Numerical Recipes in C

The Art of Scientific Computing

Second Edition

William H. Press

Harvard-Smithsonian Center for Astrophysics

Saul A. Teukolsky

Department of Physics, Cornell University

William T. Vetterling

Polaroid Corporation

Brian P. Flannery

EXXON Research and Engineering Company

Copyright (Č) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America). Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recip

CAMBRIDGE UNIVERSITY PRESS Cambridge New York Port Chester Melbourne Sydney Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge CB2 1RP 40 West 20th Street, New York, NY 10011-4211, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

Copyright © Cambridge University Press 1988, 1992 except for §13.10 and Appendix B, which are placed into the public domain, and except for all other computer programs and procedures, which are Copyright © Numerical Recipes Software 1987, 1988, 1992, 1997 All Rights Reserved.

Some sections of this book were originally published, in different form, in Computers in Physics magazine, Copyright © American Institute of Physics, 1988-1992.

First Edition originally published 1988; Second Edition originally published 1992. Reprinted with corrections, 1993, 1994, 1995, 1997. This reprinting is corrected to software version 2.08

Printed in the United States of America Typeset in T_FX

Without an additional license to use the contained software, this book is intended as a text and reference book, for reading purposes only. A free license for limited use of the software by the individual owner of a copy of this book who personally types one or more routines into a single computer is granted under terms described on p. xvii. See the section "License Information" (pp. xvi-xviii) for information on obtaining more general licenses at low cost.

Machine-readable media containing the software in this book, with included licenses for use on a single screen, are available from Cambridge University Press. See the order form at the back of the book, email to "orders@cup.org" (North America) or "trade@cup.cam.ac.uk" (rest of world), or write to Cambridge University Press, 110 Midland Avenue, Port Chester, NY 10573 (USA), for further information.

The software may also be downloaded, with immediate purchase of a license also possible, from the Numerical Recipes Software Web Site (http://www.nr.com). Unlicensed transfer of Numerical Recipes programs to any other format, or to any computer except one that is specifically licensed, is strictly prohibited. Technical questions, corrections, and requests for information should be addressed to Numerical Recipes Software, P.O. Box 243, Cambridge, MA 02238 (USA), email "info@nr.com", or fax 781 863-1739.

Library of Congress Cataloging in Publication Data

Numerical recipes in C : the art of scientific computing / William H. Press ... [et al.]. – 2nd ed.

Includes bibliographical references (p.) and index. ISBN 0-521-43108-5

1. Numerical analysis-Computer programs. 2. Science-Mathematics-Computer programs. 3. C (Computer program language) I. Press, William H. QA297.N866 1992 519.4'0285'53-dc20

92-8876

A catalog record for this book is available from the British Library.

ISBN 0 521 43108 5 Book ISBN 0 521 43720 2 Example book in C ISBN 0 521 43724 5 C diskette (IBM 3.5", 1.44M) ISBN 0 521 57608 3 CDROM (IBM PC/Macintosh) ISBN 0 521 57607 5 CDROM (UNIX)

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

Contents

			Permis readab visit we
			bsite I
	Preface to the Second Edition	xi	f 1900-18 granted (includir http://ww
	Preface to the First Edition	xiv	ng this on w.nr.com
	License Information	xvi	e) to any or call 1-
	Computer Programs by Chapter and Section	xix	server o -800-872
1	Preliminaries	1	one pap ompute -7423 (I
	1.0 Introduction	1	r, is Nort
	1.1 Program Organization and Control Structures	5	stric
	1.2 Some C Conventions for Scientific Computing	15	tly prior
	1.3 Error, Accuracy, and Stability	28	their c prohib
2	Solution of Linear Algebraic Equations	32	y), or s
	2.0 Introduction	32	ord end
	2.1 Gauss-Jordan Elimination	36	er N
	2.2 Gaussian Elimination with Backsubstitution	41	iii to
	2.3 LU Decomposition and Its Applications	43	urth trad
	2.4 Tridiagonal and Band Diagonal Systems of Equations	50	ler r le@
	2.5 Iterative Improvement of a Solution to Linear Equations	55	cup.
	2.6 Singular Value Decomposition	59	can
	2.7 Sparse Linear Systems	71	n.ac
	2.8 Vandermonde Matrices and Toeplitz Matrices	90	uk di or
	2.9 Cholesky Decomposition	96	any (out
	2.10 QR Decomposition	98	side
	2.11 Is Matrix Inversion an N^3 Process?	102	ying c North
3	Interpolation and Extrapolation	105	of macl DROM: 1 Amer
	3.0 Introduction	105	nine: ≩ ica).
	3.1 Polynomial Interpolation and Extrapolation	108	
	3.2 Rational Function Interpolation and Extrapolation	111	
	3.3 Cubic Spline Interpolation	113	
	3.4 How to Search an Ordered Table	117	
	3.5 Coefficients of the Interpolating Polynomial	120	
	3.6 Interpolation in Two or More Dimensions	123	

