
Numerical Python
Paul F. Dubois, Konrad Hinsen and James Hugunin

Citation: Computers in Physics 10, 262 (1996); doi: 10.1063/1.4822400
View online: https://doi.org/10.1063/1.4822400
View Table of Contents: https://aip.scitation.org/toc/cip/10/3
Published by the American Institute of Physics

ARTICLES YOU MAY BE INTERESTED IN

Extending Python
Computers in Physics 10, 359 (1996); https://doi.org/10.1063/1.4822457

Classical Mechanics Simulations
Computers in Physics 10, 259 (1996); https://doi.org/10.1063/1.4822397

The NumPy Array: A Structure for Efficient Numerical Computation
Computing in Science & Engineering 13, 22 (2011); https://doi.org/10.1109/MCSE.2011.37

Quantum Mechanics Simulations
Computers in Physics 10, 260 (1996); https://doi.org/10.1063/1.4822398

Wavelets: a New Alternative to Fourier Transforms
Computers in Physics 10, 247 (1996); https://doi.org/10.1063/1.168573

Using the Yorick Interpreted Language
Computers in Physics 9, 609 (1995); https://doi.org/10.1063/1.4823451

https://images.scitation.org/redirect.spark?MID=176720&plid=1062768&setID=406888&channelID=0&CID=349855&banID=519809386&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=888d4aa6867f3c265f0990999bc41f1db4e2fa5f&location=
https://aip.scitation.org/author/Dubois%2C+Paul+F
https://aip.scitation.org/author/Hinsen%2C+Konrad
https://aip.scitation.org/author/Hugunin%2C+James
/loi/cip
https://doi.org/10.1063/1.4822400
https://aip.scitation.org/toc/cip/10/3
https://aip.scitation.org/publisher/
https://aip.scitation.org/doi/10.1063/1.4822457
https://doi.org/10.1063/1.4822457
https://aip.scitation.org/doi/10.1063/1.4822397
https://doi.org/10.1063/1.4822397
https://aip.scitation.org/doi/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://aip.scitation.org/doi/10.1063/1.4822398
https://doi.org/10.1063/1.4822398
https://aip.scitation.org/doi/10.1063/1.168573
https://doi.org/10.1063/1.168573
https://aip.scitation.org/doi/10.1063/1.4823451
https://doi.org/10.1063/1.4823451

~~ENTIFIC PROGRAMMING

NUMERICAL PYTHON

Paul F. Dubois, Konrad Hinsen,
and James Hugunin

Department Editor:
Paul F 0 Dubois
dubois l@llnl.gov

Python is a small and easy-to-Iearn language with surpris­
ing capabilities. It is an interpreted object-oriented script­

ing language and has a full range of sophisticated features
such as first-class functions, garbage collection, and excep­
tion handling. Python has properties that make it especially
appealing for scientific programming:
o Python is quite simple and easy to learn, but it is a full and

complete language.
o It is simple to extend Python with your own compiled

objects and functions.
o Python is portable, from Unix to Windows 95 to Linux to

Macintosh.
o Python is free, with no license required even if you make

a commercial product out of it.
o Python has a large user-contributed library of "modules."

These modules cover a wide variety of needs, such as audio
and image processing, World Wide Web programming,
and graphical user interfaces. In particular, there is an
interface to the popular Tk package for building window­
ing applications.

o And now, Python has a high-performance array module
similar to the facilities in specialized array languages such
as Matlab, IDL, Basis, or Yorick. This extension also adds
complex numbers to the language. Array operations in
Python lead to the execution of loops in C, so that most of
the work is done at full compiled speed.

This section introduces the Python language and presents
the new numeric extension. More extensive tutorials and

Paul F. Dubois is a mathematician at Lawrence Livermore National
Laboratory, Livennore, CA 94550. E-mail: dubois1@llnl.gov
Konrad Hinsen is a physicist in the Department of Chemistry, University of
Montreal, Montreal, H3C 3J7, Quebec, Canada. E-mail: hinsenk@ere.
umontreal.ca
James Hugunin is a graduate student in the Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, M4 02139. E-mail:
hugunin@mit.edu

262 COMPUTERS IN PHYSICS, VOL. 10, NO.3, MAY nUN 1996

benchmarks for the basic language and
the numerical extension are available
on the Python Web site (http://www.
python.org).

