Numerical radius Haagerup norm and square factorization through Hilbert spaces

By Takashi Itoh and Masaru Nagisa

(Received Apr. 7, 2004)
(Revised Mar. 22, 2005)

Abstract

We study a factorization of bounded linear maps from an operator space A to its dual space A^{*}. It is shown that $T: A \longrightarrow A^{*}$ factors through a pair of column Hilbert space \mathscr{H}_{c} and its dual space if and only if T is a bounded linear form on $A \otimes A$ by the canonical identification equipped with a numerical radius type Haagerup norm. As a consequence, we characterize a bounded linear map from a Banach space to its dual space, which factors through a pair of Hilbert spaces.

1. Introduction.

Factorization through a Hilbert space of a linear map plays one of the central roles in the Banach space theory (c.f. $[\mathbf{1 7}]$). Also in the C^{*}-algebra and the operator space theory, many important factorization theorems have been proved related to the Grothendieck type inequality in several situations [8], [5], [18], [21].

Let α be a bounded linear map from ℓ^{1} to $\ell^{\infty},\left\{e_{i}\right\}_{i=1}^{\infty}$ the canonical basis of ℓ^{1}, and $\boldsymbol{B}\left(\ell^{2}\right)$ the bounded operators on ℓ^{2}. We regard α as the infinite matrix $\left[\alpha_{i j}\right]$ where $\alpha_{i j}=\left\langle e_{i}, \alpha\left(e_{j}\right)\right\rangle$. The Schur multiplier S_{α} on $\boldsymbol{B}\left(\ell^{2}\right)$ is defined by $S_{\alpha}(x)=\alpha \circ x$ for $x=\left[x_{i j}\right] \in \boldsymbol{B}\left(\ell^{2}\right)$ where $\alpha \circ x$ is the Schur product $\left[\alpha_{i j} x_{i j}\right]$. Let $w(\cdot)$ be the numerical radius norm on $\boldsymbol{B}\left(\ell^{2}\right)$. In [12], it was shown that

$$
\left\|S_{\alpha}\right\|_{w}=\sup _{x \neq 0} \frac{w(\alpha \circ x)}{w(x)} \leq 1
$$

if and only if α has the following factorization with $\|a\|^{2}\|b\| \leq 1$:

where a^{t} is the transposed map of a.
Motivated by the above result, we will show a square factorization theorem of a bounded linear map through a pair of column Hilbert spaces \mathscr{H}_{c} between an operator

[^0]space and its dual space. More precisely, let us suppose that A is an operator space in $\boldsymbol{B}(\mathscr{H})$ and $A \otimes A$ is the algebraic tensor product. We define the numerical radius Haagerup norm of an element $u \in A \otimes A$ by
$$
\|u\|_{w h}=\inf \left\{\left.\frac{1}{2}\left\|\left[x_{1}, \ldots, x_{n}, y_{1}^{*}, \ldots, y_{n}^{*}\right]\right\|^{2} \right\rvert\, u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\} .
$$

Let $T: A \longrightarrow A^{*}$ be a bounded linear map. We show that $T: A \longrightarrow A^{*}$ has an extension T^{\prime} which factors through a pair of column Hilbert spaces \mathscr{H}_{c} so that

with $\inf \left\{\|a\|_{c b}^{2}\|b\|_{c b} \mid T^{\prime}=a^{*} b a\right\} \leq 1$ if and only if $T \in\left(A \otimes_{w h} A\right)^{*}$ with $\|T\|_{w h^{*}} \leq 1$ by the natural identification $\langle x, T(y)\rangle=T(x \otimes y)$ for $x, y \in A$.

We also study a variant of the numerical radius Haagerup norm in order to get the factorization without using the $*$ structure.

As a consequence, the above result and/or the variant read a square factorization of a bounded linear map through a pair of Hilbert spaces from a Banach space X to its dual space X^{*}. The norm on $X \otimes X$ corresponding to the numerical radius Haagerup norm is as follows:

$$
\|u\|_{w H}=\inf \left\{\sup \left\{\left(\sum_{i=1}^{n}\left|f\left(x_{i}\right)\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n}\left|f\left(y_{i}\right)\right|^{2}\right)^{\frac{1}{2}}\right\}\right\}
$$

where the supremum is taken over all $f \in X^{*}$ with $\|f\| \leq 1$ and the infimum is taken over all representations $u=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in X \otimes X$.

The norm $\left\|\|_{w H}\right.$ is equivalent to the norm $\| \|_{H}$ (see Remark 4.4) introduced by Grothendieck in [7]. However, $\left\|\|_{w H}\right.$ will give us a different view to factorization problems of bounded linear operators through Hilbert spaces. Let $\pi_{2}(a)$ be the 2 -summing norm (c.f. $[\mathbf{1 7}]$ or see section 4) of a linear map a from X to \mathscr{H}. We show that $T: X \longrightarrow X^{*}$ has the factorization

with $\inf \left\{\pi_{2}(a)^{2}\|b\| \mid T=a^{t} b a\right\} \leq 1$ if and only if $T \in\left(X \otimes_{w H} X\right)^{*}$ with $\|T\|_{w H^{*}} \leq 1$. Moreover we characterize a linear map $X \longrightarrow X^{*}$ which has a square factorization by a Lindenstrauss and Pelczynski type condition (c.f. [14] or see Remark 4.4).

We refer to $[\mathbf{6}],[\mathbf{1 5}],[\mathbf{2 0}]$ for background on operator spaces, $[\mathbf{1 7}],[\mathbf{1 9}]$ for factorization through a Hilbert space, and [16], [22], [23], [24] for completely bounded maps related to the numerical radius norm.

2. Factorization on operator spaces.

Let $\boldsymbol{B}(\mathscr{H})$ be the space of all bounded operators on a Hilbert space \mathscr{H}. Throughout this paper, let us suppose that A and B are operator spaces in $\boldsymbol{B}(\mathscr{H})$. We denote by $C^{*}(A)$ the C^{*}-algebra in $\boldsymbol{B}(\mathscr{H})$ generated by the operator space A. We define the numerical radius Haagerup norm of an element $u \in A \otimes B$ by

$$
\|u\|_{w h}=\inf \left\{\left.\frac{1}{2}\left\|\left[x_{1}, \ldots, x_{n}, y_{1}^{*}, \ldots, y_{n}^{*}\right]\right\|^{2} \right\rvert\, u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\},
$$

where $\left[x_{1}, \ldots, x_{n}, y_{1}^{*}, \ldots, y_{n}^{*}\right] \in M_{1,2 n}\left(C^{*}(A+B)\right)$, and denote by $A \otimes_{w h} B$ the completion of $A \otimes B$ with the norm $\left\|\|_{w h}\right.$.

