
Numerical Recipes: Does This Paradigm Have a Future?

William H. Press, and Saul A. Teukolsky

Citation: Computers in Physics 11, 416 (1997); doi: 10.1063/1.4822583

View online: https://doi.org/10.1063/1.4822583

View Table of Contents: http://aip.scitation.org/toc/cip/11/5

Published by the American Institute of Physics

Articles you may be interested in

Fine Fare
Computers in Physics 11, 403 (1997); 10.1063/1.4822575

http://aip.scitation.org/author/Press%2C+William+H
http://aip.scitation.org/author/Teukolsky%2C+Saul+A
/loi/cip
https://doi.org/10.1063/1.4822583
http://aip.scitation.org/toc/cip/11/5
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4822575

Numerical Recipes:
Does This Paradigm
Have a Future~

by William H. Press and
Saul t Tcukolsky

Longtime readers of Computers in Physics may remember us as the edi

tors/authors of the Numerical Recipes column that ran from 1988 through

1992. At that time, with the publication of the second edition of our Numerical

Recipes (NR) books in C and Fortran,
1
•
2

we took a sabbatical leave from column

wri ting, a leave that became inadvertently permanent. Now, as a part of Cf P's

Tenth Anniversary celebration, we have been invited back to offer some observa

tions about the past of scientific computing, including the educational niche occu

pied by our books, and to make some prognostications about where the field is

li\:eEii1'6i{·ollaboration when we were both

ing difficulty in integrating a second-or

) numerically, and our mutual thesis ad-

flfat Keller, the distinguished professor of applied

mathematic ~ ou using?" Keller asked us. We looked at each

other b l ankly· ~ ~gni~~ · 11~ c's more than one numerical method?

"Runge-Kut "M

"Runge-Kutta! e-Kutta!" he exclaimed, banging his head with his fist.

"That's a ll you physicists know!" He suggested that we look into Bulirsch-Stoer,

which we did, to our eventual benefit.

Eventual, but not immediate, because there is a twist to this story: Bulirsch

Stoer turned out to be a poor choice of method for our problem, while Runge

Kutta, when we eventually learned to integrate away from-not

into-singularities, and to make a pre-integration change of variables in the equa

tions, worked splendid ly. So this story illustrates not on ly our lack of knowledge

about numerical methods, but also that when physicists consult professional nu

merical analysts, either in person or through a book or journal artic le, they not in

frequently will be disappointed. This and similar early experiences firmly

convinced us of the necessity for an algorithm's user (the physicist) to understand

"what is inside the black box."

This ideal became, later, one of the defining features of our Numerical Reci

pes project. It was then, and remains now, exceedingly controversial. The physi

cist-reader may be astonished, because physicists are all tinkerers and black-box

disassemblers at heart. However, there is an oppo-

site, and much better established, dogma from the

community of numerical analysts, roughly: "Good

numerical methods are sophisticated, highly tuned,

and based on theorems, not tinkering. Users should

interact with such algorithms through defined in

terfaces, and should be prevented from modifying

their internals- for the users' own good."

This "central dogma of the mathematical soft

ware community" informed the large scientific li

braries that dominated the 1970s and 1980s, the

NAG library (developed in the U.K.) and its

American cousin, IMSL. It continues to be a domi

nant influence today in such useful computational

environments as Matlab and Mathematica. We do

not subscribe to this religion, but it is worth point

ing out that it is the dominant religion (except per

haps among physicists and astronomers) in

mathematical software.

This controversy will continue, and NR's
viewpoint is by no means assured of survival! An

early book review of NR, by Tserles,3 g ives an in

teresting and balanced perspective on the issue.

Origins or Xumerical llecipes
Not infrequently we are asked questions like,

"How did NR come about?" and "How long did it

take to write?" A brief history:

Although Brian Flannery and Bill Yetterling

have pursued highly successful careers in industry (at Exxon Research Labs and

Polaroid, respectively), we four NR authors were all in academia at the project's

inception. Three of us (Flannery, Press, and Teukolsky) had taught courses on sci

entific computing in our respective departments, and we had all noticed-one

cou Id hardly not notice-the almost complete lack of any usable text for a physics

oriented course. Flannery, who taught a course at Harvard to astronomers in 1979,

was the first to suggest that a book should be written, and his course notes were

COMPUTERS IN PHYSICS, VOL. II, NO. 5,SEP/OCT 1997 417

the orig inal scaffolding for the project. Press took over the course, and leadership

of the project, when Flannery left Harvard for Exxon at the beginning of 1981 .

