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Abstract
In this paper, we introduce DistNumPy, a library for doing numeri-
cal computation in Python that targets scalable distributed memory
architectures. DistNumPy extends the NumPy module[15], which
is popular for scientific programming. Replacing NumPy with Dist-
NumPy enables the user to write sequential Python programs that
seamlessly utilize distributed memory architectures. This feature is
obtained by introducing a new backend for NumPy arrays, which
distribute data amongst the nodes in a distributed memory multi-
processor. All operations on this new array will seek to utilize all
available processors. The array itself is distributed between multi-
ple processors in order to support larger arrays than a single node
can hold in memory.
We perform three experiments of sequential Python programs

running on an Ethernet based cluster of SMP-nodes with a total of
64 CPU-cores. The results show an 88% CPU utilization when run-
ning a Monte Carlo simulation, 63% CPU utilization on an N-body
simulation and a more modest 50% on a Jacobi solver. The pri-
mary limitation in CPU utilization is identified as SMP limitations
and not the distribution aspect. Based on the experiments we find
that it is possible to obtain significant speedup from using our new
array-backend without changing the original Python code.

Keywords NumPy, Productivity, Parallel language

1. Introduction
In many scientific and engineering areas, there is a need to solve
numerical problems. Researchers and engineers behind these appli-
cations often prefer a high level programming language to imple-
ment new algorithms. Of particular interest are languages that sup-
port a broad range of high-level operations directly on vectors and
matrices. Also of interest is the possibility to get immediate feed-
back when experimenting with an application. The programming
language Python combined with the numerical library NumPy[15]
supports all these features and has become a popular numerical
framework amongst researchers.
The idea in NumPy is to provide a numerical extension to the

Python language. NumPy provides not only an API to standard-
ized numerical solvers, but a possibility to develop new numeri-
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Figure 1. Development workflow. (a) is a typical workflow that
involves two languages: one for the prototype and one for the final
version. In (b) only one language is used in the workflow.

cal solvers that are both implemented and efficiently executed in
Python, much like the idea behind the MATLAB[8] framework.
NumPy is mostly implemented in C and introduces a flexible N-

dimensional array object that supports a broad range of numerical
operations. The performance of NumPy is significantly increased
when using array-operations instead of scalar-operations on this
new array.
Parallel execution is supported by a limited set of NumPy func-

tions, but only in a shared memory environment. However, many
scientific computations are executed on large distributed memory
machines because of the computation and memory requirements of
the applications. In such cases, the communication between proces-
sors has to be implemented by the programmer explicitly. The re-
sult is a significant difference between the sequential program and
the parallelized program. DistNumPy eliminates this difference by
introducing a distributed version of the N-dimensional array object.
All operations on such distributed arrays will utilize all available
processors and the array itself is distributed between multiple pro-
cessors, which makes it possible to expand the size of the array to
the aggregated available memory.

1.1 Motivation
Solutions to numerical problems often consist of two implementa-
tions: a prototype and a final version. The algorithm is developed
and implemented in a prototype by which the correctness of the
algorithm can be verified. Typical many iterations of development



are required to obtain a correct prototype, thus for this purpose a
high productivity language is used, most often MATLAB. How-
ever, when the correct algorithm is finished the performance of the
implementation becomes essential for doing research with the al-
gorithm. This performance requirement presents a problem for the
researcher since highly optimized code requires a fairly low-level
programming language such as C/C++ or Fortran. The final ver-
sion will therefore typical be a reimplementation of the prototype,
which involves both changing the programming language and par-
allelizing the implementation (Fig. 1a).
The overall target of DistNumPy is to provide a high productiv-

ity tool that meets both the need for a high productivity tool that
allows researcher to move from idea to prototype in a short time,
and the need for a high performance solution that will eliminate the
need for a costly and risky reimplementation (Fig. 1b). It should
be possible to develop and implement an algorithm using a sim-
ple notebook and then effortlessly execute the implementation on a
cluster of computers while utilizing all available CPUs.

1.2 Target architectures
NumPy supports a long range of architectures from the widespread
x86 to the specialized Blue Gene architecture. However, NumPy
is incapable of utilizing distributed memory architectures like Blue
Gene supercomputers or clusters of x86 machines. The target of
DistNumPy is to close this gap and fully support and utilize dis-
tributed memory architectures.