Recall that the Haagerup norm on $A \otimes B$ is

$$
\|u\|_{h}=\inf \left\{\left\|\left[x_{1}, \ldots, x_{n}\right]\right\|\left\|\left[y_{1}, \ldots, y_{n}\right]^{t}\right\| \mid u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

where $\left[x_{1}, \ldots, x_{n}\right] \in M_{1, n}(A)$ and $\left[y_{1}, \ldots, y_{n}\right]^{t} \in M_{n, 1}(B)$.
By the identity

$$
\inf _{\lambda>0} \frac{\lambda \alpha+\lambda^{-1} \beta}{2}=\sqrt{\alpha \beta}
$$

for positive real numbers $\alpha, \beta \geq 0$, the Haagerup norm can be rewritten as

$$
\|u\|_{h}=\inf \left\{\left.\frac{1}{2}\left(\left\|\left[x_{1}, \ldots, x_{n}\right]\right\|^{2}+\left\|\left[y_{1}^{*}, \ldots, y_{n}^{*}\right]\right\|^{2}\right) \right\rvert\, u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\} .
$$

Then it is easy to check that

$$
\frac{1}{2}\|u\|_{h} \leq\|u\|_{w h} \leq\|u\|_{h}
$$

and $\|u\|_{w h}$ is a norm. We use the notation $x \alpha \odot y^{t}$ for $\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} \alpha_{i j} \otimes y_{j}$, where $x=\left[x_{1}, \ldots, x_{n}\right] \in M_{1, n}(A), \alpha=\left[\alpha_{i j}\right] \in M_{n, m}(\boldsymbol{C})$ and $y^{t}=\left[y_{1}, \ldots, y_{m}\right]^{t} \in M_{m, 1}(B)$. We note the identity $x \alpha \odot y^{t}=x \odot \alpha y^{t}$.

First we show that the numerical radius Haagerup norm has the injectivity.
Proposition 2.1. Let $A_{1} \subset A_{2}$ and $B_{1} \subset B_{2}$ be operator spaces in $\boldsymbol{B}(\mathscr{H})$. Then the canonical inclusion Φ of $A_{1} \otimes_{w h} B_{1}$ into $A_{2} \otimes_{w h} B_{2}$ is isometric.

Proof. The inequality $\|\Phi(u)\|_{w h} \leq\|u\|_{w h}$ is trivial. To get the reverse inequality, let $u=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in A_{1} \otimes B_{1}$. We may assume that $\left\{y_{1}, \ldots, y_{k}\right\} \subset B_{2}$ is linearly independent and there exists an $n \times k$ matrix of scalars $L \in M_{n k}(\boldsymbol{C})$ such that $\left[y_{1}, \ldots, y_{n}\right]^{t}=L\left[y_{1}, \ldots, y_{k}\right]^{t}$. We put $z^{t}=\left[y_{1}, \ldots y_{k}\right]^{t}$. Then we have

$$
\begin{aligned}
u & =x \odot y^{t}=x \odot L z^{t} \\
& =x L\left(L^{*} L\right)^{-1 / 2} \odot\left(L^{*} L\right)^{1 / 2} z^{t}
\end{aligned}
$$

and

$$
\left\|\left[x L\left(L^{*} L\right)^{-1 / 2},\left(\left(L^{*} L\right)^{1 / 2} z^{t}\right)^{*}\right]\right\| \leq\left\|\left[x,\left(y^{t}\right)^{*}\right]\right\|
$$

So we can get a representation $u=\left[x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right] \odot\left[y_{1}^{\prime}, \ldots, y_{k}^{\prime}\right]^{t}$ with

$$
\left\|\left[x_{1}^{\prime}, \ldots, x_{k}^{\prime}, y_{1}^{\prime *}, \ldots, y_{k}^{\prime *}\right]\right\| \leq\left\|\left[x,\left(y^{t}\right)^{*}\right]\right\|
$$

and $\left\{y_{1}^{\prime}, \ldots, y_{k}^{\prime}\right\}$ is linearly independent. This implies that $x_{1}^{\prime}, \ldots, x_{k}^{\prime} \in A_{1}$.
Applying the same argument for $\left\{x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right\}$ instead of $\left\{y_{1}, \ldots, y_{n}\right\}$, we can get a representation $u=\left[x^{\prime \prime}{ }_{1}, \ldots, x^{\prime \prime}{ }_{l}\right] \odot\left[y^{\prime \prime}{ }_{1}, \ldots, y^{\prime \prime}{ }_{l}\right]^{t}$ with

$$
\left\|\left[x^{\prime \prime}{ }_{1}, \ldots, x^{\prime \prime}{ }_{l}, y^{\prime \prime *}, \ldots, y_{l}^{\prime \prime *}\right]\right\| \leq\left\|\left[x,\left(y^{t}\right)^{*}\right]\right\|
$$

and $x^{\prime \prime}{ }_{i} \in A_{1}$ and $y^{\prime \prime}{ }_{i} \in B_{1}$. It follows that $\|\Phi(u)\|_{w h} \geq\|u\|_{w h}$.
We also define a norm of an element $u \in C^{*}(A) \otimes C^{*}(A)$ by

$$
\|u\|_{W h}=\inf \left\{\left\|\left[x_{1}, \ldots, x_{n}\right]^{t}\right\|^{2} w(\alpha) \mid u=\sum x_{i}^{*} \alpha_{i j} \otimes x_{j}\right\}
$$

where $w(\alpha)$ is the numerical radius norm of $\alpha=\left[\alpha_{i j}\right]$ in $M_{n}(\boldsymbol{C})$.
$A \otimes_{W h} A$ is defined as the closure of $A \otimes A$ in $C^{*}(A) \otimes_{W h} C^{*}(A)$.
Theorem 2.2. Let A be an operator space in $\boldsymbol{B}(\mathscr{H})$. Then $A \otimes_{w h} A=A \otimes_{W h} A$.
Proof. By Proposition 2.1 and the definition of $A \otimes_{W h} A$, it is sufficient to show that $C^{*}(A) \otimes_{w h} C^{*}(A)=C^{*}(A) \otimes_{W h} C^{*}(A)$.

Given $u=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in C^{*}(A) \otimes C^{*}(A)$, we have

$$
u=\left[x_{1}, \ldots, x_{n}, y_{1}^{*}, \ldots, y_{n}^{*}\right]\left[\begin{array}{cc}
0_{n} & 1_{n} \\
0_{n} & 0_{n}
\end{array}\right] \odot\left[x_{1}^{*}, \ldots, x_{n}^{*}, y_{1}, \ldots, y_{n}\right]^{t}
$$

Since $w\left(\left[\begin{array}{cc}0_{n} & 1_{n} \\ 0_{n} & 0_{n}\end{array}\right]\right)=\frac{1}{2},\|u\|_{w h} \geq\|u\|_{W h}$.
To establish the reverse inequality, suppose that $u=\sum_{i, j=1}^{n} x_{i}^{*} \alpha_{i j} \otimes x_{j} \in C^{*}(A) \otimes$ $C^{*}(A)$ with $w(\alpha)=1$ and $\left\|\left[x_{1}, \ldots, x_{n}\right]^{t}\right\|^{2}=1$. It is enough to see that there exist $c_{i}, d_{i} \in$
$C^{*}(A)(i=1, \ldots, m)$ such that $u=\sum_{i=1}^{m} c_{i} \otimes d_{i}$ with $\left\|\left[c_{1}, \ldots, c_{m}, d_{1}^{*}, \ldots, d_{m}^{*}\right]\right\|^{2} \leq 2$. By the assumption $w(\alpha)=1$ and Ando's Theorem [1], we can find a self-adjoint matrix $\beta \in M_{n}(\boldsymbol{C})$ for which $P=\left[\begin{array}{cc}1+\beta & \alpha \\ \alpha^{*} & 1-\beta\end{array}\right]$ is positive definite in $M_{2 n}(\boldsymbol{C})$.

