
Numerical Python
Paul F. Dubois, Konrad Hinsen and James Hugunin

Citation: Computers in Physics 10, 262 (1996); doi: 10.1063/1.4822400
View online: https://doi.org/10.1063/1.4822400
View Table of Contents: https://aip.scitation.org/toc/cip/10/3
Published by the American Institute of Physics

ARTICLES YOU MAY BE INTERESTED IN

Extending Python
Computers in Physics 10, 359 (1996); https://doi.org/10.1063/1.4822457

Classical Mechanics Simulations
Computers in Physics 10, 259 (1996); https://doi.org/10.1063/1.4822397

The NumPy Array: A Structure for Efficient Numerical Computation
Computing in Science & Engineering 13, 22 (2011); https://doi.org/10.1109/MCSE.2011.37

Quantum Mechanics Simulations
Computers in Physics 10, 260 (1996); https://doi.org/10.1063/1.4822398

Wavelets: a New Alternative to Fourier Transforms
Computers in Physics 10, 247 (1996); https://doi.org/10.1063/1.168573

Using the Yorick Interpreted Language
Computers in Physics 9, 609 (1995); https://doi.org/10.1063/1.4823451

https://images.scitation.org/redirect.spark?MID=176720&plid=1062768&setID=406888&channelID=0&CID=349855&banID=519809386&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=888d4aa6867f3c265f0990999bc41f1db4e2fa5f&location=
https://aip.scitation.org/author/Dubois%2C+Paul+F
https://aip.scitation.org/author/Hinsen%2C+Konrad
https://aip.scitation.org/author/Hugunin%2C+James
/loi/cip
https://doi.org/10.1063/1.4822400
https://aip.scitation.org/toc/cip/10/3
https://aip.scitation.org/publisher/
https://aip.scitation.org/doi/10.1063/1.4822457
https://doi.org/10.1063/1.4822457
https://aip.scitation.org/doi/10.1063/1.4822397
https://doi.org/10.1063/1.4822397
https://aip.scitation.org/doi/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://aip.scitation.org/doi/10.1063/1.4822398
https://doi.org/10.1063/1.4822398
https://aip.scitation.org/doi/10.1063/1.168573
https://doi.org/10.1063/1.168573
https://aip.scitation.org/doi/10.1063/1.4823451
https://doi.org/10.1063/1.4823451


~~ENTIFIC PROGRAMMING 

NUMERICAL PYTHON 

Paul F. Dubois, Konrad Hinsen, 
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Python is a small and easy-to-Iearn language with surpris­
ing capabilities. It is an interpreted object-oriented script­

ing language and has a full range of sophisticated features 
such as first-class functions, garbage collection, and excep­
tion handling. Python has properties that make it especially 
appealing for scientific programming: 
o Python is quite simple and easy to learn, but it is a full and 

complete language. 
o It is simple to extend Python with your own compiled 

objects and functions. 
o Python is portable, from Unix to Windows 95 to Linux to 

Macintosh. 
o Python is free, with no license required even if you make 

a commercial product out of it. 
o Python has a large user-contributed library of "modules." 

These modules cover a wide variety of needs, such as audio 
and image processing, World Wide Web programming, 
and graphical user interfaces. In particular, there is an 
interface to the popular Tk package for building window­
ing applications. 

o And now, Python has a high-performance array module 
similar to the facilities in specialized array languages such 
as Matlab, IDL, Basis, or Yorick. This extension also adds 
complex numbers to the language. Array operations in 
Python lead to the execution of loops in C, so that most of 
the work is done at full compiled speed. 

This section introduces the Python language and presents 
the new numeric extension. More extensive tutorials and 
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benchmarks for the basic language and 
the numerical extension are available 
on the Python Web site (http://www. 
python.org). 

The numerical extension is still in 
beta test and may therefore change 
slightly from this description. In par­
ticular, the beta-test period is needed to 
sort out some controversies in naming 
and coercion rules. But with this tutorial 
as a start and the latest readme file for 
the numerical extension, you should be 
able to start using it. Note that you will 
need to add the extension to the Python 
source; every effort is made to keep a 
"minimal Python" as small as possible, 
as Python is being used for applications 
where a small size is important. 