1.3 Related work
Libraries and programming languages that support parallelization
on distributed memory architectures is a well known concept. The
existing tools either seek to provide optimal performance in parallel
applications or, like DistNumPy, seek to ease the task of writing
parallel applications.
The library ScaLAPACK[2] is a parallel version of the linear

algebra library LAPACK[1]. It introduces efficient parallel opera-
tions on distributed matrices and vectors. To use ScaLAPACK, an
application must be programmed using MPI[7] and it is the respon-
sibility of the programmer to ensure that the allocation of matrices
and vectors comply with the distribution layout ScaLAPACK spec-
ifies.
Another library, Global Arrays[13], introduces a distributed

data object (global array), which makes the data distribution trans-
parent to the user. It also supports efficient parallel operations and
provides a higher level of abstraction than ScaLAPACK. How-
ever, the programmer must still explicitly coordinate the multiple
processes that are involved in the computation. The programmer
must specify which region of a global array is relevant for a given
process.
Both ScaLAPACK and Global Arrays may be used from within

Python and can even be used in combination with NumPy, but it
is only possible to use NumPy locally and not with distributed
operations. A more closely integrated Python project IPython[16]
supports parallelized NumPy operations. IPython introduces a dis-
tributed NumPy array much like the distributed array that is intro-
duced in this paper. Still, the user-application must use the MPI
framework and the user has to differentiate between the running
MPI-processes.
Co-Array Fortran[14] is a small language extension of Fortran-

95 for parallel processing on Distributed Memory Machines. It in-
troduce a Partitioned Global Address Space (PGAS) by extending
Fortran arrays with a co-array dimension. Each process can ac-
cess remote instances of an array by indexing into the co-array
dimensions. A similar PGAS extension called Unified Parallel C
(UPC)[3] extent the C language with a distributed array declara-
tion. Both languages provide a high abstraction level, but users still

program with the SPMD model in mind, writing code with the un-
derstanding that multiple instances of it will be executing coopera-
tively.
A higher level of abstraction is found in projects where the ex-

ecution, seen from the perspective of the user, is represented as
a sequential algorithm. The High Performance Fortran (HPF)[12]
programming languages provide such an abstraction level. How-
ever, HPF requires the user to specify parallelizable regions in the
code and which data distribution scheme the runtime should use.
The Simple Parallel R INTerface (SPRINT)[9] is a parallel

framework for the programming language R. The abstraction level
in SPRINT is similar to DistNumPy in the sense that the distribu-
tion and parallelization is completely transparent to the user.

2. NumPy
Python has become a popular language for high performance com-
puting even though the performance of Python programs is much
lower than that of compiled languages. The growing popularity is
because Python is used as the coordinating language while the com-
pute intensive tasks are implemented in a high performance lan-
guage.
NumPy[15] is a library for numerical operations in Python

which is implemented in the C programming language. NumPy
provides the programmer with an N-dimensional array object and
a whole range of supported array operations. By using the array
operations, NumPy takes advantage of the performance of C while
retaining the high abstraction level of Python. However, this also
means that no performance improvement is obtained otherwise e.g.
using a Python loop to traverse a NumPy array does not result in
any performance gain.

2.1 Interfaces
The primary interface in NumPy is a Python interface and it is pos-
sible to use NumPy exclusively from Python. NumPy also provides
a C interface in which it is possible to access the same function-
ality as in the Python interface. Additionally, the C interface also
allows programmers to access low level data structures like point-
ers to array data and thereby provides the possibility to implement
arbitrary array operations efficiently in C. The two interfaces may
be used interchangeably through the Python program.

2.2 Universal functions
An important mechanism in NumPy is a concept called Universal
function. A universal function (ufunc) is a function that operates
on all elements in an array independently. That is, a ufunc is a
vectorized wrapper for a function that takes a fixed number of scalar
inputs and produces a fixed number of scalar outputs. Using ufunc
can result in a significant performance boost compared to native
Python because the computation-loop is implemented in C.

2.2.1 Function broadcasting
To make ufunc more flexible it is possible to use arrays with
different number of dimensions. To utilize this feature the size of
the dimensions must either be identical or have the length one.
When the ufunc is applied, all dimensions with a size of one will
be broadcasted in the NumPy terminology. That is, the array will
be duplicated along the broadcasted dimension (Fig. 2).
It is possible to implement many array operations efficiently

in Python by combining NumPy’s ufunc with more traditional
numerical functions like matrix multiplication, factorization etc.