3.6 Interpolation in Two or More Dimensions

^	Integration of Eurotiana	120	
4		129	
	4.0 Introduction	129	
	4.1 Classical Formulas for Equally Spaced Abscissas	130	
	4.2 Elementary Algorithms	136	
	4.3 Komberg Integration	140	
	4.4 Improper Integrals	141	
	4.5 Gaussian Quadratures and Orthogonal Polynomials 4.6 Multidimensional Integrals	147	
5	Evaluation of Functions	165	
	5.0 Introduction	165	
	5.1 Series and Their Convergence	165	
	5.2 Evaluation of Continued Fractions	169	
	5.3 Polynomials and Rational Functions	173	
	5.4 Complex Arithmetic	176	
	5.5 Recurrence Relations and Clenshaw's Recurrence Formula	178	
	5.6 Quadratic and Cubic Equations	183	
	5.7 Numerical Derivatives	186	
	5.8 Chebyshev Approximation	190	
	5.9 Derivatives or Integrals of a Chebyshev-approximated Function	195	
	5.10 Polynomial Approximation from Chebyshev Coefficients	197	
	5.11 Economization of Power Series	198	
	5.12 Padé Approximants	200	
	5.13 Rational Chebyshev Approximation	204	
	5.14 Evaluation of Functions by Path Integration	208	:
6	Special Functions	212	
	6.0 Introduction	212	
	6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients6.2 Incomplete Gamma Function, Error Function, Chi-Square	213	
	Probability Function, Cumulative Poisson Function	216	
	6.3 Exponential Integrals	222	
	6.4 Incomplete Beta Function, Student's Distribution, F-Distribution,		
	Cumulative Binomial Distribution	226	
	6.5 Bessel Functions of Integer Order	230	
	6.6 Modified Bessel Functions of Integer Order	236	
	6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical		
	Bessel Functions	240	
	6.8 Spherical Harmonics	252	
	6.9 Fresnel Integrals, Cosine and Sine Integrals	255	
	6.10 Dawson's Integral	259	
	6.11 Elliptic Integrals and Jacobian Elliptic Functions	261	
	6.12 Hypergeometric Functions	271	
7	Random Numbers	274	
	7.0 Introduction	274	

Contents

7.0 Introduction		
7.1 Uniform Deviates	5	

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade @cup.cam.ac.uk (outside North America).

275

vi

	Contents	vii
	7.2 Transformation Method: Exponential and Normal Deviates	287
	7.3 Rejection Method: Gamma, Poisson, Binomial Deviates	290
	7.4 Generation of Random Bits	296
	7.5 Random Sequences Based on Data Encryption	300
	7.6 Simple Monte Carlo Integration	304
	7.7 Quasi- (that is, Sub-) Random Sequences	309
	7.8 Adaptive and Recursive Monte Carlo Methods	316
8	Sorting	329
	8.0 Introduction	329
	8.1 Straight Insertion and Shell's Method	330
	8.2 Quicksort	332
	8.3 Heapsort	336
	8.4 Indexing and Ranking	338
	8.5 Selecting the <i>M</i> th Largest	341
	8.6 Determination of Equivalence Classes	345
9	Root Finding and Nonlinear Sets of Equations	347
	9.0 Introduction	347
	9.1 Bracketing and Bisection	350
	9.2 Secant Method, False Position Method, and Ridders' Method	354
	9.3 Van Wijngaarden-Dekker-Brent Method	359
	9.4 Newton-Raphson Method Using Derivative	362
	9.5 Roots of Polynomials	369
	9.6 Newton-Raphson Method for Nonlinear Systems of Equations	379
	9.7 Globally Convergent Methods for Nonlinear Systems of Equations	383
10	Minimization or Maximization of Functions	394
	10.0 Introduction	394
	10.1 Golden Section Search in One Dimension	397
	10.2 Parabolic Interpolation and Brent's Method in One Dimension	402
	10.3 One-Dimensional Search with First Derivatives	405
	10.4 Downhill Simplex Method in Multidimensions	408
	10.5 Direction Set (Powell's) Methods in Multidimensions	412
	10.6 Conjugate Gradient Methods in Multidimensions	420
	10.7 Variable Metric Methods in Multidimensions	425
	10.8 Linear Programming and the Simplex Method	430
	10.9 Simulated Annealing Methods	444
11	Eigensystems	456
	11.0 Introduction	456
	11.1 Jacobi Transformations of a Symmetric Matrix	463
	11.2 Reduction of a Symmetric Matrix to Tridiagonal Form:	
	Givens and Householder Reductions	469
	11.3 Eigenvalues and Eigenvectors of a Tridiagonal Matrix	475
	11.4 Hermitian Matrices	481
	11.5 Reduction of a General Matrix to Hessenberg Form	482