Just as there was a "fifth Beatie," there was also a fifth NR author! Paul

Horowitz, co-author of the well-known book on eleetronics,4 was an NR author

from September 1982 through the first part of 1983; so he was in fact the th ird,

not fifth, Beatie. When he left the collaboration (parting on friendly terms, but

having written nothing), he contributed his no-doubt favorite phrase, "the art of,"

to the book's subtitle. Press spent the month of April 1983 at the Institute for Ad

vanced Study in Princeton, writing as fast as he could. The sheer volume of the

output (or rather, lack thereof) convinced Press and Flannery that more recruit

ment was in order. Saul Teukolsky joined the collaboration in August; and Bi ll

Yetterling, in September. Yetterling, an experimental physicist, replaced

Horowitz's useful laboratory and instrumentation perspective in the project.

With the increased number of collaborators, the book was more than half

done by early 1984, at wh ich time we began to talk to publishers. Several had ex

pressed early interest, including Addison-Wesley's Carl Harris (who was prob

ably the first to suggest the idea ofa book based on Flannery' s course) and Ed

Tenner of Princeton University Press. Tenner sent a big piece of our manuscript

out for review and agreed to share the reviews with us. The reviewers were For

man Acton (himself the author of a wonderful book on computing5J and Stephen

Wolfram (long before the first release of Mathematica). Acton's review was lauda

tory. Wolfram wrote, "The book 's style is chatty, and in parts entertaining to read.

But in achieving its practical ends, much of it is quite ster ile." One would never

say such a thing about Wolfram's new bodice-ripper,6 of course'

David Tranah ult imately convinced us to sign with Cambridge University

Press (CUP), a choice that we do not regret. CUP is big enough to do a good job

on worldwide distribution, but small enough to be responsive to our needs as

authors. As a not-for-profit organization, CUP also has the luxury of taking a

longer view, where a purely commercial publisher might optimize only for the

short run. For many years now, Lauren Cowles has been our capable and indu l

gent editor at CU P's North American branch in New York.

The beginning was somewhat rockier, however. We delivered the completed

manuscript, in the original version of TeX (now called TeX787) , on November 24,

1984, in the form of a VAX/VMS half-inch backup tape, as created on a Mi-

cro VAX IT. (We include these details for their quaint ring.) Ours was the first TeX

manuscript ever received by CUP. We wanted CUP to have our crude formatting

macros redefined by a professional book designer, and we wanted to have the

book copy-edited by a professional copy editor.

In the event, we got the copy editing but not the book design. At that time, a

mere decade ago, there was simply no interface between "book designers" and

"people who can use TeX." Indeed, it took CUP more than six months to find a

firm that cou ld even read our tape and produce camera-ready output in the same

format that we orig inally delivered. (CUP suggested seriously that the book could

be publ ished faster- and cheaper- ifCUP's typographers reset it all , by hand, in

the U.K. We strenuously decl ined.) Fourteen months thus elapsed between sub

mission and publication.

Original goals and s11bs(l(111ent directions
In creating the first edition of NR, we had severa l goals, all of them fairly

modest. First , we wanted to fill the obvious gap in the te ook literature, already

described. Our attitude was that any such attempt was an none. Second, in

the event of NR's proving successful, we wanted to de rely not close-

the huge gap then present between "best practice" e numerical-

analysis and mathematical-software profession rage

practice" (as exempl ified by most scientists' new).

Third, we wanted to expand the content o

elude some then-less-standard topics s

ods. Fourth, we wanted to promote

tific programming cou ld be acco

418 COMPUTERS I PHYSIC'S, VOL. II. NO. 5. SEP/OCT.f997

Some additional comments should be made about the second and fourth of
these goals. "Average practice" for numerical work by faculty and graduate stu
dents up to the early 1980s. in the physics and astronomy departments that we
knew best (Caltech, Harvard, Cornell) was truly

abominable and perhaps corresponded. barely, to
"best practice" in the 1920s. It was not difficult to
find practitioners who thought that all determi-
nants should be computed by the expansion of mi
nors (an N! process- Gauss knew better than this
at the beginning of the 19th century), all integrals
should be done by Simpson's rule, and, yes, all dif

ferential equations shou ld be integrated by the
Rungc-Kutta method (or perhaps even forward
Euler). Computationa l astrophysicists sti ll te ll the
story of the graduate student [name withheld] who
exhausted his professor's entire year's computing
budget by repeated runs, extending over months,
of a certain Monte Carlo program- each run using
exactly the same "random" numbers and giving ex
actly the same results.

