for Dam Break Problem

The present computation of the dam break problem is performed by means of a two-
dimensional rectangular grid, 3220 mm long, and 2000 mm high. Although three dimensional
effects cannot be fully eliminated the experiment is ideally a two-dimensional problem, and
a two-dimensional simulation is a reasonable simplification.

The grid consists of a single block, and in order to investigate the grid sensitivity of the
problem three different resolutions are applied, i.e. 128 × 128, 192 × 192 and 256 × 256
grid cells. For the initial conditions the volume fraction field in the fluid domain is given
a filled value (α = 1) in a region of 1200 × 600 mm, in the lower left corner of the domain
corresponding to the experimental setup. The initial velocity field is set to zero, and wall
boundary conditions where pressure gradient and velocities are set equal to zero are applied
to all boundaries. The CFL number criterion is equal to 0.2 and viscous computations are
performed.

Fig. 4.2 is a visualisation of the dam break problem, using the 256× 256 grid. It shows the
collapse of the water dam and the impact of the water on the opposite wall, resulting in an
overturning wave at the wall. The flow is smooth and with a simple interface until the wave
encounters the opposite wall where an overturning wave is formed (step (4)). The last two
images where t

√

g/h > 6 shows a more chaotic flow with water separation and overturning
waves.
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(1) (2)

(3) (4)

(5) (6)

Figure 4.2: Visualisation of dam break problem computation (256 × 256). The time step
between the frames corresponds to ∆ (t

√

g/h) = 2.
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Figure 4.3: Dam break problem, water height at probes H1 (top) and H2 (below).

In Fig. 4.3 the time series of the water heights in locations H1 and H2 are shown for the
three grids. The water height at the probe rises slowly when the water front first encounters
the probe. Then a sudden rise in water height is observed for both probes (t

√

g/h ≃ 6)
when the water, which is reflected at the wall, returns and encounters the probe again.
The probe H1 registers this second rise first since it is nearest to the wall. The grids give
identical results until t

√

g/h = 6, after which the two highest resolution grids still give

almost identical results. When t
√

g/h > 8 the two high resolution grids begin to diverge.
The divergence between the grids begins when the flow, as shown in the visualisations, begins
to show chaotic behaviour. Fig. 4.4 depicts the pressure time history of the pressure probe
P2 for the three grids. The pressure probe has a diameter of 90 mm, and the pressure at
the centre of the probe (vertical distance from tank bottom equal to 160 mm) and at the
bottom of the probe (vertical distance from tank bottom equal to 115 mm) is shown in
the figure. The pressure shows a continuous rise in the first phase, starting from the first
impact. It then shows a significant first peak, resulting from the water running back down
from the tank side, along which it was initially pushed up. A small second peak is also
observed, resulting from an overturning wave generated at the tank side. The divergence
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Figure 4.4: Pressure at the centre of the probe (top) and at the bottom of the probe (below)
for the dam break problem. Results obtained with three different grids are compared (number
of grid cell are 128 × 128, 192 × 192 and 256 × 256, respectively).

between the results obtained by use of the different grids begins when 6 < t
√

g/h < 8,
equal to the period when the flow breaks up and becomes more chaotic. To investigate the
sensitivity of the computed results with respect to very small changes in initial conditions a
sensitivity test is conducted. In this test a very small velocity component is initially imposed
in the computational domain, with magnitude of uinit = {0.002, 0.00}. The water heights at
probes H1 and H2 from this test are shown in Fig. 4.5, where results obtained both with and
without the initial perturbation are presented. The figure shows that the initial perturbation
has an influence on the resulting water height, but not until after t

√

g/h > 6, which is the
time where the water returns from the impact with the wall on the right side of the tank.
This part of the flow is very chaotic, and the results here show that the flow in this stage
is influenced by a small change in initial conditions. The pressure at probe P2, compared
for the cases with and without initial perturbation is shown in Fig. 4.6. This figure also
shows a difference in the results obtained with the initial perturbation, compared to the
normal results. The difference between the two results is most apparent for the pressure
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Figure 4.5: Water height at probes H1 (top) and H2 (bottom), compared for two computa-
tions, both by use of the 256 × 256 grid. The full line is from standard computations, the
dashed line is from perturbated computations, where a small velocity uinit = {0.002, 0.00} is
added initially in the domain.
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Figure 4.6: Pressure at centre of probe P2 (top) and at the bottom of probe P2 (bottom),
compared for two computations, both by use of the 256 × 256 grid. The full line is from
normal computations, the dashed line is from perturbated computations, where a small
velocity uinit = {0.002, 0.00} is added initially in the domain.

peaks, where the perturbated results gives smaller peaks than the nonperturbated results,
but the overall pressure level is similar for the two tests. This documents that the problem
is sensitive to the very small initial perturbations in the computational domain. However,
compared to the results obatined with the three different grids (see Figs. 4.3 and 4.4) the
magnitude of deviation from the perturbated results are smaller than between computations
and experiments. This does not necessarily demonstrate that the results obtained with the
three different grids are not influenced by changes in initial conditions, but more likely that
the perturbations resulting from changing the grid is larger than the perturbations used in
the sensitivity test. The change in grid resolution results in a change in truncation errors,
which at each timestep is smaller than the perturbation from the sensitivity test, but this
truncation error is accumulated throughout the computations, and could result in a larger
total perturbation.
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Figure 4.7: Dam break problem, water height for probes H1 (top) and H2 (below). Com-
parison between computations and experiments.

4.1.2 Comparison Between Numerical and Experimental Results

A comparison between numerical and experimental results for the water height probes H1
and H2 is given in Fig. 4.7. In the numerical results the grid with 256×256 grid cells is used.
The figure shows good correspondence between numerical and experimental results at the
initial stage of the test. However, when the water height increases after the water returns
from the impact with the wall, the computed water height is significantly higher than the
experimental result, especially for the H1 probe which is the probe nearest to the wall. After
a short period the water height in the computations for both probes decreases rapidly and
drops to a level below the experimental results.

In Fig. 4.8 a comparison between numerical and experimental results for the pressure probe
P2 is given. The top graph shows the pressure time history where the computed pressure
is measured at the centre of the probe. The computed pressure rises slower than the exper-
imental one, but the two results approach the same value before a large peak is observed
in both computation and experiment. After this peak the computed pressure drops rapidly
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Figure 4.8: Dam break problem, pressure at the centre of P2 (top) and at the bottom of the
probe (below). Comparison between computations and experiments.

and experiences a second peak, which is not seen in the experiments. In the bottom graph
of Fig. 4.8, the computed pressure is taken in the location at the bottom of the pressure
transducer. Here the correspondence at the initial stage of the water impact shows better
agreement, but after the first peak the results are similar to the results measured at the
centre of the probe.

4.1.3 Comparison Between Different Numerical Methods

In Colicchio et al. (2001) a comparative study of the dam break problem was presented using
three different numerical methods, with the same set-up of the dam break problem as the
present simulation. The three methods applied were: a boundary element method (BEM),
a level set method (LSM) and a smooth particle hydrodynamics method (SPH). Details of
the three methods can be found in Greco (2001), Colicchio et al. (2001) and Colagrossi et al.
(2001), respectively. Comparison of the present results and results obtained by use of the
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Figure 4.9: Dam break problem, Water height at probes H1 (top) and H2 (bottom). Com-
parison between different numerical methods: NS3 (present VOF model, 256 × 256 grid
cells), BEM (Boundary Element Method) and LSM (Level Set Method)

three additional methods are for the water height shown in Fig. 4.91 and for pressure shown
in Fig. 4.102. From these figures it is clear that the different numerical methods gives very
similar results in the initial stage, but in the stage after the water flow returns from the
impact with the opposite wall, the different numerical results begins to diverge. This further
documents that the dam break problem after the water encounters the opposite wall is very
sensitive to initial conditions. Based on the present comparison it is not possible to conclude
which method prevails, but it is noteworthy that all the methods gives almost identical result
while t

√

g/h < 6.

1Waterheight results from the SPH computations not available.
2Pressure time series from the BEM computations not available for t

√

g/h > 6.
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Figure 4.10: Dam break problem, pressure at the centre of P2 (top) and at the bottom of
the probe (below). Comparison between different numerical methods: NS3 (present VOF
model, 256 × 256 grid cells), BEM (Boundary Element Method), LSM (Level Set Method)
and SPH (Smooth Partical Hydrodynamics).

4.1.4 Discussion of Dam Break Results

The grid resolution tests showed that although all three grids gave similiar results, the grid
convergence was not fully monotonic. This can be due to the discretisation of the free surface.
Even though the resolution is high the VOF method is limited in the sense that each grid
cell can only contain a single fluid interface. Thus, when the free surface is very distorted,
with overturning waves and water spray, a small change in grid resolution may not capture
the free surface in the exact same manner.

Although the numerical and experimental results shows similar flow features, the correspon-
dence between them is not exact. However, in the experiments (Zhou et al., 1999) it was
reported that they were not fully reproducible and that very small changes in the initial
conditions can be clearly seen in the results. This supports that the chaotic behaviour seen
after t

√

g/h > 6 makes the flow very sensitive to initial conditions and difficult to reproduce
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numerically. Applying only two dimensional simulation can also influence the results, since
the flow at some point will break up into three dimensional behaviour.

In Colicchio et al. (2001) three different numerical methods are applied to the same problem,
and the same magnitude of difference between computational and experimental results is
seen as in the current results. The differences also occur after t

√

g/h > 6, and this supports
the assumption, that these experiments are difficult to exactly reproduce due to the high
sensitivity of initial conditions.

4.2 Cylinder Impact

In design of marine and offshore structures, wave induced loads is a very important factor,
especially in harsh environments like the north sea. Elements not constantly in water, like
transverse stiffeners on jackup rigs, or offshore platform deck elements, can experience impact
of wave crests, and for design purposes an accurate prediction of this wave load is important.
The second test case for the NS3 code is a cylinder impact case, where a cylinder is forced
with constant velocity into a water surface initially at rest. This test is somewhat similar to
a jacket structure stiffener in the free surface zone, coming in and out of the water due to
wave motion.

4.2.1 Experimental Setup

Faltinsen et al. (1977) performed experimental tests with cylinder impact, using an alu-
minium cylinder with a diameter d = 0.35 m and a length L = 0.40 m. The cylinder is with
constant velocity (V ) forced onto a water surface initially at rest by use of a hydraulic ram.
The test series include two different impact velocities: V = 0.9 m/s and V = 1.35 m/s. The
cylinders were equipped with end plates in order to minimise three dimensional effects at the
ends of the tube. The test setup is shown in Fig. 4.11 where S indicate level of submergence
ad R is cylinder radius, from which the submergence rate S

R
can be defined.

4.2.2 Numerical Setup

In the numerical simulation the grid is steady in time and the water is instead given a
velocity from an inlet boundary, in order to model the relative motion between cylinder and
water. The computational domain is rectangular and consists of four blocks, set up in an
H-type grid, each with one face on the cylinder surface. In addition to these, a fifth block is
located as a buffer between the input boundary and the domain near the cylinder. Fig. 4.12
shows a sketch of the numerical domain, where Nt and Nr are the number of grid cells in
the tangential and the radial direction, respectively. In the computations four different grid
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Table 4.1: Boundary conditions for cylinder impact.
p̄ ūi

inflow ∂p̄

∂n
= 0

{

ū1 = 0
ū2 = uinflow

outflow p̄ = 0 ∂ūi

∂n
= 0

body surface ∂p̄

∂n
= 0 ūi = 0

symmetry plane ∂p̄

∂n
= 0

{

∂ū2

∂n
= 0

ū1 = 0

resolutions are applied, where the number of grid cells in each of the four blocks equals
(Nt × Nr): 64 × 64, 96 × 96, 128 × 128 and 128 × 256. The three first grids are slightly
stretched in the radial direction in order to achieve higher grid density near the cylinder
surface. The last grid is highly stretched by use of a stretch factor of 200, which gives a very
fine grid near the cylinder. The boundary conditions are listed in Table 4.2.2, and the in-
and outflow boundaries are shown in Fig. 4.12, the east and west exterior boundaries are
symmetry boundaries and the cylinder surface is a body surface boundary. The viscosity is
set to 10−6 m2

s
and the CFL number for all computations equals 0.25.

4.2.3 Visualisation of Cylinder Impact

In Fig. 4.13 visualisations of the free surface contours are shown for the impact velocity
equal to 0.9 m/s using the VOF field captured during the computations. Results for three
different grid resolutions are given, showing how a water jet is forced from below the cylinder
and up along the cylinder, then a wave is formed from this jet, which travels away from the
cylinder. The figure clearly illustrates how the jet is attached to the cylinder for the two
lowest resolution cases (96 × 96 and 128 × 128), but that it separates from the cylinder

Water surface

V

2R

S

Figure 4.11: Sketch of cylinder impact problem.
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Figure 4.12: Sketch of numerical domain for cylinder impact.

when the highest grid resolution is applied. Description of the flow physics during the
experiments (Faltinsen et al., 1977) showed that the water did separate from the cylinder,
which was expected to occur prior to the computations. The same computations were
conducted with an increased diffusion coefficient, in order to investigate its effect on the
flow separation problem. These results showed that if the coefficient was increased with at
least 10 orders of magnitude, the flow separated in all the cases, even the low resolution
cases. The computations were also made for an impact velocity of 1.35 m/s, which gives
very similar results, including the water jet separation.

4.2.4 Computed Results of Cylinder Impact

The computed vertical load on the cylinder during submergence is shown in Fig. 4.14. The
results are obtained by use of four different grids, with increasing resolution. The figure
shows how the impact induces a high load on the cylinder, which initially decays while the
cylinder submerges until S/R ≃ 0.5, after which the cylinder load starts to increase. The
difference between the four computed results is very small, and only at the very early impact
stage is it possible to observe any effect of increasing the resolution. Eventhough the flow
physics is different, i.e. only for the fineste resolved case the flow separates from the cylinder,
the impact load is still very similar for all four grids. This can be contributed to the fact that
the vertical composant of the pressure at the cylinder surface in this region is very small.
Further, the figure shows some fluctuations in the initial stage of the impact. This is not
a physical property, but a result of a small numerical instability, and these fluctuations are
not large compared to the total load.
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Figure 4.13: Visualisation of computed cylinder impact (V = 0.9 m/s)

4.2.5 Comparison of Computational and Experimental Results for
Cylinder Impact

The water induced load on the cylinder is shown in Fig. 4.15, comparing computed and
experimental results for the impact velocity V = 0.9 m/s. The figure shows both the total
vertical load and the dynamic pressure load, where the boyancy contribution is subtracted
from the total load. The boyancy contribution is computed from the nominal submergence,
even though the actual submergence in some cases differ from the nominal submergence, and
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Figure 4.14: Computed loads on cylinder per unit length as a function of submergence,
V = 0.9 m/s (left) and V = 1.35 m/s (right). Shown using four different grids: 64 × 64,
96 × 96, 128 × 128 and 128 × 256.

is defined as

Fb(S) =
ρgR2

2

(

2 arccos

(

1 − S

R

)

− sin

(

1 − S

R

))

, (4.1)

where ρ is mass desity of water and g is gravitational acceleration. In the first stage of the
impact the water will run up along the cylinder and the actual submergence is larger than
the nominal, and in the last stage, a wave is travelling away from the cylinder and the top
is not wetted, though the cylinder is nominally fully submerged.

For the total load Fig. 4.15 shows, especially in the initial impact stage, that the compu-
tations and experiments agree well. However, when the boyancy contribution is subtracted
the experimental results shows a neglible amount of dynamic pressure load, while the com-
putational result show some dynamic pressure load. The cylinder is forced with a constant
velocity, with a Reynolds number of Re ≃ 3.15 · 105, which is expected to at least give some
dynamic pressure load contriburion. The lack of dynamic pressure load in the experiments
can be caused by either that the boyancy contribution might be overestimated as perviously
explained or by measuring inaccuracies during the experiments. In the experiments (Faltin-
sen et al., 1977) it was reported that at least a ±10% inacurracy on the results must be
expected.

The results from the case with velocity V = 1.35 m/s is shown in Fig. 4.16. As in the previ-
ous case the results are shown both with total vertical load and with the boyancy contribution
subtracted from the total load. The agreement between computed and experimental total
load is better in this case, where very little difference is noticed between computations and
experiments. The comparison without boyancy contribution also shows a better agreement.
Here the experimental results shows some dynamic pressure contribution, opposite of what
is seen in the previous case.
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Figure 4.15: Computed and experimental (from Faltinsen et al. (1977)) loads on cylinder
per unit length as a function of submergence at V = 0.9 m/s. Left figure shows the total
loads and in the right figure the boyancy contribution is subtracted from the total load.
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Figure 4.16: Computed (128×256) and experimental (from Faltinsen et al. (1977)) loads on
cylinder per unit length as a function of submergence at V = 1.35 m/s. Left figure shows
the total loads and in the right figure the boyancy contribution is subtracted from the total
load.

