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Abstract

Numerical simulations are being deployed widely for product design. However, the accuracy of the numerical tools is
not yet always sufficiently accurate and reliable. This article focuses on the current state and recent developments in
different stages of product design: springback prediction, springback compensation and optimization by Finite Element
(FE) Analysis. To improve the springback prediction by FE Analyis, guidelines regarding the mesh discretization are
provided and a new through-thickness integration scheme for shell elements is launched. In the next stage of virtual
product design the product is compensated for springback. Currently, deformations due to springback are manually
compensated in the industry. Here, a procedure to automatically compensate the tool geometry, including the CAD
description, is presented and it is successfully applied to an industrial automotive part. The last stage in virtual
product design comprises optimization. This article presents an optimization scheme which is capable of designing
optimal and robust metal forming processes efficiently.
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1. Introduction

Sheet metal forming is a widely used production
process, e.g. in the automotive industry (outer pan-
els, inner panels, stiffeners), the packaging industry
(pet food containers, beverage cans) and the house-
hold appliances industry (housings, razor caps). Al-
though most sheet metal forming processes have
been successfully applied for decades, the entire pro-
cess is still not fully understood. As a result, a costly
and time consuming trial and error process must
be started to determine the proper process design,
leading to the desired product. The lack of under-
standing is becoming even more pronounced, since
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industries tend to favor light construction principles,
leading to the usage of new materials and new pro-
duction processes like hydroforming and incremen-
tal forming.

Presently, Finite Element (FE) Analyses are used
to enhance the understanding of sheet metal form-
ing processes. Although FE Programs are quite so-
phisticated nowadays, their accuracy and reliabil-
ity do not yet satisfy the industrial requirements.
Amongst others, some of the main reasons are the in-
accuracy of the used numerical algorithms (e.g. nu-
merical integration, element formulation) and lack
of experience in using the FE Code. As a result, the
FE Method is not sufficiently capable of simulat-
ing forming processes and subsequently unable to
accurately predict the springback behavior. There-
fore, research in these fields is necessary to improve
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the usability of numerical simulations in sheet metal
forming. This article focuses on numerics in relation
to springback prediction, as explained in Section
2. Various simplifications, introduced for making a
simulation of forming more efficient, may have a sig-
nificant influence on the accuracy of springback pre-
diction and are reanalyzed in this article. Besides, a
new integration algorithm is developed to improve
the accuracy of a springback analysis at minimal
costs.

Springback is a major problem for process-
planning engineers. In many cases the shape de-
viation of the sprung back part and the desired
product is so large that springback compensation
is needed. The tools of the sheet forming process
must be changed such that the product becomes
geometrically accurate after springback. In indus-
trial practice, deformations due to springback are
compensated manually by doing extensive mea-
surements on prototype parts, and altering the tool
geometry by hand, which is a time consuming pro-
cess. The FE Method can be used for springback
compensation. In this article a procedure is de-
scribed to automatically compensate the CAD tool
shape to obtain the desired product shape (Sec-
tion 3). The potential of this method is successfully
demonstrated by an industrial automotive part.

The final step in virtual product design is op-
timization. Cost saving and product improvement
have always been important goals in the metal form-
ing industry. To achieve these goals, metal form-
ing processes need to be optimized. Until recently,
trial-and-error methods were used in factories for
process optimization. Nowadays, numerical simu-
lations, and the possibility of coupling these nu-
merical simulations to mathematical optimization
algorithms, are offering a promising alternative to
design optimal metal forming processes instead of
only feasible ones, as explained in Section 4. An
overview of possible optimization algorithms that
can be applied to optimize metal forming processes
using time-consuming FE simulations will be given.
A promising optimization strategy that assists an
engineer to efficiently model an optimization pro-
cedure is proposed. It includes an efficient prob-
lem solving algorithm and addresses a future trend
in metal forming simulation: optimization of robust
metal forming processes.

2. Springback Prediction

Springback may be defined as an elastically-
driven change of shape of a product which occurs
when external loads are removed. In many cases the
shape deviation of the sprung back part and the
desired product is so large that springback compen-
sation is needed to obtain the desired product. In
virtual product design, this compensation will be
based on the springback prediction provided by an
FE Analysis. An efficient springback compensation
therefore requires an accurate springback predic-
tion. Various experimental procedures used to study
springback revealed that it is a complex physical
phenomenon which involves small scale plasticity
effects and thus, depends on a deformation path,
crystallographic texture and its evolution [1]. There-
fore, to accurately model the phenomenon in FE
Analysis it is preferable to use physically-based ma-
terial models, which are fully capable of describing
complex material behavior such as the Bauschinger
effect and inelastic effects during unloading.

Accuracy of the prediction of springback is also
influenced by factors that are responsible for quality
of simulation of a forming step. In the past decades,
various assumptions were introduced to make form-
ing simulations more efficient at the cost of accu-
racy. Applicability of most of the assumptions to the
springback analysis should be reanalyzed. For exam-
ple, some studies indicate that simplification of load-
ing and unloading conditions [2,3] and assumptions
underlying a shell elements theory [4] may be con-
trary to reality and are not applicable to the spring-
back analysis. Spatial discretization introduces an-
other approximation and it is recommended that
finer meshes and more integration points in thick-
ness direction are needed for an accurate springback
simulation [4,5].

Some results of a numerical study, which was per-
formed to develop guidelines on a level of blank dis-
cretization in a springback analysis of real industrial
components, are discussed in Section 2.1. An adap-
tive through-thickness integration strategy for shell
elements is presented in Section 2.2, which may help
to improve springback prediction accuracy at mini-
mal costs.