Our 1980s goal for NR, overtly discussed by
the authors, was to provide a means for bringing
average practice into the 1960s or 1970s in a
few areas (FFTs). This is the old problem of"do

you teach to the top of the class or to the middle?"
We ""ere conscious of trading the last factor of
two in performance. or a more advanced (but less
well-tested) method, for pedagogical clarity. or for
the use ofa better-known method. We still think
that these decisions were, in the main, correct; we

Our goal

was, and still is,

to help se1larate scientific

co1111mting, as a body of

expertise, from being tied to

(speuificall}1l Portran
.

prog1·a111111mg.

like to think that NR has advanced average practice noticeably. We have learned,
however, the necessity of developing thick skins against the barbs of critics wh
feel that one shou ld teach to the top of the class and that only the best practic
today right now shou ld be allowed in books.

In the second ed ition of NR we did shift the balance slightly, towar
modern (and inevitably less pedagogically accessible) methods in som
we arc sti ll not willing to give up on that "middle of the class," whom w

our primary constituency. Many people do sincerely believe that a book can
both completely accessible and completely state-of-the-art. We say to them, w
every good wish," Write that hook!"

Our attitude toward computer languages has always been somewhat promis
cuous. Fortran, before the recent introduction of Fortran 90 (on which more be
low), had become an antique language, if not truly decrepit. The problem has
always been the absence of a clear candidate to replace it. Our goal was, and still
is. to help separate scientific computing, as a body of expertise. from being tied to
(specifically) Fortran programming. We try to level the playing field in which
other languages compete for acceptance by scientists. At the same time, we do not
feel omniscient enough to pick the winner of this competition a priori.

The original printing of NR, in 1986, had all the Fortran code repeated in Pas
cal as an appendix. Pascal, still going strong, got its own full edition in 1989; but
by 1992 it had already lost so much ground with respect to the new contender, C,
that we decided not to continue it into our second edition. Our C version of NR

was first published in 1988. C and Fo11ran second editions came out in 1992. We
have authorized others to do limited versions of NR in other languages (Basic,8

for example). but we have never viewed these as infl uential.
In recent years, the C version of NR has outsold the Fortran version by about

two to one. However, we have no way of distinguishing in sales between scien
tists who arc actively computing in C and other computer professiona ls who just
want to own one book on scientific programming. Our guess would be that a ma-

CO~ I PUTERS IN Pll YSIC'S. VOL. I I. NO. 5.SEP/OCT 1997 419

In recent
years, the C

version of NR has
outsold the Fortran

version by about
two to one.

Fortran 90, para111ttrQbl•
producti\1it1r

The newest vcrsio

2 of the Fortran book, is

tran 90: The Art of Parallel "enti.fic Com ting.9

The word "parallel" added in tli ubtitl<;i highly

significant, but perhaps not in the !fat you might
first imagine.

Michael Metcalf, a distinguished computer pro

fessiona l at CERN and co-author of one of the best

manuals on Fortran 90, 10 introduced us to Fortran 90

through a set of lectures given in a very beautiful set

ting at the International Centre for Theoretical Phys-

ics in Trieste, Italy, in May 1993. Soon after that we apprenticed ourselves for a

time to Gyan Bhanot, a computational scientist at Thinking Machines Corp. and
expert programmer in CM Fortran, a Fortran 90 precursor developed for TM C's

Connection Mach ines.

It was, for us, as ifthe sky had opened up and all heaven stood revealed.

Well, perhaps not quite. We did (and do) see in Fortran 90, however, some

thing much more important than its superficial traits of being (i) a much-needed

updating of Fortran to a modern computer language and (ii) a language designed

to produce code that can be parallelized on computers with multiple processors.

To explain what that something is, we must digress briefly on the subject of pro
grammer productivity.

It is a commonplace (see, for example, Ref. I I) that the average productivity

of a professional programmer (that is, lines of fina l, debugged, and documented
code divided by total programmer effort) is on the order of four lines per day.

This is sometimes rendered as "two lines of code before lunch, two lines after." ln
research science our standards for documentation and debugging are much lower,

and our graduate students work harder, and so our average productivity, in lines,

may be as much as two or three times higher.

Another commonplace, as emphasized by Mary Shaw, 12 is that a single indi

vidual, without specialized software-engineering tools or training, can write and

master a program of length about 3000 lines, but not longer. Since we physicists

offer no such specialized training or tools to our graduate students, this sets a life

ime limit on the complexity of any single scientific project that they can undertake.