2.3 Basic Linear Algebra Subprograms
NumPy makes use of the numerical library Basic Linear Algebra
Subprograms (BLAS) [11]. A highly optimized BLAS implemen-
tation exists for almost all HPC platforms and NumPy exploits
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Figure 2. Universal function broadcasting. The ufunc addition
is applied on a 3x2 array and a 1x2 array. The first dimension of the
1x2 array is broadcasted to the size of the first dimension of the 3x2
array. The result is a 3x2 array in which the two arrays are added
together in an element-by-element fashion.

this when possible. Operations on vector-vector, matrix-vector and
matrix-matrix (BLAS level 1, 2 and 3 respectively) all use BLAS
in NumPy.

3. DistNumPy
DistNumPy is a new version of NumPy that parallelizes array op-
erations in a manner completely transparent to the user – from
the perspective of the user, the difference between NumPy and
DistNumPy is minimal. DistNumPy can use multiple processors
through the communication library Message Passing Interface
(MPI)[7]. However, we have chosen not to follow the standard
MPI approach in which the same user-program is executed on all
MPI-processes. This is because the standard MPI approach requires
the user to differentiate between the MPI-processes, e.g. sequential
areas in the user-program must be guarded with a branch based on
the MPI-rank of the process. In DistNumPy MPI communication
must be fully transparent and the user needs no knowledge of MPI
or any parallel programming model. However, the user is required
to use the array operations in DistNumPy to obtain any kind of
speedup. We think this is a reasonable requirement since it is also
required by NumPy.
The only difference in the API of NumPy and DistNumPy is

the array creation routines. DistNumPy allow both distributed and
non-distributed arrays to co-exist thus the user must specify, as an
optional parameter, if the array should be distributed. The following
illustrates the only difference between the creation of a standard
array and a distributed array:
#Non - Distributed

A = numpy .array ([1 ,2 ,3])
#Distributed

B = numpy .array ([1,2,3], dist=True)

3.1 Interfaces
There are two programming interfaces in NumPy – one in Python
and one in C. We aim to support the complete Python interface
and a great subset of the C interface. However, the part of the C
interface that involves direct access to low level data structures
will not be supported. It is not feasible to return a C-pointer that
represents the elements in a distributed array.

3.2 Data layout
Two-Dimensional Block Cyclic Distribution is a very popular
distribution scheme and it is used in numerical libraries like
ScaLAPACK[2] and LINPACK[5]. It supports matrices and vec-
tors and has a good load balance in numerical problems that have
a diagonal computation workflow e.g. Gaussian elimination. The
distribution scheme works by arranging all MPI-processes in a two
dimensional grid and then distributing data-blocks in a round-robin
fashion either along one or both grid dimensions (Fig. 3); the result
is a well-balanced distribution.
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Figure 3. The Two-Dimensional Block Cyclic Distribution of a
matrix on a 2 x 3 grid of processors.

NumPy is not limited to matrices and vectors as it supports ar-
rays with an arbitrary number of dimensions. DistNumPy therefore
use a more generalized N-Dimensional Block Cyclic Distribution
inspired by High Performance Fortran[12], which supports an arbi-
trary number of dimensions. Instead of using a fixed process grid,
we have a process grid for every number of dimensions. This works
well when operating on arrays with the same number of dimensions
but causes problems otherwise. For instance in a matrix-vector
multiplication the two arrays are distributed on different process
grid and may therefore require more communication. ScaLAPACK
solves the problem by distributing vectors on two-dimensional pro-
cess grids instead of one-dimensional process grids, but this will
result in vector operations that cannot utilize all available proces-
sors. An alternative solution is to redistribute the data between a
series of identically leveled BLAS operations using a fast runtime
redistribution algorithm like [18] demonstrates.

3.3 Operation dispatching
The MPI-process hierarchy in DistNumPy has one MPI-process
(master) placed above the others (slaves). All MPI-processes run
the Python interpreter but only the master executes the user-
program, the slaves will block at the import numpy statement.
The following describes the flow of the dispatching:

1. The master is the dispatcher and will, when the user applies
a python command on a distributed array, compose a message
with meta-data describing the command.