Set $\left[c_{1}, \ldots, c_{2 n}\right]=\left[x_{1}^{*}, \ldots, x_{n}^{*}, 0, \ldots, 0\right] P^{\frac{1}{2}}$ and $\left[d_{1}, \ldots d_{2 n}\right]^{t}=P^{\frac{1}{2}}[0, \ldots, 0$, $\left.x_{1}, \ldots, x_{n}\right]^{t}$. We note that $u=\left[c_{1}, \ldots, c_{2 n}\right] \odot\left[d_{1}, \ldots, d_{2 n}\right]^{t}$. Then we have

$$
\begin{aligned}
\left\|\left[c_{1}, \ldots, c_{2 n}, d_{1}^{*}, \ldots, d_{2 n}^{*}\right]\right\|^{2}= & \|\left[x_{1}^{*}, \ldots, x_{n}^{*}, 0, \ldots, 0\right] P\left[x_{1}, \ldots, x_{n}, 0, \ldots, 0\right]^{t} \\
& +\left[0, \ldots, 0, x_{1}^{*}, \ldots, x_{n}^{*}\right] P\left[0, \ldots, 0, x_{1}, \ldots, x_{n}\right]^{t} \| \\
= & \|\left[x_{1}^{*}, \ldots, x_{n}^{*}\right](1+\beta)\left[x_{1}, \ldots, x_{n}\right]^{t} \\
& +\left[x_{1}^{*}, \ldots, x_{n}^{*}\right](1-\beta)\left[x_{1}, \ldots, x_{n}\right]^{t} \| \\
= & 2\left\|\left[x_{1}, \ldots, x_{n}\right]^{t}\right\|^{2}=2 .
\end{aligned}
$$

We recall the column (resp. row) Hilbert space $\mathscr{H}_{c}\left(\right.$ resp. $\left.\mathscr{H}_{r}\right)$ for a Hilbert space \mathscr{H}. For $\xi=\left[\xi_{i j}\right] \in M_{n}(\mathscr{H})$, we define a map $C_{n}(\xi)$ by

$$
C_{n}(\xi): C^{n} \ni\left[\lambda_{1}, \ldots, \lambda_{n}\right] \longmapsto\left[\sum_{j=1}^{n} \lambda_{j} \xi_{i j}\right]_{i} \in \mathscr{H}^{n}
$$

and denote the column matrix norm by $\|\xi\|_{c}=\left\|C_{n}(\xi)\right\|$. This operator space structure on \mathscr{H} is called the column Hilbert space and denoted by \mathscr{H}_{c}.

To consider the row Hilbert space, let $\overline{\mathscr{H}}$ be the conjugate Hilbert space for \mathscr{H}. We define a map $R_{n}(\xi)$ by

$$
R_{n}(\xi): \overline{\mathscr{H}}^{n} \ni\left[\bar{\eta}_{1}, \ldots, \bar{\eta}_{n}\right] \longmapsto\left[\sum_{j=1}^{n}\left(\xi_{i j} \mid \eta_{j}\right)\right]_{i} \in C^{n}
$$

and the row matrix norm by $\|\xi\|_{r}=\left\|R_{n}(\xi)\right\|$. This operator space structure on \mathscr{H} is called the row Hilbert space and denoted by \mathscr{H}_{r}.

Let $a: C^{*}(A) \longrightarrow \mathscr{H}_{c}$ be a completely bounded map. We define a map $d: C^{*}(A) \longrightarrow$ $\overline{\mathscr{H}}$ by $d(x)=\overline{a\left(x^{*}\right)}$. It is not hard to check that $d: C^{*}(A) \longrightarrow \overline{\mathscr{H}}_{r}$ is completely bounded and $\|a\|_{c b}=\|d\|_{c b}$ when we introduce the row Hilbert space structure to $\overline{\mathscr{H}}$. In this paper, we define the adjoint map a^{*} of a by the transposed map of d, that is, $d^{t}:\left((\overline{\mathscr{H}})_{r}\right)^{*}=\left(\left(\mathscr{H}^{*}\right)_{r}\right)^{*}=\left(\mathscr{H}^{* *}\right)_{c}=\mathscr{H}_{c} \longrightarrow C^{*}(A)^{*}$ (c.f. [5]). More precisely, we define

$$
\left\langle a^{*}(\eta), x\right\rangle=\langle\eta, d(x)\rangle=\left(\eta \mid a\left(x^{*}\right)\right) \quad \text { for } \quad \eta \in \mathscr{H}, x \in C^{*}(A) .
$$

A linear map $T: A \longrightarrow A^{*}$ can be identified with the bilinear form $A \times A \ni(x, y) \longmapsto$ $\langle x, T(y)\rangle \in \boldsymbol{C}$ and also the linear form $A \otimes A \longrightarrow \boldsymbol{C}$. We also use T to denote both of the bilinear form and the linear form, and use $\|T\|_{\beta^{*}}$ to denote the norm when $A \otimes A$ is equipped with a norm $\left\|\|_{\beta}\right.$.

We are going to prove the main theorem. The main result below can be shown by modifying arguments for the original Haagerup norm in [4].

Theorem 2.3. Suppose that A is an operator space in $\boldsymbol{B}(\mathscr{H})$, and that $T: A \times$ $A \longrightarrow \boldsymbol{C}$ is bilinear. Then the following are equivalent:
(1) $\|T\|_{w h^{*}} \leq 1$.
(2) There exists a state p_{0} on $C^{*}(A)$ such

$$
|T(x, y)| \leq p_{0}\left(x x^{*}\right)^{\frac{1}{2}} p_{0}\left(y^{*} y\right)^{\frac{1}{2}} \quad \text { for } x, y \in A .
$$

(3) There exist $a *$-representation $\pi: C^{*}(A) \longrightarrow \boldsymbol{B}(\mathscr{K})$, a unit vector $\xi \in \mathscr{K}$ and a contraction $b \in \boldsymbol{B}(\mathscr{K})$ such that

$$
T(x, y)=(\pi(x) b \pi(y) \xi \mid \xi) \quad \text { for } x, y \in A
$$

(4) There exist an extension $T^{\prime}: C^{*}(A) \longrightarrow C^{*}(A)^{*}$ of T and completely bounded maps $a: C^{*}(A) \longrightarrow \mathscr{K}_{c}, b: \mathscr{K}_{c} \longrightarrow \mathscr{K}_{c}$ such that

$$
\text { i.e., } \quad T^{\prime}=a^{*} b a \quad \text { with } \quad\|a\|_{c b}^{2}\|b\|_{c b} \leq 1
$$

