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Numerical radius inequalities for Hilbert space operators. II

by

Mohammad El-Haddad (Dammam) and Fuad Kittaneh (Amman)

Abstract. We give several sharp inequalities involving powers of the numerical radii
and the usual operator norms of Hilbert space operators. These inequalities, which are
based on some classical convexity inequalities for nonnegative real numbers and some
operator inequalities, generalize earlier numerical radius inequalities.

1. Introduction. Let B(H) denote the C∗-algebra of all bounded linear
operators on a complex Hilbert space H with inner product 〈·, ·〉. For A ∈
B(H), let w(A) and ‖A‖ denote the numerical radius and the usual operator
norm of A, respectively. It is well known that w(·) defines a norm on B(H),
which is equivalent to the usual operator norm ‖ · ‖. In fact, for every A ∈
B(H),

(1) 1
2‖A‖ ≤ w(A) ≤ ‖A‖.

The inequalities in (1) are sharp. The first inequality becomes an equality if
A2 = 0. The second inequality becomes an equality if A is normal. For basic
properties of the numerical radius, we refer to [3] and [4]. The inequalities
in (1) have been improved considerably by the second author in [8] and [9].
It has been shown in [8] and [9], respectively, that if A ∈ B(H), then

(2) w(A) ≤ 1
2‖ |A| + |A∗| ‖ ≤ 1

2(‖A‖ + ‖A2‖1/2),

where |A| = (A∗A)1/2 is the absolute value of A, and

(3) 1
4‖A∗A + AA∗‖ ≤ w2(A) ≤ 1

2‖A∗A + AA∗‖.
The inequalities in (2), which refine the second inequality in (1), have been
utilized in [8] to derive an estimate for the numerical radius of the Frobenius
companion matrix. Such an estimate can be employed to give new bounds
for the zeros of polynomials (see, e.g., [7], [8], and references therein).

If A = B + iC is the Cartesian decomposition of A, then B and C are
self-adjoint, and A∗A+AA∗ = 2(B2 +C2). Thus, the inequalities in (3) can
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be written as

(4) 1
2‖B2 + C2‖ ≤ w2(A) ≤ ‖B2 + C2‖,

or equivalently, as

(5) 1
4‖(B + C)2 + (B − C)2‖ ≤ w2(A) ≤ 1

2‖(B + C)2 + (B − C)2‖.
The purpose of this paper is to establish considerable generalizations of

these inequalities that are based on some classical convexity inequalities for
nonnegative real numbers and some operator inequalities. Usual operator
norm inequalities and a related numerical radius inequality for the sum of
two operators are also presented.

Other recent numerical radius inequalities have been obtained by Drago-
mir [2] and Yamazaki [10]. The inequalities in [2] are related to the Euclidean
radius of two Hilbert space operators, and those in [10] involve the Aluthge
transform.

2. Generalized numerical radius inequalities. To prove our gen-
eralized numerical radius inequalities, we need several well known lemmas.
The first lemma is a simple consequence of the classical Jensen inequality
concerning the convexity or concavity of certain power functions. It is a spe-
cial case of Schlömilch’s inequality for weighted means of nonnegative real
numbers (see, e.g., [5, p. 26]).

Lemma 1. For a, b ≥ 0, 0 < α < 1, and r 6= 0, let Mr(a, b, α) =
(αar + (1 − α)br)1/r and let M0(a, b, α) = aαb1−α. Then

Mr(a, b, α) ≤ Ms(a, b, α) for r ≤ s.

The second lemma is another application of Jensen’s inequality (see, e.g.,
[5, p. 28]).

Lemma 2. For a, b ≥ 0, and r > 0, let Nr(a, b) = (ar + br)1/r. Then

Ns(a, b) ≤ Nr(a, b) for s ≥ r > 0.

The third lemma follows from the spectral theorem for positive operators
and Jensen’s inequality (see e.g., [6]).

Lemma 3. Let A ∈ B(H) be positive, and let x ∈ H be any unit vector.

Then

(a) 〈Ax, x〉r ≤ 〈Arx, x〉 for r ≥ 1.