2. The message is then broadcasted from the master to the slaves
with a blocking MPI-broadcast. It is important to note that the
message only contains meta-data and not any actual array data.

3. After the broadcast, all MPI-processes will apply the command
on the sub-array they own and exchange array elements as
required (Point-to-Point communication).

4. When the command is completed, the slaves will wait for the
next command from the master and the master will return to
the user’s python program. The master will return even though
some slaves may still be working on the command, synchro-
nization is therefore required before the next command broad-
cast.

3.4 Views
In NumPy an array does not necessarily represent a complete con-
tiguous block of memory. An array is allowed to represent a subpart
of another array i.e. it is possible to have a hierarchy of arrays where
only one array represent a complete contiguous block of memory
and the other arrays represent a subpart of that memory.
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Inspired by NumPy, DistNumPy implements an array hierarchy
where distributed arrays are represented by the following two data
structures.

• Array-base is the base of an array and has direct access to
the content of the array in main memory. An array-base is
created with all related meta-data when the user allocates a new
distributed array, but the user will never access the array directly
through the array-base. The array-base always describes the
whole array and its meta-data such as array size and data type
are constant.

• Array-view is a view of an array-base. The view can represent
the whole array-base or only a sub-part of the array-base. An
array-view can even represent a non-contiguous sub-part of
the array-base. An array-view contains its own meta-data that
describe which part of the array-base is visible and it can add
non-existing 1-length dimensions to the array-base. The array-
view is manipulated directly by the user and from the users
perspective the array-view is the array.

Array-views are not allowed to refer to each other, which means
that the hierarchy is flat with only two levels: array-base below
array-view. However, multiple array-views are allowed to refer to
the same array-base. This hierarchy is illustrated in Figure 4.

3.5 Optimization hierarchy
It is a significant performance challenge to support array-views that
are not aligned with the distribution block size, i.e. an array view
that has a starting offset that a not aligned with the distribution
block size or represents a non-contiguous sub-part of the array-
base. The difficulty lies in how to handle data blocks that are
located on multiple MPI-processes and are not aligned to each
other. Such problems can be handled by partitioning data blocks
into sub-blocks that both are aligned and located on a single MPI-
process. However, in this work we will not focus on problems that
involve non-aligned array-views, but instead simply handle them
by communicating and computing each array element individually.
In general we introduce a hierarchy of implementations where

each implementation is optimized for specific operation scenarios.
When an operation is applied a lookup in the hierarchy determines
the best suited implementation for that particular operation. All
operations have their own hierarchy some with more levels than
others, but at the bottom of the hierarchy all operations have an
implementation that can handle any scenario simply by handling
each array element individually.

1 from numpy import *
2 (x, y) = (empty ([S], dist=True), \
3 empty ([S], dist=True))
4 (x, y) = (random (x), random (y))
5 (x, y) = (square (x), square (y))
6 z = (x + y) < 1
7 print add.reduce (z) * 4.0 / S #The result

Figure 5. Computing Pi using Monte Carlo simulation. S is
the number of samples used. We have defined a new ufunc
(ufunc random) to make sure that we use an identical ran-
dom number generator in all benchmarks. The ufunc uses
”rand()/(double)RAND MAX” from the ANSI C standard library
(stdlib.h) to generate numbers.

3.6 Parallel BLAS
As previously mentioned NumPy supports BLAS operations on
vectors and matrices. DistNumPy therefore implements a paral-
lel version of BLAS inspired by PBLAS from the ScaLAPACK
library. Since DistNumPy uses the same data-layout as ScaLA-
PACK, it would be straightforward to use PBLAS for all parallel
BLAS operations. However, to simplify the installation and main-
tenance of DistNumPy we have chosen to implement our own par-
allel version of BLAS. We use SUMMA[6] for matrix multiplica-
tion, which enable us to use the already available BLAS library
locally on the MPI-processes. SUMMA is only applicable on com-
plete array-views and we therefore use a straightforward implemen-
tation that computes one element at a time if partial array-views are
involved in the computation.

3.7 Universal function
In DistNumPy, the implementation of ufunc uses three different
scenarios.

1. In the simplest scenario we have a perfect match between all
elements in the array-views and applying an ufunc does not
require any communication between MPI-processes. The sce-
nario is applicable when the ufunc is applied on complete array-
views with identical shapes.