Proof. $\quad(1) \Rightarrow(2) \quad$ By Proposition 2.1, we can extend T on $C^{*}(A) \otimes_{w h} C^{*}(A)$ and also denote it by T. We may assume $\|T\|_{w h^{*}} \leq 1$. By the identity (\star), it is sufficient to show the existence of a state $p_{0} \in S\left(C^{*}(A)\right)$ such that

$$
|T(x, y)| \leq \frac{1}{2} p_{0}\left(x x^{*}+y^{*} y\right) \quad \text { for } x, y \in C^{*}(A)
$$

Moreover it is enough to find $p_{0} \in S\left(C^{*}(A)\right)$ such that

$$
\operatorname{Re} T(x, y) \leq \frac{1}{2} p_{0}\left(x x^{*}+y^{*} y\right) \quad \text { for } x, y \in C^{*}(A)
$$

Define a real valued function $T_{\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}}(\cdot)$ on $S\left(C^{*}(A)\right)$ by

$$
T_{\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}}(p)=\sum_{i=1}^{n} \frac{1}{2} p\left(x_{i} x_{i}^{*}+y_{i}^{*} y_{i}\right)-\operatorname{Re} T\left(x_{i}, y_{i}\right),
$$

for $x_{i}, y_{i} \in C^{*}(A)$. Set

$$
\triangle=\left\{T_{\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}} \mid x_{i}, y_{i} \in C^{*}(A), n \in \boldsymbol{N}\right\}
$$

It is easy to see that Δ is a cone in the set of all real functions on $S\left(C^{*}(A)\right)$. Let ∇ be the open cone of all strictly negative functions on $S\left(C^{*}(A)\right)$. For any $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in$ $C^{*}(A)$, there exists $p_{1} \in S\left(C^{*}(A)\right)$ such that $p_{1}\left(\sum x_{i} x_{i}^{*}+y_{i}^{*} y_{i}\right)=\left\|\sum x_{i} x_{i}^{*}+y_{i}^{*} y_{i}\right\|$. Since

$$
\begin{aligned}
T_{\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}}\left(p_{1}\right) & =\frac{1}{2} p_{1}\left(\sum x_{i} x_{i}^{*}+y_{i}^{*} y_{i}\right)-\operatorname{Re} \sum T\left(x_{i}, y_{i}\right) \\
& =\frac{1}{2}\left\|\sum x_{i} x_{i}^{*}+y_{i}^{*} y_{i}\right\|-\operatorname{Re} \sum T\left(x_{i}, y_{i}\right) \\
& \geq \frac{1}{2}\left\|\sum x_{i} x_{i}^{*}+y_{i}^{*} y_{i}\right\|-\left|\sum T\left(x_{i}, y_{i}\right)\right| \\
& \geq 0,
\end{aligned}
$$

we have $\Delta \cap \nabla=\varnothing$.
By the Hahn-Banach Theorem, there exists a measure μ on $S\left(C^{*}(A)\right)$ such that $\mu(\triangle) \geq 0$ and $\mu(\nabla)<0$. So we may assume that μ is a probability measure. Now put $p_{0}=\int p d \mu(p)$. Since $T_{\{x, y\}} \in \triangle$,

$$
\frac{1}{2} p_{0}\left(x x^{*}+y^{*} y\right)-\operatorname{Re} T(x, y)=\int T_{\{x, y\}}(p) d \mu(p) \geq 0
$$

$(2) \Rightarrow(1)$ Since

$$
\begin{aligned}
\left|\sum T\left(x_{i}, y_{i}\right)\right| & \leq \sum p_{0}\left(x_{i} x_{i}^{*}\right)^{\frac{1}{2}} p_{0}\left(y_{i}^{*} y_{i}\right)^{\frac{1}{2}} \\
& \leq \frac{1}{2} \sum p_{0}\left(x_{i} x_{i}^{*}+y_{i}^{*} y_{i}\right) \\
& \leq \frac{1}{2}\left\|\left[x_{1}, \ldots, x_{n}, y_{1}^{*}, \ldots, y_{n}^{*}\right]\right\|^{2}
\end{aligned}
$$

for $x, y \in A$, we have that $T \in\left(A \otimes_{w h} A\right)^{*}$ with $\|T\|_{w h^{*}} \leq 1$.
$(1) \Rightarrow(3)$ As in the proof of the implication $(1) \Rightarrow(2)$, we can find a state $p \in S\left(C^{*}(A)\right)$ such that $|T(x, y)| \leq p\left(x x^{*}\right)^{\frac{1}{2}} p\left(y^{*} y\right)^{\frac{1}{2}}$ for $x, y \in C^{*}(A)$. By the GNS construction, we let $\pi: C^{*}(A) \longrightarrow \boldsymbol{B}(\mathscr{K})$ be the cyclic representation with the cyclic vector ξ and $p(x)=$ $(\pi(x) \xi \mid \xi)$ for $x \in C^{*}(A)$. Define a sesquilinear form on $\mathscr{K} \times \mathscr{K}$ by $\langle\pi(y) \xi, \pi(x) \xi\rangle=$ $T\left(x^{*}, y\right)$. This is well-defined and bounded since

$$
|\langle\pi(y) \xi, \pi(x) \xi\rangle| \leq p\left(x^{*} x\right)^{\frac{1}{2}} p\left(y^{*} y\right)^{\frac{1}{2}}=\|\pi(x) \xi\|\|\pi(y) \xi\|
$$

Thus there exists a contraction $b \in \boldsymbol{B}(\mathscr{K})$ such that $T\left(x^{*}, y\right)=(b \pi(y) \xi \mid \pi(x) \xi)$.
$(3) \Rightarrow(4)$ Set $a(x)=\pi(x) \xi$ for $x \in C^{*}(A)$ and consider the column Hilbert structure for \mathscr{K}. Then it is easy to see that $a: C^{*}(A) \longrightarrow \mathscr{K}_{c}$ is a complete contraction. The composition $T^{\prime}=a^{*} b a$ is an extension of T and $\|a\|_{c b}^{2}\|b\|_{c b} \leq 1$.
$(4) \Rightarrow(1)$ Since $T^{\prime}(x, y)=\left(b a(y) \mid a\left(x^{*}\right)\right)$ for $x, y \in C^{*}(A)$, we have

$$
\begin{aligned}
\left|\sum_{i, j=1}^{n} T^{\prime}\left(x_{i}^{*} \alpha_{i j}, x_{j}\right)\right| & =\left|\sum_{i, j=1}^{n}\left(b \alpha_{i j} a\left(x_{j}\right) \mid a\left(x_{i}\right)\right)\right| \\
& =\left|\left(\left.\left[\begin{array}{cc}
b & \\
& \\
& \ddots \\
0 & \\
b
\end{array}\right]\left[\begin{array}{c}
\alpha_{i j}
\end{array}\right]\left[\begin{array}{c}
a\left(x_{1}\right) \\
\vdots \\
a\left(x_{n}\right)
\end{array}\right] \right\rvert\,\left[\begin{array}{c}
a\left(x_{1}\right) \\
\vdots \\
a\left(x_{n}\right)
\end{array}\right]\right)\right| \\
& \leq w\left(\left[\begin{array}{lll}
b & & 0 \\
& \ddots & \\
0 & & b
\end{array}\right]\left[\begin{array}{c}
\alpha_{i j}
\end{array}\right]\right)\left\|\left[\begin{array}{c}
a\left(x_{1}\right) \\
\vdots \\
a\left(x_{n}\right)
\end{array}\right]\right\|^{2} \\
& \leq\|b\|_{c b} w(\alpha)\|a\|_{c b}^{2}\left\|\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]\right\|^{2}
\end{aligned}
$$

for $\sum_{i, j=1}^{n} x_{i}^{*} \alpha_{i j} \otimes x_{j} \in C^{*}(A) \otimes C^{*}(A)$. At the last inequality, we use $w(c d) \leq\|c\| w(d)$ for double commuting operators c, d as well as the fact that $\boldsymbol{B}(\mathscr{K}, \mathscr{K})$ is completely isometric onto $C B\left(\mathscr{K}_{c}, \mathscr{K}_{c}\right)$. Hence we obtain that $\|T\|_{w h^{*}} \leq\left\|T^{\prime}\right\|_{w h^{*}} \leq 1$.