Python is extremely well suited to 
the development of programmable ap­
plications, as has been advocated on 

these pages (CIP 8:1,1994, p. 70). It has a scripting language 
as the user interface and compiled code for the compute-in­
tensive portions. 

Introducing Python 
Python is an interpreter. You can either enter commands 

directly into the interpreter or, more commonly, create a file 
containing a script. On Unix, you can invoke Python with the 
script as the first argument, or you can use the usual trick of 
starting the script with a comment like this: 

#!/usr/locallbin/python 

Then you give execute permission to the script file. When you 
execute it, the Python interpreter is invoked on the script file 
itself. Since the above line is a comment as far as Python is 
concerned, it is then ignored. 

It is usual to make a Python script file have a name ending 
in .py. This is required if you wish to use the file as a 
"module," as explained later. In the examples below, we shall 
simply show the script and leave the process of executing it 
unspoken. 

Python statements can be entered interactively at the 
Python prompt: 

»> 

Followed by the computer response, an interactive exchange 
looks like this: 

»> print "Helio, World" 
Helio, World 

The print command can take a comma-delimited list of items 
to print. Python prints them separated by spaces and adds a 
"carriage return" unless the command ends in a comma. Finer 
control of output formatting is available. When running Py­
thon interactively, you can omit the word print, and the results 
of expressions are printed. 

Expressions and assignments. Expressions and assign­
ments for integers and real numbers work just the way you 
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would think, including coercion of integers in floating-point 
expressions. Addition of strings yields a result consisting of 
the concatenation of the two arguments, and multiplication 
by an integer is replication, so that one can make a string of 
80 blanks with blanks80 = ' , * 80. 

There are three basic aggregate data types in Python: 
lists, dictionaries, and tuples. Dictionaries are so-called "as­
sociative arrays." That is, they can be subscripted with "keys," 
usually strings. So we can remember correspondences be­
tween names and values as follows: 

> Atomic_number = {} # Create an empty dictionary 
> Atomic_number ["Hydrogen"] = 1 
> Atomic_number ["Carbon"] = 12 
> print Atomic_number 
{'Carbon': 12, 'Hydrogen': 1} 

A list is an object containing a one-dimensional list of other 
objects; square brackets are used to enclose the list, as in: 

firsUivejntegersJist = [1, 2, 3, 4, 5] 

The tuple type is similar, except that round brackets are used: 

firsUive_integers_tuple = (1, 2, 3, 4, 5) 

In many cases Python will let you drop the parentheses on a 
tuple, so that this statement could also be given as 

first_five_integers_tuple = 1, 2, 3, 4, 5 

Python is extremely 
well suited to the development of 

programmable applications. 

Long lines can be continued by ending them in a back­
slash. However, if inside an open parenthesis or square brack­
et, continuation is automatic. A singleton tuple is written (x,) 
to distinguish it from parentheses used for operator ordering. 

Tuples are mainly created in the process of making 
argument lists and can be used to return multiple values from 
a function or assignment: 

a, b = 1,2 
a, b = b, a + b 

# a == 1, b == 2 
# a == 2, b == 3 

The subscript operator is used to access the items in a tuple 
or list. The indexing is zero-based: 

>>> X = [1.0, 2.0, 3.0, 'hello world', [1,2]] 
>>> print x[O] 
1.0 
>>> print x[3] 
hello, world 
>>> print x[4] 
[1,2] 
>>> print x[4J[1] 
2 

The slicing operator [i: i] also can be used as a subscript. This 
forms a new list equal to those elements whose index is at 
least i and less than j. 

The difference between tuples and lists is that tuples are 
immutable, meaning that the contents of a tuple cannot be 
changed. Lists, on the other hand, can be extended, have new 
elements spliced in, and have elements deleted. 

The following loop goes through an existing list and 
produces another list of those elements bigger than 2: 

x = [2, -2, 3, 4, 0, 1, 5] 
y=[J 
for n in x: 

if n > 2: 
y.append(n) 

Now y contains [3,4, 5]. 
To be more precise about language, y is bound to an 

object that is of type list with value [3, 4, 5]. Python binds 
names to objects, rather than having variables that contain 
values. In the following sequence, the third and fourth com­
mands print the same output: 

z=y 
z[2] = 8 
print z 
print y 

# Prints [3, 4, 8] 
# Also prints [3, 4, 8] 

The reason that this happens is that y and z are just two names 
for the same object. The statement z = y established a binding 
between the name z and the object that was already bound to 
the name y. 