2.1. Mesh Density in Springback Analysis

The theory of FE Analysis suggests that to re-
duce an error due to discretization, sufficiently fine
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meshes must be used in places of high stress gra-
dients. In sheet metal forming high stress gradients
appear in regions of abrupt changes of geometry, for
example at the tool radius. It is often recommended
in literature, that accurate springback analysis re-
quires a blank to be discretized so that an element
which is in contact with the tool radius covers 5◦-10◦

of turning angle. An angle of 5◦ per element places
high CPU power demands and is not desirable in
simulations of industrial components. To define the
level of blank discretization that can help to estab-
lish a balance between efficiency and accuracy of
springback analysis, a numerical study is performed
which is based on a test of bending of a beam under
tension.

In the test a strip specimen is bent over a tool
radius (R = 10mm) and during bending a constant
value of tension is applied. A number of simulations
is performed with the inhouse FE Code DiekA with
a blank discretized using Discrete Kirchhoff trian-
gular elements with 7 integration points through the
thickness. A dual phase steel DP965 with a Young’s
modulus of 205 GPa, a Poisson ratio of 0.3 and a
yield stress of 650 MPa is used in the analysis.

A value of internal bending moment is used to
quantify springback. The bending moment obtained
from a simulation with the finest mesh is chosen
to be a reference. A relative difference between the
reference bending moment and a moment calculated
from the simulations with other mesh densities gives
a relative moment error. Hence, the springback error
induced by the discretization error is proportional
to this relative moment error.

Figure 1 shows results of simulations in which the
relative moment error is plotted versus the number
of elements that are in contact with the tool radius.
The tension is equal to 0.1 times the tension needed
to initiate material yielding.
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Fig. 1. Variation of the relative moment error depending on
mesh density.

The figure shows that to have an accuracy of
about 1% in this springback analysis it is necessary
to minimize the discretization error by using about
10 elements over the tool radius, an angle of 9◦ per
element. Simulations with other materials under
the same process conditions lead to similar results
and hence not presented here.

A top-hat section test is used to check the infer-
ence, mentioned above. The test resembles the NU-
MISHEET’93 benchmark [6] except for the tools’
radii. A number of simulations is performed in which
blanks with various mesh densities are used. Results
of the simulations with aluminum alloy (Young’s
modulus of 71 GPa, a Poisson ratio of 0.34 and an
initial yield stress of 125 MPa) are reported in Fig-
ure 2, where a shape of the blank after unloading is
shown. Starting from 9◦ per element around the tool
radius (the curve with 10 elements) the final shape
does not differ significantly, verifying the rule that
a discretization density of 10 elements over a tool
radius gives accurate results.
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Fig. 2. Top-hat section test. Shape after springback.

However, note that the conclusions presented here
are applicable to situations when Kirchhoff elements
are used for the blank discretization. It is likely that
fewer higher-order elements are required to achieve
similar accuracy of the springback prediction. In
practice, it is beneficial to employ an adaptive mesh
refinement procedure that includes a type of poste-
riori error estimate which will trigger mesh revision
in the regions with high stress gradients.

2.2. Advanced Integration Scheme for Shell

Elements

In FE Analysis characteristic matrices of ele-
ments are complex volume integrals that are solved
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by numerical integration. In shell elements this in-
tegration is split into an in-plane integration and
a through-thickness integration. In this article the
focus is on the latter.
Standard integration rules are available to perform
the through- thickness integration, e.g. Trapezoidal
integration. To describe bending effects, usually
more than one integration point in the thickness
direction is needed. When a material undergoes
plastic deformations there appear points of discon-
tinuity in through-thickness stress profile. None
of the standard rules can guarantee accurate re-
sults in this case and the number of the integration
points required to represent the non-linear stress
profile increases [7]. It was shown that depending
on a material, process parameters and the inte-
gration rule, 10 − 50 integration points are needed
through the thickness to minimize influence of nu-
merical integration error on springback prediction
[8]. Very likely, the reason for this is the inability
of the integration schemes to accurately cope with
discontinuities. Such a broad range of the required
integration points shows inefficiency of the stan-
dard integration rules. Furthermore, using more
than 20 integration points places high demands on
computational power and is very undesirable.

To overcome this problem one may use a strategy
that is based on adaptive integration. An integration
rule of the strategy may change its definition and
placement of the integration points to adapt itself
to a varying stress profile. Ideally, integration points
will be placed in the locations where the disconti-
nuities appear, which assure that these discontinu-
ities do not influence the accuracy. Thus a number
of the integration points needed to guarantee a cer-
tain level of accuracy of springback prediction may
be reduced significantly.

A flexible framework for constructing algorithms
for adaptive integration is suggested by Rice [9]. Us-
ing the framework, an adaptive noniterative integra-
tion strategy for shell elements is defined. It consists
of two groups of components: an interval manager
and an interval processor. The components are de-
scribed in Figure 3.

The first task of the interval manager is to lo-
cate points of discontinuity in the integrand profile.
Several points of discontinuity may be present in a
stress profile when a material undergoes cyclic bend-
ing and unbending while passing, for example, a die
radius. Figure 4 shows a fictive through-thickness
stress profile which occurs in a beam after bending
and reverse bending without tension. Elastic, per-

Interval processor

- applies integration rule

Interval manager

- locates discontinuities
- defines subintervals
- adapts integration points
- prepares integration
- calculates internal variables

Fig. 3. Schematic of adaptive through-thickness integration
algorithm for shell elements.

fectly plastic material is chosen and, due to a sym-
metry, only half of the stress profiles is shown.
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Fig. 4. Through-thickness stress profiles for bending/reverse
bending.