4.2.6 Discussion of Cylinder Impact Results

The visualisation of the computed cylinder impact clearly shows that the cases with the
lowest grid resolution cannot predict the separation of the water jet from the cylinder. When
the water flow attaches to the cylinder and no separation occurs, the solution is similar to a
potential flow solution. However, the high grid resolution case predicted separation, which
was also reported in the experiments. From this it can be concluded that the diffusion
is not modelled correctly in the low resolution cases. This is supported by the fact that
when other numerical tests were conducted where artificially high diffusion was added the
flow did separate. Despite this difference in modelling the water jet, the resulting load on
the cylinder is remarkably similar in the different grids, which means that the flow in the
region of separation has very small influence on the overall load. The agreement between
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computations and experiments is not perfect but the correspondence between experimental
and computed results is considered satisfactory.



Chapter 5

Simulation of Tank Sloshing

For ships carrying liquid cargo sloshing can be critical in a partially filled tank, from a
structural point of view. The sloshing of the liquid can increase the dynamic pressure on
the tank sides and bottom, so that the integrity of the tank is put at risk.

Another sloshing problem occurs for LNG carriers. Though these vessels always sail with
either nearly completely full or empty tanks, this might not be the case in the future.
Previously, these vessels would always load and offload inside safe harbours, but for security
reasons, these vessels might in the future have to load and offload at offshore terminals.
Changes in weather conditions might force the load/offload process to be interrupted, leaving
the tank partially filled, and the ship motion can then excite the fluid.

In either case, it is essential to be able to evaluate the dynamic load in partially filled tanks.
This chapter will address this problem by numerically simulating sloshing and comparing it
to experimental data. The experiments were conducted by Hinatsu et al. (2001) and were
part of a workshop in which also National Maritime Research Institute of Japan (former
SRI) and Technical University of Hamburg-Harburg participated (Hinatsu, 2001). Results
from this chapter have previously been presented in Nielsen and Mayer (2001).

5.1 Sloshing Problem Setup

The experimental test with tank sloshing (Hinatsu et al., 2001) was performed in a rect-
angular tank with dimensions of 1200×600×200 mm. The tank was equipped with acrylic
end plates in order to visualise the flow inside the tank during the experiments, which were
recorded by a video recorder. At various degrees of filling, the tank was accelerated in a hor-
izontal sinusoidal motion, and during the test pressure measurements were performed inside
the tank. A sketch of the setup is shown in Fig. 5.1, where the locations of the pressure
gauges are indicated.

53
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Figure 5.1: Sloshing tank setup (units [mm]). P indicates pressure gauge.

The sloshing experiments were conducted for a wide range of motion amplitudes and periods,
and for the present investigation four different cases have been selected for comparison with
computations. The cases are outlined in Table 5.1, where water level indicates the filling
degree of the tank, period (T ) is the period of the horizontal motion of the tank and amplitude
(A) is the amplitude of this motion. Case 1 and Case 4 are resonance cases, in which the
fluid motion is largest and the pressure measured inside the tank has the highest values.

5.2 Numerical Setup

At the time of these computations it was not possible to apply moving meshes in the NS3
code, and though this feature has since been implemented, the sloshing problem is solved
by means of a steady mesh. This requires that the coordinate system for which the com-
putational domain inside the tank is defined has a moving frame of reference. This can be
done by adding a momentum source term to all computational cells, so that the magnitude
of this source equals the acceleration of the frame of reference. Since the horizontal position
of the tank is given by

x = A sin(ωt), (5.1)

Water level Period Amplitude
Case 1 20% 1.74 s 60 mm
Case 2 20% 1.94 s 60 mm
Case 3 60% 1.40 s 15 mm
Case 4 60% 1.47 s 15 mm

Table 5.1: Outline of sloshing cases.
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where x is the horizontal position and ω equals 2π
T

, the acceleration of the coordinate system,
and hence the magnitude of the source, can be found by

∂2x

∂t2
= −Aω2 sin(ωt). (5.2)

On all boundaries the wall boundary condition has been used, and the viscosity equals
106 m2

s
. For all computations the max CFL number equals 0.2.

5.2.1 Grid Resolution

In order to investigate the grid sensitivity of the sloshing problem, three different meshes are
applied, and the resulting pressures inside the tank are compared. This is shown in Fig. 5.2,
where the pressure at pressure gauges P1, P2 and P3 are compared between three meshes
with a resolution of 96 × 48, 128 × 64 and 192 × 96 grid cells, respectively. The values of
period and amplitude of the tank sloshing acceleration are equal to Case 1 in Table 5.1. The
figure exhibits a characteristic behaviour as the pressure, at all three gauges, has a periodic
pattern with a recurring period equal to the tank movement period. This is caused by a
travelling wave being formed inside the tank, and following the movement of the tank out of
phase, i.e. when the tank is in the left outer position, the wave impacts the right boundary
and vice versa.

During the first sloshing period, all three grids give identical pressures. At this stage the
free surface is very smooth, since the fluid inside the tank, which was initially at rest, has
only been slightly excited. After the first period, the pressures predicted at the three grids
begin to diverge slightly, but the overall profiles of the pressures are still comparable. The
figure also shows, for some impacts, a large negative peak for gauges P1 and P2, which is a
result of an air bubble formed along the boundary after the travelling wave encounters the
end plate. This exposes the pressure gauge, which results in the peak. The bubble is not
present for all impacts, and the three grids give different predictions for the time when the
bubble appears. However, apart from this bubble the three grids give very similar results.
As in the previous chapter, the difference in results is expected to be caused by the method
by which the free surface is captured, where each cell only contains a single fluid interface.
This may make it difficult to capture a very complex fluid interface when the interface is
discretised and each cell only contains a single interface. Moreover the three grids might
give different interpretations of the interface, leading to slightly different results.

5.3 Results of Sloshing Computations

During the experimental tests the fluid motion inside the tank was captured using VCR,
and Figs. 5.3 and 5.4 present single images from this visualisation captured from the video.
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Figure 5.2: Computations of sloshing problem using three different grids (96 × 48, 128 × 64
and 192 × 96). The figures show the pressure computed inside the tank at P1 (top), P2
(middle) and P3 (bottom).
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For equivalent time steps, the free surface from the computations has been captured and
compared to the experiments. For the following results, the grid with 128× 64 grid cells has
been used.

5.3.1 Visualisation of the Fluid Motion

Fig. 5.3 presents the comparison for Case 1 at four different time steps with a time gap
between the images equal 0.2 s. The first step (top left) clearly shows a travelling wave
inside the tank, and the following pictures show the wave impact at the wall at the right side
of the tank. A large amount of fluid separation at the free surface resulting from the wall
impact is observed, and the last images also show the forming of a new wave, which travels
in the opposite direction. By comparison of experiments and computations the dynamics
of the flow exhibits great resemblance, as the travelling wave and the impact with the end
wall are very similar. The large amount of fluid separation observed in the experiments is
not captured in the computations. There may be two causes: First of all the NS3 code
cannot resolve an amount of fluid which becomes smaller than a few grid cells, so in order
to capture very small amounts of fluid separation flow features, a higher grid resolution is
required. However, since this separation is not considered important for the overall flow
dynamics, the effect of the fluid separation can be considered negligible. Secondly, some of
the separation seen in the figure is a result of fluid which is pushed onto the plexiglas window
on the side of the tank, i.e. as a result of threedimensional effects which cannot be captured
with the present two-dimensional numerical model.

In Fig. 5.4 the fluid visualisation for Case 4 is shown. In this case the filling degree of the
tank is increased to 60% and both period and amplitude are reduced. A travelling wave is
also seen here, although it is not as distinct as previously. The impact with the end wall
seems larger, due to the increased amount of water, and the fluid hits the top of the tank
during each impact.

The travelling wave is best seen in the final image (bottom right of figure), where it moves
away from the right wall and travels toward the left side of the tank. As in Case 1, the
experiments show some fluid separtion which is not present in the computations, but the
separation can also here largely be assigned to threedimensionality, as the water that encoun-
ters the tank end and top is pushed onto the plexiglas side of the tank. Still, the main flow
features - the impact on the side wall, the travelling wave forming and progressing toward
the left tank side and the amount of water that impacts the end and top of the tank - are
well predicted by the computations.

5.3.2 Comparison of Pressure

During the experiments pressure measurements were conducted inside the tank in different
locations. In Fig. 5.1 the locations of the gauges are indicated and during the computations
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Figure 5.3: Visualisation of the free surface contours in Case 1, for experiments and compu-
tations. Experiments are green and computations are blue.
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Figure 5.4: Visualisation of the free surface contours in Case 4, for experiments and compu-
tations. Experiments are green and computations are blue.
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the fluid pressure has been recorded in the corresponding locations. Fig. 5.5 presents a
comparison for gauges P1, P2 and P3 between numerical and experimental pressure time
series. For the computed pressure the first two periods have been removed, because the fluid
is not significantly excited. The experimental results were measured after the fluid was fully
excited.

Gauge P1 in Fig. 5.5 shows that the computed pressure closely follows the experimental
pressure and that the magnitude of each pressure peak, which results from the travelling
wave impact with the right end wall, is well predicted. At the end of each impact the
computed pressure has a negative peak, which is not seen in the experiments. This peak, as
described earlier, is a result of a small void bubble forming at the tank end and the figure
shows that it does not appear in the experiments. At the end of the time series a phase
lag between experiments and computations is observed, which is caused by dissipation, i.e.
loss of mass in the computational domain. The mass dissipation changes the flow properties
so that the present period and amplitude no longer give resonance inside the tank, and the
fluid motion inside the tank comes out of phase with the tank movement. As described
in Chapter 3 this dissipation originates from a cleaning routine, which is enforced at each
timestep. Since the amount of fluid separation is large relative to the total amount of fluid
in the domain, this dissipation affects the total mass conservation.

For gauge P2 the comparison shows the same result: after each impact the computed pressure
drops below the numerical level but quickly returns, and the two pressure profiles exhibit
large resemblance. The phase lag observed at the end of the time series is also present for
gauge P2. The P3 gauge, which is not initially submerged, has an impact of shorter duration,
but the peaks appearing initially for each impact are larger. The experiment shows that each
impact is different from the others, and that the peaks have significantly different values from
period to period. This is also seen in the computations, though in general the peaks in the
computations are not as large as in the experimental case. The phase lag also becomes
apparent at the end of the time series.

Fig. 5.6 gives the values of gauges P1, P2 and P3 for Case 2. This case is a nonresonance
case, as reported in Hinatsu et al. (2001), contrary to Case 1. This means that the fluid
motion is less than that observed in Case 1, but Fig. 5.6 proves that the magnitude of the
measured pressure is very similar to that of Case 1. The comparison between measured and
computed pressure is also similar to case 1, with the characteristic drop in pressure after each
impact for both gauges P1 and P2. In the computed results the last period seems to agree
better with the experimental results than in Case 1, and the phase lag is not as evident.

The results for the pressure from Case 3, where the tank is 60 % full, are given in Fig. 5.7.
Due to the increase in filling degree, gauges located higher in the tank are used for this
validation. Gauge P4 (top left graph) exhibit a periodic behaviour, as the pressure peaks
each time the travelling wave inside the tank impacts the tank side. The experimental and
computed pressures are very close in magnitude, but the computed pressure clearly has a
phase lag toward the end of the simulation. As previously this is due to mass dissipation.
After each impact the pressure gauge is out of the water, because the water is pushed toward
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Figure 5.5: Comparison of numerical and experimental (Hinatsu et al., 2001) pressures,
measured at gauges P1 (top), P2 (middle) and P3 (bottom), for sloshing Case 1. The grid
resolution equals 128 × 64 grid cells.
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Figure 5.6: Comparison of numerical and experimental (Hinatsu et al., 2001) pressures,
measured at gauges P1 (top), P2 (middle) and P3 (bottom), for sloshing Case 2.
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the other side of the tank. This results in a low pressure level of ≃ −0.5 kPa, which is equal
to the static water pressure when the fluid is at rest. This is because that during the
experiments the gauge was reset after the tank was filled and showed zero pressure, though
the gauge was submerged. So when the gauge comes out of water it shows a value equal to
the (negative) static pressure. The computed pressure, when the gauge is out of water, is
set to −0.5 kPa in order to model the gauge being exposed.

P6 (top right) in Fig. 5.7 was initially out of water when the experiment was initiated.
However, this gauge does not show zero pressure when the gauge is not under water. This
indicates that the gauge was not properly reset before the experiment was initiated, and that
the pressure level should be shifted slightly to bring the values of the exposed gauge closer
to zero. With this in mind, the comparison between the magnitudes of the experimental
and computed pressure shows good agreement, but the computed pressure also here shows
a phase lag. Gauges P8 and P9 are out of the water during most of the experiment, but the
figure shows pressure peaks each time the wave hits the right wall. The magnitude of the
peaks is somewhat overpredicted by the computations, especially for gauge P9.

In Fig. 5.8 the pressure series for gauges P4, P6, P8 and P9 are shown for Case 4. The
pressure measured at P4 is well predicted by the computations, but as previously a phase
lag is present. P6 also shows little difference in the magnitude and profile of the pressure,
but again the phase lag is present. As for Case 3, this gauge seems not to have been correctly
reset which is revealed by the pressure level of the exposed gauge. Each time the gauge is out
of the water the pressure level exhibits a short curving behaviour, because of the acceleration
and deceleration of the tank which influence the probe. P8 and P9 are only wetted briefly,
but the experiments here show larger peaks than in the previous case. Since the peaks for
gauge P9 for the experimental and the computed pressure are very close, it is difficult to
identify that both pressures have a large peak close to 5 s.

In Fig. 5.9 the relative mass is tracked during all four cases to investigate the loss of mass
during the computations. The figure proves that after the first 1 − 2 periods the domain
loses mass, which is most apparent in Case 1. The loss of mass in the computations is caused
by a cleaning routine, that is part of the solution procedure and is executed at each time
step, as described in Chapter 3. The cleaning routine ensures that small regions of fluid, too
small to be handled by the model, are removed. In the current case, the magnitude of the
removed mass seems to influence the flow after a few periods.

5.4 Conclusions for Sloshing Test

In general the computations gives very good predictions for the sloshing flow, both in the
visualisations and for the measured pressures. The dynamics of the flow is well predicted as
the visualisations show some distinct flow features, such as the travelling wave inside the tank
and the impact with the end wall of the tank which agrees very well between experiments
and computations.
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Figure 5.7: Comparison of numerical and experimental (Hinatsu et al., 2001) pressures,
measured at gauges P4 (top left), P6 (top right), P8 (bottom left) and P9 (bottom right),
for sloshing Case 3.
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Figure 5.8: Comparison of numerical and experimental (Hinatsu et al., 2001) pressures,
measured at gauges P4 (top left), P6 (top right), P8 (bottom left) and P9 (bottom right),
for sloshing Case 4.
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Figure 5.9: Relative mass level for the four sloshing cases during the computations.



66 Chapter 5. Simulation of Tank Sloshing

The pressure levels inside the tank were also well predicted by the numerical model, since
both the magnitude and the pressure profile for the impacts corresponded well. The forma-
tion of a bubble in the computations, which is not seen in the experiments, could be a result
of the two-dimensional modelling. The 2-D modelling might overpredict some flow features
which do not occur in the experiments.

The disagreement in the prediction of the accurate phase, where the computations showed
a phase lag compared to the experiments, is more consistent. This starts after the first few
periods, and grows throughout the simulation. The phase lag is due to loss of mass inside
the domain, as illustrated in Fig. 5.9. The magnitude of mass being removed is normally
insignificant, but for applications like the present sloshing case where a large amount of fluid
sepertion from the free surface is involved, the amount of removed mass increases, which
is significant to influence the flow properties, eventhough the small regions of separated
fluid does not influence the water flow in the domain significantly. A new scheme has been
implemented in the code in order to avoid removing too large quantities of mass from the
domain, but this was not ready at the time of the present simulations and will be a topic
for further study.



Chapter 6

Wave Impact Loads on Horizontal
Rectangular Beams

In this chapter, wave impact loads on horizontal rectangular beams will be investigated by
use of the NS3 model. This problem is connected with wave loads on offshore platform decks
and not directly with green water loads. However, the problem is interesting in the sense
that it can form a validation of the numerical model with respect to impact loads. Further,
the wave impact on horizontal beams includes the very complex free surface interaction,
which is also relevant for green water investigation.