2. In the second scenario the array-views must represent a con-
tinuous part of the underlying array-base. The computation is
parallelized by the data distribution of the output array and data
blocks from the input arrays are fetched when needed. We use
non-blocking one-side communication (MPI Get) when fetch-
ing data blocks, which makes it possible to compute one block
while fetching the next block (double buffering).

3. The final scenario does not use any simplifications and works
with any kind of array-view. It also uses non-blocking one-side
communication but only one element at a time.

4. Examples
To evaluate DistNumPy we have implemented three Python pro-
grams that all make use of NumPy’s vector-operations (ufunc).
They are all optimized for a sequential execution on a single CPU
and the only program change we make, when going from the origi-
nal NumPy to our DistNumPy, is the array creation argument dist.
A walkthrough of a Monte Carlo simulation is presented as an ex-
ample of how DistNumPy handles Python executions.

4.1 Monte Carlo simulation
We have implemented an efficient Monte Carlo Pi simulation using
NumPy’s ufunc. The implementation is a translation of the Monte
Carlo simulation included in the benchmark suite SciMark 2.0[17],



1 h = zeros (shape (B), float , dist=True)
2 dmax = 1.0
3 AD = A.diagonal ()
4 while(dmax > tol):
5 hnew = h + (B - add.reduce (A * h, 1)) /

AD
6 tmp = absolute ((h - hnew) / h)
7 dmax = maximum .reduce (tmp)
8 h = hnew
9 print h #The result

Figure 6. Iteratively Jacobi solver for matrix A with solution vec-
tor B both are distributed arrays. The import statement and the cre-
ation of A and B is not included here. tol is the maximum tolerated
value of the diagonal-element with the highest value (dmax).

which is written in Java. It is very simple and uses two vectors
with length equal the number of samples used in the calculation.
Because of the memory requirements, this drastically reduces the
maximum number of samples. Combining multiple simulations
will allow more samples but we will only use one simulation.
The implementation is included in its full length (Fig. 5) and the
following is a walkthrough of a simulation (the bullet-numbers
represents line numbers):

1: All MPI-processes interpret the import statement and initi-
ate DistNumPy. Besides calling MPI Init() the initialization
is identical to the original NumPy but instead of returning
from the import statement, the slaves, MPI-processes with rank
greater than zero, listen for a command message from the mas-
ter, the MPI-process with rank zero.

2-3: The master sends two CREATE ARRAY messages to all slaves.
The two messages contain an array shape and unique identifier
(UID), which in this case identifies x and y, respectively. All
MPI-processes allocate memory for the arrays and stores the
array information.

4: The master sends two UFUNC messages to all slaves. Each mes-
sage contains a UID and a function name ufunc random.
All MPI-processes apply the function on the array with the
specified UID. A pointer to the function is found by call-
ing PyObject Get AttrString with the function name. It
is thereby possible to support all ufuncs from NumPy.

5: Again the master sends two UFUNC messages to all slaves but
this time with function name square.

6: The master sends a UFUNC messages with function name add
followed by a UFUNC messages with function name less than.
The scalar 1 is also in the message.

7: The master sends a UFUNC REDUCE messages with function
name add. The result is a scalar, which is not distributed,
and the master therefore solely computes the remainder of the
computation and print the result. When the master is done a
SHUTDOWN message is sent to the slaves and the slaves call
exit(0).

4.2 Jacobi method
The Jacobi method is an algorithm for determining the solutions of
a system of linear equations. It is an iterative method that uses a
spitting scheme to approximate the result.
Our implementation uses ufunc operations in a while-loop until

it converges. Most of the implementation is included here(Fig. 6).

Table 1. Hardware specifications
CPU Core 2 Quad Nehalem
CPU Frequency 2.26 GHz 2.66 GHz
CPU per node 1 2
Cores per CPU 4 4
Memory per node 8 GB @ 6.5 GB/s 24 GB @ 25.6 GB/s
Number of nodes 8 8
Network Gigabit Ethernet Gigabit Ethernet

4.3 Newtonian N-body simulation
A Newtonian N-body simulation is one that studies how bodies,
represented by a mass, a location, and a velocity, move in space
according to the laws of Newtonian physics. We use a straightfor-
ward algorithm computing all body-body interactions. The NumPy
implementation is a direct translation of a MATLAB program[4].
The working loop of the two implementations take up 19 lines in
Python and 22 lines in MATLAB thus it is too big to include here.
However, the implementation is straightforward and use universal
functions and matrix multiplications.

