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Abstract. In this paper we propose a new three-step iteration process, called M iteration process, for
approximation of fixed points. Some weak and strong convergence theorems are proved for Suzuki
generalized nonexpansive mappings in the setting of uniformly convex Banach spaces. Numerical example
is given to show the efficiency of new iteration process. Our results are the extension, improvement and
generalization of many known results in the literature of iterations in fixed point theory.

1. Introduction

Once the existence of a fixed point of some mapping is established, then to find the value of that fixed
point is not an easy task, that is why we use iterative processes for computing them. By time, many iterative
processes have been developed and it is impossible to cover them all. The well-known Banach contraction
theorem use Picard iteration process for approximation of fixed point. Some of the other well-known
iterative processes are Mann [11], Ishikawa [7], Agarwal [2], Noor [12], Abbas [1], SP [15], S∗ [8], CR [4],
Normal-S [18], Picard Mann [10], Picard-S [6], Thakur New [22] and so on.

Speed of convergence play important role for an iteration process to be preferred on another iteration
process. In [16], Rhoades mentioned that the Mann iteration process for decreasing function converge faster
than the Ishikawa iteration process and for increasing function the Ishikawa iteration process is better than
the Mann iteration process. Also the Mann iteration process appears to be independent of the initial guess
(see also [17]). In [2], the authors claimed that Agarwal iteration process converge at a rate same as that
of the Picard iteration process and faster than the Mann iteration process for contraction mappings. In
[1], the authors claimed that Abbas iteration process converge faster than Agarwal iteration process. In
[4], the authors claimed that CR iteration process is equivalent to and faster than Picard, Mann, Ishikawa,
Agarwal, Noor and SP iterative processes for quasi-contractive operators in Banach spaces. Also in [9]
the authors proved that CR iterative process converge faster than the S∗ iterative process for the class of
contraction mappings. In [6], authors claimed that Picard-S iteration process converge faster than all Picard,
Mann, Ishikawa, Noor, SP, CR, Agarwal, S∗, Abbas and Normal-S for contraction mappings. In [22], the
authors proved with the help of numerical example that Thakur New iteration process converge faster than
Picard, Mann, Ishikawa, Agarwal, Noor and Abbas iteration processes for the class of Suzuki generalized
nonexpansive mappings.
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Rhoades [16] made an universal remark on the rate of convergence of these iteration processes that:
“It is doubtful if any global statement can be made, since there is nothing about these iteration procedures

to cause their analysis to be different from that of the other approximation method.”
Motivated by above, in this paper, we introduce a new iteration process namely M iteration process

which is the first three-step iteration process with a single set of parameters. Using our new iteration process,
we prove some weak and strong convergence theorems for Suzuki generalized nonexpansive mappings,
which is the generalization of nonexpansive as well as contraction mappings, in the setting of uniformly
convex Banach spaces. Finally, an example of Suzuki generalized nonexpansive mapping is given which
is not nonexpansive. Numerically we compare the speed of convergence of our new M iteration process
with the well-known iteration processes like two-step S iteration process and three-step Picard-S iteration
process for given example.

2. Preliminaries

First we recall some definitions, propositions and lemmas to be used in the next two sections.
A Banach space X is called uniformly convex [5] if for each ε ∈ (0, 2] there is a δ > 0 such that for x, y ∈ X,

‖x‖ ≤ 1,∥∥∥y
∥∥∥ ≤ 1,∥∥∥x − y

∥∥∥ > ε
 =⇒

∥∥∥∥∥x + y
2

∥∥∥∥∥ ≤ δ.
A Banach space X is said to satisfy the Opial property [13] if for each sequence {xn} in X, converging

weakly to x ∈ X, we have

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

∥∥∥xn − y
∥∥∥ ,

for all y ∈ X such that y , x.
A point p is called fixed point of a mapping T if T(p) = p, and F(T) represents the set of all fixed points

of mapping T. Let C be a nonempty subset of a Banach space X. A mapping T : C→ C is called contraction
if there exists θ ∈ (0, 1) such that

∥∥∥Tx − Ty
∥∥∥ ≤ θ ∥∥∥x − y

∥∥∥ , for all x, y ∈ C. A mapping T : C → C is called
nonexpansive if

∥∥∥Tx − Ty
∥∥∥ ≤ ∥∥∥x − y

∥∥∥ for all x, y ∈ C, and quasi-nonexpansive if for all x ∈ C and p ∈ F(T),
we have