The numerical extension is still in
beta test and may therefore change
slightly from this description. In par­
ticular, the beta-test period is needed to
sort out some controversies in naming
and coercion rules. But with this tutorial
as a start and the latest readme file for
the numerical extension, you should be
able to start using it. Note that you will
need to add the extension to the Python
source; every effort is made to keep a
"minimal Python" as small as possible,
as Python is being used for applications
where a small size is important.

Python is extremely well suited to
the development of programmable ap­
plications, as has been advocated on

these pages (CIP 8:1,1994, p. 70). It has a scripting language
as the user interface and compiled code for the compute-in­
tensive portions.

Introducing Python
Python is an interpreter. You can either enter commands

directly into the interpreter or, more commonly, create a file
containing a script. On Unix, you can invoke Python with the
script as the first argument, or you can use the usual trick of
starting the script with a comment like this:

#!/usr/locallbin/python

Then you give execute permission to the script file. When you
execute it, the Python interpreter is invoked on the script file
itself. Since the above line is a comment as far as Python is
concerned, it is then ignored.

It is usual to make a Python script file have a name ending
in .py. This is required if you wish to use the file as a
"module," as explained later. In the examples below, we shall
simply show the script and leave the process of executing it
unspoken.

Python statements can be entered interactively at the
Python prompt:

»>

Followed by the computer response, an interactive exchange
looks like this:

»> print "Helio, World"
Helio, World

The print command can take a comma-delimited list of items
to print. Python prints them separated by spaces and adds a
"carriage return" unless the command ends in a comma. Finer
control of output formatting is available. When running Py­
thon interactively, you can omit the word print, and the results
of expressions are printed.

Expressions and assignments. Expressions and assign­
ments for integers and real numbers work just the way you

© 1996 AMERICAN INSTITUTE OF PHYSICS 0894-1866/96/1 0(3)/262/6/$1 0.00

would think, including coercion of integers in floating-point
expressions. Addition of strings yields a result consisting of
the concatenation of the two arguments, and multiplication
by an integer is replication, so that one can make a string of
80 blanks with blanks80 = ' , * 80.

There are three basic aggregate data types in Python:
lists, dictionaries, and tuples. Dictionaries are so-called "as­
sociative arrays." That is, they can be subscripted with "keys,"
usually strings. So we can remember correspondences be­
tween names and values as follows:

> Atomic_number = {} # Create an empty dictionary
> Atomic_number ["Hydrogen"] = 1
> Atomic_number ["Carbon"] = 12
> print Atomic_number
{'Carbon': 12, 'Hydrogen': 1}

A list is an object containing a one-dimensional list of other
objects; square brackets are used to enclose the list, as in:

firsUivejntegersJist = [1, 2, 3, 4, 5]

The tuple type is similar, except that round brackets are used:

firsUive_integers_tuple = (1, 2, 3, 4, 5)

In many cases Python will let you drop the parentheses on a
tuple, so that this statement could also be given as

first_five_integers_tuple = 1, 2, 3, 4, 5

Python is extremely
well suited to the development of

programmable applications.

Long lines can be continued by ending them in a back­
slash. However, if inside an open parenthesis or square brack­
et, continuation is automatic. A singleton tuple is written (x,)
to distinguish it from parentheses used for operator ordering.

Tuples are mainly created in the process of making
argument lists and can be used to return multiple values from
a function or assignment:

a, b = 1,2
a, b = b, a + b

a == 1, b == 2
a == 2, b == 3

The subscript operator is used to access the items in a tuple
or list. The indexing is zero-based:

>>> X = [1.0, 2.0, 3.0, 'hello world', [1,2]]
>>> print x[O]
1.0
>>> print x[3]
hello, world
>>> print x[4]
[1,2]
>>> print x[4J[1]
2

The slicing operator [i: i] also can be used as a subscript. This
forms a new list equal to those elements whose index is at
least i and less than j.

The difference between tuples and lists is that tuples are
immutable, meaning that the contents of a tuple cannot be
changed. Lists, on the other hand, can be extended, have new
elements spliced in, and have elements deleted.

The following loop goes through an existing list and
produces another list of those elements bigger than 2:

x = [2, -2, 3, 4, 0, 1, 5]
y=[J
for n in x:

if n > 2:
y.append(n)

Now y contains [3,4, 5].
To be more precise about language, y is bound to an

object that is of type list with value [3, 4, 5]. Python binds
names to objects, rather than having variables that contain
values. In the following sequence, the third and fourth com­
mands print the same output:

z=y
z[2] = 8
print z
print y

Prints [3, 4, 8]
Also prints [3, 4, 8]

The reason that this happens is that y and z are just two names
for the same object. The statement z = y established a binding
between the name z and the object that was already bound to
the name y.