(b) 〈Arx, x〉 ≤ 〈Ax, x〉r for 0 < r ≤ 1.

The fourth lemma is an immediate consequence of the spectral theorem
for self-adjoint operators. For generalizations of this lemma, we refer to [6].
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Lemma 4. Let A ∈ B(H) be self-adjoint , and let x ∈ H be any vector.

Then

|〈Ax, x〉| ≤ 〈|A|x, x〉.

The fifth lemma is known as the generalized mixed Schwarz inequality
(see, e.g., [6]).

Lemma 5. Let A ∈ B(H), and 0 ≤ α ≤ 1. Then

|〈Ax, y〉|2 ≤ 〈|A|2αx, x〉〈|A∗|2(1−α)y, y〉 for all x, y ∈ H.

The sixth lemma is a subadditivity norm inequality for fractional powers
of positive operators, which has been proved in [1].

Lemma 6. Let A, B ∈ B(H) be positive. Then

‖(A + B)r‖ ≤ ‖Ar + Br‖ for 0 < r ≤ 1.

Our first result is a generalization of the first inequality in (2).

Theorem 1. Let A ∈ B(H), 0 < α < 1, and r ≥ 1. Then

(6) wr(A) ≤ 1
2‖ |A|2αr + |A∗|2(1−α)r‖.

Proof. For every unit vector x ∈ H, we have

|〈Ax, x〉| ≤ 〈|A|2αx, x〉1/2〈|A∗|2(1−α)x, x〉1/2 (by Lemma 5)

≤
(〈|A|2αx, x〉r + 〈|A∗|2(1−α)x, x〉r

2

)1/r

(by Lemma 1)

≤
(〈|A|2αrx, x〉 + 〈|A∗|2(1−α)rx, x〉

2

)1/r

(by Lemma 3(a)).

Thus,

|〈Ax, x〉|r ≤ 1
2〈(|A|2αr + |A∗|2(1−α)r)x, x〉,

and so

wr(A) = sup{|〈Ax, x〉|r : x ∈ H, ‖x‖ = 1}
≤ 1

2 sup{〈(|A|2αr + |A∗|2(1−α)r)x, x〉 : x ∈ H, ‖x‖ = 1}
= 1

2‖ |A|2αr + |A∗|2(1−α)r‖,
as required.

Our second result is a generalization of the second inequality in (3).

Theorem 2. Let A ∈ B(H), 0 < α < 1, and r ≥ 1. Then

w2r(A) ≤ ‖α|A|2r + (1 − α)|A∗|2r‖.
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Proof. For every unit vector x ∈ H, we have

|〈Ax, x〉|2 ≤ 〈|A|2αx, x〉〈|A∗|2(1−α)x, x〉 (by Lemma 5)

≤ 〈|A|2x, x〉α〈|A∗|2x, x〉1−α (by Lemma 3(b))

≤ (α〈|A|2x, x〉r + (1 − α)〈|A∗|2x, x〉r)1/r (by Lemma 1)

≤ (α〈|A|2rx, x〉 + (1 − α)〈|A∗|2rx, x〉)1/r (by Lemma 3(a))

= 〈(α|A|2r + (1 − α)|A∗|2r)x, x〉1/r.

Thus,

|〈Ax, x〉|2r ≤ 〈(α|A|2r + (1 − α)|A∗|2r)x, x〉,
and so

w2r(A) = sup{|〈Ax, x〉|2r : x ∈ H, ‖x‖ = 1}
≤ sup{〈(α|A|2r + (1 − α)|A∗|2r)x, x〉 : x ∈ H, ‖x‖ = 1}
= ‖α|A|2r + (1 − α)|A∗|2r‖,

as required.

Our next two results are generalizations of the second inequality in (4).

Theorem 3. Let A ∈ B(H) with the Cartesian decomposition A =
B + iC, and let 0 < r ≤ 2. Then

(7) wr(A) ≤ ‖ |B|r + |C|r‖.