6.1 Background

Prediction of wave-in-deck forces on offshore platforms has recently been given increasing
attention for two reasons: (1) Subsidence of platforms and (2) Requalification of platforms for
service time extension. Subsidence of platforms, caused by settlement of the soil foundation,
decreases the air gap between the platform deck and the water surface. Re-qualification
of older platforms requires new estimations of the ultimate limit state (ULS) condition
waves, which often increases the design wave. In both cases there is an increased risk of
impact of wave crests on the lower platform deck and on the beams on the underside of
such decks, which increases the horizontal load on the platform significantly. To estimate
the consequences of this wave impact an accurate prediction of the horizontal load is of vital
importance.

Current industry standards for estimation of wave loads in the offshore environment are
based either on direct model tests or on semiempirical approaches, including drag and inertia
coefficients fitted for the appropriate deck element types and level of inundation, see e.g.
Kaplan et al. (1995); Bea et al. (2001). Unfortunately, the empirical procedures do not take
into account the change of flow kinematics due to the presence of the fixed body and the

67
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influence this change has on forces on neighbouring structural members in typically combined
structures. This is particularly important in descriptions of complex deck geometries and
more complex wave kinematics.

Within the last decade a number of attempts have been made to predict numerically the
combined effect of fluid motion and free surface changes around structures which penetrate
from air into fluid. Since it can be shown that at least the initial stage of such water entry
problems may be described within the framework of potential flow, most studies choose this
approach. For example, Baarholm (2001) recently used a boundary element method (BEM)
for solving the potential flow problem predicting impact loads underneath decks of offshore
platforms. The method showed favourable agreement with experimental data at the initial
stage of the impact and also predicted the water exit phase well.

When the potential flow approach is applied, it is not possible to handle the kind of topolog-
ical changes of the fluid domain which occur when a volume of fluid separates or reconnects
with the free surface. In such cases a line (in 2-D) or surface (in 3-D) is generated, across
which only the pressure and the normal velocity are continuous while the tangential velocity
is discontinuous. This discontinuity can be expressed by use of a vortex sheet and physically
it is removed by diffusion into a region, which is not any more irrotational (and typically
turbulent). As an alternative, free surface Navier-Stokes computations can be used for simu-
lating the wave impact. The Navier-Stokes equation approach to wave impact problems has
the advantage that topological changes of the fluid domain can, at least in practical terms,
be handled in a relatively straightforward manner by use of interface capturing schemes
such as the VOF method or the level-set approach, see e.g Arai et al. (1995); Muzaferija
et al. (1998). As long as no topological changes are involved in the computation and the
initial velocity field is irrotational, the predicted flow will in practice be irrotational and
hence identical to the potential flow solution since viscous forces are negligible in real life
applications. In these cases an accurate solution of free surface Navier-Stokes equations re-
quires more computational effort than the equivalent potential flow solution and will be at
a disadvantage.

While in theory the viscous terms are responsible for diffusion of vorticity away from the
discontinuous vortex sheet, in practice the relevant Reynolds numbers in applications exceed
by several orders of magnitude the limit of what can be resolved numerically by presentday
computer technology. Hence, in reality the discontinuity is mostly damped by numerical
dissipation, which will always be present in the codes, and the obtained solutions are often
indistinguishable from solutions to the Euler equations on the same grid. In conclusion,
from a formal point of view no converged solution of either the Navier-Stokes or the Euler
equation will be obtained in configurations with complex free surface geometries, and the
main advantage of using Navier-Stokes or Euler codes in water entry problems is their ro-
bustness. This is shown by the abovementioned work of Arai et al. (1995) and Muzaferija
et al. (1998), both of which are practically solving inviscid flow problems. While Arai et al.
(1995) only presents two-dimensional results in reasonably good agreement with measure-
ments, Muzaferija et al. (1998) shows both two- and three-dimensional results, but in both
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studies only one body was considered. Hence, the splashing of water was directed away from
the body and it did not disturb the local pressure field close to the body boundary.

In this chapter the NS3 model, applied as an Euler solver, will be used for numerical sim-
ulation in two dimensions of the impact of wave crests on simple structural members with
rectangular cross section, being a simplified model of structural elements used below plat-
forms decks. Both a single structural elements and double elements are addressed. Particular
focus is placed on the prediction of the interaction between the two bodies and the effect
their proximity has on the wave impact loads. The numerically obtained forces are then
compared to recent measurements and the results are discussed.

6.2 Experimental Data Used as Reference

The experiments were carried out at the large scale wave flume located at Forschungzentrum
Küste (Grossen Wellenkanal (GWK)) in Hannover, Germany. The channel measures 300 m
in length, has a maximum water depth of 7 m and a width of 5 m. With a piston type
wave maker a maximum wave height of about 2 m can be produced. For details on the
experimental procedure, see Sterndorff (2002). In the following only a brief outline is given
of those aspects of the experiments which are important to the present numerical work.

The instrumentation of the flume consisted of a series of wave gauges along the channel
measuring the free surface elevation with an accuracy of about ±1.5 cm. Three electromag-
netic flow gauges were mounted at a distance of xstruct = 105 m from the wave maker and
at a distance from the bottom of 1.8 m, 2.8 m and 3.8 m, respectively. In the same axial
position a transverse rectangular beam section of the height hbeam = 0.1 m, the thickness
dbeam = 0.01 m and the length lbeam = 1 m was mounted with its lower edge ystruct = 5.7 m
located above the flume bottom, see Fig. 6.1. At either end of the beam, dummy elements
were placed with the same crosssectional profile in order to diminish end effects. The test
beam was mounted on two force gauges measuring the load in all three dimensions. In later
series several equivalent beams were placed behind each other with equidistant spacing. All
time series (wave elevation, velocity and forces) were sampled electronically at the same data
rate of 200 Hz and with a 16 bit resolution. The position of the elements was fixed during
all tests. Different loading situations were realised by varying the nominal wave height Hn,
the wave period T and the mean water level h.

A test run was started with water at rest everywhere with the wave maker generating an
almost regular wave train with the period T and the nominal height Hn, for details see
Sterndorff (2002). One test run had a duration of approximately the time needed for the
first wave to be reflected from the end of the flume and travel back to the location of the
test rig. The generated steep wave train clearly showed transients at startup and further
exhibited spurious low frequency modes, altering the elevation at a given point within at
least 10 cm. Further, the nominal wave height and the wave period were given as input
parameters to the wave generation control unit - however, the nominal wave height only
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Figure 6.1: Sketch of setup of reference experiments at GWK.

Cases A B C D

No. of beams 1 1 2 2
Mean water depth (h) [m] 5 5 5 4.8
Wave period (T ) [s] 5 5 5 5
Nominal wave height (Hn) [m] 1.4 1.5 1.4 1.8
Wave height (H) [m] 1.34 1.43 1.35 1.7
Crest height (ηcrest) [m] 0.79 0.85 0.80 1.07
Inundation (β) [%] 90 154 100 170

Table 6.1: List of Test Cases A,B,C,D.

agreed with the actually measured wave heights within 10 %. Therefore, for every test
run, individual wave impact scenarios were extracted. For every scenario the peak elevation
ηcrest in the x-location of the structure was recorded, and a local relative inundation β was
computed from

β =
ηcrest + h − ystruct

hbeam

. (6.1)

In the following only the horizontal force is used for validation, since this force component is
dominating due to the small thickness of the beam section and because the horizontal load
constitutes the critical component with regard to the stability of platform decks. The total
force on the beam was measured as the sum of forces from the two force gauges on the beam.
The difference between the two gauges was used as a measure of the two-dimensionality of
the wave and flow fields to which the beam was exposed. Generally for a given test run,
the measured forces on either side of the beam were initially equal to within a few percent.
However, with an increasing number of impacts within a test run turbulent disturbances
were created in the water column below the test rig and a clearly visible small scale wave
component normal to the channel appeared. This caused increasing differences between the
forces at either ends of the beam, as time went on. Therefore in the following, the impact
scenarios selected for validation are all taken within the first three impacts of a test run.

Four different cases are presented in the following: two cases with a single beam section (A
and B) and two cases with two beams mounted closely together (C and D), see Table 6.1.
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Figure 6.2: Sketch of computational domain with multiblock topology layout.

(a) (b) (c)

Figure 6.3: Close-up of grid close to the first structural element. a) Coarse b) Medium
c) Fine.

6.3 Numerical Setup

Only a section of the wave flume is covered in the computational domain, of a total equivalent
physical length of 10 m. The structure is located 3.5 m from the inlet boundary, see Fig. 6.2.
A multiblock grid is generated with cells being refined close to the structure and cells being
enlarged with increasing distance from the structure. The rectangular cross section of the
structural elements is smoothed at the corners of the profile to improve grid quality, since for
the layout of the multiblock grid an O-grid topology has been chosen around the structural
element (in the following the inner block layer). Around this inner layer of blocks eight
blocks are defined in an H topology. The spatial resolution of the outer block layer is fixed
throughout the present study. The grid dependency of the simulations is examined by using
three different resolutions (coarse, medium, fine) for the inner block layer. The coarse grid
has 32 grid cells on the horizontal sides of the beam (NH), 16 grid cells on the vertical sides
of the beam (NV ) and 64 cells radially (NR), for the medium grid and the fine grid those
numbers are (NH ,NV ,NR) = (64,32,64) and (64,32,96), respectively, see Fig. 6.3.
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6.3.1 Wave Generation

A critical step in the validation procedure of the numerical method has been to generate in
the code an appropriate wave flow field before impact. A deviation of the wave amplitude
of just 1 cm corresponds to a quite significant 10% change of inundation. Therefore, the use
of nominal wave heights in the numerical simulation is clearly no option, as the measured
crest height deviates from the nominal values by more than 10 cm. Since the displacement
time history of the wave maker piston has not been recorded, direct modelling of the wave
generation process as in Mayer et al. (1998) is not possible. However, if it had been possible,
the large size of the experimental wave flume compared to the necessary resolution close to
the structures would have implied a very considerable computational overhead, if wave and
flow fields were to be generated in a domain corresponding to the entire wave flume.

Therefore, the following procedure was used. For every selected wave impact scenario the
peak elevation ηcrest in the x-location of the structure was recorded. Then an optimisation
procedure was used to find the height H and the mean water level ηo of a fully nonlinear
wave of constant form with given period T and crest height ηcrest, which gives the best
match relative to the measured elevation time series. For describing the nonlinear wave the
stream function theory of Rienecker and Fenton (1981) was employed. At a time instant just
before initial impact ti the stream function theory was then used to compute the elevation
profile ηi(x) and subsequently the void fraction field fi(x, y). Further, the flow field ui(x, y)
was computed. By sampling fi(x, y) and ui(x, y) for all grid points in the computational
domain of NS3, initial conditions for the unsteady flow computation were established. This
procedure ensures that for the numerical setup the profile inundation and wave characteristics
are identical to those of the experiments and to the accuracy of the wave gauges. For
control purposes, test computations are carried out without the presence of structures in
the computational domain for test Cases A and B. Figs. 6.4 and 6.5 show a comparison of
the measured and computed time history of the wave elevation at xstruct and the velocity at
x, y = (xstruct, 3.8). The agreement is seen to be good, apart from a small phase lag in both
the elevation and the velocity time series.

6.4 Verification of Numerical Results

For Case A a grid sensitivity study has been carried out. Fig. 6.6 shows the resulting
force on the beam section, calculated with the three grids. The force time history shows
gridindependence for the medium and fine grids, so these are considered to be sufficiently
fine for obtaining - in practical terms - converged solutions for the force time series. A
characteristic spike in the total horizontal force is seen for all three grids at the initial stage
of the wave impact, this feature is found in most simulations with sufficiently fine gridding.
The spike is the result of water which separates from the front bottom corner at a high
velocity. The separation process generates a large local pressure gradient at the lower front
corner of the profile, increasing the pressure level in the whole region around that corner.
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Figure 6.4: Simulation of undisturbed wave. Case A: H = 1.34 m, T = 5 s and h = 5 m.
Comparison of numerical and measured time series. a) elevation at x = 105, b) velocity at
(x, y) = (105, 3.8).

(a) (b)

44 44.5 45 45.5 46 46.5 47

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

Time [s]

W
a
v
e
 e

le
v
a
ti
o
n
 [
m

]

Measured elevation
Computed elevation

44 44.5 45 45.5 46 46.5 47
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [s]

H
o

ri
z
o

n
ta

l 
v
e

lo
c
it
y
 [

m
/s

]

Measured velocity
Computed velocity

Figure 6.5: Simulation of undisturbed wave. Case B, H = 1.43 m, T = 5 s and h = 5 m.
Comparison of numerical and measured time series. a) elevation at x = 105 m b) velocity
at (x, y) = (105, 3.8).
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Figure 6.6: Force time histories for grid sensitivity test with three grids. Incident wave
H = 1.34 m, h = 5 m, T = 5 s.

Even though the separation process is very short, it is resolved by several tens of time steps
in the calculation.

In addition to the grid sensitivity study, the effect of the Courant number criterion Ccfl and
thus of the time step size has also been investigated. For Case A, a change of the criterion
to Ccfl = 0.1 had no significant influence on the results.

6.5 Resulting Pressure Compared between Computa-

tions and Experiments

6.5.1 One Beam Element

Fig. 6.7 shows snapshots of the free surface contours in the numerical simulation for the
single element Case A, with the incoming wave height H = 1.34 m and a profile inundation
of β = 90%. The free surface contours are captured at four different time steps as the
incoming wave encounters the structure. At the initial stage of the encounter the wave
pushes a water jet up along the profile. Once it reaches the top of the profile, the jet
continues over the profile in the wave propagation direction and encloses a void of air behind
the profile.

Fig. 6.8 shows the computed time histories of the total horizontal force for Test A. In the
plot the instants a-d are indicated, which correspond to the snapshots of Fig. 6.7. The force
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(a) (b)

(c) (d)

Figure 6.7: Simulation of wave impact on a single beam. Case A: Incident wave T = 5 s,
H = 1.34 m, h = 5 m, inundation β = 90%. Free surface geometry at wave impact. Time
interval between images 0.15 s.
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Figure 6.8: Simulation of wave impact on a single beam. Case A: Incident wave H = 1.34 m,
h = 5 m. Horizontal force time histories for three different grids. Lines a-d indicate times
of snapshots in Fig. 6.7. a) inundation β = 90%, b) inundation β = 90%-10%.

time history can be divided roughly into three stages: First an initial impact where the
resulting force on the element rises very quickly as the incoming wave builds up on the front
side of the beam. At the second stage the steep gradient of the force history is reduced
and the rise of the resulting force is smaller and the curvature smoother. After reaching its
maximum, the force slowly approaches zero at a constant rate of change.

The measured total force is also shown for comparison. Throughout the experiments, prob-
lems were encountered due to insufficient stiffness of the test rig. The wave impact frequently
excited vibrations of the test rig, which appeared in the force measurements as large am-
plitude oscillations. Therefore, a post-processing procedure is employed in order to remove
the fluctuations caused by vibrations of the structure. This filtered data is also shown in
Fig. 6.8a for Test A. Of course, filtering introduces a risk of modifying or removing part
of the actual load signal. However, since these fluctuations are in a high frequency range
compared to the duration of the whole load sequence, this risk is expected to be acceptable.
The numerical results are seen to over predict the measured forces to some degree, and also
the duration of the load sequence is predicted to be longer than measured. One explanation
for this could be that the effective crest height of the incoming wave was somewhat lower in
the experiment than measured by the wave gauge. To show the sensibility of the computed
forces to changes in inundation, a simulation was carried out with the inundation decreased
by 1 cm, corresponding to a decrease of β of 10%, bringing the numerical results very close
to the measurements, see Fig. 6.8b. Of course, the decrease of the peak force is in agreement
with expectations, since the momentum of less water is transferred to the structure. Fur-
thermore, the duration of the loading phase is shortened, since with decreased inundation
the width of the wave crest at the level of the lower edge of the beam is shrunk, decreasing
the time for the structure to leave the wave crest.

For Case B the incoming wave height is increased to 1.43 m, and the corresponding free
surface contours from the numerical simulation are shown in Fig. 6.9. The figure also shows
that a larger part of the incoming wave runs over the structure than in Case A. In the initial
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phase the flow patterns are similar to those of Case A, however, during the exit stage of the
impact scenario the free surface geometry is clearly more complex.

The force time history of Case B is shown in Fig. 6.10a. The load pattern is similar to the
previous one, but the magnitude is increased and the duration of the load is longer, which
is to be expected due to the larger incoming wave. In addition to the short duration spike
in the uprise phase, a spike appears in the decay phase of the force time history. This is
due to the influence of a jet impinging on the lower side of the profile from behind, as it
rushes downwards within the ’void bubble’ which is seen behind the profile. The impinging
of the water on the lower side of the profile influences the pressure levels around the lower
front corner, and for a short time interval raises the pressure level on the upstream side.
Further, a few additional negative peaks of much smaller magnitude are seen when sprayed
water impinges directly onto the downstream side of the profile. However, apart from the
presence of the short duration peaks in the load time series, excellent agreement is found
over the entire load sequence between numerical and experimental results. As in Case A,
the computations are repeated for the inundation decreased by 1 cm, see Fig. 6.10b. The
peak load is seen to be lesser affected by changes in the inundation, than in Case A.