Suppose we bind y and z to new objects:

y = 1.2
z = 'z now is bound to this string'

What happened to the list whose value was [3, 4, 8]? That
object is now unreachable from our program, since no name
is bound to it. Python will reclaim the space occupied by such
an object. This reclamation is called "garbage collection."

Block structure. Sharp-eyed readers may have been sur­
prised at the above example:

for n in x:
if n > 2:

y.append(n)

What is determining the scope of the loop and the scope of
the conditional statement? The answer is somewhat surpris­
ing (and unsettling, at first): It is the indentation. In other
words, the for loop extends down to the next statement that
begins at that same level of indentation or less. The same goes
for defining functions. Here, for example, is a function that
computes the distance between two points a and b, assuming
they are passed as two-item lists or tuples.

from umath import sqrt # The name sqrt means the sqrt
in the umath module

def euclidean_distance (a, b):
d1 = b[O] - a[O]
d2 = b[1]- a[1]
return sqrt (d1 **2 + d2**2)

COMPUTERS IN PHYSICS, VOL. 10, NO.3, MAY/JUN 1996 263

SP

The first line, from umath import sqrt, marks our first
encounter with Python's scalable naming conventions. Most
Python input is organized into modules that are imported. In
importing a module, you have your choice of whether to keep
that new module's name space separate or merge some or all
of it into your own. In this case, I merged just the name sqrt
into my own namespace. I could have included all the math
functions in my name space, with from umath import *, or I
could have kept the math functions in their own name space:

import umath
def euclidean_distance (a, b):

d1 = b[O] - a[O]
d2 = b[1]- a[1]
return umath.sqrt (d1 * d1 + d2 * d2)

This name-space control makes Python suitable for cre­
ating large libraries of modules without fear of unintentional
name collisions.

The indentation convention is controversial. Every few
months a newcomer to Python will start a discussion about
what a stupid idea this is and ask how a programmer can live

It is possible (and
remarkably easy) to add new

object types to Python.

without braces or begin-end pairs or the like. The interesting
thing is that novice users do not hear this from Python
veterans. Armed with an indenting editor, such as emacs with
the Python-mode extension, the language soon becomes natu­
ral and is perceived as easy-to-read and uncluttered.

The numerical extension
The numerical extension to Python was the result of an

Internet collaboration via a mailing list. The Python commu­
nity has set up a series of such special-interest groups, or SIGs,
to study areas for improvement and merging of similar efforts.
The "Matrix-SIG" discussions inspired one of the authors
(Hugunin) to implement a proposal starting from previous
work done by James Fulton of the United States Geological
Survey in Reston, VA. Hugunin's work has now been re­
leased for beta-testing. His work was augmented with testing
and new ideas from the members of the Matrix-SIG, complex­
number and other parser work by another author (Hinsen),
and enhancements for array :>licing by Chris Chase of the
Applied Physics Laboratory of Johns Hopkins University.

The work was motivated by the observation that Python
lists are not a suitable vehicle for computationally intensive
work, in that they are true lists and not represented as blocks
of contiguous storage. A list of 10,000 floating-point numbers
is actually a list of 10,000 floating-point objects.

It is possible (and remarkably easy) to add new object
types to Python both by extensions written in C and by using

264 COMPUTERS IN PHYSICS. VOL. 10, NO.3, MAY IJUN 1996

the object-oriented features in Python proper. The main part
of the numeric extension consists of a C-language extension
that defines a new array object and also an object ufunc (for
"universal math function"). These definitions enable fast
element-by-element operations on the arrays. Python has a
mechanism by which such extensions can choose to imple­
ment operations in the language, such as addition, subtraction,
subscripting, and subscripted assignment.

Creating arrays. In what follows we assume that the user
has done from Numeric import * so that all the facilities can be
used without qualifying their names. The basic "constructor"
for arrays is the function array, which will convert any Python
object that has a sequence-like behavior (such as lists and
tuples) into an array of an appropriate type. Floating-point
numbers in Python correspond to C's double type, that is,
usually 64-bit quantities. Integer elements in Python corre­
spond to C long ints. However, the array class also supports a
large number of other integer, complex, and floating preci­
sions, as well as arrays of Python objects. Here are a few
examples of constructor calls:

array([1 ,2,3]) -> array of integers
array([1, 2.3, 4]) -> array of doubles, since one element