We are convinced by the evidence that these limits on productivity are funda-

1. However, it seems to be a fact 11
•12 that a programmer has about the same

· :vity (in lines per day or "mastered" lines) independent of the level of the

:ver a range as wide as, for example, assembly language to, Mathematica.

the thought is not original to us, that the only way projects in com

of larger scope can be done by individual researchers (as opposed
ering teams) is by the use of intrinsically higher- level languages.

s, was the revelation of parallel programming in Fortran 90. The

el and higher-level constructions- wholly independently of whether

xecuted on tomorrow's parallel machines or today's ordinary worksta

expresses more science per line of code and per programming workday.

ed on our own experience, we think that productivity, or achievable complex

of project, is increased a factor of two or three in going from Fortran 77 to For

tran 90- if one makes the investment of mastering Fortran 90's higher-level

constructs.

We give a simple example: Suppose we have two match ing arrays, one with a

galaxy velocities, the other with the corresponding magnitudes. We want to

ow the upper-quartile value of the magnitude for galaxies whose velocity is in

the range 100 < v ~ 200. (Astronomical magnitudes decrease as objects get
brighter, and so this corresponds to finding the lower-quartile magnitude numeri

cally.) In Fortran 77 the code is something like the first example shown in the box

(this page). While not difficult code, it does contain potential "gotchas" that are

difficult to avoid, mostly having to do with array-index arithmetic.

The second example in the box shows the same task accomplished in two

lines, using Fortran 90 language intrinsics, plus routines from our NR in Fortran 90

book. While the lines are each fairly dense, they are completely free of index fussi

ness; indeed, they are

much closer to the under-

lying conceptual task. In

this example, pack and

ceiling are Fortran 90 lan

guage intrinsics; array_

copy and select are Nu

merical Recipes proce

dures.
The same task, ac

complished in Mathe
matica, 6 is shown as the

third example in the box;

in IDL13 the task is
shown as the fourth exam

ple. (Note that Select in

Mathematica has a com

pletely different meaning

from select as a Numeri

cal Recipes routine

name!) Mathematica

lacks the "data parallel"

constructs of Fortran 90

but has powerful list-

handling intrinsics in
stead. In this example,

Mathematica's main

weakness is the awkward

ness of its component ad

dressing. IDL's formu

lation is almost crystal

line in its clarity. (To un

derstand it, note that the

where and sort functions

return arrays of indices,

not of values.)

Box. Coding of the same example in Fortran 77 and in three "higher
level" languages: Fortran 90, Mathematica, and IDL.

Fortran 77, with external sort:

n = 0

do j=l,ndat

if (vels(j).gt . 100 •• and . vels(j).le . 200 .) then

n = n+l

temp(n) = mags(j)

endif

end do

call sort(n,temp)

answer= temp((n+3)/4)

Fortran 90, with Numerical Recipes procedures:

call array_ copy(pack(mags,(vels>100 •. and.vels<=200.)),temp,n,nn)

answer= select(ceiling(n/4.),temp(l:n))

Mathematica:

Select[Transpose[{vels,mags}], (#[[1]] > 100 . && #[[1]] <= 200.)&

Sort[%, (#2[[2]] > #1[[2]])&] [[Ceiling[Length[%]/4]]] [[2]]

IDL:

temp= mags(where(vels le 200. and vels gt 100., n))

answer=temp((sort(temp)) (ceil(n/4)))

Programming languages versus total environments
In the preceding example, IDL, Mathematica, and "Fortran 90 plus Nu

cal Recipes" emerged as comparably high-level languages. Indeed, syntactical

and semantically, all are of comparable complexity. In particular, all are "large"

languages, requiring a serious investment in learning. In almost every other re

spect, however, Fortran 90, as a direct programming language, is really quite a dif

ferent beast from the other two. Th is brings us finally to the question posed by the

title of this art icle.

Just as the "central dogma" of the mathematical-software community turned

most program libraries of the 1970s and 1980s into black boxes with defined inter-

COMPUTERS IN PHYSICS, VOL. 11 , NO. 5,SEP/OCT 1997 421

faces, there is a sim ilar emerging dogma of the I 990s, that scientific programmers

should move to high-level "total environments" (here called "TEs") such as

Mathematica, Matlab, IDL, and sim ilar. As already discussed, we agree com

pletely with the necessity of moving to higher-level languages. But we strongly

disagree with the new dogma.