6.5.2 Two Beam Elements

In Cases C and D a second beam section is placed 20 cm behind the existing beam, located
in the direction of wave propagation. Fig. 6.11 shows the free surface contours from the
numerical simulation of the twoelement Case C. It should be noted that the wave run-up is
not as significant on the second profile as it is on the first, and the amount of water shipped
over the second profile is significantly smaller than for the first profile.

While the load pattern on the first structure in Fig. 6.12a is similar to the previous one, the
load pattern on the second beam is different, see Fig. 6.13a. For this beam, the force history
shows two distinct peaks, separated by a region with zero force. The first peak results from
the initial wave impact, and the second peak is caused by the water jet being shipped over
the first beam and onto the second. The magnitude of both peaks on the second element is
reasonably well reproduced in the calculations, but a small phase lag is noted.

In the last Case D the water depth (h) is lowered to 4.8 m, but the elevation of the incoming
wave is higher, resulting in an increased profile inundation β = 170% and a considerable
increase in the velocity of the impinging water. Fig. 6.14 show snapshots of the free surface,
indicating that the amount of water shipped over the first beam is significantly increased
compared to the previous Case C.

Figs. 6.15a and 6.16a show the force time histories on the two beams for Case D. The shield-
ing effect is also evident in the force history, where the load pattern on the second beam
differs significantly from the first beam, similar to what is seen in Case C. In particular
the duration of the first peak in Fig. 6.16a is seen to be considerably reduced compared to
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Simulation of wave impact on a single beam, Case B: Incident wave H = 1.43 m,
h = 5 m, inundation β = 154%. Free surface geometry at wave impact. Time interval
between images 0.15 s
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Figure 6.10: Simulation of wave impact on a single beam. Case B: Incident wave H = 1.43 m,
h = 5 m. Horizontal force time histories for three different grids. Lines a-f indicate times of
snapshots in Fig. 6.9. a) inundation β = 154%, b) inundation β = 154%-10%.

(a) (b)

(c) (d)

Figure 6.11: Simulation of wave impact on a two beams, Case C: Incident wave H = 1.35 m,
h = 5 m. Inundation β = 100%. Free surface geometry at wave impact. Time interval
between images 0.15 s
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Figure 6.12: Simulation of wave impact on two beams, Case C: H = 1.35 m, h = 5 m. Hor-
izontal force time histories on first beam. Lines a-d indicate times of snapshots in Fig. 6.11
a) inundation β = 100% b) inundation β = 100%-10%.
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Figure 6.13: Simulation of wave impact on two beams, Case C: H = 1.35 m, h = 5 m.
Horizontal force time histories on second beam. Lines a-d indicate times of snapshots in
Fig. 6.11 a) inundation β = 100% b) inundation β = 100%-10%. Lines a-d indicate times of
snapshots in Fig. 6.11
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(a) (b)

(c) (d)

(e) (f)

Figure 6.14: Simulation of wave impact on two beams Case D: Incident wave H = 1.71 m,
h = 4.8 m. Inundation β = 170%. Free surface geometry at wave impact. Time interval
between images 0.15 s.
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Figure 6.15: Simulation of wave impact on two beams. Case D: Incident wave H = 1.75 m,
h = 4.8 m. Horizontal force time histories on first beam. Lines a-f indicate times of snapshots
in Fig. 6.14. a) inundation β = 170%, b) inundation β = 170%10%.
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Figure 6.16: Simulation of wave impact on two beams. Case D: Incident wave H = 1.75 m,
h = 4.8 m. Horizontal force time histories on second beam. Lines a-f indicate times of
snapshots in Fig. 6.14 . a) inundation β = 170%, b) inundation β = 170%-10%.

Fig. 6.15a, while the peak level is less affected. Again a second load peak is predicted on the
second element, in this case with both force levels and the overall shape of the peak being in
very good agreement with the measured data. The whole force history for both elements is
well predicted in the numerical calculations, compared to the experiments. The second load
peak of the second beam is somewhat under predicted but opposed to Case C the timing
of the peak is seen to be correct. As in Cases A and B, the two beam computations are
repeated for the inundation decreased by 1 cm, see Fig. 6.12b, Fig. 6.13b, Fig. 6.15b and
Fig. 6.16b, respectively.

6.6 Discussion and Conclusion

An attempt has been made to predict the horizontal loads on simple structures with rect-
angular cross section. The premise of the present work has been that the problem can be
described within the framework of inviscid flow and in two dimensions only. Great care
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has been taken in the experiments to reduce three-dimensional effects. While three di-
mensional disturbances clearly evolved during the individual test-runs, the assumption of
two-dimensionality seems to be reasonable, since only the first few impacts within a test
run are used for comparison, where the difference between the measured force time series on
each end of the beam sections is small.

The results from Tests A and B show that both the magnitude and the duration of the loading
of one single isolated beam are well predicted. The differences between numerical data and
measurements are within the experimental uncertainty, as it is shown by the sensibility study
of the result to changes in the nominal inundation β. The change of the inundation of 1
cm in these computations is clearly smaller than the precision of the wave gauges. While
excellent overall agreement has generally been found between the computational results and
the measurements, two types of spikes appear in the numerical results which are not seen in
the experimental data. One type of spike is connected with the separation of water along
the lower bottom side of the beam. The other type of spike is due to the impact of a jet
which impinges from behind within the void bubble. In both cases, the physics of the flow
are simplified by the numerical code. A proper description of both the jet and the separation
should include the role of viscous stresses and turbulence. Further, flow features on such
small scale compared to the overall flow will in any case be three-dimensional and when
integrated over the entire length of the beam hardly be visible as such. Further, it should be
noted that, by using the same filtering procedure for the numerical force time series as that
used for the experimental data, effectively all the encountered spikes would be reduced to
insignificant levels. Generally, in the two dimensional computations the spikes do not play a
major role in the overall transfer of momentum from the water to the structure due to their
short duration.

One of the main purposes of this study was to investigate whether the interaction of neigh-
bouring elements can be successfully predicted. The present results seem to indicate that
this is possible. Overall, the accuracy of the forces on the second element seems to be some-
what lower than that on the first element. However, the main features of the load sequence
on the second element are well predicted and the computed peak loads are within acceptable
agreement with the measured data.

In conclusion it seems likely that the present method or similar approaches can be used for
prediction of loads also in more complex cases, including three dimensional structures in
more complex three-dimensional sea states. In this context the major problem to overcome
will be the rather great computational resources required by such studies.
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Chapter 7

2-D Wave Run-up and Simplified
Green Water Shipping

As presented in Chapter 1, green water loads on ships and FPSO’s are a complex phe-
nomenon, involving ship wave interaction, wave diffraction and reflection, wave overturning
and breaking, and complicated flow on deck. In order to simplify the simulation of green
water loads, the problem will initially be investigated in 2-D and the interaction effects will
be reduced. First, a 2-D wave run-up problem will be investigated where an incoming wave
encounters a solid wall and flows onto the top of the wall. This problem can be seen as
an initial stage of green water shipping. Second, the wave impact on a 2-D FPSO will be
investigated, with waves encountering an FPSOlike structure, for which the resulting wave
heights on deck and the impact with a structure located on deck are measured. Both cases
are investigated numerically and the results are compared to experimental data.

7.1 Wave Run-up on a Solid Wall

Wave run-up on a solid wall was investigated in a wave flume, with a wave generator at one
end and a wall at the other, with a small clearance from the mean water level to the top.
The incoming waves run up and over the wall and the free surface contours are captured
during the run-up so the physics of the flow up along the wall, and the shipping of the water
over the top edge of the wall can be investigated. A sketch of the wall rup-up problem is
shown in Fig. 7.1.

7.1.1 Physical Setup of Wave Run-up Problem

Wave run-up was experimentally investigated by Cozijn (1996) both to model the early stages
of a green water incident but also to evaluate the effect of ship’s bow geometry on green water

85
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Wave generator

Solid wall Generated waves

Clearance (0.1m)

Length of flume

Mean water level

Figure 7.1: Sketch of wave run-up on wall. The length of the flume is used as a parameter
in the numerical study.

shipping. The study was carried out on simplified structures using two different types of
wall: the first configuration was just a normal square wall, and in the second case a shiplike
flare was added to the wall. The two configurations are presented in Fig. 7.2. Table 7.1

Flare structure

Mean water level

Solid wall

Clearance = 0.1 mR=0.12 m

Figure 7.2: Wall geometry in wave run-up case.

gives the wave parameters for the two run-up experiments. The experiments were initiated
when the flap type wave generator was set in motion, and the waves started travelling from
the wave maker toward the structure. In the flume, 29.86 m in total length, three wave
gauges were placed to record the wave elevation during the experiments. They were placed
26.29 m, 5.31 and 0.40 m from the solid wall, respectively. The resulting wave heights were
measured by means of the gauge located nearest to the wave generator. In both experiments
the wave generator was given the same input parameters, where the maximum flap motion
amplitude equalled 5o and the flap period was 1.256 s but still rendered slightly different
resulting wave heights when measured in the wave flume. The difference in generated wave
heights was approximately 3 %, which can be caused by disturbances in the flume from a
previous experiment, measuring inaccuracy or other factors. The experiments also reported
problems with the hydraulic system controlling the flap motion, which could also cause the
difference in generated wave heights.
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Case Run-up A Run-up B
Water depth 1.03 m 1.03 m
Wave height 0.128 m 0.132 m
Wave period 1.257 s 1.257 s
Wave length 2.503 m 2.507 m
Clearance 0.1 m 0.1 m
Structure Wall Flare

Table 7.1: Wave kinematics for run-up cases.

During the experiments the free surface location was recorded on video in order to capture
the dynamics of the flow while the wave runs up and over the wall. A plate was placed on
the wall, perpendicular to the incoming waves, on which a square grid had been drawn. The
grid was used to indicate the proportion of the shipping wave in the video recordings, and
by use of the individual still frames from the video recordings, the free surface location could
be determined from the grid and plotted for each time step. These free surface contours
are used for comparison with the numerical results. Unfortunately, the experiments did not
indicate which incoming wave crest was used to plot the free surface contours, so it was not
possible to evaluate how long after the experiments had started the free surface contours
had been captured. For the experiment with the straight wall (Run-up A) three different
wave contour series were plotted, captured for three different shipping incidents. These series
of shipping waves did not show exactly the same type of behaviour, though the maximum
shipping water height above the wall and the contour lines of the water travelling along the
top of the wall were quite similar. Even though the exact wave crest used for the shipping
incidents was not indicated, the time between the three incidents was stated, as equal to 16.8
s and 29 s, respectively. In the flared case (Run-up B) two different incidents were recorded,
in which the shipping wave also exhibited a slightly different behaviour. These two wave
incidents were taken from consecutively incoming waves.

7.1.2 Numerical Simulation of Wave Run-up

The computational domain is shown in Fig. 7.3. It illustrates the type of boundary condi-
tions applied, and shows the three blocks (BL1, BL2 and BL3) into which the domain is
divided. The domain length in the figure is used as a parameter in the validation of the
numerical results.

In the numerical computations the water is initially at rest and waves are generated at the
right outer boundary shown in Fig. 7.3. The horizontal velocity components are imposed
where the magnitude of the velocity has been determined from stream function theory, as
described in Appendix A.

To investigate the influence of the flume length on the resulting wave generation and on the
shipping wave, four different domain lengths are used for the numerical simulations. The
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Figure 7.3: Computational domain for wave run-up on wall
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Figure 7.4: Wave elevation measured 0.5 m from the wave generator using four grids of
different domain lengths (H = 0.128 m, T = 1.256 s).

domain length parameter is defined in Fig. 7.3. The four grids have 128 × 256, 256 × 256,
384 × 256 and 512 × 256 grid cells in Block 1, respectively, and the corresponding domain
lengths are 2.5 m, 5.5 m, 8.5 m and 14.5 m. The input wave parameters of Case A, with a
simple wall structure, are applied.

The resulting wave elevations in the flume from the numerical simulations are plotted in
Fig. 7.4, showing that large disturbances are present at the initial stage of the tests for
the grids of a small domain length, and that these disturbances decrease with increasing
domain length. The generated wave length is 2.5 m, which is equal to the smallest of the
domain lengths, and since these two lengths correspond the disturbance of the first generated
waves will almost immediately affect the following waves, due to reflection against the wall
structure. The disturbances decrease as the domain length increases, and for the highest
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Table 7.2: Four lowest order resonant wave periods for the four domain sizes. Resonant
periods closest to the generated wave period (T = 1.28s) is indicated with a box.

Domain length [m] 2.5 5.5 8.5 14.5

Tres,1 [s] 1.57 3.64 5.35 9.12
Tres,2 [s] 0.79 1.73 2.67 4.51

Tres,3 [s] 0.52 1.15 1.78 2.93

Tres,4 [s] 0.39 0.86 1.33 2.38

length (14.5 m) the disturbance from the first generated waves is not yet visible. The return
time of the first wave, reflected off the wall structure, is ≃ 15 s, which means that the wave
probe for the largest domain has not yet met the (returning) first wave.

Disturbances in the domain do not only include the previous wave crests reflected from the
domain boundary but also the creation of resonant waves, where the wavelength of the lowest
order resonant wave (single node) is equal to twice the domain length. The resonant wave
is a shallow water wave, due to the large ratio between wavelength and flume depth. From
shallow water wave theory the group velocity cg is defined as

cg =
√

gh, (7.1)

where g is the gravitational acceleration and h is the water depth. The period of the lowest
order resonant wave Tres,1 is given by

Tres,1 =
2Ldom√

gh
, (7.2)

where Ldom is the length of the flume or the domain. For higher order resonant waves
with periods equal to Tres,2, Tres,3 and Tres,4 the period is determined from an equivalent
expression (Eq. (7.2)), but where the numerator on the right hand side equals Ldom, 2

3
Ldom

and 1
2
Ldom, respectively. For the four computational domains, the period of the four lowest

order resonant waves are listed in Table 7.2. The table shows that all domains have resonant
wave periods close to the period of the generated wave. And for the domain length of 8.5
m the resonance period of the second resonant wave (Tres,2) is close to twice the generated
wave period, which can also excite this wave mode.

7.1.3 Comparison of Free Surface Contours for Straight Bow

The computed free surface contours for the shipping wave on top of the solid wall are
shown in Figs. 7.5 and 7.6, where lines from the experimental surface contours are plotted
on top. The figures show the surface contours at six different time steps, using two different
computational domains, of a domain length of 8.5 m and 14.5 m respectively.
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Domain length = 8.5 m Domain length = 14.5 m
(1)

(2)

(3)

Figure 7.5: Part 1 of wave contours on solid wall for two different domain lengths. Experi-
mental contours shown with red. The time step between frames equals 0.04 s. Images 1-3.
(H = 0.128 m, T = 1.256 s).
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Domain length = 8.5 m Domain length = 14.5 m
(4)

(5)

(6)

Figure 7.6: Part 2 of wave contours on solid wall for two different domain lengths. Experi-
mental contours shown with red. The time step between frames equals 0.04 s. Images 4-6.
(H = 0.128 m, T = 1.256 s).
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The time step between each image is 0.04 s, and the contours from the computations with
the 8.5 m domain are taken 10.7 s after the computations were started, while the contours
from the 14.5 m domain are captured after 16.4 s.

The figures show good correspondence between computed and experimental free surface
contours for both domain lengths. A small difference is observed toward the end of the
shipping incident, as the magnitude of the shipping wave in the large (14.5 m) domain is
slightly smaller than both the experiments and the computations from the small domain.
Moreover, the experiments did not report any formation of a cavity, located at the top corner
of the wall, which can be seen in the computations at steps (3) and (4).

The contours for the computed results with the 8.5 m domain are from the 6th wave com-
ponent that encounters the wall, and the contours from the 14.5 m domain are from the
8th component that encounters the wall. In both cases no previous wave component shows
any significant shipping water on top of the wall, which means that the previous, regular in-
coming waves have no significant height to overflow the wall. The waves are generated from
initially still water, in which case the first (transient) waves do not have the desired wave
height prescribed at the inflow boundary condition. However, after the second component
the waves have the desired wave kinematics. The reason why shipping does not occur until
the 6th and 8th wave component, respectively, is that disturbances from the previous wave
components are required to create waves large enough to flood the top of the wall. Since it
was not documented in the experiments when the free surface contours were captured, it is
not possible to recreate the experiments in the numerical simulation, even if an equivalent
domain length is used. The fact that disturbances in the water are required to overflow the
top of the wall could explain why several different shipping wave incidents were shown in
the experiments, of which each incident differed slightly.