Remark 2.4. (i) If we replace the linear map $\langle T(x), y\rangle=T(x, y)$ with $\langle x, T(y)\rangle=$ $T(x, y)$ in Theorem 2.3, then we have a factorization of T through a pair of the row Hilbert spaces \mathscr{H}_{r}. More precisely, the following condition (4)' is equivalent to the conditions in Theorem 2.3.
(4) ${ }^{\prime}$ There exist an extension $T^{\prime}: C^{*}(A) \longrightarrow C^{*}(A)^{*}$ of T and completely bounded maps $a: C^{*}(A) \longrightarrow \mathscr{K}_{r}, b: \mathscr{K}_{r} \longrightarrow \mathscr{K}_{r}$ such that

$$
\text { i.e., } \quad T^{\prime}=a^{*} b a \quad \text { with } \quad\|a\|_{c b}^{2}\|b\|_{c b} \leq 1 .
$$

(ii) Let ℓ_{n}^{2} be an n-dimensional Hilbert space with the canonical basis $\left\{e_{1}, \ldots, e_{n}\right\}$. Given $\alpha: \ell_{n}^{2} \longrightarrow \ell_{n}^{2}$ with $\alpha\left(e_{j}\right)=\sum_{i} \alpha_{i j} e_{i}$, we set the map $\dot{\alpha}: \ell_{n}^{2} \longrightarrow \ell_{n}^{2 *}$ by $\dot{\alpha}\left(e_{j}\right)=$ $\sum_{i} \alpha_{i j} \bar{e}_{i}$ where $\left\{\bar{e}_{i}\right\}$ is the dual basis. For notational convenience, we shall also denote $\dot{\alpha}$ by α. For $\sum_{i=1}^{n} x_{i} \otimes e_{i} \in C^{*}(A) \otimes \ell_{n}^{2}$, we define a norm by $\left\|\sum_{i=1}^{n} x_{i} \otimes e_{i}\right\|=\left\|\left[x_{1}, \ldots, x_{n}\right]^{t}\right\|$. Let $T: C^{*}(A) \longrightarrow C^{*}(A)^{*}$ be a bounded linear map. Consider $T \otimes \alpha: C^{*}(A) \otimes \ell_{n}^{2} \longrightarrow$ $C^{*}(A)^{*} \otimes \ell_{n}^{2 *}$ with a numerical radius type norm $w(\cdot)$ given by

$$
w(T \otimes \alpha)=\sup \left\{\left|\left\langle\sum x_{i}^{*} \otimes e_{i}, T \otimes \alpha\left(\sum x_{i} \otimes e_{i}\right)\right\rangle\right| \mid\left\|\sum x_{i} \otimes e_{i}\right\| \leq 1\right\} .
$$

Then we have

$$
\sup \left\{\left.\frac{w(T \otimes \alpha)}{w(\alpha)} \right\rvert\, \alpha: \ell_{n}^{2} \longrightarrow \ell_{n}^{2}, n \in N\right\}=\|T\|_{w h^{*}},
$$

since $T\left(\sum x_{i}^{*} \alpha_{i j} \otimes x_{j}\right)=\left\langle\sum x_{i}^{*} \otimes e_{i}, T \otimes \alpha\left(\sum x_{i} \otimes e_{i}\right)\right\rangle$.
(iii) Let $u=\sum x_{i} \otimes y_{i} \in C^{*}(A) \otimes C^{*}(A)$. It is straightforward from Theorem 2.3 that

$$
\|u\|_{w h}=\sup w\left(\sum \varphi\left(x_{i}\right) b \varphi\left(y_{i}\right)\right)
$$

where the supremum is taken over all $*$ - preserving complete contractions φ and contractions b.

3. A variant of the numerical radius Haagerup norm.

In this section, we study a factorizaion of $T: A \longrightarrow A^{*}$ through a column Hilbert space \mathscr{K}_{c} and its dual operator space \mathscr{K}_{c}^{*}. Arguments required in this section are very similar to those in section 2, and instead of repeating them we will just emphasize differences.

We define a variant of the numerical radius Haagerup norm of an element $u \in A \otimes B$ by

$$
\|u\|_{w h^{\prime}}=\inf \left\{\left.\frac{1}{2}\left\|\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]^{t}\right\|^{2} \right\rvert\, u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

where $\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]^{t} \in M_{2 n, 1}(A+B)$, and denote by $A \otimes_{w h^{\prime}} B$ the completion of $A \otimes B$ with the norm $\left\|\|_{w h^{\prime}}\right.$.

We remark that $\left\|\|_{w h}\right.$ and $\| \|_{w h^{\prime}}$ are inequivalent, since $\left\|\|^{\prime}{ }_{h}\left(\right.\right.$ resp. $\left.\| \|_{h}\right)$ in [10] is equivalent to $\left\|\|_{w h^{\prime}}\left(\right.\right.$ resp. $\left.\| \|_{w h}\right)$ while $\| \|_{h}$ and $\left\|\|^{\prime} h\right.$ are inequivalent [10], [13].

Proposition 3.1. Let $A_{1} \subset A_{2}$ and $B_{1} \subset B_{2}$ be operator spaces in $\boldsymbol{B}(\mathscr{H})$. Then the canonical inclusion Φ of $A_{1} \otimes_{w h^{\prime}} B_{1}$ into $A_{2} \otimes_{w h^{\prime}} B_{2}$ is isometric.

Proof. The proof is almost the same as that given in Proposition 2.1.
In the next theorem, we use the transposed map $a^{t}:\left(\mathscr{K}_{c}\right)^{*} \longrightarrow C^{*}(A)^{*}$ of a : $C^{*}(A)^{*} \longrightarrow \mathscr{K}_{c}$ instead of $a^{*}: \mathscr{K}_{c} \longrightarrow C^{*}(A)^{*}$. We note that $\left(\mathscr{K}_{c}\right)^{*}=(\overline{\mathscr{K}})_{r}$ and a, a^{t} are related by

$$
\left\langle a^{t}(\bar{\eta}), x\right\rangle=\langle\bar{\eta}, a(x)\rangle=(\bar{\eta} \mid \overline{a(x)}) \overline{\mathscr{K}} \quad \text { for } \bar{\eta} \in \overline{\mathscr{K}}, x \in C^{*}(A) .
$$

It seems that the fourth condition in the next theorem is simpler than the fourth one in Theorem 2.3, since we do not use $*$-structure.