Proof. First we prove an inequality stronger than (7) for the special case
where 1 ≤ r ≤ 2. For every unit vector x ∈ H, and for 1 ≤ r ≤ 2, we have

|〈Ax, x〉| = (〈Bx, x〉2 + 〈Cx, x〉2)1/2

≤ (|〈Bx, x〉|r + |〈Cx, x〉|r)1/r (by Lemma 2)

≤ (〈|B|x, x〉r + 〈|C|x, x〉r)1/r (by Lemma 4)

≤ (〈|B|rx, x〉 + 〈|C|rx, x〉)1/r (by Lemma 3(a))

= 〈(|B|r + |C|r)x, x〉1/r.

Thus, we obtain the stronger inequality

|〈Ax, x〉|r ≤ 〈(|B|r + |C|r)x, x〉,
and so

wr(A) = sup{|〈Ax, x〉|r : x ∈ H, ‖x‖ = 1}
≤ sup{〈(|B|r + |C|r)x, x〉 : x ∈ H, ‖x‖ = 1}
= ‖ |B|r + |C|r‖.
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For the general case, where 0 < r ≤ 2, we have

wr(A) ≤ ‖B2 + C2‖r/2 (by the second inequality in (4))

= ‖(B2 + C2)r/2‖
≤ ‖ |B|r + |C|r‖ (by Lemma 6),

as required.

Theorem 4. Let A ∈ B(H) with the Cartesian decomposition A =
B + iC, and let r ≥ 2. Then

wr(A) ≤ 2r/2−1‖ |B|r + |C|r‖.
Proof. For every unit vector x ∈ H, we have

|〈Ax, x〉|√
2

=

(〈Bx, x〉2 + 〈Cx, x〉2
2

)1/2

≤
( |〈Bx, x〉|r + |〈Cx, x〉|r

2

)1/r

(by Lemma 1)

≤ 2−1/r(〈|B|x, x〉r + 〈|C|x, x〉r)1/r (by Lemma 4)

≤ 2−1/r(〈|B|rx, x〉 + 〈|C|rx, x〉)1/r (by Lemma 3(a))

= 2−1/r〈(|B|r + |C|r)x, x〉1/r.

Thus,

|〈Ax, x〉|r ≤ 2r/2−1〈(|B|r + |C|r)x, x〉,
and so

wr(A) = sup{|〈Ax, x〉|r : x ∈ H, ‖x‖ = 1}
≤ 2r/2−1 sup{〈(|B|r + |C|r)x, x〉 : x ∈ H, ‖x‖ = 1}
= 2r/2−1‖ |B|r + |C|r‖,

as required.

Our final result in this section is a generalization of the inequalities in (5).

Theorem 5. Let A ∈ B(H) with the Cartesian decomposition A =
B + iC, and let r ≥ 2. Then

(8) 2−r/2−1‖ |B + C|r + |B − C|r‖ ≤ wr(A) ≤ 1
2‖ |B + C|r + |B − C|r‖.

Proof. As in the proof of the first inequality in (3) (see Theorem 1 in
[9]), we have

w2(A) ≥ 1
2‖(B ± C)2‖.

Thus,

wr(A) ≥ 2−r/2‖(B ± C)2‖r/2 = 2−r/2‖ |B ± C|r‖,
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and so

2wr(A) ≥ 2−r/2(‖ |B + C|r‖ + ‖ |B − C|r‖)
≥ 2−r/2‖ |B + C|r + |B − C|r‖ (by the triangle inequality).

Hence,

wr(A) ≥ 2−r/2−1‖ |B + C|r + |B − C|r‖,
which proves the first inequality in (8). To prove the second inequality in
(8), let x ∈ H be any unit vector. Then

|〈Ax, x〉|r = (〈Bx, x〉2 + 〈Cx, x〉2)r/2

= 2−r/2(〈(B + C)x, x〉2 + 〈(B − C)x, x〉2)r/2

≤ 2−r/22r/2−1(|〈(B + C)x, x〉|r + |〈(B − C)x, x〉|r)
(by the convexity of the function f(t) = tr/2 on [0,∞))

≤ 1
2(〈|B + C|x, x〉r + 〈|B − C|x, x〉r) (by Lemma 4)

≤ 1
2(〈|B + C|rx, x〉 + 〈|B − C|rx, x〉) (by Lemma 3(a))

= 1
2〈(|B + C|r + |B − C|r)x, x〉.