To investigate the effect of the disturbances in general, and the resonant wave in particular,
Fig. 7.7 shows the wave elevation just in front of the solid wall using the two domain lengths.
It proves that the two incidents of the visualisations, using the grids with a domain length
of 8.5 m and 14.5 m, respectively, are the first instances of wave elevations larger than the
0.1 m freeboard. The following wave impacts show a large scatter for the max elevation,
which means that the incoming wave is disturbed by previous components as well as by the
standing wave. After approximately 20 seconds the 8.5 m domain shows a large increase in
wave motion, since both the maximum and minimum wave elevations rise significantly. This
is caused by the returning of the first generated waves, which return (the second time) to
the wall after 20 seconds. For the 14.5 m domain the returning period is 34 seconds, and
because the first wave transients are not very large this return is not visible in the figure.
The resonant wave periods for the two domains are 5.34 and 9.12 seconds, but it is hard to
distinguish the resonant wave from other disturbances.
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Figure 7.7: Wave elevations 0.1 m in front of the solid wall. Two domain lengths (8.5 m
(left) and 14.5 m (right)).

7.1.4 Comparison of Free Surface Contours for Flared Bow

In Fig. 7.8 the free surface contours for the wave run-up on the solid wall with a flare
structure are presented. The computational domain with of a length of 8.5 m is used. For
the first image, the experimental contour is only a short line located away from the structure,
because the location of the free surface near the structure was difficult to identify from the
video recordings, because of spray. In the second image the experimental and computed
surfaces do not show exactly the same location, but the general flow behaviour is similar.
The third and fourth images show better agreement between experimental and computed
results.

As for the straight wall, the computed contours are captured after 10.7 s, and in the wave
encounters prior to this event, the wave run-up only shows very minor water shipping.
Again, this is due to the generation of the resonant wave inside the tank and disturbances
from previous waves. Visualisations using the 14.5 m domain are omitted, since they show
the same correspondence as in the straight wall case, where the shipping wave is slightly
smaller than in the 8.5 m domain case.

7.1.5 Conclusions to Wave Run-up Case

The purpose of the wave run-up on wall cases is to investigate initial green water loading
events. The study is preliminary with regard to green water loads since the interaction effects
are simplified, and furthermore the study is only 2-D. The comparisons between experimental
and numerical results proved that the numerical model is able to predict the simplified green
water flow.

Moreover, it can be proved in relation to green water investigation that the presence of flare
in the structure significantly reduces the amount of water which is shipped onto the top of
the structure. Though the general green water problem is more complex, this result is in
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(1) (2)

(3) (4)

Figure 7.8: Wave contours on solid wall with flare for a domain length equal to 8.5 m.
Experimental contours shown with red. The time step between frames equals 0.04 s.
(H = 0.132 m, T = 1.256 s).
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agreement with the study by Buchner and Voogt (2000), which also showed that increase in
bow flare reduces the amount of water on deck.

Due to the disturbances in the flume and resonant waves, the study also focused on re-
quirements for domain length. The shortage of information from the experiments made the
reproduction of wave shipping events difficult, and to improve the numerical investigation of
this type of initial green water incidents it is necessary to obtain experimental results with
a better description of incoming wave kinematics and flume disturbances. The next section
tries to compensate for some of the shortcomings of the present investigation by using a
more realistic setup and having better control of the generated wave.

7.2 Green Water on 2-D FPSO

A further study of two-dimensional simulation of green water incidents was performed in
Greco (2001). Different bow shapes were tested to investigate their effect on the shipping
wave, and the flow onto deck was studied in detail. Greco (2001) also performed numerical
simulation of the test cases, using a modified boundary element method with a special scheme
to handle the free surface from the wave shipping at the bow of the FPSO. In this section
green water shipping on a 2-D FPSO model is simulated by the NS3 model and compared
to the experimental results.

7.2.1 Experimental Simulation of 2-D Green Water Loads

The experiments of the 2-D green water incidents were performed in the wave flume of
the Faculty of Marine Technology at the Norwegian University of Science and Technology,
Trondheim (Norway). The flume is 13.5 m long, 0.6 m wide and the water depth is 1.035
m. During the experiments a structure (the FPSO) was mounted in the flume, spanning the
whole width of the flume, which ensured the two dimensionality. The FPSO structure was
located 5.54 m from the wave generator. A sketch of the test setup is shown in Fig. 7.9.
During the experiments the wave elevation was measured in the tank. This was done at
WP1 and WP2, which were located 0.8 m and 5.436 m from the wave generator, respectively.
Similarly, the wave heights on deck of the FPSO structure, resulting from the water shipping,
were measured. This was done using the probes WL1, WL2 and WL3. These were located
at the front end of the bow, 0.075 m and 0.15 m from the bow, respectively.

The tests were carried out by use of a simplified FPSO bow structure, with a straight vertical
bow, and a small rounding at the bottom of the bow, with a radius of 0.08 m. During some
of the experiments, a vertical wall was mounted on the structure, located 0.2275 m from the
bow. On the wall, two pressure gauges were mounted (PR1 and PR2), 12 mm and 32 mm
above the FPSO deck, respectively. The details at the bow are shown in Fig. 7.10.

A detailed discussion about the uncertainties and measuring errors during the experiments
is also given in Greco (2001).
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Figure 7.9: Setup during 2-D green water tests.
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Figure 7.10: Details around the FPSO structure

7.2.2 Numerical Simulation of 2-D Green Water Loads

The simplified 2-D green water incidents on the FPSO are investigated numerically to de-
termine the applicability of the model to this type of problem. The obtained numerical
results are compared to experimental results obtained by Greco (2001) for verification. Be-
fore any comparisons are made, the required grid resolution will be investigated, to verify
the numerical results.

Two factors must be considered before constructing the grid for the 2-D green water mod-
elling. First, the generated waves must be modelled correctly, with corresponding wave
kinematics between experiments and simulations, which requires sufficient grid cells in the
domain in front of the structure. Second, once the wave encounters the FPSO a different
flow pattern will form, and the involved wavelengths for the shipping wave are much smaller
than the incoming wave, which requires grid cells on a smaller scale. Therefore, the effect
of grid resolution will be investigated for both incoming wave kinematics and the shipping
wave. The overall grid topology is given in Fig. 7.11, where the left boundary is the input
(wave generation) boundary and all other boundaries are wall type boundaries.

In order to ensure that a sufficient amount of grid cells is present around the FPSO bow,
the grid is stretched horizontally from the wave generator to the FPSO. A horizontal stretch
factor of 15, equal to the ratio of the largest and the smallest cells, is applied to the coarse
grid and a factor of 10 to the medium and the fine grids. The grids are given different stretch
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Figure 7.11: Block distribution for numerical simulation of 2-D green water incidents.

factors in order to have wellproportioned cells which do not differ too much in size between
the different blocks, in the region near the FPSO. Similarly, the grids are stretched vertically
from the domain bottom to the bottom of the FPSO to ensure a sufficient amount of grid
cells on the free surface. A stretch factor of 3 is used. In Table 7.3 the grid cell resolution for
the three grids used for the numerical simulation is shown. A close-up of the grid resolution

Table 7.3: Grid resolutions for numerical simulation of 2-D green water loads (nhor × nver).

Coarse Medium Fine
Block 0 160 × 32 256 × 32 320 × 64
Block 1 160 × 32 256 × 32 320 × 48
Block 2 160 × 64 256 × 64 320 × 64
Block 3 128 × 32 160 × 32 320 × 64
Block 4 128 × 64 128 × 64 128 × 64
Block 5 128 × 32 128 × 32 128 × 64
Block 6 128 × 32 128 × 32 128 × 48
Block 7 128 × 64 128 × 64 128 × 64

around the FPSO bow is shown in Fig. 7.12. A rounding is applied to the FPSO structure
for the experiments, and an equivalent rounding is applied to the FPSO bow bottom. Waves
are generated at the left boundary and stream function theory is employed to calculate the
elevation and velocity of the fluid, as described in Appendix A.

7.2.3 Verification of the Numerical Results

To verify that the numerical problem has been sufficiently resolved, the resulting wave ele-
vations in the location of the probes are compared, by use of the three different grids. The
following wave parameters are used to generate the incoming wave: wave height H = 0.16m,
wave period T = 1.1s and wavelength λ = 2m. During the start-up, a linear sinusoidal ramp
function of a duration of 2 s is used to give a smooth transition from calm water. This
ramping of the wave generation helps to avoid the generation of unwanted transient waves.
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Coarse Medium Fine

Figure 7.12: Grid resolution around 2-D FPSO bow.

The resulting wave elevations at probes WP1 and WP2 are presented in Fig. 7.13, obtained
by the three different grids. The figure shows that only very little difference is visible between
the grids, and that only the coarse grid has a little deviation from the results obtained by
the medium and the fine resolution grids. This means that for the incoming wave, the grid
resolution is satisfactory. It may be added that in the coarsest part of the grids, near the
wave generator, the number of grid cells in the horizontal direction per wavelength is equal
to 24 for the coarse grid, 50 for the medium grid and 54 for the fine grid.
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Figure 7.13: Wave elevation at WP1 (left) and WP2 (right) from numerical simulations
using three grids (H = 0.16 m, T = 1.1 s, λ = 2 m).

The resulting wave height on deck of the FPSO, by use of the three different grids, is given
in Fig. 7.14. It shows water shipping for two wave impacts, of which the second impact is
significantly larger than the first. The difference between the grids is more visible, but the
results from the medium and the fine grids still give almost identical results. The probes
exhibit a clearly decaying behaviour, as the first probe WL1 measures the largest water
height and the following two probes show decreasing maximum water height.
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Figure 7.14: Wave elevation at WL1 (left), WL2 (centre) and WL3 (right) from numerical
simulations using three grids (H = 0.16 m, T = 1.1 s, λ = 2 m).

7.2.4 Comparison of Experimental and Numerical Visualisations

Visualisations from experiments and computations, for the first shipping incident, are com-
pared in Fig. 7.15. It shows the free surface contours at the initial impact, where the
incoming wave encounters the ship’s bow and an overturning wave is formed, which breaks
onto the deck and forms a water front that travels along the deck. The agreement between
experimental and computed free surface contours is very good. The largest discrepancy be-
tween the results is seen in image 3, where the breaking wave encounter the FPSO deck. The
experimental wave front seems more rounded than the computed one, and the latter seems to
be a small time step ahead of the first. There may be two causes of this: first, the numerical
model does not include surface tension, which could add more curvature to the interface,
and second, it is difficult to match the time series exactly, since the experimental images are
not matched with probe measurements, which could help identify the exact timing of the
incident. At the end of the incident (image 5), the computed wave seems slightly smaller
than the experimental one. However, in the background, two black double lines are observed,
against the white plate. These are the wave probes WL1 and WL2, and measurements from
the probes will clarify whether there is any difference between computed and experimental
water heights on deck.

In particular it should be noted from the visualisations that a cavity is formed on the front
of the FPSO deck. Both the size and the duration of the cavity are well predicted in the
computations, and contrary to the formation of the cavity in the “wave run-up on wall”
case (Section 7.1), this cavity is also seen experimentally. Greco (2001) reported that the
formation of the cavity clearly was a two dimensional phenomenon, which formed all along
the width of the structure. These experiments used a special fluorescent dialute to enhance
the free surface contour. The experiments for the wave run-up case, performed by Cozijn
(1996), did not apply this technique, which could have made it more difficult to identify the
existence of the cavity.
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Computations Experiments (Greco, 2001)

Figure 7.15: Visualisation of shipping wave on the FPSO deck. The computations employ the
fine grid of Table 7.3. The smallest grid scale shown in the experiments is 2mm. H = 0.16 m,
T = 1.1 s, λ = 2 m.
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7.2.5 Wave Kinematics and Resulting Wave Height on Deck

To validate the computed incoming wave kinematics against the experimental probes, the
elevations measured at probes WP1 and WP2 are shown in Fig. 7.16. It is seen that the
wave crests of the initial wave transients are not exactly matched between experiments and
computations for probe WP1, but that the disagreement is small. During the rest of the
time series, and especially after the wave transients, the agreement is good. At probe WP2,
which is located further into the domain from the wave generator, the difference between
experiments and computations is even smaller. It is observed that the resulting wave height
at WP2 after the first two waves is larger than at probe WP1. This is due to reflection of
the first wave components against the FPSO structure, which is located only 0.1 m from the
probe.

The difference in wave transients for WP1 could be caused by the wave absorption system,
which was an integrated part of the flap type wave generator used in the experiments. This
active absorption system was used to cancel out any unwanted (resonant) wave components,
but details of how the absorption system works were undisclosed. However, the flap signal
concerned was listed as part of the experimental results. As a test, this signal was used to
generate waves in the computational domain, to try to generate waves of exactly the same
type as in the experiments. The flap movement was transformed into a flux type boundary
condition and applied to the inflow boundary in the computational domain. However, be-
cause only a flux condition was applied, and not the actual movement of the flap, this type
of wave generation did not give better results, on the contrary, the generated wave differed
more than the normal wave generation, even though only slightly. Details of this test are
shown in Appendix B.
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Figure 7.16: Comparison of wave kinematics at wave probes WP1 (left) and WP2 (right) for
experiments (Greco, 2001) and computations (fine grid). H = 0.16 m, T = 1.1 s, λ = 2 m.

A comparison of the resulting water height on deck at the three probes WL1, WL2 and
WL3, located at the front of the FPSO deck, is seen in Fig. 7.17. Probe WL1 shows very
fine agreement between computed and experimental results the first shipping wave occurring
at t ≃ 7s is slightly overpredicted by the computations and the second wave is an exact
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Figure 7.17: Resulting water height on deck, measured at probes WL1 (left), WL2 (centre)
and WL3 (right). Experiments by Greco (2001), the computations applied the fine grid
(Table 7.3). H = 0.16 m, T = 1.1 s, λ = 2 m.

match. At the second probe (WL2) the first wave seems to have decreased relative to the
experimental one, so that these two now correspond, and the second wave is now slightly
smaller and more rounded at the top, in the computations. And further down the FPSO
deck, the probe WL3 exhibit the same behaviour. Here the first wave in the computations
has dropped slightly below the experimental value, and the second wave is also smaller in
the computations. A reason for this behaviour, where both the first and the second shipping
waves decay faster in the computations than in the experiments could be the initial wave
generation. From the probes WP1 and WP2 it is clear that the initial wave transients are not
identical for experiments and computations. These transient components are not the waves
which cause the actual shipping, they come from consecutive waves. However, the wave
transients are reflected against the FPSO structure and return toward the wave generator,
which could cause the following wave components to lose energy. This might explain why
the shipping waves does not sustain the same energy as the experimental ones.

7.2.6 Impact on Structure

A structure is now added to the FPSO, located on the fore part of the deck, 0.2275 m from
the bow (see Fig. 7.10), on which two pressure gauges are used to obtain a pressure time
series. In Fig. 7.18 the pressure time series for the two pressure probes (PR1 and PR2) are
shown for both experimental pressure, obtained by Greco (2001), and the presently computed
pressure. For both probes two significant peaks occur, the first is the result of the initial
impact, and the second appears when the water front begins to run down from the wall, after
having reached the maximum. During the experiments, the test was repeated several times
to investigate the reproduction of the data. These tests revealed that the exact same result
could not be obtained, though the pressure level and the pattern of the pressure time history
were very similar. The magnitude of the differences between the different repetitions was in
the order of 10 % and maybe slightly more for peak values. As in the dam break problem
(Chapter 4) this can be explained by the non-deterministic nature of the pressure incident,
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Figure 7.18: Resulting pressure at probes PR1 and PR2 located on structure on FPSO
deck. Experiments by Greco (2001), the computations applied the fine grid (Table 7.3).
H = 0.16 m, T = 1.1 s, λ = 2 m.

which occurs a while after the start of the experiment. Moreover, small differences in initial
conditions can result in a change in outcome. With this in mind, the comparison between
computed and experimental pressures shows good agreement, though the computed pressure
seems to overestimate the pressure peaks to some degree. Both the overall pressure level and
the evolution of the pressure time history with the two peaks are well predicted numerically.
It may be added that the threedimensionality of the experiments was investigated in Greco
(2001) by using two pressure gauges at the same vertical level as PR1 but in a different cross
ship locations. This test also gave slightly different pressure time series, but the variation
between the two probes was the same order of magnitude as seen in the repeatability tests.