Suppose we bind y and z to new objects: 

y = 1.2 
z = 'z now is bound to this string' 

What happened to the list whose value was [3, 4, 8]? That 
object is now unreachable from our program, since no name 
is bound to it. Python will reclaim the space occupied by such 
an object. This reclamation is called "garbage collection." 

Block structure. Sharp-eyed readers may have been sur­
prised at the above example: 

for n in x: 
if n > 2: 

y.append(n) 

What is determining the scope of the loop and the scope of 
the conditional statement? The answer is somewhat surpris­
ing (and unsettling, at first): It is the indentation. In other 
words, the for loop extends down to the next statement that 
begins at that same level of indentation or less. The same goes 
for defining functions. Here, for example, is a function that 
computes the distance between two points a and b, assuming 
they are passed as two-item lists or tuples. 

from umath import sqrt # The name sqrt means the sqrt 
# in the umath module 

def euclidean_distance (a, b): 
d1 = b[O] - a[O] 
d2 = b[1]- a[1] 
return sqrt (d1 **2 + d2**2) 
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The first line, from umath import sqrt, marks our first 
encounter with Python's scalable naming conventions. Most 
Python input is organized into modules that are imported. In 
importing a module, you have your choice of whether to keep 
that new module's name space separate or merge some or all 
of it into your own. In this case, I merged just the name sqrt 
into my own namespace. I could have included all the math 
functions in my name space, with from umath import *, or I 
could have kept the math functions in their own name space: 

import umath 
def euclidean_distance (a, b): 

d1 = b[O] - a[O] 
d2 = b[1]- a[1] 
return umath.sqrt (d1 * d1 + d2 * d2) 

This name-space control makes Python suitable for cre­
ating large libraries of modules without fear of unintentional 
name collisions. 

The indentation convention is controversial. Every few 
months a newcomer to Python will start a discussion about 
what a stupid idea this is and ask how a programmer can live 

It is possible (and 
remarkably easy) to add new 

object types to Python. 

without braces or begin-end pairs or the like. The interesting 
thing is that novice users do not hear this from Python 
veterans. Armed with an indenting editor, such as emacs with 
the Python-mode extension, the language soon becomes natu­
ral and is perceived as easy-to-read and uncluttered. 

The numerical extension 
The numerical extension to Python was the result of an 

Internet collaboration via a mailing list. The Python commu­
nity has set up a series of such special-interest groups, or SIGs, 
to study areas for improvement and merging of similar efforts. 
The "Matrix-SIG" discussions inspired one of the authors 
(Hugunin) to implement a proposal starting from previous 
work done by James Fulton of the United States Geological 
Survey in Reston, VA. Hugunin's work has now been re­
leased for beta-testing. His work was augmented with testing 
and new ideas from the members of the Matrix-SIG, complex­
number and other parser work by another author (Hinsen), 
and enhancements for array :>licing by Chris Chase of the 
Applied Physics Laboratory of Johns Hopkins University. 

The work was motivated by the observation that Python 
lists are not a suitable vehicle for computationally intensive 
work, in that they are true lists and not represented as blocks 
of contiguous storage. A list of 10,000 floating-point numbers 
is actually a list of 10,000 floating-point objects. 

It is possible (and remarkably easy) to add new object 
types to Python both by extensions written in C and by using 
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the object-oriented features in Python proper. The main part 
of the numeric extension consists of a C-language extension 
that defines a new array object and also an object ufunc (for 
"universal math function"). These definitions enable fast 
element-by-element operations on the arrays. Python has a 
mechanism by which such extensions can choose to imple­
ment operations in the language, such as addition, subtraction, 
subscripting, and subscripted assignment. 

