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EXPONENTIAL FUNCTION∗
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Abstract. For a given square matrix A, the numerical range for the exponential function

eAt, t ∈ C, is considered. Some geometrical and topological properties of the numerical range are

presented.
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1. Introduction. The numerical range of matrices (and operators in general)

has been a topic of extensive research for many decades. The numerical range of a

matrix, its related notions and its extensions reveal a great deal of information about

the matrix. The numerical range F (A) (also known as the field of values) of a matrix

A ∈ Cn×n is the compact and convex set

F (A) = {x∗Ax ∈ C : x ∈ C
n, x∗x = 1}

= {µ ∈ C : ‖A− λIn‖2 ≥ |µ− λ|, ∀ λ ∈ C} ,

where ‖ · ‖2 denotes the spectral matrix norm. The latter definition for F (A) can be

found in [9]. Note also that F (A) contains all eigenvalues of A.

In the last few decades, the numerical range of matrix polynomials has also been

studied extensively; see [8] in particular. If P (µ) = Amµm +Am−1µ
m−1 + · · ·+A0 is

an n× n matrix polynomial, then the numerical range of P (µ) is defined as

W (P ) = {µ ∈ C : 0 ∈ F (P (µ))}.

More generally, one can define numerical ranges for analytic functions of square

matrices [7]. Here, we will focus on the exponential function eAt, where A ∈ Cn×n

is fixed and t ∈ C is the variable. We will describe the set of all t values for which

the numerical range of the matrix eAt contains 0, i.e., the Crawford number for the
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matrix eAt is 0 (see [2] for a discussion of the Crawford number for powers of an

operator). Note that our purpose here is not to study the exponential function eA

using the numerical range of the matrix A (see [1] for some discussions along that

line). Our topic here has some connection to [4], where the author studies classes of

operators with 0 in the closure of their numerical range.

For A ∈ Cn×n, the exponential of A is defined as

eA =

∞∑

k=0

Ak

k!
,

and the series always converges. We collect below some basic properties of the matrix

exponential (see [5, 6]).

Let A,B ∈ C
n×n. If AB = BA then eAeB = eA+B. It follows that eA is always

invertible and (eA)−1 = e−A. If B is invertible then eBAB−1

= BeAB−1. It follows

that the eigenvalues of eA are eλ, where λ are eigenvalues of A. If A is Hermitian

(A∗ = A), then eA is Hermitian positive definite.

The structure of this paper is as follows: In Section 2, we define the numerical

range of eAt and show that the numerical range is a nonempty set if and only if A is

not a scalar matrix. Some basic properties of the set are then presented in Section

3 when A is not a scalar matrix. The special case where the matrix A is Hermitian

(or skew-Hermitian) is treated in Section 4. Some illustrative examples are given in

Section 5.

2. Numerical range of eAt. For fixed A ∈ Cn×n, we let EA(t) = eAt, t ∈ C.

Definition 1. The numerical range of EA(t) is

W (EA) = {t ∈ C : 0 ∈ F (eAt)}. (2.1)

Thus, we also have

W (EA) = {t ∈ C : x∗eAtx = 0, for some nonzero x ∈ C
n}

= {t ∈ C : ‖eAt − λIn‖2 ≥ |λ|, ∀ λ ∈ C}.

It follows immediately that for any square matrix A the origin cannot be in

W (EA) since e0A = In. We now determine when W (EA) is nonempty.

Theorem 1. Let A ∈ Cn×n. Then W (EA) is nonempty if and only if A is not

a scalar matrix.
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Proof. If A is a scalar matrix (A = cIn for some complex c), then W (EA) is

empty since F (eAt) = {ect} and obviously ect 6= 0.

Suppose that A is not a scalar matrix. We will show W (EA) is nonempty by

induction on the size n of A. Let U be unitary such that A = U∗RU and R is upper

triangular. We have eAt = U∗eRtU , and thus, F (eAt) = F (eRt) for each t ∈ C. It

follows that W (EA) = W (ER). Therefore, we may assume that A is already in upper

triangular form.

Let A be a 2× 2 complex matrix

[
λ1 a

0 λ2

]
. Then by formula (10.40) in [5]

eAt =

[
eλ1t a eλ2t−eλ1t

λ2−λ1

0 eλ2t

]

when λ1 6= λ2; if λ1 = λ2 = λ then eAt =

[
eλt eλtat

0 eλt

]
.