7.2.7 Conclusions to 2-D Green Water Incidents on an FPSO

This section demonstrates the application of the numerical model to simplified 2-D green
water incidents on an FPSO type structure. Two major approximations were made from
real green water incidents to the present investigation. The first simplification was the
application of 2-D modelling. In reallife applications the bow geometry, i.e. flare and deck
curvature, influence the shipping wave as described in Chapter 1. The second approximation
was the neglect of the ship motion. The ship affects the dynamics since the FPSO moves
relative to the wave, and the relative motion is the primary factor in most current methods
for determining green water loads. However, as a study of the physics related to green
water shipping and green water impact on deck structures, the present investigation targets
the primary details of shipping water and impact on deck mounted structures. The visual
investigation shows that the numerical model clearly predicts the formation of a cavity at
the corner of the FPSO bow, as was seen in the experiments. The shipping of the wave, and
the formation of a travelling wave were also in good agreement between the computations
and the experiments. The quantitative comparison of the water level on deck, measured
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by deck mounted probes, also shows very good correspondence between experiments and
computations. As in the case of the impact on a deck mounted structure, the numerical
model also showed that it was capable of predicting correctly both the pressure level and
the evolution of the pressure history. From this, it is concluded that the numerical method
possesses promising features as regards the possibility of numerical prediction of green water
loads. In the following chapter the complexity of the green water incidents will be increased
by applying 3-D modelling, and simulation of the relative wave motion will also be included.



Chapter 8

Green Water Load on an FPSO

So far the green water investigation has concentrated on simplified flow problems with green
water loads, such as dam break and cylinder impact (Chapter 4) related to the water flow
on deck and impact on deck structures as well as simplified 2-D green water incidents
(Chapter 7), where relative motions are neglected. In this chapter the complexity level
of the green water incident modelling will be increased to include the relative ship motion,
and the problem will also be investigated in three dimensions. This extension requires two el-
ements not previously introduced: relative ship modelling and 3D computations. Modelling
the relative wave motion will be discussed and tested in detail, but the 3-D computational
model is a trivial extension to the 2-D model which was introduced in Chapter 2 and will
not be described further. In Chapter 1 an introduction is given to related work including
other numerical investigation of green water events.

For validation of the numerical results, model experiments by Buchner (1995a) will be used.
The next section introduces the experimental setup and discusses the relevant parameters
with regard to the numerical modelling.

8.1 Green Water Experiments

Experimental modelling of green water incidents on an FPSO was presented in Buchner
(1995a) and further analysed in Buchner (1995b). The main dimensions of the full size
FPSO are given in Table 8.1, and the experiments were conducted on a scale of 1:60. The
water depth during the experiments was equal to 150 m. The bodyplan of the FPSO is
shown in Fig. 8.1, which corresponds to the bodyplan of the ship with flare, as given in
Buchner (1995a).

During the experiments the FPSO bow was equipped with water height and pressure gauges
to obtain time histories of the water flow on deck and the green water induced pressure.

105
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Table 8.1: Main particulars for FPSO
Length 260.34 m
Beam 47.10 m
Draught 17.52 m
Freeboard 8.88 m
Depth 26.40 m
Displacement weight 183,053 t

Figure 8.1: Bodyplan of FPSO

In the current investigation only the results of the water height on deck will be used. In
Buchner (1995b) the resulting water height on the deck at two probes (entitled H8 and H6
in the paper) was reported. These two probes correspond to locations 4.2 m and 9.4 m aft
of the bow of the FPSO, in the centerline of the ship. For simplicity these two locations will
be denoted H1 and H2 in the following.

The experimental test series included both regular and irregular waves but here only the
regular wave results are used. During the experiments the forward (surge) motion of the
vessel was restricted by a vertical cylinder with roller bearings, attached to the FPSO model
through the centre of gravity of the model. This simulates the mooring system of a real life
FPSO. The heave and pitch motions were not restricted, which also corresponds well with
real life applications since the mooring system has very little effect on the vertical dynamics
of the vessel.

From the experiments a single (regular) wave incident, with the wave period T = 11.2 s and
the wave height H = 17.3 m, will be compared with the present numerical simulation of
green water loads. The corresponding wavelength (λ) is 209.5 m and the FPSO length (L)
is equal to 260.34 m, which corresponds to wavelength - ship’s length ratio1 λ/L = 0.80.

1In Buchner (1995a) the wavelength - ship’s length ratio was stated to be 0.75. This is the case when

linear (Airy) theory is applied to the computation of the wavelength, which gives λ = gT 2

2π
. However, due to
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8.2 2-D Numerical Prediction of Green Water on Deck

The experimental data described in the previous section was obtained using a floating ship
model and the experiments included all the complicated phenomena such as relative wave
motion, ship motion and three dimensionality of the structure, described in Chapter 1. The
most difficult interaction problem to model numerically is the relative motion of the ship,
including the actual ship response, which results from the ship - wave interaction. Full
modelling requires threedimensional computations with moving meshes, to track the actual
movement of the ship, coupled with equations of motion for the ship. Though this type of
interaction has previously been presented using a CFD code (Repetto, 2001), it is compu-
tationally very expensive. In the last section of this chapter (Section 8.3), 3-D modelling of
a green water incident will be investigated. However, both for simplicity and in order to be
able to distinguish between 3-D effects and other interaction phenomena, the problem will
initially be investigated by use of a 2-D model. The difference between 2-D and 3-D results
will be discussed in Section 8.3.

A simplified type of relative motion modelling is introduced where the vertical motions of
the vessel, i.e. heave and pitch motions, are modelled by closed-form expressions for the
transfer functions for the ship motion, using a formulation presented by Jensen et al. (2003).
The vertical motion can be transformed to the computational domain by changing the mean
water level by use of a velocity boundary condition at the bottom boundary of the domain.
Fig. 8.2 shows a sketch of the principle used for the relative motion modelling. It should
be noted that the actual pitch motion is not included in this model, since only translatorial
vertical motions can be included. However, the pitch contribution to the vertical motion at
the bow is modelled. Before the relative motion model is tested, a brief introduction to the
closed-form transfer functions is given.

Wave generation

Computational domain

Velocity boundary condition to model relative wave

Figure 8.2: Sketch showing the principle of relative motion modelling in the computational
domain. Regular wave generation from the right boundary and relative motion (velocity)
boundary condition at the bottom of the domain. The vessel is fixed in the domain.

the large wave height, linear theory is not applicable and with stream function theory the wavelength equals
209.5 m.
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8.2.1 Closed-form Transfer Functions

The vertical wave induced response of a vessel is given by the heave w(t) (vertical translation)
and pitch θ(t) (rotation about the y-axis) components resulting from an incoming wave with
the wave elevation ζ(x, t). For linear (Airy) wave theory, the wave elevation is given by

ζ(x, t) = a cos(k(x − xbow) + ωt), (8.1)

where a is the wave amplitude, ω is the wave number, t is time and x is measured from
the centre of gravity. The heave and pitch motion response of the vessel resulting from the
incoming wave (Eq. (8.1)) is given as

w(t) = aΦw cos(ωt + ξ) (8.2)

θ(t) = aΦθ sin(ωt + ξ) (8.3)

where Φw and Φθ are the transfer functions for heave and pitch, respectively, and ξ is the
transfer function phase angle. The 90o degrees phase lag between heave and pitch is a
consequence of the assumption found in Jensen et al. (2003). The total vertical motion rz(t)
in the bow section location xbow is found by adding the two response components:

rz(t) = w(t) − xbowθ(t) (8.4)

valid for small θ angles. The pitch contribution is subtracted from the heave contribution,
since the pitch angle is defined as a rotation where a positive pitch results in a motion in
the negative z-axis direction for positive x.

The traditional method for determining the transfer functions of a vessel is by use of strip
theory (Salvesen et al., 1970), dividing the vessel hull into a number of 2-D hydrodynamically
uncoupled cross sections, for which the response to the incoming wave is computed individ-
ually. This method has been simplified by Jensen et al. (2003), assuming a homogeneously
loaded, box-shaped vessel for which the transfer functions have been derived analytically
and for zero forward speed and head sea take the form

Φw = ηFT (8.5)

Φθ = ηGT (8.6)

where

η =





√

(1 − 2kD)2 +

(

A2
hyd

kB

)2




−1

, (8.7)

with k equal to the wave number (k = 2π
λ

, λ = wavelength), B and D equal to breadth and
draught of the box, and Ahyd equal to the sectional hydrodynamic damping amplitude given
by the following approximation:

Ahyd = 2 sin

(

1

2
kB

)

exp (−kD) . (8.8)
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Table 8.2: Parameters for heave and pitch transfer functions.

η 2.3782
GT 0.001219
FT -0.06594
ξ -1.3
xbow 130 m

The two forcing functions FT and GT , from Eqs. (8.5) - (8.6), are determined from

FT = κf
2

kL
sin

(

kL

2

)

(8.9)

GT = κf
24

(kL)2L

(

sin

(

kL

2

)

− kL

2
cos

(

kL

2

))

(8.10)

where the Smith correction factor κ is given by

κ = exp(−kD). (8.11)

The transfer function phase ξ in Eqs. (8.2) - (8.3) can be determined as

ξ = arccos

[

1 − kD

f

]

+ arccos [(1 − 2kD)η] − kxbow (8.12)

where f is defined as

f =

√

(1 − kD)2 +

(

A2
hyd

kB

)2

. (8.13)

For the present vessel with main particulars listed in Table 8.1, the parameters determining
the transfer functions are listed in Table 8.2. Since the required vertical motion is at the bow
of the FPSO, the location used to estimate the vertical movement caused by the pitching
motion (Eq. (8.4)), is set to xbow = 130m, equal to the bow location measured from the c.o.g.
of the FPSO. The wavelength used to determine the wave number k is 209 m, corresponding
to the wave kinematics used in the experiments, where the wave height was 17.3 m and the
wave period was 11.2 s.

In Fig. 8.3 the transfer functions, computed by Eqs. (8.5) - (8.6), are shown for the xbow

location with the incoming wave crest also located at xbow. The responses are shown for a
duration of one wave period and are given for a coordinate system with origin in the mass
centre of the vessel. Thus a negative response corresponds to a decrease in freeboard when
the relative motion model is applied. It must be added that for the current wave height of
17.3 m linear wave theory no longer applies, due to the high wave steepness (H/λ ≃ 0.083),
but as an approximation to the vessel motions it will serve as a good first approximation
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Figure 8.3: Incoming wave and vessel response using transfer functions computed in the bow
location (xbow = 130 m).

and the actually incoming wave will be modelled correctly in the computational domain.
Further, in Jensen et al. (2000) it was shown that the nonlinearities in steep waves have very
little effect on vertical motions (i.e. heave and pitch).

Fig. 8.3 shows that the absolute vertical motion of the vessel (at xbow) is close to a minimum
at the time when the incoming wave has a maximum. This results in a large relative wave
height and it is therefore expected to add a significant increase in wave height on deck of
the vessel, when the relative motion model is included in the numerical simulation.

8.2.2 Verification of Numerical Results

Two main tasks need verification before any validation against experimental data can be
conducted. First, the relative motion model must be tested in order to investigate whether
this type of modelling is applicable. Second, the required resolution for modelling 2-D
green water incidents will be investigated. When these tests are completed, the resulting
water height on deck for the 2-D computations will be compared to experimental data for
validation.

In Fig. 8.4 a sketch of the computational domain used for the 2-D FPSO simulations is shown.
The computational domain is divided into eight blocks and the block numbers indicated in
the figure are used for reference, when the resolution of the computations is investigated.
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Figure 8.4: Sketch showing the computational domain for the 2-D FPSO computations.
Small numbers indicate block number. Block boundaries shown with dashed lines.

8.2.3 Test of Relative Motion Model

In the first test, the influence on the generated wave by the relative motion model is inves-
tigated. The FPSO structure in the computational domain is removed for this test in order
to investigate the incoming wave kinematics, without disturbance from the structure. The
grid consists of a single block, with 320 × 128 grid cells, which is sufficient to resolve the
approximately three wavelengths which the full domain can contain. In Fig. 8.5 the wave
elevation in the xbow location (if the FPSO structure had been present) is compared for
two tests, one with relative motion modelling and one without relative motion modelling.
The relative motion model, which corresponds to a vertical displacement of the mean free
surface, is also shown in the figure. It is obtained in a test where an incoming wave is not
generated, but only the velocity boundary condition at the bottom is applied. It is further
noted that the peak of the relative motion occurs slightly before the crest of the incoming
wave. This is in accordance with the time series of the combined (heave and pitch) transfer
function shown in Fig. 8.3, which also occurs slightly before the crest of the incoming wave.
In Buchner (1995a) the relative wave height was measured just in front of the FPSO bow
and the maximum relative elevation was stated to be 17.9 m. In Fig. 8.5 the relative wave
elevation can be obtained directly from the figure, since the relative motion is seen from a
vessel fixed coordinate system. Here the maximum elevation is seen to be approximately
14 m. However, in the computed result the FPSO structure is not present, i.e. the swell-up
of water in front of the FPSO bow is not included, which means that these two results can
not be directly compared.

The nominal maximum crest elevation is equal to 9.89 m and the nominal wave trough is at
-7.41 m, computed by stream function theory (Fenton, 1988). These values correspond to the
crest and trough values of the second generated wave in Fig. 8.5 in the case without relative
motion modelling, with max elevation at the time equal to approximately 32 s. Hence when
the green water modelling is investigated numerically, this is the wave crest corresponding to
the (nominal) incoming wave kinematics in the experiments, and the water height on deck
resulting from this wave crest will be compared with experimental results.

To investigate whether the application of the relative motion model influences the generated
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Figure 8.5: Wave elevation in the xbow location, computed without presence of FPSO struc-
ture in the computational domain. The elevation is shown for two cases, one with and one
without relative motion modelling (two solid lines). The relative motion for the case where
relative modelling is applied is also shown (dashed line). H = 17.3 m, T = 11.2 s.

wave, the two elevations shown in Fig. 8.5 are plotted in Fig. 8.6, but here the displacement
of the free surface is subtracted from the wave elevation in the case where the relative motion
is applied. A small difference is observed for the second wave crest, which might be ascribed
to a disturbance created in the domain due to the relative motion model, but the difference
in wave height between the two computations is in the order of 5 % of the total wave height,
which is an acceptable disagreement. In general the figure shows that the generated wave
corresponds well in the two cases, which means that the application of the relative motion
model has no significant effect on the wave generation.

8.2.4 Grid Resolution Test

The green water incident is investigated by use of three different grids with increasing resolu-
tions. Table 8.3 shows the resolutions of the three grids where the block numbers correspond
to the blocks indicated in Fig. 8.4.

The resulting water height on deck, by use of the three grids outlined in Table 8.3, is shown
in Figs. 8.7 and 8.8. The figures include results obtained both with and without application
of the relative motion model. Regarding the grid resolution both figures give similar results
for all three grids. Small differences are observed for the peak of the water height, especially
in Fig. 8.7 for the case without application of relative motion modelling. This is not expected
to be due to underresolution in the computations, but rather to the fact that the dynamics of
the shipping water flow is so sensitive to initial conditions that the small changes resulting
from increasing the grid resolution affects the flow and variations in the water height on
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Figure 8.6: Wave elevations from Fig. 8.5. The magnitude of the relative motion is sub-
tracted from the wave elevation for the case where the relative motion model is applied.

Table 8.3: Grid resolutions for numerical simulation of 2-D green water loads with relative
motion modelling (nhor × nver). Grid topology is shown in Fig. 8.4

Coarse Medium Fine
Block 0 96 × 32 160 × 48 224 × 64
Block 1 96 × 32 160 × 48 224 × 64
Block 2 96 × 64 160 × 48 224 × 64
Block 3 128 × 32 192 × 48 320 × 64
Block 4 96 × 64 160 × 48 224 × 64
Block 5 32 × 32 64 × 48 96 × 64
Block 6 32 × 32 64 × 48 96 × 64
Block 7 32 × 64 64 × 48 96 × 64

deck may be caused by numerical inaccuracies. However, generally the difference between
the results for the three grids is small.

Regarding the magnitude of the resulting water height on deck, it is clear that the application
of the relative motion model increases the water height on deck, as expected. Further, it is
shown that the resulting water height is significantly larger at the first probe (H1) than at the
second probe (H2). Whether the magnitude of the resulting water height on deck corresponds
to the experimentally measured results will be investigated later. First, a visualisation of the
wave shipped on the deck will be shown for the two cases for discussion of the flow features
connected with the green water incident.