The key problem in working with any TE, we find, is the user's lack of con

trol over scalability in the TE's internals. For example, a programmer can easily

write a piece of code that works splendid ly for I 0 data points, but fai ls for l 06

data points. Sometimes the problem is simply that the TE is just too slow. Other

times, its memory requirement goes through the roof.

But is the problem not the same for a programming language such as Fortran

Sometimes yes, ifthe scaling with size of data is truly intrinsic to the underly

nerical algorithm, as inverting a matrix for example. But very often, the an

; the runaway scaling in the TE is not fundamenta l to the user's

tis rather a "feature" of the generality of the data structures used in

als, or the internal algorithms used to manipulate those structures.

ing language like Foriran 90, when you encounter such a problem,

ften by a bit of messy, lower-level programm ing, in which you create

kind of specialized data structure or more highly optimized "inner loop."

e options are not available within a TE.

Imagine the different " levels" of programming spread out vertically on some

kind of logarithmic scale. In Fortran 77 or C, you spend all your time at the bottom of

the scale, down in the mud. In Mathematica, Matlab, or lDL, you spend almost all

your time (generally quite productively!) at the top of the scale, but it is practically

impossible to dig down when you need to. Neither of these paradigms is optimal.

We conjecture that an optimal programming model is one in which the pro

grammer has approximately equal access to each logarithmic level, and we think

that a skil led programmer will spend roughly equal programming time in each

logarithmic level, laying out bold strokes in the top levels, clever optimizations in

the bottom ones. Fortran 90 is by no means a perfect language. But augmented by

a good set of ut ility routines and an accessible source-code library (you can guess

which we favor), it seems to us to be closer to the ideal than any other choice

available right now.

There is a possible rejoinder that our objections to TEs simply reflect today's

technological limitations, and that they wi ll get much better in the future. No

doubt true. However, TEs, because of their very generality, wi ll always be much

slower than the execution of native arithmetic operations on simple data structures

that are "close to the machine." The latter capability is exactly what a modern

compiled language- one that contains a broad mixture of high-level and lowcr

level constructs- provides.

If there is a single sentence in the Numerical Recipes books that has annoyed

more people than any other, it is this one: "The prnctical scientist is trying to solve

tomorrow's problem on yesterday's computer; the computer scientist, we think,

often has it the other way around." We stand by this statement.

1nd \\·hat about C ++ ·!
Indeed, what about C++? This language would seem to meet a ll our require

ments: It allows arbitrary high-level constructions through the mechanism of a

class library, yet its underlying C syntax is even more primitive, and closer to the

machine, than o ld Fortran 77.

We have spent a lot of time in the last five years scratching our heads over

C++ (and over Java in the last couple of years). Probably a Numerical Recipes in

C++ would have value. There are several reasons, however, that we have not pro

duced such a version.

First, the original " democratic" dream of object-oriented programming, that

every programmer would accumulate an idiosyncratic collection of useful object

classes whose reusabil ity would allow moving to ever higher levels of program

ming abstraction in the course of a career- this dream seems dead. Instead, to

day's trend is toward a fixed, universal object-class library (Microsoft's MFC,

422 COMPUTERS JN PHYSICS, VOL. 11 , NO. 5, SEP/OCT 1997

more or less) and is discouraging of more than a

minimal amount of idiosyncratic programming at

the object-class-definition level. The result is that

C++ has become essentially a large, but fixed, pro

gramming language, very much oriented toward

programming Microsoft Windows software. (For

tran 90, on the other hand, is strongly biased to

ward scientific computing- it is a poor language

in which to write native Windows applications!)

Second, there is a genu inely unresolved de

bate regarding what should be the fundamental

structure of a scientific programm ing library in

C++. Should it be true to the language's object-ori

ented philosophy that makes methods (that is, algo

rithms) subsidiary to the data structures that they

act on? If so, then there is a danger of ending up

with a large number of classes fo r high ly specific

data structures and types, quite complicated and

difficult to learn, but really all just wrappers for a

set of methods that can act on multiple data types

or structures. There exist some ambitious class li-

braries for scientific computing (see, fo r example,

Ref. 14) that suffer, to one extent or another, from this problem.

comp
language
users) must m
higher-le\iel constructs
and to parallel
ization.

Confronting just this issue, a competing viewpoint, called "generic program

ming with the Standard Template Library (STL)"15 17 has emerged. Here algo

rithms and data structures ("containers") have more-equal claims to primacy, with

the two being connected by " iterators" that tell the algorithm how to extract data

from the container. STL is implemented as C++ template classes that naturally al

low for multiple data types (for example, single versus double precision).