Theorem 3.2. Suppose that A is an operator space in $\boldsymbol{B}(\mathscr{H})$, and that $T: A \times$ $A \longrightarrow \boldsymbol{C}$ is bilinear. Then the following are quivalent:
(1) $\|T\|_{w h^{\prime *}} \leq 1$.
(2) There exists a state p_{0} on $C^{*}(A)$ such that

$$
|T(x, y)| \leq p_{0}\left(x^{*} x\right)^{\frac{1}{2}} p_{0}\left(y^{*} y\right)^{\frac{1}{2}} \quad \text { for } x, y \in A .
$$

(3) There exist $a *$-representation $\pi: C^{*}(A) \longrightarrow \boldsymbol{B}(\mathscr{K})$, a unit vector $\xi \in \mathscr{K}$ and a contraction $b: \mathscr{K} \longrightarrow \overline{\mathscr{K}}$ such that

$$
T(x, y)=(b \pi(y) \xi \mid \overline{\pi(x) \xi})_{\overline{\mathscr{K}}} \quad \text { for } x, y \in A .
$$

(4) There exist a completely bounded map $a: A \longrightarrow \mathscr{K}_{c}$ and a bounded map $b: \mathscr{K}_{c} \longrightarrow$ $\left(\mathscr{K}_{c}\right)^{*}$ such that

Proof. $\quad(1) \Rightarrow(2) \Rightarrow(3)$ We can prove these implications by the similar way as in the proof of Theorem 2.3.
$(3) \Rightarrow(4)$ We note that we use the norm $\|\|$ for b instead of the completely bounded norm || $\|_{c b}$.
$(4) \Rightarrow(1)$ For $x_{i}, y_{i} \in A$, we have

$$
\begin{aligned}
& \left|\sum_{i=1}^{n} T\left(x_{i}, y_{i}\right)\right|=\left|\sum_{i=1}^{n}\left(b a\left(y_{i}\right) \mid \overline{a\left(x_{i}\right)}\right) \overline{\mathscr{K}}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\|b\|\|a\|_{c b}^{2}\left\|\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]^{t}\right\|^{2} \leq \frac{1}{2}\left\|\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]^{t}\right\|^{2} .
\end{aligned}
$$

4. Factorization on Banach spaces.

Let X be a Banach space. Recall that the minimal quantization $\operatorname{Min}(X)$ of X. Let Ω_{X} be the unit ball of X^{*}, that is, $\Omega_{X}=\left\{f \in X^{*} \mid\|f\| \leq 1\right\}$. For $\left[x_{i j}\right] \in M_{n}(X)$, $\left\|\left[x_{i j}\right]\right\|_{\text {min }}$ is defined by

$$
\left\|\left[x_{i j}\right]\right\|_{\min }=\sup \left\{\left\|\left[f\left(x_{i j}\right)\right]\right\| \mid f \in \Omega_{X}\right\} .
$$

Then $\operatorname{Min}(X)$ can be regarded as a subspace in the C^{*}-algebra $C\left(\Omega_{X}\right)$ of all continuous functions on the compact Hausdorff space Ω_{X}. Here we define a norm of an element $u \in X \otimes X$ by

$$
\|u\|_{w H}=\inf \left\{\sup \left\{\left(\sum_{i=1}^{n}\left|f\left(x_{i}\right)\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n}\left|f\left(y_{i}\right)\right|^{2}\right)^{\frac{1}{2}}\right\}\right\}
$$

where the supremum is taken over all $f \in X^{*}$ with $\|f\| \leq 1$ and the infimum is taken over all representations $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$.

Proposition 4.1. Let X be a Banach space. Then

$$
\operatorname{Min}(X) \otimes_{w h} \operatorname{Min}(X)=\operatorname{Min}(X) \otimes_{w h^{\prime}} \operatorname{Min}(X)=X \otimes_{w H} X
$$

Proof. Let $u=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in \operatorname{Min}(X)$. Then, using the identity (\star), we have

$$
\begin{aligned}
\|u\|_{w h} & =\inf \left\{\left.\frac{1}{2}\left\|\left[x_{1}, \ldots, x_{n}, y_{1}^{*}, \ldots, y_{n}^{*}\right]\right\|^{2} \right\rvert\, u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\} \\
& =\inf \left\{\left.\sup \left\{\left.\frac{1}{2}\left\|\left[f\left(x_{1}\right), \ldots, f\left(x_{n}\right), \overline{f\left(y_{1}\right)}, \ldots, \overline{f\left(y_{n}\right)}\right]\right\|^{2} \right\rvert\, f \in \Omega_{X}\right\} \right\rvert\, u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\} \\
& =\inf \left\{\left.\sup \left\{\left.\frac{1}{2}\left(\sum_{i=1}^{n}\left|f\left(x_{i}\right)\right|^{2}+\left|f\left(y_{i}\right)\right|^{2}\right) \right\rvert\, f \in \Omega_{X}\right\} \right\rvert\, u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\} \\
& =\inf \left\{\left.\sup \left\{\left.\left(\sum_{i=1}^{n}\left|f\left(x_{i}\right)\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n}\left|f\left(y_{i}\right)\right|^{2}\right)^{\frac{1}{2}} \right\rvert\, f \in \Omega_{X}\right\} \right\rvert\, u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\} \\
& =\|u\|_{w H} .
\end{aligned}
$$

The equality $\|u\|_{w h^{\prime}}=\|u\|_{w H}$ is obtained by the same way as above.
Let $T: X \longrightarrow X^{*}$ be a bounded linear map. As in Remark 2.4(ii), we consider the map $T \otimes \alpha: X \otimes \ell_{n}^{2} \longrightarrow X^{*} \otimes \ell_{n}^{2 *}$ and define a norm for $\sum x_{i} \otimes e_{i} \in X \otimes \ell_{n}^{2}$ by

$$
\left\|\sum x_{i} \otimes e_{i}\right\|=\sup \left\{\left.\left(\sum\left|f\left(x_{i}\right)\right|^{2}\right)^{\frac{1}{2}} \right\rvert\, f \in \Omega_{X}\right\}
$$

We note that, given $x \in X, x^{*}$ is regarded as $\left\langle x^{*}, f\right\rangle=\overline{f(x)}$ for $f \in X^{*}$ in the definition of $w(T \otimes \alpha)$, that is,

$$
w(T \otimes \alpha)=\sup \left\{\left|\left\langle\sum x_{i}^{*} \otimes e_{i}, T \otimes \alpha\left(\sum x_{i} \otimes e_{i}\right)\right\rangle\right| \mid\left\|\sum x_{i} \otimes e_{i}\right\| \leq 1\right\}
$$

Let $a: X \longrightarrow Y$ be a linear map between Banach spaces. a is called a 2 -summing operator if there is a constant C which satisfies the inequality

$$
\left(\sum\left\|a\left(x_{i}\right)\right\|^{2}\right)^{\frac{1}{2}} \leq C \sup \left\{\left.\left(\sum\left|f\left(x_{i}\right)\right|^{2}\right)^{\frac{1}{2}} \right\rvert\, f \in \Omega_{X}\right\}
$$

for any finite subset $\left\{x_{i}\right\} \subset X$. The smallest such constant C is defined as $\pi_{2}(a)$, the 2 -summing norm of a. The following might be well known.