was double
array([1, 2j, 3.]) -> array of complex, since one element

was complex

Naturally, in practice most arrays are not entered literally
like this but are the result of a computation or processing of
a data file. Functions are provided to create common arrays:
zeros(2,3,4) makes a zero array of shape (2,3,4), and ze­
ros(2,3,4, Integer()) makes an integer array of the same shape.
A series of such type functions, similar in spirit to Fortran 90' s
kind specifiers, allows specifying arrays of different types and
precisions, such as Float(32). The function ones is like zeros
except that it sets the elements to 1. Similarly, arange(n)
produces the array of integers from 0 to n - 1. Finally,
fromFunction([2,3,4], lambda i, j, k: 100*i + 10 *j + k) makes a
(2,3,4)-shaped matrix with the (i, j, k) element computed
using the "anonymous" lambda function shown. You could
also give the name of a function that took three arguments and
returned a value.

Arrays as objects. Arrays are in fact objects. Everything
in Python is an object, in fact. Dictionaries, lists, functions,
tracebacks, strings, and so on, are all objects. As such, they
may have attributes (data members, or at least what appear to
be data members) and member functions. The standard ob­
ject-oriented "dot" notation is used to access these attributes
and functions. For example, for lists we have two member
functions, append and reverse, which modify the list.

»> x=[1 , 2, 3]
»> x.append(4)
»> x.reverseO
»> print x
[4,3,2,1]

Shapes. Each array has a shape, available as an attribute
of the array.

>>> x=arange{1 0)
»> print x
0123456789
»> x.shape
(10,)

The shape can be changed by assigning to this attribute:

»> x.shape = (2,5)
»> print x
01234
56789

This process is "smart" and will detect the problem ifthe new
length does not match the old.

Array expressions. Array expressions are carried out by
producing a result whose components are the result of doing
the operation on the corresponding elements of each operand.
This "elementwise" idea is extended to various cases in which
the shapes of the operands are not identical, and a collection
of common functions that operate elementwise on arrays is
provided. Thus, if two real arrays a and b have the same shape,
x = (a + b) / (a - b) + sin{a)**2 + cos{b)**2 results in an array
with the same shape as a and b, whose individual elements
are calculated using the corresponding elements of a and b in
the above expression.

In general, such expressions raise an exception if the
arrays a and b do not have the same shape. There is, however,
one important exception: If an axis of an array has length one,
this array will be compatible with any array that matches in
the other axes. For example, an array with shape (3,1,2) can
be combined with an array of shape (3,5,2) or (3,100,2). In
this case, the first array will be repeated along the axis of
length one until it matches the other array. (Of course, the
array elements are not actually copied in memory, but the
effect is the same.)

This extension process goes even one step further. If the
two arrays do not have the same number of dimensions, the
lower-rank array is "upgraded" to the rank of the other one by
adding axes of length one in front of its shape. For example,
when an array of shape (3,2) is combined with an array of
shape (5,3,2), it is considered to be of shape (1,3,2) and then
repeated to have shape (5,3,2).

This process of extension and repetition allows a com­
pact notation for common operations. For example, a scalar
can be added to an array of arbitrary rank, with the effect of
being added to each individual element. Likewise, a whole
array can easily be multiplied by a scalar. In this example, the
arrayy of shape (3,) is added to the array x of shape (4,3), with
the result that y has been added to each row of x to produce
the result.

»>x
1011 12
131415
161718
192021
»>y
012
»> x + y

101214
131517
161820
1921 23

To make full use of this powerful combination scheme,
it is often useful to add axes of length one to an array in
positions other than before its shape vector. How this is done
will be explained in the next section.

Array subscripting. The array class has elaborate facili­
ties for accessing portions of an array. Subscripts that refer to
a single element produce a result that is a scalar; other sub­
scripts produce a reference to the sub array specified.

»> y=arange(12)
»> y.shape={4,3)
»> print y
012
345
678
91011
»> print y[O,O]
o
»> print y[1 ,0]
3
»> print y[O, 1]
1
>>>print y[O] [1]
1
»> print y[1]
345

The slice operator: can also be used to indicate that some
or all of a certain dimension is to be chosen. In Python, i: j
means all indices from i up to but not including j. An optional
:k can be added to indicate a stride count.