Creating arrays. In what follows we assume that the user 
has done from Numeric import * so that all the facilities can be 
used without qualifying their names. The basic "constructor" 
for arrays is the function array, which will convert any Python 
object that has a sequence-like behavior (such as lists and 
tuples) into an array of an appropriate type. Floating-point 
numbers in Python correspond to C's double type, that is, 
usually 64-bit quantities. Integer elements in Python corre­
spond to C long ints. However, the array class also supports a 
large number of other integer, complex, and floating preci­
sions, as well as arrays of Python objects. Here are a few 
examples of constructor calls: 

array([1 ,2,3]) -> array of integers 
array([1, 2.3, 4]) -> array of doubles, since one element 

was double 
array([1, 2j, 3.]) -> array of complex, since one element 

was complex 

Naturally, in practice most arrays are not entered literally 
like this but are the result of a computation or processing of 
a data file. Functions are provided to create common arrays: 
zeros(2,3,4) makes a zero array of shape (2,3,4), and ze­
ros(2,3,4, Integer()) makes an integer array of the same shape. 
A series of such type functions, similar in spirit to Fortran 90' s 
kind specifiers, allows specifying arrays of different types and 
precisions, such as Float(32). The function ones is like zeros 
except that it sets the elements to 1. Similarly, arange(n) 
produces the array of integers from 0 to n - 1. Finally, 
fromFunction([2,3,4], lambda i, j, k: 100*i + 10 *j + k) makes a 
(2,3,4)-shaped matrix with the (i, j, k) element computed 
using the "anonymous" lambda function shown. You could 
also give the name of a function that took three arguments and 
returned a value. 

Arrays as objects. Arrays are in fact objects. Everything 
in Python is an object, in fact. Dictionaries, lists, functions, 
tracebacks, strings, and so on, are all objects. As such, they 
may have attributes (data members, or at least what appear to 
be data members) and member functions. The standard ob­
ject-oriented "dot" notation is used to access these attributes 
and functions. For example, for lists we have two member 
functions, append and reverse, which modify the list. 

»> x=[1 , 2, 3] 
»> x.append(4) 
»> x.reverseO 
»> print x 
[4,3,2,1] 

Shapes. Each array has a shape, available as an attribute 
of the array. 



>>> x=arange{1 0) 
»> print x 
0123456789 
»> x.shape 
(10,) 

The shape can be changed by assigning to this attribute: 

»> x.shape = (2,5) 
»> print x 
01234 
56789 

This process is "smart" and will detect the problem ifthe new 
length does not match the old. 

Array expressions. Array expressions are carried out by 
producing a result whose components are the result of doing 
the operation on the corresponding elements of each operand. 
This "elementwise" idea is extended to various cases in which 
the shapes of the operands are not identical, and a collection 
of common functions that operate elementwise on arrays is 
provided. Thus, if two real arrays a and b have the same shape, 
x = (a + b) / (a - b) + sin{a)**2 + cos{b)**2 results in an array 
with the same shape as a and b, whose individual elements 
are calculated using the corresponding elements of a and b in 
the above expression. 

In general, such expressions raise an exception if the 
arrays a and b do not have the same shape. There is, however, 
one important exception: If an axis of an array has length one, 
this array will be compatible with any array that matches in 
the other axes. For example, an array with shape (3,1,2) can 
be combined with an array of shape (3,5,2) or (3,100,2). In 
this case, the first array will be repeated along the axis of 
length one until it matches the other array. (Of course, the 
array elements are not actually copied in memory, but the 
effect is the same.) 

This extension process goes even one step further. If the 
two arrays do not have the same number of dimensions, the 
lower-rank array is "upgraded" to the rank of the other one by 
adding axes of length one in front of its shape. For example, 
when an array of shape (3,2) is combined with an array of 
shape (5,3,2), it is considered to be of shape (1,3,2) and then 
repeated to have shape (5,3,2). 

This process of extension and repetition allows a com­
pact notation for common operations. For example, a scalar 
can be added to an array of arbitrary rank, with the effect of 
being added to each individual element. Likewise, a whole 
array can easily be multiplied by a scalar. In this example, the 
arrayy of shape (3,) is added to the array x of shape (4,3), with 
the result that y has been added to each row of x to produce 
the result. 

»>x 
1011 12 
131415 
161718 
192021 
»>y 
012 
»> x + y 

101214 
131517 
161820 
1921 23 

To make full use of this powerful combination scheme, 
it is often useful to add axes of length one to an array in 
positions other than before its shape vector. How this is done 
will be explained in the next section. 

Array subscripting. The array class has elaborate facili­
ties for accessing portions of an array. Subscripts that refer to 
a single element produce a result that is a scalar; other sub­
scripts produce a reference to the sub array specified. 