While bending, as soon as yielding of the material
is initiated, an elastic-plastic boundary or a point
of discontinuity (POD1 in Figure 4) appears in the
stress profile. σy0 is the initial yield stress and σt is
the trial stress. Yielding of the material during load-
ing in the reverse direction produces a new elastic-
plastic boundary and a new point of discontinuity
(POD2). σf is a fictitious elastic stress that would
exist if the material did not become plastic during
the reverse loading. It can be shown that a slope of
the fictitious elastic stress (line 1−2 in Figure 4) in-
tersects the neutral axis at the location of the yield
stress during the bending part of the cycle. After
some work, the position of the transition points z1

and z2 can be calculated [10].
Following similar considerations and assuming

linear stress variation in the region of plastic de-
formations, it is possible to define equations for
locating the points of discontinuity after bending
and reverse bending for an elastic-plastic material
with hardening. Generalization from the considered
uniaxial case to a multiaxial problem is done in [10].

Having found the location of discontinuities in the
stress profile the interval manager divides the com-
plete integration interval [− t

2
, t

2
] into several parts.

After the subdivision the discontinuities coincide
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with endpoints of the subintervals and the integrand
on every subinterval is a smooth function. Integra-
tion points are rearranged so that there are several
points inside every subinterval and two of the points
are lying on its limits. If required, the location and
number of the integration points on each subinter-
val can be adapted depending on used numerical in-
tegration scheme and smoothness of the integrand.
Applying an integration rule to every subinterval
and adding results gives a numerical value of the in-
tegral.

For high flexibility, the interval processor may em-
ploy numerical schemes that can perform integration
using unequally distributed points [11]. Implemen-
tation of the adaptive through-thickness integration
strategy for real material behavior requires extra at-
tention. As soon as an integration point is relocated
or newly introduced, there is no history information
available for this point. Therefore, it is necessary
to calculate new values of internal variables, such
as stress and strain vectors and hardening param-
eters. These values can be calculated by interpola-
tion using the information of old integration points.
If unloading occurs, the adapted integration points
will guarantee more accurate stress resultants and,
therefore, more accurate change of shape.

To test the performance of the adaptive integra-
tion strategy, a moment M resulting from bend-
ing of a beam to a radius under in-plane tension T
is calculated. A model of bending under tension is
schematically represented in Figure 5. Simplicity of
the model allows finding a closed form solution for
the bending moment. Details of the analytical cal-
culation of the bending moment are presented in lit-
erature, for example in [8].

(a)

R

unloading

forming

C

(b)
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zz
D

B

t/2

00t central line
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StressStrain

Fig. 5. (a): Deformation of a beam under combined influence
of moment and tension. (b): Typical through-thickness strain
and stress profiles.

Calculations are performed for a range of values
of the in-plane tension. Prior to integration the in-
terval manager of the adaptive integration strategy
evaluates the integrand and performs the following
tasks:

(i) identifies location of two points of discontinu-
ity (POD1) in the stress profile (symmetry);

(ii) divides integration interval [− t
2
, t

2
] into three

subintervals AB, BC and CD, shown in Fig-
ure 5;

(iii) adapts location of the integration points on
every subinterval.

For integration on every subinterval, the interval
processor employs a rule that uses a natural cubic
spline to approximate the integrand.

To show the performance of the traditional inte-
gration schemes the trapezoidal rule is used to cal-
culate the bending moment. A value of the in-plane
tension that causes a neutral line shift of −0.4mm
is chosen. A set of calculations is performed with
a varying number of integration points. An error
due to applying the numerical integration is quan-
tified by finding a relative difference between values
of the bending moment calculated analytically and
numerically. Figure 6 shows the relative moment er-
ror plotted versus the number of integration points.
Presence of points of discontinuity in the stress pro-
file leads to a considerably high error when using
less than 10 integration points.
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Fig. 6. Relative moment error due to integration with trape-
zoidal rule.

Results of numerical integration with a fixed num-
ber of the integration points are shown in Figure 7,
where the relative moment error varies as a func-
tion of the in-plane tension. In this figure, the in-
plane tension is represented by the normalized shift
of the neutral line. The numerical integration is per-
formed using the trapezoidal rule with 50 integra-
tion points and the adaptive spline integration with
only 11 points.

The integration error, obtained when using the
trapezoidal rule, oscillates. It occurs because for dif-
ferent in-plane tension the location of the points of
discontinuity in the stress profile vary to the loca-
tion of the integration points; the closer the loca-
tions are, the smaller the error [8]. This fact makes
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it very difficult to develop practical guidelines for
selection of the number of integration points. Slight
variation of process parameters, the in-plane tension
in this case, may lead to a very high or very low er-
ror for the same number of points. At the same time,
advantages of using the adaptive integration strat-
egy are clearly seen. The adaptive spline integration
helps to obtain a very low error using a small number
of the integration points. Additionally, tracing the
location of the points of discontinuity in the stress
profile removes the error oscillation. Therefore it be-
comes possible to guarantee some level of the error
which can occur when using a specific number of the
integration points.

3. Springback Compensation

Applying the methodology described so far will
provide an improved accuracy of springback predic-
tion. Then, the FE Method results can be used in
the next step of virtual product design: account for
product shape deviations after springback. The first
step towards a geometrically accurate product is to
reduce springback as much as possible, for exam-
ple by optimizing the blankholder load. However,
some springback will always be present. When the
geometrical tolerances are exceeded or when, in the
case of products with a low stiffness, the forces re-
quired to push the part back into the right shape
are exceeded, springback compensation is required.
This means that the surfaces of the forming tools
are modified in such a way that the shape of the
formed product is accurate after springback. Re-
cently, there has been a lot of attention for spring-
back compensation [12]. The Displacement Adjust-
ment (DA) method [13–15] has been proven to be
the most successful.