5. Experiments
In this section, we will conduct performance benchmarks on Dist-
NumPy and NumPy1. We will benchmark the three Python pro-
grams presented in Section 4. All benchmarks are executed on two
different Linux clusters – an Intel Core 2 Quad cluster and an In-
tel Nehalem cluster. Both clusters consist of processors with four
CPU-cores, but the number of processors per node differs. Intel
Core 2 Quad cluster has one CPU per node whereas the Intel Ne-
halem cluster has two CPUs per node. The interconnect is Gigabit
Ethernet in both clusters. (Table 1).
Our experiments consist of a speedup benchmark, which we de-

fine as an execution time comparison between a sequential exe-
cution with NumPy and a parallelized execution with DistNumPy
while the input is identical. Strong-scaling is used in all bench-
marks and the input size is therefore constant.

5.1 Monte Carlo simulation
A Distributed Monte Carlo simulation is embarrassingly parallel
and requires a minimum of communication. This is also the case
when using DistNumPy because ufuncs are only applied on identi-
cally shaped arrays and it is therefore the simplest ufunc scenario.
Additionally, the implementation is CPU-intensive because a com-
plex ufunc is used as random number generator.
The result of the speedup benchmark is illustrated in Figure 7.

We see a close to linear speedup for the Nehalem cluster – a CPU
utilization of 88% is achieved on 64 CPU-cores. The penalty of
using multiple CPU-cores per node is noticeable on the Core 2
architecture – a CPU utilization of 68% is achieved on 32 CPU-
cores.

5.2 Jacobi method
The dominating part of the Jacobi method, performance-wise, is
the element-by-element multiplication of A and h (Fig. 6 line 5).
It consists of O(n2) operations where as all the other operations
only consist O(n) operations. Since scalar-multiplication is a very
simple operation, the dominating ufunc in the implementation is
memory-intensive.
The result of the speedup benchmark is illustrated in Figure 8.

We see a good speedup with 8 CPU-cores and to some degree also
with 16 Nehalem CPU-cores. However, the CPU utilization when

1 NumPy version 1.3.0
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Figure 7. Speedup of the Monte Carlo simulation. In graph (a) the two architectures uses a minimum number of CPU-cores per node. Added
in graph (b) is the result of using multiple CPU-cores on a single node (SMP).

using more than 16 CPU-cores is very poor. The problem is mem-
ory bandwidth – since we use multiple CPU-cores per node when
using more than 8 CPU-cores, the aggregated memory bandwidth
of the Core 2 cluster does only increase up to 8 CPU-cores. The
Nehalem cluster is a bit better because it has two memory buses
per node, but using more than 16 CPU-cores will not increase the
aggregated memory bandwidth.

5.2.1 Profiling of the Jacobi implementation
To investigate the memory bandwidth limitation observed in the
Jacobi execution we have profiled the execution by measuring the
time spend on computation and communication (Fig. 9). As ex-
pected the result shows that the percentages used with communica-
tion increases when the number of CPU-cores increases. Further-
more, a noteworthy observation is the almost identical communi-
cation overhead at eight CPU-cores and sixteen CPU-cores. This
is because half of the communication is performed through the use
of shared memory at sixteen CPU-cores, which also means that the
communication, just like the computation, is bound by the limited
memory bandwidth.

5.3 Newtonian N-body simulation
The result of the speedup benchmark is illustrated in Figure 10.
Compared to the Jacobi method we see a similar speedup and
CPU utilization. This is expected because the dominating opera-
tions are also simple ufuncs. Even though there are some matrix-
multiplications, which have a great scalability, it is not enough to
significantly boost the overall scalability.

5.4 Alternative programming language
DistNumPy introduces a performance overhead compared to a
lower-level programming language such as C/C++ or Fortran. To
investigate this overhead we have implemented the Jacobi bench-
mark in C. The implementation uses the same sequential algorithm
as the NumPy and DistNumPy implementations.
Executions on both architectures show that DistNumPy and

NumPy is roughly 50% slower than the C implementation when
executing the Jacobi method on one CPU-core. This is in rough

runtime numbers: 21 seconds for C, 31 seconds for NumPy and 32
seconds for DistNumPy.
Obviously highly hand-optimized implementations have a clear

performance advantages over DistNumPy. For instance by the use
of a highly optimized implementation in C [10] demonstrates ex-
treme scalability of a similar Jacobi computation – an execution
by 16384 CPU-cores achieves a CPU utilization of 70% on a Blue
Gene/P architecture.