If A has two distinct eigenvalues, then since F (eAt) is convex for all t, it suffices

to show that there is always a complex t for which the line segment connecting eλ1t

and eλ2t contains the origin. In other words, we want a t ∈ C such that for some

ρ ∈ (0, 1)

ρeλ1t + (1− ρ)eλ2t = 0,

that is, e(λ1−λ2)t = − 1−ρ
ρ , or e(λ1−λ2)t−(2k+1)πi = 1−ρ

ρ , where k ∈ Z. Therefore, we

can take

t =
ln 1−ρ

ρ + (2k + 1)πi

λ1 − λ2
, k ∈ Z. (2.2)

Since ρ ∈ (0, 1) can be arbitrary, we know from (2.2) that W (EA) contains infinitely

many parallel straight lines (these lines are horizontal when λ1 − λ2 is real).

If λ1 = λ2 = λ, then

F (eAt) = {z ∈ C : |z − eλt| ≤ |at
2
||eλt|}

and a 6= 0 because otherwise A would be a scalar matrix. So, 0 ∈ F (eAt) if and only

if |t| ≥ 2
|a| . Therefore, W (EA) = {t ∈ C : |t| ≥ 2

|a|}.

Suppose that W (EA) 6= ∅ for every k × k non-scalar upper triangular matrix A,

where k ≥ 2. So, there is a t0 ∈ C such that x∗
0e

At0x0 = 0 for some nonzero x0 ∈ Ck.

Now for any (k + 1)× (k + 1) non-scalar upper triangular matrix A, there are three

possibilities:

A =

[
Â y

0 ξ

]
, or A =

[
ξ yT

0 Â

]
,
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or

A =




λ a

λ
. . .

λ


 ,

where y ∈ Ck, ξ ∈ C, a 6= 0, and Â is a k × k non-scalar upper triangular matrix.

We will treat the first case. The second case can be treated similarly. The

third case can be reduced to the first case by applying a permutation similarity that

interchanges row k + 1 with row 2 and column k + 1 with column 2.

By induction hypothesis, there is a t0 ∈ C such that x∗
0e

Ât0x0 = 0 for some

nonzero x0 ∈ Ck. Then

eAt0 =

∞∑

j=0

(At0)
j

j!
=

[
eÂt0 z0
0 eξt0

]
,

where z0 ∈ Ck. Now for w =
[
xT
0 0

]T
, we have

w∗eAt0w =
[
x∗
0 0

]
[

eÂt0 z0
0 eξt0

] [
x0

0

]
= x∗

0e
Ât0x0 = 0.

Thus, t0 ∈ W (EA).

By an argument similar to the one at the end of the proof, we can show that

W (EÂ) ⊆ W (EA) for any upper triangular matrix A and any leading principal sub-

matrix Â.

3. Properties of W (EA). In this section, we provide several basic properties of

W (EA).

Proposition 1. Suppose A ∈ Cn×n is not a scalar matrix. Then W (EA) is

closed but it is never bounded. Moreover, W (EA) always contains infinitely many

parallel straight lines.

Proof. To prove that it is closed suppose that there is a sequence {tn} ⊆ W (EA)

with tn → t̂. Therefore, there is a sequence of unit vectors {xn} such that x∗
ne

Atnxn =

0 for all n ∈ N. We need to prove that t̂ ∈ W (EA). Since xn is bounded, there is a

subsequence xnk
converging to a unit vector x̂. Therefore, 0 = lim

nk→∞
x∗
nk
eAtnkxnk

=

x̂∗eAt̂x̂, so t̂ ∈ W (EA).

In the proof of Theorem 1, we have shown that W (EA) contains infinitely many

parallel straight lines for all 2×2 non-scalar matrices A. The proof by induction there
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also reveals that, for n ≥ 2, W (EA) always contains infinitely many parallel straight

lines for all n× n non-scalar matrices A.

So, if A is not a scalar matrix a t ∈ W (EA) can be as large in magnitude as we

like. A question that naturally arises is: how small in magnitude can t be?

Proposition 2. Suppose A ∈ Cn×n is not a scalar matrix and t ∈ W (EA).

Then

|t| ≥ ln 2

inf
k∈C

‖A− kIn‖2
. (3.1)

Proof. Since t ∈ W (EA), ‖eAt − λIn‖2 ≥ |λ|, ∀ λ ∈ C. For λ = 1 we have

‖eAt − In‖2 ≥ 1. Since 0 ∈ F (eAt), 0 ∈ e−ktF (eAt) = F (eAt−ktIn), for all k ∈ C.