The principle behind the DA method is simple.
When the product springs back in a certain direc-
tion, the tool surface is displaced into the opposite
direction. Generally, springback increases when the
tool surfaces are compensated, so to take this into
account, the tools have to be over-compensated. For
this, the overbending-factor a is used. This princi-
ple is captured in Equation 1. D is the desired (ref-
erence) product geometry, represented as a set of
points or a FE mesh. This geometry is used to create
a deep drawing tool-set. A FE simulation is carried
out which provides S, the geometry after spring-
back. The compensated geometry C is calculated as
follows:

C = D− a(S−D) (1)

The compensation factor is different for each prod-
uct and can be as large as 2.5 [16] and it cannot be
predicted effectively. However, in Section 3.1 some
trends are shown for various process, material and
geometrical parameters.

The use of a compensation factor is avoided when
the DA method is carried out iteratively, as proposed
in [13]:

Cj+1 = Cj
− (Sj

−D) (2)

Here, the first compensated geometry is called C1,
and with this geometry a new FE simulation is
started. The resulting springback mesh S1 is now
used to modify C1, delivering the second compen-
sated geometry C2. This loop is continued until the
shape deviation of St meets the tolerances.

In Equations 1 and 2 the geometries D, S and
C need to be topologically identical. Therefore, the
tool geometry needs to be reconstructed from C af-
ter each iteration. The surface of the compensated
geometry may become rougher with each iteration,
which causes problems for the forming process.
These problems are solved in an extended version of
the DA algorithm called Smooth DA or SDA [17].
Instead of using the shape deviation field between
springback and desired geometry directly, it is ap-
proximated with a smooth mathematical function,
Section 3.2. Finally, the compensation needs to be
transferred from the FE simulation to the tool CAD
files. This is discussed in Section 3.3.

3.1. Analytical Model

In the stretch-bending process [8], shown in Fig-
ure 5, an initially straight bar is bent to a certain
radius R under the action of a moment M and at
the same time it is loaded with a stretching force

6



T . After forming, the bar is unloaded and it springs
back into a shape with a radius of r. In a real deep
drawing process, increasing the tensile stress by in-
creasing the blankholder load causes a reduction in
springback. The same phenomenon occurs for the
stretch-bending model. Here, all deformations can
be calculated using analytical formulas instead of
FE simulations, which makes the model well-suited
to analyze the results of springback compensation.

Springback compensation means that in case of
the stretch-bending model, the forming radius R
is estimated, resulting in a desired bar radius af-
ter springback, r. Because R and r are related by
a (nonlinear) function, the optimal value of R can
be calculated directly, without applying a compen-
sation algorithm [16]. With this optimal forming ra-
dius, the overbending factor which would have been
required to obtain the same results with the DA
method, can be calculated. The results are shown
for various tensile forces and for two different ma-
terials, low strength Interstitial-Free steel and high
strength DP600 steel (Figure 8). In order to sim-
plify the comparison, the tensile force was normal-
ized with the force required to achieve plastic defor-
mation under tension only.

Fig. 8. Optimal compensation factor for two different steels
at varying tensile force, R/t = 100.

The figure shows that for different tensile forces,
different compensation factors are required. Two sit-
uations can be identified:
– when the tensile force is relatively low, both

elastic and plastic bands are present in the bar.
Due to shifting of the neutral line, springback
increases considerably when the bar is bent fur-
ther for compensation. This means that over-

compensation has to be applied, and the value of
the compensation factor is larger than 1.0;

– when the tensile force is large enough to cause the
elastic band to disappear (region BC in Figure
5 does not exist anymore), the bar is completely
plastically deformed. When the bar is deformed
further for springback compensation, the amount
of springback hardly changes. Therefore, no over-
compensation is required and a factor of 1.0 can
be used.

In a real product, different tensile stresses occur at
different places, and only at local spots the forming
stresses are so large that the blank is deformed in
the plastic region only, whereas the rest of the prod-
uct still has an elastic band through the thickness of
the blank. This means that the compensation factor
has to be different at different locations in the prod-
uct. This is only the case for iterative compensation,
which will be discussed in more detail in Section 3.2.

Another important factor is the geometry of
the tools and the product. In the stretch-bending
model, this influence can be shown by altering the
value of rtarget/t, where t is the thickness of the
bar. For large values the model resembles a shal-
lowly curved geometry, like a body panel. For small
values details with sharper edges are modeled. Fig-
ure 9 shows that the larger the radius, the smaller
the compensation factor [16]. As real deep drawn
products generally have very complex shapes, this
shows again that the compensation factor needs to
be different at different locations in the product.

Fig. 9. Optimal compensation factor vs. target radius.
t = 0.01, IF-Steel.
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3.2. Industrial Application

With the SDA algorithm, it is possible to carry
out springback compensation on real products and
create a new tool-set that not only delivers accurate
products, but that also meets practical requirements
[16,17]:
– the smoothness of the tool surfaces is retained;
– the gap-width between the tool surfaces remains

the same;
– compensation can be carried out such that the

blankholder remains unchanged;
– undercuts in the compensated tools can be

avoided or automatically repaired.
A deep drawn product by DAF is compensated
here, based on simulations with the commercial
code PAM-STAMP 2G. It is made from mild steel
with a thickness of 2 mm and produced in a com-
plex process, including three forming stages and
two trimming stages. Figure 10(a) shows that the
product was already rather accurate with the orig-
inal tools. Note that the bumper is symmetric, so
only half of the geometry is simulated. The relative
geometrical error is calculated using the maximum
initial error. The results of the first iteration (mid-
dle) show that even though the shape deviation of a
major portion of the product is small, a large error
is still present in the middle of the bumper. After
5 iterations (c), the maximum shape deviation was
reduced below the tolerance throughout the part.