Regarding CPU time it can be noted that the computation time for the full simulation (until
t = 40 s) is 1 hour for the coarse grid and 7.2 hours for the fine grid, on a single processor
1.2 GHz P3 computer.
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Figure 8.7: Resulting water height on deck at probe H1 for the 2-D FPSO case, using the
three grids described in Table 8.3. In the left figure only regular wave generation is applied,
and in the right figure both regular wave generation and the relative motion model are
applied. H = 17.3 m, T = 11.2 s.
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Figure 8.8: Resulting water height on deck at probe H2 for the 2-D FPSO case, using the
three grids described in Table 8.3. In the left figure only regular wave generation is applied,
and in the right figure both regular wave generation and the relative motion model are
applied. H = 17.3 m, T = 11.2 s.
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8.2.5 Visualisation of the Shipping Wave in the 2-D FPSO Case

The free surface contours of the 2-D green water shipping event with and without relative
motion modelling are shown in Fig. 8.9. The shipping incidents are captured at identical
time steps for the two modelling cases, and the figure proves that the magnitude of the
resulting water height on deck is significantly larger in the case where the relative motion
model is applied, similar to what was shown for the water height probes. The figure shows
that the incoming wave is significantly disturbed by the presence of the FPSO structure,
and it no longer has a smooth symmetric curvature. A halfcircle shaped wave on top of
the incoming wave in front of the bow is seen in both cases, seemingly generated when the
incoming wave travels up along the bow and encounters the curvature in the bow near the
deck. In the case without relative motion modelling this wave travels away from the FPSO,
whereas in the other case the wave stays at the same distance from the FPSO bow, until it
disappears into the descending water in front of the bow. It is also seen that the shipping
wave reaches the water height probes much sooner in the case with relative motion than in
the case without relative motion, which is also seen for the probes in Figs. 8.7 and 8.8.

The shape of the flow on deck was in Buchner (1995a) compared to a dam break type
flow. However, the visualisations in Fig. 8.9 show one significant difference from the dam
break flow, which is the plunging type wave front observed at the corner of the deck at
the initial stage of the wave shipping. Dam break flow was investigated in Chapter 4, and
in the beginning of the dam break flow, which should correspond to this wave front, the
water progresses fastest at the bottom of the domain and does not exhibit this plunging
wave behaviour. However, apart from this difference, the remaining part of the flow does
show resemblance to the dam break flow. Modelling of the deck flow resulting from wave
shipping using dam break flow has also previously given promising results in the publications
described in Chapter 1. Fig. 8.10 shows the contours of the flow on deck and in front of
the FPSO bow, captured in the x − z plane during the experiments (Buchner, 1995b). The
flow on deck shows good resemblance to the computed flow contours in Fig. 8.9. The same
type of plunging flow behaviour is seen at the initial stage for the experiments, though not
quite as distinct as in the computations. For the flow in front of the bow there seems to
be more difference between computations and experiments. The experiments more clearly
show two wave crests travelling away from the bow. However, since only the contour, and
not the whole field, is included it is not possible distinguish the finer flow contours. One
thing is clearly different between experiments and computations. The surface elevation in
front of the bow seems to rise continuously during the experimental sequence. Although
the time steps in the computations and the experiments are not directly comparable, it is
clear that in the computations, the corresponding surface elevation peaks around the second
frame and in the following sequence drop. The experimental sequence is captured with a
time step of 0.3 s, whereas the computations are captured with 0.6 s. From comparing the
two figures it can be seen that the second experimental line correspond to the first image
from the computations, and due to the differece in timestep, the following four experimental
lines correspond to two computed images. However, the two figures still indicate that the
relative ship motion in the computations does not have the same phase angle to the incoming
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No relative motion Relative motion

Figure 8.9: Visualisation of the free surface near the 2-D FPSO bow from time t = 31.6 s,
in increments of 0.6 s. The location of the water height probes H1 and H2 is indicated by
lines. The left column is for computations without relative motion modelling, in the right
column the relative motion model is included. Fine grid, H = 17.3 m, T = 11.2 s.
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Figure 8.10: Bow wave contours captured during experiments (Buchner, 1995b). Time step
between contours ∆t = 0.30 s.

wave as the relative ship motion in the experiments. This can possibly be ascribed to the
simplified relative ship motion model, which is used during the computations. This relative
motion model both assumed simplifications in the hull structure and used a linear incoming
wave profile. Further, the phase angle in the simplified motion model is calculated using
the added mass, which is assumed to be constant and equal to the still water displacement.
These simplifications can explain the difference in phase angle between computations and
experiments.

8.2.6 Resulting Water Height on Deck for 2-D FPSO Case

The computed resulting water height on deck obtained by use of the fine grid is in Fig. 8.11
compared to the experimentally obtained water height at the probe H1. The figure shows that
the numerically predicted result is close to the experimental result and only very small dif-
ferences are observed in the peak value and the duration of the water flow at the probe. The
computed and the experimental results for the second probe H2 are compared in Fig. 8.12.
The agreement between the results is not as good here as with the previous probe. The
two figures show that the computed resulting water height on deck decays faster along the
deck than measured during the experiments. This may be caused by many factors, but most
noteworthy is the simplifications of the green water incident made during the numerical pre-
diction. First of all the simulation is performed in 2-D, which eliminates possible 3-D effects
of wave diffraction and reflection around the bow and the flow from the side of the bow onto
the deck. Further, the full interaction between ship and incoming wave is not modelled by
the relative motion model applied in the computations. This model only ensures a correct
relative vertical motion between vessel and mean water level, but the ship-wave interaction
is more complex than just the vertical motion, where first of all the pitching motion may
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Figure 8.11: Comparison between experimental (Buchner, 1995a) and computed water height
on deck at probe H1. The computed results are obtained using the 2-D FPSO grid with the
fine resolution, see Table 8.3.

have a significant influence. The vessel, which has a continuous heave and pitch motion,
could be more influenced by the incoming wave than seen in the computations, where only
the vertical translation of the mean surface is modelled. The probe H2 is reached by the
wave at approximately t = 32 s. This is approximately 1 second before the pitching angle
becomes negative, implying that the bow is only slightly inclined relative to the mean water
level.

In the experiments only the nominal incoming wave height has been given. An experiment
without the presence of the structure where the incoming wave kinematics could have been
verified was not reported. This makes it difficult to evaluate how accurate the incoming
wave kinematics was reproduced in the computations, compared to the experiments. If
the resulting water height on deck during the experiments was not obtained from the first
incoming wave component, the reflection from previous wave components would probably
influence the incoming wave kinematics.

The computational domain, shown in Fig. 8.4, might also be relatively small, considering
that the incoming wavelength λ = 209.45 m. In Chapter 7, as part of the wave run-up on
wall investigation, the necessary size of the computational domain relative to the incoming
wave was investigated. This investigation gave the indication that an optimum domain size
would be at least five times the size of the generated wavelength. However, the disturbances
in the flume caused by a smaller domain are not noticeable until after about four periods
for a domain length a little larger than three times the wavelength, so with this in mind, the
current domain size is considered satisfactory.
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Figure 8.12: Comparison between experimental (Buchner, 1995a) and computed water height
on deck at probe H2. The computed results are obtained using the 2-D FPSO grid with the
fine resolution, see Table 8.3.

8.2.7 Conclusion to 2-D Green Water Modelling

The agreement between experimental and computed results shown in the previous section is
satisfactory, especially considering the simplifications made in the computed results. How-
ever, many aspects still need investigation in order to be able to conclude anything about the
general applicability of the present method. First of all the investigation must be extended
to include a wider range of incoming wave kinematics, to investigate the sensibility toward
incoming wavelength and wave height, which will both influence the shipping wave and the
ship motion. The investigation must also be extended to include other bow geometries, with
variations especially in bow flare and freeboard height, to determine whether the present re-
sults stem from any cancellation effects, which have benefited the overall agreement between
computations and experiments. However, as an attempt to model green water load on an
FPSO, this 2-D model gives very good results. Considering how little information regarding
the full FPSO is required, i.e. main particulars and a contour definition, this method of
predicting green water load is applicable even at the conceptual design stage.

8.3 3-D Numerical Prediction of Green Water on Deck

The next step in the green water investigation is to extend the simulations to three di-
mensions. The numerical investigation will be an extension to what was discussed in the
previous section, using the Buchner (1995a) experiments for validation and applying the
relative motion model described in Section 8.2.1. First, details about the computations are
given.
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8.3.1 3-D Numerical Simulation

The grid topology used for the 3-D computations is presented in Fig. 8.13. The domain
is divided into 19 blocks in three layers. Two grids are used with different resolutions, in
order to investigate convergence properties. The grids are outlined in Table 8.4 where the
block numbering is as follows: the blocks in front of the FPSO are numbered 0, 1 and 2, the
forward blocks at the port and the starboard side are 3, 4, 5 and 6, 7, 8, respectively, the
two forward blocks on top and below the FPSO are numbered 9 and 10, the aft blocks port
and starboard of the FPSO are numbered 11, 12, 13 and 14, 15, 16, respectively, and finally
the two aft blocks above and below the FPSO are numbered 17 and 18. The two grids are
stretched toward the FPSO where the ship wave interaction requires a larger amount of cells.
Compared to the resolution used in the 2-D case, the 3-D grids are significantly less resolved
in the x − y plane. In the 2-D case the three grids, for the horizontal resolution of the
block in front of the FPSO, used 96, 160 and 224 grid cells, respectively. In comparison, the
two 3-D grids apply 32 and 64 grid cells horizontally. However, both memory requirements
and computation time make it difficult to resolve the problem more than in the present
fine case, where approximately 0.9M grid cells are applied. The full simulation with the
fine grid requires approximately 30 hours on a linux cluster, employing 14 computational
nodes, each with a 2.3 GHz P4 processor. The total computational domain length in the
3-D computations is 400 m. This is shorter than in the 2-D case, but again this length was
reduced in order to reduce the required number of cells. The generated wave kinematics will
be investigated in the following to verify that the generated waves in the 3-D case are similar
to those in the 2-D case. The width of the domain equals 300 m and the total height of the
domain is 180 m, with a water depth of 150 m.

Table 8.4: Grid resolutions for numerical simulation of 3-D green water loads. The grid
topology is shown in Fig. 8.13. The grid cells are given as nx × ny × nx (nr. of cells in
the sailing direction of the FPSO × nr. of cells horizontally perpendicular to the sailing
direction × nr. of vertical cells).

Coarse Fine

Blocks 0,1,2 32 × 32 × 32 64 × 32 × 32
Blocks 3,4,5,6,7,8 32 × 32 × 32 32 × 64 × 32
Blocks 9,10 32 × 32 × 32 32 × 32 × 32
Blocks 11,12,13,14,15,16 16 × 32 × 32 16 × 64 × 32
Blocks 17,18 16 × 32 × 32 16 × 32 × 32

To investigate the wave kinematics generated during the 3-D computations, the wave ele-
vation is compared in a location 100 m to the starboard side of the FPSO bow with the
location equivalent to the wave kinematics investigation in the 2-D case. The wave elevation
is computed during the green water incident, with the FPSO structure located in the domain.
Since the elevation is computed so far away from the structure, the waves reflected from the
structure have not yet travelled to the location of the elevation probe and will not influence



8.3 3-D Numerical Prediction of Green Water on Deck 121

Figure 8.13: Multiblock structured grid used for 3-D green water investigation. The grid
consists of 19 blocks in three layers, the first layer from the sea bottom to the bottom of the
FPSO, the second layer at the same level as the FPSO, and the third layer on top of the
FPSO.

the computed wave elevation. The elevations are shown in Fig. 8.14, including the wave
kinematics computed in the 2-D case. It must be added that the computations performed
with the coarse grid could not be computed all the way to time t = 40 s, but had to be
stopped at t ≃ 35 s due to a numerical problem, so the wave elevation for the coarse grid is
not computed beyond this point. This did not influence the computations of the green water
incident, since the majority of it occurs before this point. The wave elevation in the figure
shows that the wave kinematics for the two grids is almost identical, and also identical to
the wave elevation computed in the 2-D case, at least for time t < 35 s. After this point the
disturbance due to the presence of the FPSO structure in the (3-D) computational domain
could be the cause of the disturbance observed in the computations. However, before this
point, the elevations for the 3-D computations exhibit the same behaviour as in the 2-D
case, which ensures that the incoming wave kinematics is correct. The kink in the elevation
curve which is observed at time t ≃ 18 s is at the starting point of the relative motion model,
described previously.

The next step in the verification of the 3-D numerical results is a comparison of the resulting
water heights at the probes H1 and H2 for the two grids. These are plotted in Fig. 8.15,
which shows a small difference between the two grids. The quantitatively biggest difference
between the two results is in the peak value at probe H2, but at the H1 probe the plots
also differ slightly. Moreover, while the generated wave kinematics shows that convergence
is reached with respect to the incoming wave, the results here indicate that the flow on deck
is not sufficiently resolved. However, the difference is relatively small and the computations
are believed to be close to convergence.
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Figure 8.14: Incoming wave kinematics for the 3-D green water computations, using the
two grids specified in Table 8.4. The wave elevation is computed in a location 100 m to the
starboard side of the FPSO bow during the wave impact. The wave kinematics from the
2-D case, computed without the presence of a structure, is included for comparison.

The obtained results are close to the same water heights computed with the 2-D grid (see
Figs. 8.11 and 8.12). This is surprising as three dimensional effects were believed to have an
influence on the flow on deck. However, since the incoming wave is longcrested, and in this
sense two-dimensional, the 3-D effects can only arise from diffraction around the (curved)
FPSO deck. Apparently, this has no significant effect on the present configuration. Whether
this conclusion holds for other configurations, i.e. different incoming wave kinematics, other
bow shapes, variations in ship’s length - wavelength ratio etc., further investigations will
have to clarify. In the following section a visualisation of the flow on deck is presented,
which illustrates the physics of the flow on deck.

8.3.2 Visualisation of the Flow on Deck

A visualisation of the water flow on deck is given in Fig. 8.16. Only the water on top of the
FPSO deck is shown and the water in the remaining domain is removed in order to be better
able to identify the flow on deck. The first image (1) shows a small region of water entering
from in front of the FPSO. The shape of the water region indicates that a plunging wave
breaking occurs in front of the FPSO, similar to the behaviour seen in the 2-D visualisations.
The entering of this plunging wave explains the sudden rise in water height at the probe
H1, which was shown in Fig. 8.15. The occurrence of the plunging wave increases the water
height at the probe instantaneously. At probe H2 it drops closer to the deck, which explains
the drop in peak height at this probe.

The water initially enters the deck area from the front of the FPSO, and as the water height
in the front part of the deck increases, water also enters from the sides of the deck. The
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Figure 8.15: Resulting water height on deck at probes H1 (left) and H2 (right) for the 3-D
FPSO case, using the two grids described in Table 8.4. H = 17.3 m, T = 11.2 s.

largest amount of water is clearly in the very forward part of the deck and as the flow
progresses along the deck the water height at the front decreases. Toward the end of the
visualisation the formation of a ’tongue’ of water at the centerline of the deck is clearly seen.
This flow behaviour is very similar to what was documented by Buchner (1995a). During
these experiments the deck flow contours are captured by a vessel mounted camera and these
contours are shown in Fig. 8.17. A similar ’tongue’ of water forming toward the end of the
green water incident is seen in the experiments, although it is slightly narrower than for
the computations. A quantitative validation of the flow on deck is given in the following
section where the resulting water height on deck is compared between computations and
experiments.

8.3.3 Validation of 3-D Computations

The resulting water height on deck depicted in Fig. 8.15 is compared in Fig. 8.18 to the
experimental data from Buchner (1995a). The results from the 2-D computation are also
included for comparison. The figure shows good agreement between the 3-D computations
and the experimental results. Both the magnitude and the duration of the water height at
H1 are very well predicted in the computations. The second probe shows a larger deviation
between numerical and experimental results, but the water heights are still very close. The
figure also illustrates that the difference between 2-D and 3-D results is very small, and only
significant at the second probe (H2). As previously discussed, the 3-D computations are
possibly not sufficiently resolved, but further cells are however not expected to influence the
results significantly. The visualisations in Fig. 8.16 also demonstrates that except at the
edge of the FPSO deck, the curvature of the flow across the ship’s deck is only seen further



124 Chapter 8. Green Water Load on an FPSO

(1) (4)

(2) (5)

(3) (6)

Figure 8.16: Visualisation of the flow on deck for 3-D green water computations, obtained by
use of the fine grid Table 8.4. Only flow directly above deck is included in order to be able
to determine deck the flow behaviour. Frame (1) is at t = 32s, and the time step between
frames ∆t = 0.5s.(H = 17.3 m, T = 11.2 s).
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Figure 8.17: Flow contours for the flow on deck of the FPSO captured during the experiments
(from Buchner (1995b))

down the ship. Thus only here it is expected to give a larger difference between 2-D and 3-D
results.

8.3.4 Conclusion

The resulting water height on deck from the green water incident clearly proves that both 2-D
and 3-D computations of green water incidents can describe most of the ship-wave interaction
which was recorded during the experiments. Even though the computational model only
includes the vertical ship motion, the investigation shows that the VOF model captures
most of the green water flow physics, including the flow on deck. This gives an interesting
perspective for the future of VOF modelling with respect to green water loads. The possibility
of determining optimal bow shape configurations based on resulting water height on deck
may be an option in the near future, even with the present simplified interaction model. An
enhancement of the computational model to include the full interaction problem with both
heave and pitch motion can help refine the computational investigation.