»> print y[1 :3]
345
678
»> print y[:, 1]
1 4 710
»> y[:, 1] = [5,6,7,8]
»> print y
052
365
678
9 811

Special indexing operations. Suppose you want to create
the outer product of two vectors, a and b. That is, you want
to create c such that c has shape (len (b), len (a)) and c [i, j] =
a [i] * b U]. We could accomplish this somewhat clumsily as
follows:

»> b = array ([10, 20])
»> C = zeros (len (b), len (a), Integer ())
»> for i in range (len (b)):

for j in range (len (a)):
c [i, j] = b til * a Ul

»> print c

COMPUTERS IN PHYSICS, VOL. 10, NO. 3,MAY/JUN 1996 265

SP

102030
204060

This is not just clumsy, it will be noticeably slow for vectors
of longer length. While the Python interpreter is. quit~ fast, it
is still much slower than carrying out the operatIOns In com­
piled code. So, we seek an array syntax to accomplish this.
The broadcasting rules provide the key.

»> b.shape=(2,1)
»> print b
10
20
»> c = a * b
»> print c
102030
204060

Note that in writing a * b we have made use of the
automatic-repetition feature described in the previous ~ecti.on.
All that we need to make this example more convement IS a
better way to achieve the reshaping of b. In effect, we want
to add a new axis oflength one to the end of the shape vector
ofb. Since adding a new axis oflength one is a commo~ form
of reshaping, Python has a convenient shorthand notatIOn ~or
it. In an array-subscript expression, you simply put the specIal
index NewAxis at the position where you want to create a new
axis. Therefore b I:, NewAxis] will be just what we need, and
the outer product can be written compactly as c = a * b I:,
NewAxis].

Another common problem is that you might want to
extract all elements along the first axes, but just the first
element along the last axis. Of course this is possible with
what we have explained until now. If the array a has the shape
(2,2,3), the answer is a I:, :,0]. But what if you need this to
work for an arbitrary array of unknown shape-for example,
in a general utility function? You would have to use one
empty slice operator for each axis, but to do so you must know
the number of a xes. The way out is the special index ... , which
stands for as many empty slice operators as is. requir~d. to
cover all the axes in the array. (It is clear from thIS defimtIOn
that you can use this special index only once in a ~ubscript
expression.) The above example can therefore be wntten as a
[... ,0].

Array methods. Each array object has a set of methods
that can be applied to it. These include:
• x.equal(y) returns an array of 1 's and O's ofth~ same shape

as x indicating whether or not the correspondIng elements
are' equal. The operator equal has siblings notEqual,
greater, greaterEqual, less, and lessEqual, ~nd cousi~s
and Logical, orLogical, and notLogical for carryIng out log~­
cal operations. (Caution: Python's normal scalar-compan-
son operators do not work on arrays.). .

• x.matrixMultiply(y) returns the mathematIcal matnx prod­
uct ofx and y.
There is a set of methods for producing arrays derived from
the given array, such as transposes, complex conjugates,
copies, concatenations, and so on. . .

• x.choose (list), x.take (list), and x.repeat (list) are avaIlable
for more complicated needs in choosing portions of an array.

266 COMPUTERS IN PHYSICS, VOL. 10, NO.3, MAY/JUN 1996

Reduction. The numeric extension, like the rest of Py­
thon, regards functions as first-class objects. A set of these
functions has been provided to optimize certain kinds of
calculations on arrays. Most of these functions, such as sin,
cos, and sqrt, are unary functions which operate elementwise.
However, some of the functions are binary; the two most
useful of these are add and multiply. Thus multiply(x,y) pro­
duces the same result as x * y. What makes the concept useful
is that add and multiply are objects, and these objects have
methods. The most useful of these methods is reduce.

A reduction by a binary operator applies that binary
operator repeatedly along a certain dimension (by default, the
first), until that dimension has been reduced to a scalar. Thus,
an object with one dimension fewer is produced.

»>z
1.00000000 2.00000000 3.00000000
4.00000000 5.00000000 6.00000000
»> add.reduce(z) #sum the columns
5.000000007.000000009.00000000
»> add.reduce(z,1) #sum the rows
6.00000000 15.00000000

The way to think about the optional second argument
here is that you are picking the index of the dimension that is
to be eliminated. In this example, z has shape (2, 3). After the
(default) reduction along the dimension numbered 0, it has
shape (3,). After reduction along the dimension numbered 1,
it has shape (2,). This allows us to define an easy "dot product"
function:

def dot (a, b):
return add.reduce (a * b)

»>w
1.00000000 2.00000000 3.00000000
»>v
-3.000000002.000000002.00000000
»> dot(w,v)
7.0

Object-oriented features
Python has a powerful mechanism for declaring y~ur

own kinds of objects. If you are doing a lot of work WIth
matrices, you might want a matrix object that is otherwise
similar to the array object but that implements the multiply
operator as matrix multiplication rather than elemen~ise
multiplication. Or you might want to invent your own plOttI~g
classes that contain objects such as curves and surfaces, WIth
attributes in these classes such as line_thickness, color, or
label, or a matrix used for rotation.