»> y=arange(12) 
»> y.shape={4,3) 
»> print y 
012 
345 
678 
91011 
»> print y[O,O] 
o 
»> print y[1 ,0] 
3 
»> print y[O, 1] 
1 
>>>print y[O] [1] 
1 
»> print y[1] 
345 

The slice operator: can also be used to indicate that some 
or all of a certain dimension is to be chosen. In Python, i: j 
means all indices from i up to but not including j. An optional 
:k can be added to indicate a stride count. 

»> print y[1 :3] 
345 
678 
»> print y[:, 1] 
1 4 710 
»> y[:, 1] = [5,6,7,8] 
»> print y 
052 
365 
678 
9 811 

Special indexing operations. Suppose you want to create 
the outer product of two vectors, a and b. That is, you want 
to create c such that c has shape (len (b), len (a)) and c [i, j] = 
a [i] * b U]. We could accomplish this somewhat clumsily as 
follows: 

»> b = array ( [10, 20]) 
»> C = zeros (len (b), len (a), Integer ()) 
»> for i in range (len (b)): 

for j in range (len (a)): 
c [i, j] = b til * a Ul 

»> print c 
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102030 
204060 

This is not just clumsy, it will be noticeably slow for vectors 
of longer length. While the Python interpreter is. quit~ fast, it 
is still much slower than carrying out the operatIOns In com­
piled code. So, we seek an array syntax to accomplish this. 
The broadcasting rules provide the key. 

»> b.shape=(2,1 ) 
»> print b 
10 
20 
»> c = a * b 
»> print c 
102030 
204060 

Note that in writing a * b we have made use of the 
automatic-repetition feature described in the previous ~ecti.on. 
All that we need to make this example more convement IS a 
better way to achieve the reshaping of b. In effect, we want 
to add a new axis oflength one to the end of the shape vector 
ofb. Since adding a new axis oflength one is a commo~ form 
of reshaping, Python has a convenient shorthand notatIOn ~or 
it. In an array-subscript expression, you simply put the specIal 
index NewAxis at the position where you want to create a new 
axis. Therefore b I:, NewAxis] will be just what we need, and 
the outer product can be written compactly as c = a * b I:, 
NewAxis]. 

Another common problem is that you might want to 
extract all elements along the first axes, but just the first 
element along the last axis. Of course this is possible with 
what we have explained until now. If the array a has the shape 
(2,2,3), the answer is a I:, :,0]. But what if you need this to 
work for an arbitrary array of unknown shape-for example, 
in a general utility function? You would have to use one 
empty slice operator for each axis, but to do so you must know 
the number of a xes. The way out is the special index ... , which 
stands for as many empty slice operators as is. requir~d. to 
cover all the axes in the array. (It is clear from thIS defimtIOn 
that you can use this special index only once in a ~ubscript 
expression.) The above example can therefore be wntten as a 
[ ... ,0]. 

Array methods. Each array object has a set of methods 
that can be applied to it. These include: 
• x.equal(y) returns an array of 1 's and O's ofth~ same shape 

as x indicating whether or not the correspondIng elements 
are' equal. The operator equal has siblings notEqual, 
greater, greaterEqual, less, and lessEqual, ~nd cousi~s 
and Logical, orLogical, and notLogical for carryIng out log~­
cal operations. (Caution: Python's normal scalar-compan-
son operators do not work on arrays.). . 

• x.matrixMultiply(y) returns the mathematIcal matnx prod­
uct ofx and y. 
There is a set of methods for producing arrays derived from 
the given array, such as transposes, complex conjugates, 
copies, concatenations, and so on. . . 

• x.choose (list), x.take (list), and x.repeat (list) are avaIlable 
for more complicated needs in choosing portions of an array. 
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Reduction. The numeric extension, like the rest of Py­
thon, regards functions as first-class objects. A set of these 
functions has been provided to optimize certain kinds of 
calculations on arrays. Most of these functions, such as sin, 
cos, and sqrt, are unary functions which operate elementwise. 
However, some of the functions are binary; the two most 
useful of these are add and multiply. Thus multiply(x,y) pro­
duces the same result as x * y. What makes the concept useful 
is that add and multiply are objects, and these objects have 
methods. The most useful of these methods is reduce. 