Fig. 10. Shape deviation of the DAF part with initial tools
(a), after the first iteration (b) and after 5 iterations (c).

When the original springback shape deviation,
and the compensated geometry are compared, a lo-
cal compensation factor can be derived. Figure 11
shows this value, and as discussed in the previous
section, the compensation factor varies heavily over
the product. Following the conclusions from Figure
9, the more shallowly curved areas have a much lower
compensation factor.

Fig. 11. Local overbending factor on the DAF part.

This increase in dimensional quality is confirmed
when the results of the one-step compensation are
compared with the iterative results. From the values
in Figure 11, a (weighted) mean compensation factor
of 1.2 was calculated, which is used as compensation
factor in the one-step compensation approach.

Fig. 12. Iterative (a) and one-step (b) compensation.

The resulting shape deviation is depicted in Fig-
ure 12. Although the one-step compensation leads
to a low shape deviation in a major portion of the
product, the tolerances were exceeded by about
150% in the area indicated in the figure, whereas
the iteratively compensated product met the re-
quirements completely. It should be kept in mind
that normally, there is no way to calculate the com-
pensation factor in advance, so it is very likely that
5 experiments would be required to obtain good
results.

8



3.3. Automatic Adaptation of CAD Tool Geometries

As a final step in the compensation process, the
CAD data of the tools needs to be adjusted. The
CAD geometry needs to be very smooth in order to
produce acceptable (car body) parts.

These geometries are also referred to as ‘Class-
A’ geometries. The narrow tolerances are required
because of light reflections on the painted surface.
A body panel will appear smooth when both the
curvature and the change in curvature are smooth.
Errors are made visible by projecting a striped light
pattern onto the surface (highlighting), both with
real lights and in computer algorithms. In case of a
discontinuity in curvature, the stripes will be slightly
offset (shown in Figure 13(b)), when a discontinuity
in the second derivative is present, the stripes will
be at a slight angle.

Fig. 13. Highlighting indicate a surface quality error.

Class-A parts are generally not entirely smooth;
the designers make use of the visual effects of dis-
continuities in the surface geometry to create ‘fea-
ture lines’ on the body panels. Therefore, the sur-
faces are connected with complex boundary condi-
tions that need to be retained during compensation.
This makes manual modification of CAD surfaces
problematic, as either the quality of the surfaces is
decreased, or the detailed modification proposed by
the compensation algorithm is not achieved.

Fig. 14. A trimmed surface.

This problem is further aggravated by the fre-
quent use of trimmed surfaces [18]. In some cases it

is inconvenient or impossible to model a geometry
with the four-sided Bezier or B-spline surfaces that
are used in CAD programs. Such a geometry is vi-
sualized in Figure 14. The flat bottom of the cup is
created as a four sided surface first, and then the
unwanted parts are trimmed off to make the surface
fit to the sidewalls. The four sided surface is known
as the basis-patch P . It shall be clear that when the
shape of the cup is modified globally, it becomes very
hard to maintain even geometric continuity and gaps
will appear between the sidewalls and the trimmed
surface. In fact, small gaps are already present in the
unchanged geometry: all CAD systems allow (small)
tolerances for these kinds of transitions as they are
generally not completely smooth from a mathemat-
ical point of view.

Fig. 15. Modification of a set of 4 surfaces.

An algorithm was developed to modify a CAD ge-
ometry automatically [18]. Onto the original geom-
etry, a set of so-called sampling-points is projected.
These points are modified, using the springback
compensation algorithm, and then the surfaces are
fitted through the modified sampling points again.
Additional features are:
– boundary conditions can be applied between reg-

ular and trimmed surfaces, in any combination,
up to the second derivative;

– the boundary conditions are solved using the
penalty method. This means that in all cases, a
modified geometry can be calculated. The accu-
racy of retaining the boundary condition can be
set by the user;
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– The surfaces may suffer from geometrical errors
in the original geometry.

As an example, in Figure 15, a set of four surfaces
with kinks and gaps (a) is modified without bound-
ary conditions (b). Then, the same modification is
carried out, with boundary conditions, closing the
gaps(c) or even smoothing the kinks (d). This exam-
ple shows that the principle works, and it shows that
imposing more boundary conditions means that the
geometry may develop unwanted bulges when the
surfaces have a low number of control points. In
order to modify industrial CAD geometries, some
more detailed tests need to be carried out.

4. Optimization

The previous section showed that springback com-
pensation is an important stage in virtual prod-
uct design. When thinking in optimization terminol-
ogy, springback compensation can be considered as
a form of process optimization. However, optimiza-
tion techniques can be applied in a wider field then
only springback compensation. Until recently, the
FE Method was used for designing feasible produc-
tion processes. Recently, coupling the FE Method to
mathematical optimization techniques is evolving to
address two industrial needs, i.e. (i) Designing opti-

mal metal forming processes instead of only feasible

ones (better products, lower costs); and (ii) Solving
problems in manufacturing.

The basic concept of mathematical optimization
is presented in Figure 16. Basically, it consists of two
major phases: the modeling and the solving of the
optimization problem. The modeling phase consists
of three items. One item is selecting a number of de-
sign variables the user is allowed to adapt. Another
item consists of choosing an objective function (the
optimization aim) and the third item is to account
for possible constraints.