Python's facility for classes lets you do just ~hat and ~ven
lets you override the meaning of operators, attnb~te a~sIgn­
ment, subscripting, and so on. Here, for example, IS a SImple
class representing points with two coordinates, defining ad­
dition for them:

import umath
class Point:

"Points in two space -- skeletal example."
def _init_ (self, x, y):

"Construct a new point with coordinates x and y"
self.x = x
self.y = y

def _add_ (self, other):
"a + b"
return Point (self.x + other.x, self.y + other.y)

def norm (self):
"norm 0 = length of vector from origin to this point"
return umath.sqrt (self.x**2 + self.y**2)

You would subsequently use this class in statements like this:

x = Point (1.0, 2.0)
Y = Point (3.0, 6.0)
print (x+y).norm 0

Thisjust scratches the surface of the class facility . If you
are curious about those strings that follow the first line of each
class and function, those are called "doc strings" and are
visible to the user at runtime in a special attribute of the
function object. Plans are to develop tools to extract them
automatically from Python source code for creating class­
library documentation, as is done in Eiffel, for example.

Classes give you the power of inheritance. A Python class
has been implemented from which variants of the array object
can be derived. One such derivation is a class Matrix for
two-dimensional objects; it changes the * operator to mean
matrix multiplication rather than elementwise multiplication.
The standard array object has a method matrixMultiply so that
a.matrixMultiply(b) is the mathematical matrix product.

A programming strategy
What you have just seen is remarkable: a complete array

facility added to Python as a user-written extension. The
numeric extension is a high-performance array language with
remarkably sophisticated facilities. Some changes were made
to the Python parser, involving imaginary constants, the ••
operator for exponentiation, and multiple slicing subscripts.
These changes were only needed to improve the syntactic
appearance, such as being able to write [i, j) rather than [0, j)J,
and mostly were on the "to-do" list for the language anyway
and did not break any existing code.

The most powerful part of Python is its growing user
community and its members' spirit of cooperation in releasing
modules to the user-contributed library. See the World Wide
Web page http://www.python.org/python/Contributed.html.
Interfaces to such facilities as netCDF and PDB self-describ­
ing files, the PLPLOT graphics package, the Yorick graphics
subsystem, and fast-Fourier-transform packages are under
development. We recommend asking about your area of
interest on the news group comp.lang.python.

The numerical extension is a particular case of a tremen­
dously successful strategy: use Python as a scripting lan­
guage, adding to it objects and functions written in a compiled
language. Python's portability, free licensing, basic good
performance, and ease of extension, combined with its appeal
to the scientific community due to its simplicity and the ease
with which application-specific objects can be created, make
it a key tool for the future.

NOW YOU CAN HAVE
the entire
breadth
ofAMO
physics in
a single
volume

OR
in the
palm of
your hand

= .:-: # ---

ATOMIC, MOLECULAR, &
OPTICAL PHYSICS HANDBOOK

Edited by Gordon W. F. Drake, University a/Windsor.
Ollfario. Canada

This indispensable new resource from AlP Press is
the first ingle volume to bridge the many interrelat­
ed discipl ine: of atomic, molecular, and optical
(AMO) phys ics. Along with techniques, results and
a summary of key ideas, many chapters offer you
diagrams of apparatus, plu data in easy-to-read
graphs and tables. From atomic spectroscopy to
applications in comets, you' ll find contributions
from over 100 authors, all leader in their field .

BOOK: May 1996, 156396-242-X, 1076 page , illu lrated,

clo th , 8.5x I I , $ 130.00

CD-ROM: July 1996. 1-56396-596-8. $150.00

Look for it in your local bookstore
or call toll-free: 1-800-809-2247

Or mail check, money order, or P.O. 10: American Instit ute of
Phy. ics, Order Dept., P.O. Box 20. Wil liston , VT 05495

Shipping and Handling: $3.00 for the fir t item ($8.00 non-U.S .)
and $ 1.00 for each ildditional item

~s Books of the American Institute of Phys ics

VISIT TIlE AlP PRESS HOME PAGE AT:

http://www.aip.()rg/aippress