Therefore

‖eAt−ktIn − In‖2 ≥ 1. (3.2)

It is known (Corollary 6.2.32 in [6]) that

‖eX+Y − eX‖2 ≤ (e‖Y ‖2 − 1)e‖X‖2 ,

where X,Y are square matrices of the same size. For Y = At− ktIn and X = 0 the

inequality becomes

‖eAt−ktIn − In‖2 ≤ e‖At−ktIn‖2 − 1. (3.3)

Combining inequalities (3.2) and (3.3) we have

1 ≤ e‖At−ktIn‖2 − 1,

or

ln 2 ≤ |t|‖A− kIn‖2.

Inequality (3.1) follows readily.

The term inf
k∈C

‖A− kIn‖2 in (3.1) gives the distance from the matrix A to the set

of all scalar matrices. The infimum is achieved for a particular scalar matrix since

inf
k∈C

‖A− kIn‖2 = inf
|k|≤2‖A‖2

‖A− kIn‖2. In estimating this distance, we may reduce A

to upper triangular form by the Schur triangularization. If A is Hermitian, then we

readily find that the distance is 1
2 (λn − λ1), where λn and λ1 are the largest and the

smallest eigenvalues of A, respectively.

The constant ln 2 in the lower bound in (3.1) is unlikely to be sharp. But it will

be seen later that the constant (valid for all n×n non-scalar matrices) is at most π/2.
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The next result is about howW (EA) will change if a shift or a scalar multiplication

is applied to A.

Proposition 3. Suppose A ∈ Cn×n is not a scalar matrix and let α ∈ C. Then

W (EA+αI) = W (EA) and for α 6= 0, W (EαA) =
1
αW (EA).

Proof.

W (EA+αI) = {t ∈ C : x∗et(A+αI)x = 0, for some nonzero x ∈ C
n}

= {t ∈ C : x∗etAetαIx = 0, for some nonzero x ∈ C
n}

= {t ∈ C : x∗etAx = 0, for some nonzero x ∈ C
n}

= W (EA),

and

W (EαA) = {t ∈ C : x∗etαAx = 0, for some nonzero x ∈ C
n}

= {w
α

∈ C : x∗ewAx = 0, for some nonzero x ∈ C
n}

=
1

α
W (EA).

We now give a condition under which W (EA) contains some points on the real

axis.

Proposition 4. Let λ and µ be any two eigenvalues of A such that λ−µ = a+bi

with a, b ∈ R and b 6= 0. Then W (EA) ⊇ {(2k + 1)π/b : k ∈ Z}.

Proof. From the proof by induction for Theorem 1, we only need to prove the

result here when A is an upper triangular matrix with eigenvalues λ and µ. In this

case, we know from (2.2) that W (EA) contains all points of the form

t =
ln 1−ρ

ρ + (2k + 1)πi

a+ bi
, ρ ∈ (0, 1), k ∈ Z.

We get t = (2k + 1)π/b by taking ρ ∈ (0, 1) with ln 1−ρ
ρ = (2k + 1)π a

b .

It is well known that the solution to the differential equation

dx

dt
= Ax

is given by x(t) = eAtx(0). The above proposition says that for any matrix A with

a nonzero imaginary part for the difference of any two eigenvalues, W (EA) contains

some t > 0. It follows that x̂∗eAtx̂ = 0 for some nonzero x̂ ∈ Cn. Therefore, for

x(0) = x̂, we have x(0)∗x(t) = x̂∗eAtx̂ = 0, i.e., x(t) and x(0) are orthogonal.
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We now show that there are no isolated points in W (EA).

Proposition 5. Suppose A ∈ Cn×n is not a scalar matrix. Then W (EA) does

not have any isolated points.

Proof. Let t0 be a point in W (EA). We separate two cases. First Int(F (et0A)) = ∅
and then Int(F (et0A)) 6= ∅.