5.5 Summary
The benchmarks clearly show that DistNumPy has both good per-
formance and scalability when execution is not bound by the mem-
ory bandwidth, which is evident from looking at the CPU utiliza-
tion when only one CPU-core per node is used. As expected the
scalability of the Monte Carlo simulation is better than the Jacobi
and the N-body computation because of the reduced communica-
tion requirements and more CPU-intensive ufunc operation.
The scalability of the Jacobi and the N-body computation is

drastically reduced when using multiple CPU-cores per node. The
problem is the complexity of the ufunc operations. As opposed to
the Monte Carlo simulation, which makes use of a complex ufunc,
the Jacobi and the N-body computation only use simple ufuncs e.g.
add and multiplication.
As expected the performance of the C implementation is better

than the DistNumPy implementation. However, by utilizing two
CPU-cores it is possible to outperform the C implementation in
the case of the Jacobi method. This is not a possibility in the case
of the Monte Carlo simulation where the algorithm does not favor
vectorization.

6. Future work
In its current state DistNumPy does not implement the NumPy
interface completely. Many specialized operations like Fast Fourier
transform or LU factorization is not implemented, but it is our
intention to implement the complete Python interface and most of
the C interface.
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Figure 8. Speedup of the Jacobi solver. In graph (a) the two architectures uses a minimum number of CPU-cores per node. Added in graph
(b) is the result of using multiple CPU-cores on a single node (SMP).
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Figure 9. Profiling of the Jacobi experiment. The two figures illustrate the relationship between communication and computation when
running on the Core 2 Quad architecture (a) and the Nehalem architecture (b). The area with the check pattern represent MPI communication
and the clean area represent computation. Note that these figures relates directly to the Jacobi speedup graph (Fig 8a).
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Figure 10. Speedup of Newtonian N-body simulation. In graph (a) the two architectures uses a minimum number of CPU-cores per node.
Added in graph (b) is the result of using multiple CPU-cores on a single node (SMP).

The performance of NumPy programs that make use of array-
views that are not aligned with the distribution block size is very
poor because each array element is handled individually. This is not
a problem for a whole range of NumPy programs, including the ex-
periments presented in this paper, since they do not use non-aligned
array-views. However some operations, such as stencil operations,
require non-aligned array-views and an important future work is
therefore to support all array views with similar efficiency.
Other important future work includes performance and scala-

bility improvement. As showed by the benchmarks, applications
that are dominated by non-complex ufuncs easily become memory
bounded. One solutions is to merge calls to ufuncs, that operate on
common arrays, together in one joint operation and thereby make
the joint operation more CPU-intensive. If it is possible to merge
enough ufuncs together the application may become CPU bound
rather than memory bound.

7. Conclusions
In this work we have successfully shown that it is possible to
implement a parallelized version of NumPy[15] that seamlessly
utilize distributed memory architectures. The only API difference
between NumPy and our parallelized version, DistNumPy, is an
extra optional parameter in the array creation routines.
Performance measurements of three Python program, which

make use of DistNumPy, show very good performance and scal-
ability. A CPU utilization of 88% is achieved on a 64 CPU-core
Nehalem cluster running a CPU-intensive Monte Carlo simulation.
A more memory-intensive N-body simulation achieves a CPU uti-
lization of 91% on 16 CPU-cores but only 63% on 64 CPU-cores.
Similar a Jacobi solver achieves a CPU utilization of 85% on 16
CPU-cores and 50% on 64 CPU-cores.
To obtain good performance with NumPy the user is required

to make use of array operations rather than using Python loops.
DistNumPy take advantage of this fact and parallelizes array oper-
ations. Thus most efficient NumPy applications should be able to
benefit from DistNumPy with the distribution parameter as the only
change.

We conclude that it is possible to obtain significant speedup with
DistNumPy. However, further work is needed if shared memory
machines are to be fully utilized as nodes in a scalable architecture.
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