Now,

wr(A) = sup{|〈Ax, x〉|r : x ∈ H, ‖x‖ = 1}
≤ 1

2 sup{〈(|B + C|r + |B − C|r)x, x〉r : x ∈ H, ‖x‖ = 1}
= 1

2‖ |B + C|r + |B − C|r‖,
which proves the second inequality in (8), and completes the proof of the
theorem.

In view of the first inequality in (5) and the second inequality in (8), one
might conjecture that the factor 2−r/2−1 in the first inequality in (8) can
be replaced by the absolute constant 1/4. However, this is refuted by the
two-dimensional example A = [ 0 2

0 0 ]. In this case,

1
4‖ |B + C|r + |B − C|r‖ = 2r/2−1 > 1 = wr(A) for r > 2.

This example also shows that the first inequality in (8) is sharp. In fact, this
inequality becomes an equality for every operator A with A2 = 0. To see
this, we invoke Corollary 1 in [8] and Proposition 1 in [9], where it has been
shown that if A2 = 0, then w(A) = 1

2‖A‖ and ‖A∗A + AA∗‖ = ‖A‖2. Also,
if A2 = 0, then by simple computations,

‖ |B + C|r + |B − C|r‖ = 2−r/2+1‖A∗A + AA∗‖r/2 = 2−r/2+1‖A‖r.

Thus,

2−r/2−1‖ |B + C|r + |B − C|r‖ = 2−r‖A‖r = wr(A).
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3. Inequalities for sums of operators. In this section, we present
usual operator norm inequalities and a related numerical radius inequality
for the sum of two operators.

Theorem 6. Let A, B ∈ B(H), 0 < α < 1, and r ≥ 1. Then

(9) ‖A + B‖r ≤ 2r−2(‖ |A|2αr + |B|2αr‖ + ‖ |A∗|2(1−α)r + |B∗|2(1−α)r‖).

Proof. For any unit vectors x, y ∈ H, we have

|〈(A + B)x, y〉| ≤ |〈Ax, y〉| + |〈Bx, y〉| (by the triangle inequality)

≤ 〈|A|2αx, x〉1/2〈|A∗|2(1−α)y, y〉1/2 + 〈|B|2αx, x〉1/2〈|B∗|2(1−α)y, y〉1/2

(by Lemma 5)

≤
(〈|A|2αx, x〉r+〈|A∗|2(1−α)y, y〉r

2

)1/r

+

(〈|B|2αx, x〉r+〈|B∗|2(1−α)y, y〉r
2

)1/r

(by Lemma 1)

≤
(〈|A|2αrx, x〉+〈|A∗|2(1−α)ry, y〉

2

)1/r

+

(〈|B|2αrx, x〉+〈|B∗|2(1−α)ry, y〉
2

)1/r

(by Lemma 3(a))

≤21−1/r

(〈|A|2αrx, x〉+〈|A∗|2(1−α)ry, y〉+〈|B|2αrx, x〉+〈|B∗|2(1−α)ry, y〉
2

)1/r

(by the concavity of the function f(t) = t1/r on [0,∞)).

Thus,

|〈(A + B)x, y〉|r

≤ 2r−2(〈(|A|2αr + |B|2αr)x, x〉 + 〈(|A∗|2(1−α)r + |B∗|2(1−α)r)y, y〉).

Now, the desired inequality (9) follows from the fact that for every T ∈
B(H), ‖T‖ = sup{|〈Tx, y〉| : x, y ∈ H, ‖x‖ = ‖y‖ = 1}.

Letting x = y in the proof of Theorem 6, it can be easily shown that

(10) wr(A + B) ≤ 2r−2‖ |A|2αr + |B|2αr + |A∗|2(1−α)r + |B∗|2(1−α)r‖.

In particular, if A = B, then the inequality (10) reduces to the inequality (6).

An important special case of Theorem 6 asserts that if A and B are
normal, α = 1/2, and r ≥ 1, then

‖A + B‖r ≤ 2r−1‖ |A|r + |B|r‖.
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