Let t0 ∈ W (EA) and suppose that Int(F (et0A)) = ∅. Then F (et0A) is a line

segment passing through the origin. By Theorem 1.6.3 of [6], the endpoints of F (et0A)

are eigenvalues of et0A, say et0λ1 and et0λ2 , where λ1 and λ2 are eigenvalues of A. So

the origin cannot be an endpoint of the line segment, and there is an r ∈ (0, 1) such

that

0 = ret0λ1 + (1 − r)et0λ2 ,
−r

1− r
= et0(λ2−λ1) < 0. (3.4)

We will show that 0 ∈ F (e(t0+εeiθ)A) for a suitable θ ∈ [0, 2π] and all ε > 0. We just

need to show the existence of s ∈ (0, 1) such that se(t0+εeiθ)λ1 +(1−s)e(t0+εeiθ)λ2 = 0,

i.e., −s/(1− s) = e(t0+εeiθ)λ2/e(t0+εeiθ)λ1 = et0(λ2−λ1)eεe
iθ(λ2−λ1). For this, we need

to show that et0(λ2−λ1)eεe
iθ(λ2−λ1) is a negative real number. Since et0(λ2−λ1) is a

negative real number by (3.4), we just need to choose θ such that eεe
iθ(λ2−λ1) is a

positive real number, so we choose θ such that eiθ(λ2 − λ1) = |λ2 − λ1|.

Now let t0 ∈ W (EA) and suppose that Int(F (eAt0)) 6= ∅. Since t0 ∈ W (EA),

we have 0 ∈ F (eAt0), so 0 = x∗
0e

At0x0 for some x0 ∈ Cn with ‖x0‖2 = 1. Since

Int(F (eAt0) 6= ∅ and F (eAt0) is a convex set, we can take w1, w2 ∈ F (eAt0) such that

w1 = reiθ1 , w2 = reiθ2 , where r > 0 and the arguments θ1 and θ2 may be negative

and satisfy 0 < θ2 − θ1 < π
2 . We also have

w1 = x∗
1e

At0x1, w2 = x∗
2e

At0x2,

for suitable x1, x2 ∈ C
n with ‖x1‖2 = ‖x2‖2 = 1.

For ǫ > 0, δ ∈ [0, 2π), and j = 0, 1, 2, let

wj(ǫ, δ) = x∗
je

A(t0+ǫeiδ)xj .

We have

w0(ǫ, δ) = x∗
0e

At0eAǫeiδx0 = x∗
0e

At0

∞∑

k=0

1

k!
(Aǫeiδ)kx0 =

∞∑

k=0

1

k!
ǫkeikδx∗

0e
At0Akx0.

If x∗
0e

At0Akx0 = 0 for all k ≥ 0, then we would have x∗
0e

A(t0+ǫeiδ)x0 = 0 for all

ǫ > 0 and all δ ∈ [0, 2π), and in particular x∗
0e

A0x0 = x∗
0x0 = 0, which is impossible.
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We now let k ≥ 1 be the smallest integer such that x∗
0e

At0Akx0 6= 0. Then

w0(ǫ, δ) =
1

k!
ǫkeikδx∗

0e
At0Akx0 + o(ǫk).

For ǫ sufficiently small, we have |w1(ǫ, δ)| ≥ r
2 and |w2(ǫ, δ)| ≥ r

2 , and

| argw1(ǫ, δ)− θ1| ≤
1

4
(θ2 − θ1), | argw2(ǫ, δ)− θ2| ≤

1

4
(θ2 − θ1).

Choose δ such that

eikδx∗
0e

At0Akx0 = −|x∗
0e

At0Akx0|ei(θ1+θ2)/2.

Then for ǫ > 0 sufficiently small, 0 is inside the triangle with vertices wj(ǫ, δ). So

0 ∈ F (eA(t0+ǫeiδ)). Thus, t0+ ǫeiδ ∈ W (EA) for the chosen δ and all ǫ > 0 sufficiently

small. So t0 is not an isolated point.

From the proof we know that for any t ∈ W (EA), W (EA) also contains a line

segment ℓt with t as one of the two endpoints. This means that W (EA) cannot contain

a circle disjoint from the rest of W (EA). It also follows that W (EA) =
⋃

t∈W (EA) ℓt.

Many of the line segments ℓt will merge into one line segment, but W (EA) is still the

union of infinitely many line segments by Proposition 1.

In the next example, we show that a connected component of W (EA) is not

convex in general.

Example 1. Let A =

[
0 1

0 0

]
. Then from the proof of Theorem 1 we already

know that W (EA) = {t ∈ C : |t| ≥ 2}, which is connected but not convex.

We now examine when a point t0 is an interior point of W (EA).

Proposition 6. Suppose A ∈ Cn×n is not a scalar matrix. If the origin is an

interior point of F (eAt0), then t0 is an interior point of W (EA).