Proposition 4.2. Let X be a Banach space. If a is a linear map from X to \mathscr{H}, then the following are equivalent:
(1) $\left\|a: \operatorname{Min}(\mathrm{X}) \longrightarrow \mathscr{H}_{\mathrm{c}}\right\|_{\mathrm{cb}} \leq 1$.
(2) $\left\|a: \operatorname{Min}(\mathrm{X}) \longrightarrow \mathscr{H}_{\mathrm{r}}\right\|_{\mathrm{cb}} \leq 1$.
(3) $\pi_{2}(a: X \longrightarrow \mathscr{H}) \leq 1$.

Proof. (1) $\Rightarrow(3)$ For any $x_{1}, \ldots, x_{n} \in X$, we have

$$
\begin{aligned}
\sum_{i=1}^{n}\left\|a\left(x_{i}\right)\right\|^{2} & =\left\|\left[a\left(x_{1}\right), \cdots, a\left(x_{n}\right)\right]^{t}\right\|^{2} \\
& \leq\|a\|_{c b}^{2}\left\|\left[x_{1}, \cdots, x_{n}\right]^{t}\right\|_{\mathrm{Min}}^{2} \\
& \leq\left\|\sum_{i=1}^{n} x_{i}^{*} x_{i}\right\|_{\text {Min }} \\
& =\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}\right)\right|^{2} \mid f \in \Omega_{X}\right\} .
\end{aligned}
$$

$(3) \Rightarrow(1)$ For any $\left[x_{i j}\right] \in M_{n}(\operatorname{Min}(X))$, we have

$$
\begin{aligned}
\left\|\left[a\left(x_{i j}\right)\right]\right\|_{M_{n}\left(\mathscr{H}_{c}\right)}^{2} & =\sup \left\{\left.\sum_{i}\left\|\sum_{j} \lambda_{j} a\left(x_{i j}\right)\right\|^{2}\left|\sum\right| \lambda_{j}\right|^{2}=1\right\} \\
& \leq \sup \left\{\left.\pi_{2}(a)^{2} \sup \left\{\sum_{i}\left|f\left(\sum_{j} \lambda_{j} x_{i j}\right)\right|^{2} \mid f \in \Omega_{X}\right\}\left|\sum\right| \lambda_{j}\right|^{2}=1\right\} \\
& \leq \sup \left\{\left\|\left[f\left(x_{i j}\right)\right]\right\|^{2} \mid f \in \Omega_{X}\right\} \\
& \leq\left\|\left[x_{i j}\right]\right\|_{M_{n}(\operatorname{Min}(X))}^{2}
\end{aligned}
$$

$(2) \Leftrightarrow(3)$ It follows by the same way as above.
Corollary 4.3. Suppose that X is a Banach space, and that $T: X \longrightarrow X^{*}$ is a bounded linear map. Then the following are equivalent:
(1) $w(T \otimes \alpha) \leq w(\alpha)$ for all $\alpha: \ell_{n}^{2} \longrightarrow \ell_{n}^{2}$ and $n \in \boldsymbol{N}$.
(2) $\|T\|_{w H^{*}} \leq 1$.
(3) T factors through a Hilbert space \mathscr{K} and its dual space \mathscr{K}^{*} by a 2-summing operator $a: X \longrightarrow \mathscr{K}$ and a bounded operator $b: \mathscr{K} \longrightarrow \mathscr{K}^{*}$ as follows:

$$
\text { i.e., } \quad T=a^{t} b a \quad \text { with } \quad \pi_{2}(a)^{2}\|b\| \leq 1 .
$$

(4) T has an extension $T^{\prime}: C\left(\Omega_{X}\right) \longrightarrow C\left(\Omega_{X}\right)^{*}$ which factors through a pair of Hilbert spaces \mathscr{K} by a 2-summing operator a : $C\left(\Omega_{X}\right) \longrightarrow \mathscr{K}$ and a bounded operator $b: \mathscr{K} \longrightarrow \mathscr{K}$ as follows:

Proof. $\quad(1) \Rightarrow(2)$ Suppose that

$$
\left|\left\langle\sum_{i=1}^{m} z_{i}^{*} \otimes e_{i}, T \otimes \alpha\left(\sum_{i=1}^{m} z_{i} \otimes e_{i}\right)\right\rangle\right| \leq 1
$$

for any $\sum_{i=1}^{m} z_{i} \otimes e_{i} \in X \otimes \ell_{m}^{2}$ with $\left\|\sum_{i=1}^{m} z_{i} \otimes e_{i}\right\| \leq 1$ and $\alpha \in M_{n}(\boldsymbol{C})$ with $w(\alpha) \leq 1$. It is easy to see that $\left|\sum_{i, j=1}^{m}\left\langle z_{i}^{*}, T\left(z_{j}\right)\right\rangle \alpha_{i j}\right| \leq 1$, equivalently $\left|\sum_{i, j=1}^{m}\left\langle z_{i}, T\left(z_{j}\right)\right\rangle \overline{\alpha_{i j}}\right| \leq 1$.

Given $\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|_{w H}<1$, we may assume that

$$
\frac{1}{2}\left\|\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]^{t}\right\|^{2} \leq 1
$$

Set

$$
z_{i}=\left\{\begin{array}{ll}
\frac{1}{\sqrt{2}} x_{i} & i=1, \ldots, n \\
\frac{1}{\sqrt{2}} y_{i-n} & i=n+1, \ldots, 2 n
\end{array} \quad \text { and } \alpha=\left[\begin{array}{cc}
0_{n} & 2 \cdot 1_{n} \\
0_{n} & 0_{n}
\end{array}\right] .\right.
$$

It turns out $\left\|\sum_{i=1}^{2 n} z_{i} \otimes e_{i}\right\| \leq 1$ and $w(\alpha)=1$. Then we have $\left|T\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)\right|=$ $\left|\sum_{i, j=1}^{2 n}\left\langle z_{i}, T\left(z_{j}\right)\right\rangle \alpha_{i j}\right| \leq 1$. Hence $\|T\|_{w H^{*}} \leq 1$.
$(2) \Rightarrow(1) \quad$ Suppose that $\|T\|_{w H^{*}} \leq 1$. Then T has an extension $T^{\prime} \in\left(C\left(\Omega_{X}\right) \otimes_{w h}\right.$ $\left.C\left(\Omega_{X}\right)\right)^{*}$ with $\left\|T^{\prime}\right\|_{w h^{*}} \leq 1$. Given $\varepsilon>0$ and $\alpha \in M_{n}(\boldsymbol{C})$, there exist $x_{1}, \ldots, x_{n} \in$ $C\left(\Omega_{X}\right)$ such that $\left\|\sum_{i=1}^{n} x_{i} \otimes e_{i}\right\| \leq 1$ (equivalently $\left\|\left[x_{1}, \ldots, x_{n}\right]^{t}\right\| \leq 1$) and $w\left(T^{\prime} \otimes \alpha\right)-$
$\varepsilon<\left|\sum_{i, j=1}^{n}\left\langle x_{i}^{*}, T^{\prime}\left(x_{j}\right)\right\rangle \alpha_{i j}\right|$. Hence we have

$$
\begin{aligned}
w(T \otimes \alpha) & \leq w\left(T^{\prime} \otimes \alpha\right)<\left|T^{\prime}\left(\sum_{i, j=1}^{n} x_{i}^{*} \alpha_{i j} \otimes x_{j}\right)\right|+\varepsilon \\
& \leq\left\|\left[x_{1}, \ldots, x_{n}\right]^{t}\right\|^{2} w(\alpha)+\varepsilon \leq w(\alpha)+\varepsilon
\end{aligned}
$$