We do not feel ready to choose one of these C++ methodologies, and we

have only just begun thinking about what we might conceivably propose as an al

ternative. One possibility wou ld be to define a generic, very-high-level, interface

that encapsulates a set of objects and methods comparable to everything in For

tran 90, but not in itself dictating any particu lar template or c lass-inheritance struc

ture for its implementation. Then, a variety of compatible implementations could

be written, optimized quite differently for today's serial or tomorrow' s paral lel

machines. Our preliminary efforts along these lines are at http://nr.harvarcl.edu/

nr/cpp, and we would be grateful for thoughts and comments from our readers.

Where \rn end up
We think that compiled languag giving the user direct access to mach ine-

level operations acting on simple ~ ~)J~ 1 ctures ("close to the machine"), con-

tinue to have an important futur programming. The Numerical

Recipes paradigm is not, we extinction. Total environments

like IDL or Mathematica Jl to have. There is therefore

room for improved inte · b dologies.

Nevertheless, to uages (and their users)

must move to hig , both in the computer

and in the proo of the future,

whether For ortran or C fami -

1, tightly struc-

o us that any

d c.

OMPUTERS IN PHYSICS, VOL. 11. NO. 5, SEP/OCT 1997 423

ute problems over multiple processors; from computer vendors, optimizing com

pilers for a multiprocessor environment; and from users, a willingness to change

our way of doing business. We need to move away from a coding style suited ti

serial machines, where every microstep of an algorithm needs to be thought

and explicitly coded, to a higher-level style, where the compiler and libra

take care of the details. And the remarkable thing is, if we adopt this h.

approach right now, even on today's machines, we will see immedi

our productivity.

Re[erences
I. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and

Recipes in C: The Art of Scientific Computing, 2n

Press, Cambridge, England, 1992).

2. W. H. Press, S. A. Teukolsky, W. T. Vetterling, a

Recipes in Fortran: The Art of Scientific Compu .

University Press, Cambridge, England, 1992).

3. A. !series, Mathematical Gazette 73(464), 167 (June 198

4. P. Horowitz and W. Hill, TheArt of Electronics, 2nd ed. (Ca

Press, Cambridge, England, 1989).

5. F. S. Acton, Numerical Methods That Work(Harperand Row, New

reprinted edition (Mathematical Association of America, Washington,

6. S. Wolfram, The Mathematica Book, 3rd ed. (Cambridge University

Cambridge, England, 1996).

7. D. E. Knuth, TeX and Metafont: New Directions in Typesetting (Digital Pres

Bedford, MA, 1979); see also the Preface in D. E. Knuth, The TeXbook (Ad

d ison-Wesley, Reading, MA, 1984).

8. J. C. Sprott, Numerical Recipes Routines and Examples in BASIC, in association

with Numerical Recipes Software (Cambridge University Press, Cambridge,

England, 199 1).

9. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

Recipes in Fortran 90: The Art of Parallel Scientific Computing, Volume 2 of

Fortran Numerical Recipes (Cambridge University Press, Cambridge, England, I 996).

10. M. Metcalf and J. Reid, Fortran 90195 Explained (Oxford University Press,

Oxford, England, 1996).

11. F. P. Brooks, The Mythical Man-Month, revised ed. (Addison-Wesley, Reading,

MA, 1995).

12. M. Shaw, Journal of Computer Science Education 7, 4 (1993).

13. Interactive Data Language, Version 4 (Research Systems Inc., Boulder, CO, 1995).

14. J. J. Barton and L. R. Nackman, Scientific and Engineering C++ (Addison

Wesley, Reading, MA, 1994).

15. A. Stepanov, Byte (October 1995); available on the World Wide Web at

http:/ ww .byte.com/art/9 51O/secl2/art3 .htm.

16. M C++ Programmer's Guide to the Standard Template Library (IDG

City, CA, 1995).

nd A. Saini, C++ Programming with the Standard Template

Wesley, Reading, MA, 1996).

William fl. Press is a pr<i(essor of
astronomy and physics at Harvard

University and a member of the
Theoretical Astrophysics Division of the
Harvard-Smithsonian Center/or Astro

physics, Cambridge, MA 02138.
E-mail: wpress@cfa.harvard.edu

Saul A. Teukolsky is a professor of
physics and astronomy at Cornell

niversity, Ithaca, NY 14853. E-mail:
saul@astrosun.tn.comell.edu