These three items are closely related to each other
as depicted in Figure 16. Both the objective func-
tion and the constraints should be quantified by the
design variables. The objective function and con-
straints are also related to each other in the sense
that they are often exchangeable.

Next to the modeling phase, mathematical op-
timization’s second phase is solving the optimiza-
tion problem. This comprises applying an optimiza-
tion algorithm to the modeled optimization prob-
lem. The arrows between the modeling and the solv-

ing parts in Figure 16 denote that both phases can-
not be seen separately from each other. One should
select the right optimization algorithm for a cer-
tain modeled optimization problem and one should
model the optimization problem cleverly to adjust
it to the optimization algorithm one is planning to
apply. If the optimization model does not match the
algorithm, it is likely that the optimization problem
is not solved efficiently or cannot be solved at all
[19].

Fig. 16. The basic concept of mathematical optimization:
modeling and solving.

The next section reviews the research performed
in the field “Optimization of metal forming processes
using time-consuming FE simulations”. In Section
4.2 an optimization strategy for metal forming pro-
cesses is proposed, which is applied to a hydroform-
ing example in Section 4.3.

4.1. Literature review

Academic research in the field of optimization of
metal forming using time consuming FE simulations
has been going on now for several years, yielding a
large number of scientific publications. In general,
many metal forming processes are considered: deep
drawing [20–43], hydroforming [44–57], superplastic
forming [58–60], extrusion [61,62], forging [63–73],
as well as several other processes [74–78].

Most research performed until now has been re-
lated to the solving part of optimization, i.e. the se-
lection and application of a suitable optimization al-
gorithm. In the remainder of this section, four major
groups of algorithms are reviewed that can be ap-
plied for optimizing metal forming processes using
FE simulations:
– iterative algorithms;
– evolutionary and genetic algorithms;
– approximate optimization algorithms;
– adaptive optimization algorithms.

One way of optimizing metal forming processes
is using classical iterative optimization algorithms
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(Conjugate gradient, BFGS, etc. ). Using these iter-
ative algorithms, there is a direct coupling between
the FE software and the optimization algorithm as
depicted in Figure 17(a): each function evaluation
of the algorithm means running a FE calculation. In
case of metal forming these FE calculations can be
extremely time consuming and need to be sequen-
tially evaluated. Furthermore, many classical algo-
rithms require sensitivities, the efficient calculation
of which is not straightforward for FE simulations. A
third difficulty concerning iterative algorithms is the
risk to be trapped in local optima. Advantages of this
group of algorithms comprise the fact that they are
well-known and widely spread. Additionally, con-
vergence to a local optimum generally requires rel-
atively few iterations and is hence fairly efficient.
Especially due to the former advantage, iterative al-
gorithms are quite often applied to optimize metal
forming processes, see [20–29,44–49,58,61–64].

A second group of algorithms for which there is a
direct coupling between the algorithm and the FE
software (Figure 17(a)) is genetic and evolutionary
optimization algorithms. Genetic and evolutionary
algorithms look promising because of their tendency
to find the global optimum and the possibility for
parallel computing. Furthermore, they do not re-
quire the difficult calculation of sensitivities. How-
ever, the rather large number of function evalua-
tions that is expected to be necessary using these
algorithms is regarded as a serious drawback [79].
Several authors have applied genetic and evolution-
ary algorithms to optimize metal forming processes
[43,56,57,67–73].

A third way of optimization in combination with
time consuming function evaluations is using ap-
proximate optimization algorithms, of which Re-
sponse Surface Methodology (RSM) is a well-known
representative. RSM is based on fitting a low or-
der polynomial metamodel through response points,
which are obtained by running FE calculations for
carefully chosen design variable settings and finally
optimizing this metamodel [80]. Hence, for approxi-
mate optimization, the direct coupling between the
optimization algorithm and the FE calculations is
removed and a metamodel is placed in between as
a buffer. This is schematically presented in Figure
17(b). Metamodels are sometimes also referred to as
Response Surface models or surrogate models. Next
to RSM, other metamodeling techniques are Kriging
(or Design and Analysis of Computer Experiments
(DACE)) and Neural Networks. Allowing for paral-
lel computing and lacking the necessity for sensitiv-

ities, RSM is appealing to many authors in the field
of metal forming, see [30–40,65,66,75–77,81,82] Dis-
advantages include an approximate optimum as a
result rather than the real global optimum, and the
curse of dimensionality: these algorithms tend to be-
come very time consuming if many design variables
are present.

Fig. 17. (a): Direct optimization. (b): Approximate optimiza-
tion.

The fourth group is the so-called adaptive al-
gorithms. Adaptive algorithms are not coupled to
FE in the same way as the other three groups of
algorithms. Adaptive algorithms are incorporated
within the FE code and generally optimize the time
dependent load paths of the metal forming process
during each increment of the FE calculation. An ad-
vantage is that the optimum is obtained in only one
FE simulation. However, access to the source code
of the FE software is necessary and only time de-
pendent design variables can be taken into account.
These disadvantages seriously limit the general ap-
plicability of these kinds of algorithms. Literature
describes several applications of these algorithms to
metal forming [41,42,48,50–55,59,60,78], especially
to optimize the internal pressure and axial feeding
load paths in hydroforming.