$(2) \Leftrightarrow(3)$ It is straightforward from Theorem 3.2 and Propositions 4.1, 4.2.
$(2) \Leftrightarrow(4)$ It is straightforward from Theorem 2.3 and Propositions 4.1, 4.2.
Remark 4.4. Here we compare the above corollary with the classical factorization theorems through a Hilbert space. Let X and Y be Banach spaces. Grothendieck introduced the norm $\left\|\|_{H}\right.$ on $X \otimes Y$ in $[7]$ by

$$
\|u\|_{H}=\inf \left\{\sup \left\{\left(\sum_{i=1}^{n}\left|f\left(x_{i}\right)\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n}\left|g\left(y_{i}\right)\right|^{2}\right)^{\frac{1}{2}}\right\}\right\}
$$

where the supremum is taken over all $f \in X^{*}, g \in Y^{*}$ with $\|f\|,\|g\| \leq 1$ and the infimum is taken over all representations $u=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in X \otimes Y$. In [14], Lindenstrauss and Pelczynski characterized the factorization by using $T \otimes \alpha: X \otimes \ell_{n}^{2} \longrightarrow Y \otimes \ell_{n}^{2}$ for $T: X \longrightarrow Y$, however the norm on $X \otimes \ell^{2}$ is slightly different from the one in this paper. Their theorems with a modification are summarized for a bounded linear map $T: X \longrightarrow Y^{*}$ as follows:

The following are equivalent:
(1) $\|T \otimes \alpha\| \leq\|\alpha\|$ for all $\alpha: \ell_{n}^{2} \longrightarrow \ell_{n}^{2}$ and $n \in \boldsymbol{N}$.
(2) $\|T\|_{H^{*}} \leq 1$.
(3) T factors through a Hilbert space \mathscr{K} by a 2 -summing operator $a: X \longrightarrow \mathscr{K}$ and $b: \mathscr{K} \longrightarrow Y^{*}$ whose transposed b^{t} is 2 -summing as follows:

$$
\text { i.e., } \quad T=b a \quad \text { with } \quad \pi_{2}(a) \pi_{2}\left(b^{t}\right) \leq 1 .
$$

References

[1] T. Ando, On the structure of operators with numerical radius one, Acta Sci. Math. (Szeged), 34 (1973), 11-15.
[2] T. Ando and K. Okubo, Induced norms of the Schur multiplier operator, Linear Algebra Appl., 147 (1991), 181-199.
[3] D. Blecher and V. Paulsen, Tensor products of operator spaces, J. Funct. Anal., 99 (1991), 262-292.
[4] E. Effros and A. Kishimoto, Module maps and Hochschild-Johnson cohomology, Indiana Univ. Math. J., 36 (1987), 257-276.
[5] E. Effros and Z. J. Ruan, Self-duality for the Haagerup tensor product and Hilbert space factorization, J. Funct. Anal., 100 (1991), 257-284.
[6] E. Effros and Z. J. Ruan, Operator spaces, London Math. Soc. Monogr. (N.S.), 23, Oxford Univ. Press, 2000.
[7] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São-Paulo, 8 (1956), 1-79.
[8] U. Haagerup, The Grothengieck inequality for bilinear forms on C^{*}-algebras, Adv. Math., 56 (1985), 93-116.
[9] U. Haagerup and T. Itoh, Grothendieck type norms for bilinear forms on C^{*}-algebras, J. Operator Theory, 34 (1995), 263-283.
[10] T. Itoh, The Haagerup type cross norm on C^{*}-algebras, Proc. Amer. Math. Soc., 109 (1990), 689-695.
[11] T. Itoh and M. Nagisa, Schur products and module maps on $B(\mathcal{H})$, Publ. Res. Inst. Math. Sci., 36 (2000), 253-268.
[12] T. Itoh and M. Nagisa, Numerical Radius Norm for Bounded Module Maps and Schur Multipliers, Acta Sci. Math. (Szeged), 70 (2004), 195-211.
[13] A. Kumar and A. M. Sinclair, Equivalence of norms on operator space tensor products of C^{*} algebras, Trans. Amer. Math. Soc., 350 (1998), 2033-2048.
[14] J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in L_{p} spaces and their applications, Studia Math., 29 (1968), 275-326.
[15] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math., 78, Cambridge Univ. Press, 2002.
[16] V. I. Paulsen and C. Y. Suen, Commutant representations of completely bounded maps, J. Operator Theory, 13 (1985), 87-101.
[17] G. Pisier, Factorization of linear operators and the Geometry of Banach spaces, CBMS Reg. Conf. Ser. Math., 60, Amer. Math. Soc., 1986.
[18] G. Pisier, The operator Hilbert space $O H$, complex interpolation and tensor norms, Mem. Amer. Math. Soc., 122, No. 585, 1996.
[19] G. Pisier, Similarity problems and completely bounded maps, 2nd. expanded edit., Lecture Notes in Math., 1618, Springer, 2001.
[20] G. Pisier, Introduction to operator space theory, London Math. Soc. Lecture Note Ser., 294, Cambridge Univ. Press, 2003.
[21] G. Pisier and D. Shlyakhtenko, Grothendieck's theorem for operator spaces, Invent. Math., 150 (2002), 185-217.
[22] C.-Y. Suen, The numerical radius of a completely bounded map, Acta Math. Hungar., 59 (1992), 283-289.
[23] C.-Y. Suen, Induced completely bounded norms and inflated Schur product, Acta Sci. Math. (Szeged), 66 (2000), 273-286.
[24] C.-Y. Suen, W_{ρ} completely bounded maps, Acta Sci. Math. (Szeged), 67, (2001), 747-760.

Takashi ITOH

Department of Mathematics
Gunma University
Gunma 371-8510
Japan
E-mail: itoh@edu.gunma-u.ac.jp

Masaru NAGISA

Department of Mathematics and Informatics Chiba University
Chiba 263-8522
Japan
E-mail: nagisa@math.s.chiba-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 46L07; Secondary 47L25, 46B28, 47L05.
 Key Words and Phrases. operator space, C^{*}-algebra, Completely bounded map, Numerical radius Haagerup norm, Factorization through Hilbert spaces.