Proof. We use D(c, r) to denote the open disk with center c and radius r. Suppose

0 ∈ Int(F (eAt0)). Then there exists ǫ > 0 such that D(0, 2ǫ) ⊆ F (eAt0). In particular,

for j = 0, 1, 2, wj = ǫe2jπ/3 = x∗
je

At0xj for some xj ∈ Cn with ‖xj‖2 = 1. Note

that 0 is inside the triangle with vertices wj = x∗
je

At0xj and that the functions

fj(t) = x∗
je

Atxj are continuous at t0. Then there exists δ > 0 such that for all

t ∈ D(t0, δ), 0 is inside the triangle with vertices w̃j = x∗
je

Atxj , so 0 ∈ F (eAt). Thus,

D(t0, δ) ⊆ W (EA).

Corollary 1. Suppose A ∈ Cn×n is not a scalar matrix. If t0 is a boundary

point of W (EA), then the origin is a boundary point of F (eAt0).
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We end this section by one more observation about W (EA).

Proposition 7. Suppose A ∈ Cn×n is not a scalar matrix and t0 ∈ W (EA).

Then

(a) −t0 ∈ W (EA),

(b) t0 ∈ W (EA∗).

Proof. For (a), it suffices to show that for every invertible matrix B, 0 ∈ F (B)

implies that 0 ∈ F (B−1). But if 0 ∈ F (B) then 0 ∈ F (B∗), therefore x∗
0B

∗x0 = 0 for

some unit x0 ∈ C
n. Then,

0 = x∗
0B

∗x0 = x∗
0B

∗B−1Bx0 = (Bx0)
∗B−1(Bx0),

so, 0 ∈ F (B−1) since Bx0 6= 0.

For (b), we have for some unit x0 ∈ Cn

0 = x∗
0e

t0Ax0 = x∗
0e

t0A
∗

e−t0A
∗

et0Ax0 = (et0Ax0)
∗e−t0A

∗

(et0Ax0).

Therefore, −t0 ∈ W (EA∗) and the conclusion follows from (a).

Part (a) means that W (EA) is symmetric with respect to the origin.

4. The cases where A is Hermitian or skew-Hermitian. We have seen

earlier that W (EA) contains infinitely many parallel straight lines for any non-scalar

matrix A. When A is Hermitian or skew-Hermitian, we can show thatW (EA) consists

of infinitely many parallel straight lines. In what follows, we only provide proofs for

the case where A is Hermitian. If A is skew-Hermitian, then iA is Hermitian and

W (EA) = iW (EiA) by Proposition 3, so corresponding results for the skew-Hermitan

case will follow readily.

Proposition 8. Suppose A ∈ Cn×n is not a scalar matrix.

(a) If A is Hermitian then W (EA) ∩ R = ∅ and t ∈ W (EA) if and only if

t+ α ∈ W (EA) for all α ∈ R.

(b) If A is skew-Hermitian then W (EA) ∩ iR = ∅ and t ∈ W (EA) if and only if

t+ iα ∈ W (EA) for all α ∈ R.

Proof. Let A be Hermitian. Then for r ∈ R the matrix exponential erA is positive

definite. Therefore, r /∈ W (EA). For any t ∈ W (EA) there is a nonzero vector xt

such that

0 = x∗
t e

Atxt = x∗
t e

−α
2

AeA(t+α)e
−α
2

Axt = w∗
t e

A(t+α)wt,

where wt = e
−α
2

Axt is nonzero. Thus, t+ α ∈ W (EA).

Proposition 9. Suppose A ∈ Cn×n is not a scalar matrix.
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(a) If A is Hermitian then W (EA) is symmetric with respect to the real axis.

(b) If A is skew-Hermitian then W (EA) is symmetric with respect to the imagi-

nary axis.

Proof. The conclusion in (a) follows directly from Proposition 8 (a) and Proposi-

tion 7 (a).

Propositions 8 and 9 reveal what W (EA) looks like for Hermitian or skew-

Hermitian A. In particular, if A is Hermitian, W (EA) consists of disjoint complex

stripes parallel to the real axis of the form

{t ∈ C : γ ≤ Im(t) ≤ δ, γδ > 0}.

Observe that γ and δ should have the same sign since W (EA) has no intersection with

real axis. Moreover, for each stripe in the upper plane, W (EA) contains its symmetric

stripe in the lower plane.

However, it is possible to have γ = δ. In that case, the corresponding stripes are

reduced to straight lines parallel to the real axis. Indeed we have the following result.