In the design against green water events, the water height on deck is only a preliminary
result. The desired result is the impact pressure on deck or deck mounted structures which
occur as a result of the shipped water. The present investigation did not include an inves-
tigation of the resulting pressure on deck. This will be the next step in the validation of
the computational model. However, the present model has one drawback which can limit its
ability to predict pressure loads on the deck. In Buchner (1995a) the various contributions
to the resulting pressure on deck were specified, and an important contributing factor was
the vertical acceleration of the FPSO. Although it was shown that this contribution was
slightly out of phase with the two other main contributions, i.e. static water pressure and
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Figure 8.18: Comparison between experimental (Buchner, 1995a) and computed water height
on deck at probes H1 (left) and H2 (right). The computed results are obtained by use of the
3-D FPSO grid with the fine resolution, see Table 8.4. Results from the 2-D computation
are included for comparison (dashed line).

rate of change of water height on deck, the vertical acceleration of the FPSO cannot be
considered negligible. The present computational model does not include this contribution,
since the vertical motion is seen from a vessel fixed coordinate system. Further validation
is required to investigate this effect, and possibly is can be modelled semi-empirically. The
present model computes the time history of both heave and pitch motion, which can be used
to add a contribution to the deck pressure, resulting from the vertical ship acceleration. This
requires that the phase is computed correctly, so that the superposition of pressures is correct
and further validation of the relative ship motion model can help determine whether this is
achievable. For the impact pressure on deck mounted structures it was shown in Chapter 7
that the impact pressure on such structures can be very well predicted by the present model.
In the case of these vertically oriented structures, the vertical acceleration of the FPSO will
only have a very small effect on the impact load, which should make it possible to predict
this impact by the present model. The topic of pressure loads on the deck and deck mounted
structures is the next step in the validation of the VOF model with regard to green water
problems.



Chapter 9

Conclusions and Recommendations
for Future Work

In the present thesis several topics related to green water investigations are analysed and
discussed. This chapter presents a summation of some of the most important findings and
also gives recommendations to future work within the field.

9.1 Conclusions to Present Work

A pure convection test is used as a benchmark test of selected VOF transport schemes, by
determining which scheme retains the original volume fraction distribution best, after the
field is convected obliquely through a domain. Of the four schemes tested, i.e. Hyper-C,
UltimateQuickest, HRIC and CICSAM, the latter scheme shows the best performance. This
scheme is selected as the preferred scheme throughout the present work.

The dam break and cylinder impact cases are used as initial test examples for validation of
the numerical model, since the cases involve elements which are important when modelling
green water, i.e. complex free surface flows and impact loads. Furthermore, the dam break
problem has previously been used as a model for the water flow on deck resulting from green
water incidents, which makes it interesting in the present context. In both test cases the
results obtained with the numerical model show good agreement with experimental data.

The grid resolution study in the dam break case shows that although results obtained with
three different grids give similiar results, the grid convergence is not fully monotonic. How-
ever, the difference in results obtained by use of the different grids is only visible after the
flow returns from the impact with the opposite wall, where the water is very disturbed.
This makes that part of the experiment difficult to reproduce numerically. This is further
documented by both sensitivity studies and comparisons with other numerical methods. In
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the experimental study (Zhou et al., 1999) it was reported that repetition of the experi-
ments did not give exactly the same results, but the magnitude of the change between the
individual repetitions was not reported. In general, the comparison between computational
and experimental results for both water height and impact pressure is satisfactory, though
a closer investigation of the sensitivity of the experimental uncertainties would be valuable.

In the cylinder impact case verification of the computed results shows that the different
grid resolutions gives a change in the computed water flow behaviour. Only with the finest
resolution is it possible to recreate the flow separation features shown in the experiments.
However, this change in fluid behaviour does not influence the vertical force on the cylinder,
which is very similar for all grids. In the initial stage of the impact where the vertical force
is dominated by inertia force, the agreement between computations and experiments is very
satisfactory, but the later stages of the impact the difference between computations and
experiments is more prominent.

The tank sloshing cases shows that the flow dynamics in a partially filled tank, exposed
to horizontal sinusoidal excitations are very well predicted numerically. Both free surface
contours and pressure levels inside the tank are well reproduced numerically, compared
to experimental data. The only significant inaccuracy in the computational model is the
inability to retain all the fluid which is present in the tank initially. However, this problem
is only noticable after several periods and overall the accuracy in the numerical results is
satisfactory.

The wave crest impact on deck investigation shows that the computational model can predict
impact loads very accurately, eventhough it involves very complex interactions between the
structures and the free surface. This investigation is carried out by use of inviscid flow
calculations, as from an engineering perspective the inclusion of viscous or turbulent terms
will not affect the present results, since the problem is not domainted by either viscous or
turbulent contributions. The general agreement for the impact forces on a single horizontal
plate between computations and experiments is very satisfactory. And in the two plate cases
where a water jet shoots over the first plate and impacts the second plate, the secondary
impact on the downstream plate is also well predicted.

The green water investigations include both simplified cases and a full green water problem.
The simplified investigation include a wave run-up case and a 2-D green water case, where
the wave run-up on a wall investigation can be regarded as an initial step in a green water
incident. For this case the visualisation of the free surface contours shows that the com-
putaions closely reproduce the free surface contours at the edge and on top of the wall when
a wave encounters the wall, compared to surface contours captured during the experiments.
However, the results show some uncertainty regarding the influence of resonant waves inside
the flume, which influence the magnitude of the wave run-up. A better control of the incom-
ing wave kinematics is required in order to be able evaluate the accuracy of the numerically
predicted results compared to the experiments.

The first green water problem is a simplified 2-D case, without relative ship motions. Even-
though during the experiments it is not possible to fully eliminate 3-D effects, the test setup
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is constructed to minimise these, using a prismatic structure spanning the whole width of
the wave flume. To simplify the wave-structure interaction, the structure, which is an ex-
panded contour line of an FPSO, is fixed in time. From a comparison with the generated
wave kinematics measured during the experiments it is shown that the incoming waves in
the computations closely reproduce these. Visualisations of the wave impact at the FPSO
bow, from both experiments and computations show that the progressing water flow in the
experiments is very well captured numerically, and that even the small cavity which appear
at the forward edge of the FPSO deck in the initial part of the green water shipping is seen
in the computations. The resulting water height on deck of the FPSO is also well repro-
duced, shown by a comparison of water height measured at two probes located in the front
part of the FPSO deck. The investigation also shows that impact loads on deck mounted
structures can be predicted accurately. A vertical wall, simulating a breakwater type struc-
ture, is placed on the front of the FPSO deck, and by the use of pressure probes located on
the structure, it is shown that the computational method can closely reproduce the impact
loads on the structure resulting from the green water impact. In conclusion the simplified
green water investigation shows very promising results, and at least for this type of simplified
modelling, the results are very encouraging with regard to the application of the numerical
model in green water problems.

Finally, a full green water problem including ship motions is investigated numerically. The
experimental data used as reference (Buchner, 1996) were obtained in a model wave tank,
using a scaled model of an FPSO, exposed to regular incoming waves. This problem is
numerically investigated in both 2-D and 3-D for the purpose of analyzing the 3-D effects
related to the green water incident. In the computations, the green water problem is simpli-
fied by excluding ship motions in the computational domain. Instead, a relative ship motion
model is applied, where the vertical motion of the FPSO at the bow is modelled by use of
simplified closed-form expressions for the transfer functions for heave and pitch. These are
transformed to the computaional domain by varying the mean water level during the green
water event, thereby coupling ship motions and incoming wave. The water height on deck
resulting from the green water incident shows very good agreement between computations
and experiments. Furthermore, the computations show that 2-D and 3-D modelling gives
very similar results and that the flow at the fore part of the deck is not signicantly affected
by 3-D contributions. The present investigation is only conducted with long crested 2-D in-
coming waves, whereas real life applications will experience 3-D seastates, with directionally
spread incoming waves, and in that case threedimensionality may be significant. However,
current methods for determining green water loads (Buchner (1995b), Ogawa et al. (1998),
Buchner (2002)) only use long crested 2-D incoming waves, so if the present method, both
in 2-D and 3-D proves valid in general, it can become an important tool in green water
investigations. And since the 2-D investigation only requires very little information about
the FPSO vessel, this methodology can be applied even in a conceptual design phase.
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9.2 Recommendations for Future Work

The present approach to green water modelling still contain elements which need to be
further verified through additional numerical simulations, and also needs to be validated
against more comprehensive experimental studies. The following list describes some of the
relevant topics for future studies:

• 3-D studies of green water
The required resolution in the 3-D simulations needs to be further verified. This can
also help future investigation with requirements of grid resolution and computational
domain size for numerical simulations of other green water load problems. The present
green water investigation shows that, at least to some extend, the green water problem
is two-dimensional. Whether this can be extended to other hull shapes and different
incoming wave kinematics requires further investigations.

• Validity of the relative ship motion model
A closer investigation of the relative ship motion model will help determine the ap-
plicability range of the model. In particular, an investigation of the performance of
the model when very steep nonlinear waves are applied, compared to strip theory or
model experiments, should be performed. The investigation should also be extented to
include other ship hull geometries, and the influence of shiplength - wavelength ratio.

• Definition of incoming wave kinematics
A better description of the incoming wave kinematics is desirable, since the present
simulations are based nominal values obtained from the experiments. Time series of
the wave elevation from the model wave tank during the experiments, either with or
without the FPSO structure present in the wave tank, can help future investigation
to describe incoming wave kinematics. This will help in evaluations of uncertanties,
when comparing numerical and experimental results.

• Inclusion of deck pressure and impact loads on structures
The present study of the full green water incident only determine the water height on
deck, resulting from green water shipping. A full analysis must also include studies
of pressure loads both on deck plating and on deck mounted structures. The present
method of ship motion modelling, where the mean water level is adjusted and the prob-
lem is modelled in a vessel fixed coordinate system, does not include the contribution
to deck pressure loads caused by vertical vessel acceleration. This could possibly be
modelled from the transfer functions, which are used to model the relative ship motion.

• Parametric studies of green water incidents
If the present method for green water modelling shows general applicability, a para-
metric study for evaluation the ideal bow geometries would be of great value. Through
this, guidelines for optimal FPSO bow geometries with respect to green water loads
could be proposed.
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• Full numerical simulation of green water problems
It is possible to numerically model the full green water problem, similar to the method
used by Repetto (2001). The full ship-wave interaction problem is modelled, including
the response of the FPSO from the incoming waves. However, such full numerical
modelling requires very substantial computational effort, probably beyond what is
generally presently available.
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Appendix A

Generation of Nonlinear Waves in the
Computational Domain

For many applications in the present work the ability to generate waves in the computational
domain is of great importance. If incoming or initial experimental wave kinematics is not
correctly reproduced in the computations, it cannot be expected that the numerical results
will show agreement with experimental results. This appendix will give a brief introduction
to higher order wave theory, and illustrate the correspondance between numerically generated
wave kinematics and the analytical wave kinematics.

A.1 Stream Function Theory

A solution to the steady water wave problem by use of a Fourier expansion was first presented
by Rienecker and Fenton (1981). This method in based on the solution to the Laplace
equation for irrotational flow, with boundary conditions given as an inpermable bottom
condition, and also a kinematic and a dynamic free surface boundary condition imposing
zero flux through the free surface and constant pressure at the free surface, respectively. The
solution is labeled the stream function, and the derivatives are the velocity components in
the x and y directions, respectively. The stream function is given by the following Fourier
series

φ(x, y) = B0y +

N
∑

j=1

Bj

sinh jky

cosh jkD
cos jkx, (A.1)

where B1···N are constants for a given wave, k is the wave number and D is an arbitrary
reference level in the water. For a solution method and a computer algorithm to solve
the equations necessary to determine the Fourier compenents see Fenton (1988). Next, the
application of the stream function theory solution to wave generation in the computational
domain is described.
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Figure A.1: Principal sketch showing wave generation in the computational domain.

A.2 Overview of Wave Generation in the Computa-

tional Domain

When all the Fourier components determining the wave kinematics have been computed,
the time history of the wave elevation and velocity can be established. From this, the
discretised values of elevation and velocity used for generating waves at the boundary of the
computational domain can be imposed by extracting the values at the discrete locations. This
is illustrated in Fig. A.1. Further, a ’driving’ layer can be imposed inside the computational
domain, where the stream function solution is added in the cells near the wave generation
boundary. This solution is added to the right hand side of the momentum equation as
a forcing term, ensuring a solution in the computations identical to the stream function
solution.

A.3 Test of Numerical Wave Generation

When generating waves from an initially calm free surface the imposed velocities needs to be
ramped from zero to the full values for a specified duration, in order to avoid generating too
many disturbances and resonant waves in the flume. This is done by applying the following
ramping function

R(t) =
t

tram
−

sin(2π t
tram

)

2π
(A.2)

where tram is the ramping period.
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Table A.1: Wave paramenters used for wave generation test
Wave height 1.28 m
Wave period 5 s
Depth 30 m
Wave length 39.44 m
Wave steepness 0.0325
Length of flume 200 m
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Figure A.2: Test of wave generation in the computaional domain. Time history of wave
elevation at x = 30 m. 512 × 64 grid cells, domain length = 200 m. Nomainal wave profile
computed from stream function theory (Fenton, 1988) is also indicated. Ramp time equals
5 s (one period).

To test the wave generation in the computational domain, a simple, rectangular grid with
size of 200 × 35 m, resolved by 512 × 64 grid cells, is used. The waves are generated with
the wave parameters shown in Table A.31 and a ramp time equal to one period is applied.
A ’driving’ layer is also used to improve wave generation. The resulting wave elevation is
shown in Fig. A.2, where the nominal crest and trough values are indicated. The elevation
is measured at x = 30 m, and the driving layer ends at x = 10 m. The figure shows close
correspondance between computed and nominal wave elevation.

1The wave steepness of 0.0325 indicates that Airy (linear) waves are not valid. The steepness boundary
for application of Airy waves is approximately 0.006, in deep water.
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Appendix B

Alternative Wave Generation

In the 2-D green water experiments by Greco (2001) the waves in the experimental wave
flume were generated by use of a flap type wave generator. These experiments are reproduced
in Chapter 7, where the wave generation in the computations uses the method described in
Appendix A. However, as a test, the actual wave generator motion used by Greco (2001)
are here applied to try to reproduce the experimental wavegenerator, by transforming the
wave generator signal info a flux boundary condition in the computational domain.

In Greco (2001) the flap motion was recorded during the experiment and this signal is shown
in Fig. B.1. The flap was hinged 0.1 m above the bottom of the flume and by numerical
differentiation the flap velocity can be computed computed from the flap translation. In
the following, wave generation in the computational domain, by application of the flux
boundary condition from the experimental flap motion signal, will be labeled ’alternative
wave generation’. In is not expected that the alternative wave generation gives exactly the
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Figure B.1: Flap motion signal used during 2-D green water experiments by Greco (2001).
Resulting wave kinematics: H = 0.16 m, T = 1.1 s, λ = 2 m
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same waves as in the experiments, since the full flap motion is not reproduced, but the
motion is only ’projected’ onto the mean position of the flap. The computations employ the
fine grid from Table 7.3.

Details of the location of wave probes are shown in Figs. 7.9 and 7.10. Two probes are
located in the wave flume between the wave generator and the FPSO (WP1-WP2), and three
probes are located on the FPSO deck (WL1-WL3). In Fig. B.2 the generated wave elevation
at WP1 and WP2 are compared between the experiments and computed elevation, where the
wave generation in the computations are conducted by the alternative wave generation. The
figure shows that the wave crests in the computations are higher than in the experiments,
especially at probe WP1, but otherwise the elevations corresponds well. Compared to the
computations with the standard wave generation (Fig. 7.16) the agreement in Fig. B.2 in
not as satisfactory.
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Figure B.2: Comparison of experimental and computed wave elevation at probes WP1 (left)
and WP2 (right). The computed waves are generated by transforming the flap motion
recorded during experiments to a flux boundary condition in the coputational domain (al-
ternative wave generation). H = 0.16 m, T = 1.1 s, λ = 2 m.

The resulting water height on deck, measured at the probes WL1-WL3 are in Fig. B.3 com-
pared between experiments and computations. The computed water height for the first wave
encounter at probe WL1 is slightly higher in the computations, but the general agreement
for all probes is good. The agreement between computed and experimental results is not as
exact as with the standard wave generation (Fig. 7.17), but is still considered satisfactory.
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Figure B.3: Comparison of experimental and computed wave height on deck of the FPSO
at probes WL1 (top left), WL2 (top right) and WL3 (bottom). The computed waves are
generated by use of the alternative wave generation.
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