A reduction by a binary operator applies that binary 
operator repeatedly along a certain dimension (by default, the 
first), until that dimension has been reduced to a scalar. Thus, 
an object with one dimension fewer is produced. 

»>z 
1.00000000 2.00000000 3.00000000 
4.00000000 5.00000000 6.00000000 
»> add.reduce(z) #sum the columns 
5.000000007.000000009.00000000 
»> add.reduce(z,1) #sum the rows 
6.00000000 15.00000000 

The way to think about the optional second argument 
here is that you are picking the index of the dimension that is 
to be eliminated. In this example, z has shape (2, 3). After the 
(default) reduction along the dimension numbered 0, it has 
shape (3,). After reduction along the dimension numbered 1, 
it has shape (2,). This allows us to define an easy "dot product" 
function: 

def dot (a, b): 
return add.reduce (a * b) 

»>w 
1.00000000 2.00000000 3.00000000 
»>v 
-3.000000002.000000002.00000000 
»> dot(w,v) 
7.0 

Object-oriented features 
Python has a powerful mechanism for declaring y~ur 

own kinds of objects. If you are doing a lot of work WIth 
matrices, you might want a matrix object that is otherwise 
similar to the array object but that implements the multiply 
operator as matrix multiplication rather than elemen~ise 
multiplication. Or you might want to invent your own plOttI~g 
classes that contain objects such as curves and surfaces, WIth 
attributes in these classes such as line_thickness, color, or 
label, or a matrix used for rotation. 

Python's facility for classes lets you do just ~hat and ~ven 
lets you override the meaning of operators, attnb~te a~sIgn­
ment, subscripting, and so on. Here, for example, IS a SImple 
class representing points with two coordinates, defining ad­
dition for them: 

import umath 
class Point: 

"Points in two space -- skeletal example." 
def _init_ (self, x, y): 



"Construct a new point with coordinates x and y" 
self.x = x 
self.y = y 

def _add_ (self, other): 
"a + b" 
return Point (self.x + other.x, self.y + other.y) 

def norm (self): 
"norm 0 = length of vector from origin to this point" 
return umath.sqrt (self.x**2 + self.y**2) 

You would subsequently use this class in statements like this: 

x = Point (1.0, 2.0) 
Y = Point (3.0, 6.0) 
print (x+y).norm 0 

Thisjust scratches the surface of the class facility . If you 
are curious about those strings that follow the first line of each 
class and function, those are called "doc strings" and are 
visible to the user at runtime in a special attribute of the 
function object. Plans are to develop tools to extract them 
automatically from Python source code for creating class­
library documentation, as is done in Eiffel, for example. 

Classes give you the power of inheritance. A Python class 
has been implemented from which variants of the array object 
can be derived. One such derivation is a class Matrix for 
two-dimensional objects; it changes the * operator to mean 
matrix multiplication rather than elementwise multiplication. 
The standard array object has a method matrixMultiply so that 
a.matrixMultiply(b) is the mathematical matrix product. 

A programming strategy 
What you have just seen is remarkable: a complete array 

facility added to Python as a user-written extension. The 
numeric extension is a high-performance array language with 
remarkably sophisticated facilities. Some changes were made 
to the Python parser, involving imaginary constants, the •• 
operator for exponentiation, and multiple slicing subscripts. 
These changes were only needed to improve the syntactic 
appearance, such as being able to write [i, j) rather than [0, j)J, 
and mostly were on the "to-do" list for the language anyway 
and did not break any existing code. 

The most powerful part of Python is its growing user 
community and its members' spirit of cooperation in releasing 
modules to the user-contributed library. See the World Wide 
Web page http://www.python.org/python/Contributed.html. 
Interfaces to such facilities as netCDF and PDB self-describ­
ing files, the PLPLOT graphics package, the Yorick graphics 
subsystem, and fast-Fourier-transform packages are under 
development. We recommend asking about your area of 
interest on the news group comp.lang.python. 

The numerical extension is a particular case of a tremen­
dously successful strategy: use Python as a scripting lan­
guage, adding to it objects and functions written in a compiled 
language. Python's portability, free licensing, basic good 
performance, and ease of extension, combined with its appeal 
to the scientific community due to its simplicity and the ease 
with which application-specific objects can be created, make 
it a key tool for the future. 
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