All groups of optimization algorithms introduced
in this section have been applied to all kinds of opti-
mization problems in metal forming. In general, one
can conclude from literature that specific problems
for specific metal forming processes are – sometimes
quite arbitrarily – modeled, and subsequently solved
using an algorithm suitable for that specific appli-
cation. However, a generally applicable optimiza-
tion strategy for modeling and solving optimiza-
tion problems in metal forming problems is lack-
ing. Therefore, an optimization strategy is devel-
oped here which can be applied to model and solve
all kinds of optimization problems for all kinds of
metal forming processes using any simulation code.
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4.2. Optimization Strategy for Metal Forming

Processes

The proposed optimization strategy is published
in detail in [83]. This section contains a summary
of the strategy which comprises three stages. In the
first stage the optimization problem is modeled (Sec-
tion 4.2.1). Then the most important design vari-
ables are determined by screening in stage 2 (Section
4.2.2). The last stage comprises the actual solving
of the optimization problem (Section 4.2.3).

4.2.1. Modeling

The first stage is to model the optimization prob-
lem. The challenge is to design a structured method-
ology that is on the one hand generally applicable to
any kind of metal forming problem, but on the other
hand yields a specific mathematical formulation of
the optimization problem.

After collecting a large number of industrially rel-
evant objectives, constraints and design variables,
and after structuring this data using the Prod-
uct Development Cycle [84], the following 7 step
methodology is developed:

(i) determine the appropriate optimization stage;
(ii) select only the necessary responses;
(iii) select one response as objective function, the

others as implicit constraints;
(iv) quantify the objective function and implicit

constraints;
(v) select possible design variables;
(vi) define the ranges on the design variables;
(vii) identify explicit constraints.

The proposed methodology is demonstrated in
Section 4.3 when it is applied to a simple hydroform-
ing example.

4.2.2. Screening

The modeling stage yields a specific optimiza-
tion model. However, many design variables may be
present, which makes the problem time consuming
to solve. It is worthwhile to invest some time in re-
ducing the number of design variables before apply-
ing the optimization algorithm. This is done in the
screening stage.

The importance of the design variables is screened
by applying a Design Of Experiments (DOE) plan.
Applying DOE, one selects a couple of combina-
tions of the design variables at which one would like
to evaluate the responses (objective function and
implicit constraint values in case of optimization).

These response measurements can subsequently be
used to estimate the effect of the design variables on
the responses [80]. The variables with the largest ef-
fects may be kept in the optimization model whereas
the variables having less effect may be omitted. In
such a way, the number of design variables may
be significantly decreased while maintaining control
over objective function and constraints during opti-
mization.
The amount and direction of the effect of each vari-
able on each response can be nicely displayed in
Pareto and Effect plots. An example of a Pareto plot
is presented in Figure 18. The bars in the Pareto
plot show the effect of a parameter (e.g. R) on the
objective function, the solid line shows the cumula-
tive effect.

Fig. 18. A Pareto plot.

4.2.3. Solving

The final stage of the optimization strategy is to
solve the optimization problem by a suitable algo-
rithm. Based on the literature study presented in
Section 4.1, use of an approximate optimization al-
gorithm is proposed: it is efficient since several cal-
culations can be run at the same time on parallel
processors and it converges to the global optimum
which mostly results in better results than local al-
gorithms. The disadvantage that this type of algo-
rithms is not efficient in case many design variables
are present is overcome by the screening stage of the
optimization strategy. Additionally, the algorithm
is generally applicable to all kinds of metal forming
processes, products and problems since the FE sim-
ulations are included as a black-box.

Details on the developed specific algorithm have
been presented in several publications [85–87]. An
overview of the algorithm is presented in Figure 19.
The algorithm allows for sequential improvement of
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the accuracy and can thus be denoted as a Sequential
Approximate Optimization (SAO) algorithm.

Fig. 19. Sequential Approximate Optimization [83,85–87].

The efficiency of the algorithm has been assessed
by applying this and other optimization algorithms
to two forging processes, see [88,89].

4.3. Application to Hydroforming

The proposed optimization strategy – and the po-
tential of optimization in general – is demonstrated
by applying it to a simple hydroforming example,
shown in Figure 20.

Fig. 20. (a) A simple hydroformed product; (b) Dimensions;
(c) Typical load paths for hydroforming.

4.3.1. Modeling

The proposed 7 step methodology is followed to
model the optimization problem:

(i) determine the appropriate optimization stage:
aim of optimization is to design the manufac-
turing process in order to produce the part
presented in Figure 20(a);

(ii) select only the necessary responses: essential
product properties are the wall thickness dis-
tribution and the outer shape accuracy of the
part;

(iii) select one response as objective function, the
others as implicit constraints: the uniform
wall thickness distribution is the objective,
the constraint is the outer shape which has
been formulated as the distance between the
final product and the die;

(iv) quantify the objective function and implicit
constraints: final quantification of the re-
sponses is based on several properties of the
responses and is performed by a table pro-
posed in [83];

(v) select possible design variables: in this case the
Process Variables (PV’s) are possible design
variables. Amongst others, PV’s can be cate-
gorized in (see [83]):
– geometrical PV’s: the initial tube radius and

thickness;
– load path PV’s: the typical internal pressure

and axial feeding load paths for hydroform-
ing are presented in Figure 20(c) and can be
described by four design variables. Another
process parameter taken into account is the
friction between product and die;

– material PV’s: no design variables are taken
into account from this category.

(vi) define the ranges on the design variables: up-
per and lower bounds have been defined on all
design variables;

(vii) identify explicit constraints: explicit con-
straints are defined by impossible combina-
tions of the design variables. The fact that the
time when axial feeding stops should be larger
than the time when it starts generates an ex-
plicit constraint. Another explicit constraint
has been defined based on the convergence
behavior of the FE calculations for certain
combinations of the load path parameters.