Proposition 10. Suppose A ∈ Cn×n is Hermitian and has only two distinct

eigenvalues λ and µ. Then

W (EA) = {t ∈ C : Im(t) = (2k + 1)π/(λ− µ), k ∈ Z}.

Proof. Let U be unitary such that A = U∗DU and D is diagonal with diagonal

entries equal to λ or µ. Then F (eAt) = F (eDt) is the line segment connecting eλt

and eµt, by Theorem 1.6.8 of [6]. Thus, t = a + bi ∈ W (EA) if and only if 0 =

seλt + (1− s)eµt = (se(λ−µ)t + (1− s))eµt for some s ∈ (0, 1), if and only if e(λ−µ)t =

e(λ−µ)ae(λ−µ)bi is a negative number, if and only if e(λ−µ)bi = −1, if and only if

(λ− µ)b = (2k + 1)π for some k ∈ Z.

We also have examples showing that for an Hermitian matrix A having three

distinct eigenvalues,W (EA) can have stripes with zero width and stripes with nonzero

width. In Example 2 of next section, some stripes with nonzero width are displayed.

For Hermitian matrices, the lower bound in (3.1) can be improved.

Proposition 11. Let A be an n × n Hermitian and non-scalar matrix. Let

λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A (so λ1 < λn since A is not scalar). Then

for all t ∈ W (EA),

|t| ≥ π

λn − λ1
,

and the lower bound is sharp.
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Proof. By Proposition 8, mint∈W (EA) |t| is achieved at ta = ia ∈ W (EA) for

some a > 0, and ia is a boundary point of W (EA). It follows from Proposition 6

that 0 is a boundary point of F (eiaA). Since A is Hermitian, eiaA is normal. By

Theorem 1.6.8 of [6] and the fact that 0 is a boundary point of F (eiaA), we know that

0 = seiaλp+(1−s)eiaλq for two distinct eigenvalues λp and λq ofA, and some s ∈ (0, 1).

Thus, eia(λp−λq) is a negative real number, so a(λp −λq) = (2k+1)π for some k ∈ Z.

Now, a = |2k+1|
|λp−λq |

π ≥ π
λn−λ1

. Therefore, |t| ≥ π
λn−λ1

for all t ∈ W (EA). The lower

bound is sharp since t0 = πi
λn−λ1

∈ W (EA). In fact, we have et0(λn−λ1) = −1 and

thus 1
2e

t0λ1 + 1
2e

t0λn = 0, so 0 ∈ F (eAt0).

Note that we have inf
k∈C

‖A−kIn‖2 = 1
2 (λn−λ1) in Proposition 11. So the constant

ln 2 in (3.1) has been improved to π/2 when A is Hermitian.

5. Some illustrative examples. In this section, we give three matrices and

plot the numerical range of the corresponding matrix exponential function for each

case. The plots are obtained using an inverse numerical range Matlab file based on

the algorithm described in [3].

Example 2. Consider the Hermitian matrix

A =




1 3 0

3 1 0

0 0 3


 ,

with eigenvalues λ1 = −2, λ2 = 3, λ3 = 4. We plot W (EA) within [−4, 4] × [−4, 4]

in Figure 5.1. We can see 6 stripes of W (EA), symmetric about the real axis. The

distance between the origin and W (EA) is seen to be around 0.52, consistent with

the exact distance of π/6 obtained in Proposition 11.

Example 3. Consider the unitary matrix

A =




−
√
2/2 0

√
2/2√

2/2 0
√
2/2

0 1 0


 .

We plot W (EA) within [−7, 7]× [−7, 7] in Figure 5.2. The figure shows that W (EA)

contains some points on the real axis. It also suggests that W (EA) is symmetric about

the origin and contains infinitely many parallel straight lines. All these are consistent

with our theoretical results.
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Fig. 5.1.
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Fig. 5.2.

Example 4. Consider the randomly generated complex matrix

A =




0.8147 + 0.9649i 0.9134 + 0.9572i 0.2785 + 0.1419i

0.9058 + 0.1576i 0.6324 + 0.4854i 0.5469 + 0.4218i

0.1270 + 0.9706i 0.0975 + 0.8003i 0.9575 + 0.9157i


 .

We plot W (EA) within [−2‖A‖2, 2‖A‖2]× [−2‖A‖2, 2‖A‖2] in Figure 5.3. The figure

shows that W (EA) contains some points on the real axis. It also suggests that W (EA)
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is symmetric about the origin and contains infinitely many parallel straight lines. All

these are consistent with our theoretical results.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Fig. 5.3.
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