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

11.6 The QR Algorithm for Real Hessenberg Matrices 11.7 Improving Eigenvalues and/or Finding Eigenvectors by	486 493 496
11.6 The QR Algorithm for Real Hessenberg Matrices 11.7 Improving Eigenvalues and/or Finding Eigenvectors by	486 493 496
Inverse Iteration	493 496
myerse neration	496
2 Fast Fourier Transform	
12.0 Introduction	496
12.1 Fourier Transform of Discretely Sampled Data	500
12.2 Fast Fourier Transform (FFT)	504
12.3 FFT of Real Functions, Sine and Cosine Transforms	510
12.4 FFT in Two or More Dimensions	521
12.5 Fourier Transforms of Real Data in Two and Three Dimensions	525
12.6 External Storage or Memory-Local FFTs	532
3 Fourier and Spectral Applications	537
13.0 Introduction	537
13.1 Convolution and Deconvolution Using the FFT	538
13.2 Correlation and Autocorrelation Using the FFT	545
13.3 Optimal (Wiener) Filtering with the FFT	547
13.4 Power Spectrum Estimation Using the FFT	549
13.5 Digital Filtering in the Time Domain	558
13.6 Linear Prediction and Linear Predictive Coding	564
13./ Power Spectrum Estimation by the Maximum Entropy	570
(All Poles) Method	512
13.8 Spectral Analysis of Unevenily Sampled Data	5/5
12.10 Woyslet Transforms	501
13.11 Numerical Use of the Sampling Theorem	591 606
4 Statistical Description of Data	609
14.0 Introduction	609
14.1 Moments of a Distribution: Mean, variance, Skewness, and So Forth	610
and 50 Form	615
14.2 Do Two Distributions flave the Same Means of Variances:	620
14.5 Arc Two Distributions Different:	628
14.5 Linear Correlation	636
14.6 Nonparametric or Rank Correlation	639
14.7 Do Two-Dimensional Distributions Differ?	645
14.8 Savitzky-Golay Smoothing Filters	650
5 Modeling of Data	656
15.0 Introduction	656
15.1 Least Squares as a Maximum Likelihood Estimator	657
15.2 Fitting Data to a Straight Line	661
15.3 Straight I ine Data with Errors in Roth Coordinates	666
15.4 General Linear Least Squares	671
15.5 Nonlinear Models	681

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade @cup.cam.ac.uk (outside North America).

....

	Contents	ix
	15.6 Confidence Limits on Estimated Model Parameters	689
	15.7 Robust Estimation	699
16	Integration of Ordinary Differential Equations	707
	16.0 Introduction	707
	16.1 Runge-Kutta Method	710
	16.2 Adaptive Stepsize Control for Runge-Kutta	714
	16.3 Modified Midpoint Method	722
	16.4 Richardson Extrapolation and the Bulirsch-Stoer Method	724
	16.5 Second-Order Conservative Equations	732
	16.6 Stiff Sets of Equations	734
	16.7 Multistep, Multivalue, and Predictor-Corrector Methods	747
7	Two Point Boundary Value Problems	753
	17.0 Introduction	753
	17.1 The Shooting Method	757
	17.2 Shooting to a Fitting Point	760
	17.3 Relaxation Methods	762
	17.4 A Worked Example: Spheroidal Harmonics	772
	17.5 Automated Allocation of Mesh Points	783
	17.6 Handling Internal Boundary Conditions or Singular Points	784
8	Integral Equations and Inverse Theory	788
	18.0 Introduction	788
	18.1 Fredholm Equations of the Second Kind	791
	18.2 Volterra Equations	794
	18.3 Integral Equations with Singular Kernels	797
	18.4 Inverse Problems and the Use of A Priori Information	804
	18.5 Linear Regularization Methods	808
	18.6 Backus-Gilbert Method	815
	18.7 Maximum Entropy Image Restoration	818
9	Partial Differential Equations	827
	19.0 Introduction	827
	19.1 Flux-Conservative Initial Value Problems	834
	19.2 Diffusive Initial Value Problems	847
	19.3 Initial Value Problems in Multidimensions	853
	19.4 Fourier and Cyclic Reduction Methods for Boundary	
	Value Problems	857
	19.5 Relaxation Methods for Boundary Value Problems	863
	19.6 Multigrid Methods for Boundary Value Problems	871
20	Less-Numerical Algorithms	889
	20.0 Introduction	889
	20.1 Diagnosing Machine Parameters	889
	20.2 Gray Codes	894

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

X	Contents	
	20.3 Cyclic Redundancy and Other Checksums	896
	20.4 Huffman Coding and Compression of Data	903
	20.5 Arithmetic Coding	910
	20.6 Arithmetic at Arbitrary Precision	915
	References	926
	Appendix A: Table of Prototype Declarations	930
	Appendix B: Utility Routines	940
	Appendix C: Complex Arithmetic	948
	Index of Programs and Dependencies	951
	General Index	965

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade @cup.cam.ac.uk (outside North America).