The 7 step methodology yields a mathematically
formulated optimization model with a total of 7 de-
sign variables for this example. For a detailed de-
scription of the mathematical model, the reader is
referred to [83].
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4.3.2. Screening

A total of 7 design variables is not that many,
hence it is possible to apply the Sequential Ap-
proximate Optimization algorithm immediately.
However, for demonstration purposes, a screening
step of 8 calculations is performed. The resulting
Pareto plot for the objective function is presented
in Figure 18. Based on this plot, one may estimate
that keeping umax, R and t, and omitting the other
four variables will still result in about 80% control
over the objective function. A similar Pareto plot
can be generated for the implicit constraint. umax,
t1 and t2 were the most important variables for the
filling of the die. Now, the number of design vari-
ables is reduced to 5 variables only.

4.3.3. Solving

The Sequential Approximate Optimization
(SAO) algorithm has been applied to the reduced
optimization problem. Figure 21 shows the conver-
gence behavior of the algorithm. The simulations
have been performed on 16 parallel processors,
hence the total calculation time was much shorter
than running the 110 simulations sequentially.
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Fig. 21. Convergence of the optimization algorithm.

The optimized values of the design variables are
displayed in Table 1. The optimal objective func-
tion value f is 0.615. Note the optimal initial tube
thickness of 1.11 mm. Considering the perfect wall
thickness of 1 mm and material thinning due to in-
flation of the tube, this slightly thicker initial tube
thickness is indeed the result one would intuitively
expect to be optimal.

t1 t2 α umax R t µ f

1.97 2.50 12 4.33 42.32 1.11 0.15 0.615

Table 1
Optimized process settings, see also Figure 20.

Figure 22 presents the wall thickness distribution
throughout the final product for the perfect product
(uniform wall thickness of 1 mm), some arbitrary
settings of the design variables (the 8 screening cal-
culations) and the optimized process. The optimized
process yields a significantly better product, which
demonstrates the high potential of optimization in
metal forming in general and specifically the opti-
mization strategy proposed in Section 4.2.
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Screen 1 f=4.09
Screen 2 f=2.30
Screen 3 f=2.49
Screen 4 f=2.40
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Screen 7 f=2.83
Screen 8 f=3.51
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Fig. 22. Wall thickness distribution.

5. Discussion and Future Trends

The accuracy of today’s springback predictions
does not meet the industrial requirements, leading
to a time and cost consuming experimental and nu-
merical trial and error process. The accuracy can
be improved by developing guidelines and sophisti-
cated algorithms to accurately predict springback.
In this article, guidelines are given for the mesh size
and the potential of a through-thickness adaptive
integration scheme is shown. Using this new inte-
gration scheme assures accurate results at minimal
computational costs.

Now that the accuracy of the springback predic-
tion is improved, the FE simulation can be used to
adapt the geometry of the forming tools and the
process parameters to compensate for springback.
Two springback compensation algorithms were
discussed, the Smooth Displacement Adjustment
(SDA) method and the iterative SDA method. The
iterative compensation algorithm is favorable since
an overcompensation factor is not required. Besides
it is shown that in general the overcompensation
factor varies over the product, making a compensa-
tion method with a fixed overcompensation factor
less useable. Finally, a tool is developed to modify
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the CAD tool geometry automatically, based on
the compensation algorithm. The principle of this
algorithm is proved to be valid; however, more re-
search in this field is necessary to make this tool
industrially applicable.

The combination of mathematical optimization
techniques with FE simulations in itself is perhaps
the most important trend in advanced materials pro-
cessing. Two decades ago, metal forming was solely
performed by an experimental trial-and-error pro-
cess. The development of FE codes for metal form-
ing process moved this trial-and-error process from
the factory to the computer, which implied a signif-
icant decrease of development time and costs. It is
foreseen that the next major step in metal forming
is the development of optimization techniques to re-
ally design optimal (cheaper, better, more robust,
etc) processes and products instead of just feasible
ones.

Some trends can also be observed within the field
of optimization of metal forming. Extensive experi-
ence has been gained concerning suitable optimiza-
tion algorithms. The trend is towards global algo-
rithms rather than local algorithms: global algo-
rithms yield larger improvements than local ones.
A major challenge is to limit the total calculation
time for these algorithms, since they generally re-
quire more time consuming FE simulations than lo-
cal algorithms. The increase in computer power and
the simultaneous decrease of prices of processors,
however, has moved many industries to purchase
clusters with many parallel processors, which makes
the application of global algorithms possible today.
With respect to global optimization algorithms, the
trend is to focus on making genetic/evolutionary al-
gorithms more efficient and/or making approximate
optimization algorithm more accurate by further de-
veloping metamodeling techniques.

Many available algorithms are already sufficiently
good to solve optimization problems in metal form-
ing. However, more emphasis should be on model-
ing optimization problems. With the proposed op-
timization strategy a first attempt is made, but the
proposed modeling methodology is by no means the
only possible solution. A significant increase in at-
tention for optimization modeling will give insight
in the phenomena influencing metal forming pro-
cesses, their FE models, and the optimization prob-
lem the optimization algorithms have to deal with.
This will contribute more to optimizing metal form-
ing processes than developing just another slightly
more efficient algorithm.

A final trend is related to a very important item
in mass production: robustness. A major improve-
ment would be to develop optimization strategies
that include noise variables such as material noise
in addition to design variables only. These “robust
optimization” techniques are expected to signifi-
cantly contribute to the design of robust and reli-
able production processes with as a consequence a
lower scrap rate, lower production costs and high
quality products. More details on optimizing for
robust processes can be found in [90]
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