∥∥∥Tx − p
∥∥∥ ≤ ∥∥∥x − p

∥∥∥. In 2008, Suzuki [21] introduced the concept of generalized nonexpansive
mappings which is a condition on mappings called condition (C). A mapping T : C → C is said to satisfy
condition (C) if for all x, y ∈ C, we have

1
2
‖x − Tx‖ ≤

∥∥∥x − y
∥∥∥ implies

∥∥∥Tx − Ty
∥∥∥ ≤ ∥∥∥x − y

∥∥∥ .
Suzuki [21] showed that the mapping satisfying condition (C) is weaker than nonexpansiveness and

stronger than quasi nonexpansiveness. The mapping satisfy condition (C) is called Suzuki generalized
nonexpansive mapping.

Suzuki [21] obtained fixed point theorems and convergence theorems for Suzuki generalized nonex-
pansive mappings. In 2011, Phuengrattana [14] proved convergence theorems for Suzuki generalized
nonexpansive mappings using the Ishikawa iteration in uniformly convex Banach spaces and CAT(0)
spaces. Recently, fixed point theorems for Suzuki generalized nonexpansive mappings have been studied
by a number of authors see e.g. [22] and references therein.

We now list some properties of Suzuki generalized nonexpansive mappings.

Proposition 2.1. Let C be a nonempty subset of a Banach space X and T : C→ C be any mapping. Then
(i) [21, Proposition 1] If T is nonexpansive then T is Suzuki generalized nonexpansive mapping.
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(ii) [21, Proposition 2] If T is Suzuki generalized nonexpansive mapping and has a fixed point, then T is a
quasi-nonexpansive mapping.

(iii) [21, Lemma 7] If T is Suzuki generalized nonexpansive mapping, then
∥∥∥x − Ty

∥∥∥ ≤ 3 ‖Tx − x‖ +
∥∥∥x − y

∥∥∥ for
all x, y ∈ C.

Lemma 2.2. [21, Proposition 3] Let T be a mapping on a subset C of a Banach space X with the Opial property. Assume
that T is Suzuki generalized nonexpansive mapping. If {xn} converges weakly to z and limn→∞ ‖Txn − xn‖ = 0, then
Tz = z.

Lemma 2.3. [21, Theorem 5] Let C be a weakly compact convex subset of a uniformly convex Banach space X. Let T
be a mapping on C. Assume that T is Suzuki generalized nonexpansive mapping. Then T has a fixed point.

Lemma 2.4. [19, Lemma 1.3] Suppose that X is a uniformly convex Banach space and {tn} be any real sequence such
that 0 < p ≤ tn ≤ q < 1 for all n ≥ 1. Let {xn} and {yn} be any two sequences of X such that lim supn→∞ ‖xn‖ ≤ r,
lim supn→∞

∥∥∥yn

∥∥∥ ≤ r and lim supn→∞

∥∥∥tnxn + (1 − tn)yn

∥∥∥ = r hold for some r ≥ 0. Then lim n→∞

∥∥∥xn − yn

∥∥∥ = 0.

Let C be a nonempty closed convex subset of a Banach space X, and let {xn} be a bounded sequence in
X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞
‖xn − x‖ .

The asymptotic radius of {xn} relative to C is given by

r(C, {xn}) = inf{r(x, {xn}) : x ∈ C},

and the asymptotic center of {xn} relative to C is the set

A(C, {xn}) = {x ∈ C : r(x, {xn}) = r(C, {xn})}.

It is known that, in a uniformly convex Banach space, A(C, {xn}) consists of exactly one point.

3. M Iteration Process and Convergence Results

Throughout this section we have n ≥ 0, {αn} and {βn} are real sequences in [0, 1] and C ba a nonempty
subset of Banach Space X. In this section, we prove some weak and strong convergence theorems for the
fixed point of Suzuki generalized nonexpansive mappings in the setting of uniformly convex Banach spaces
using our new M iteration process.

Following is the one step Mann iteration process:{
x0 ∈ C

xn+1 = (1 − αn)xn + αnTxn
(1)

Agarwal iteration process introduced in [2], also called S iteration process, is defined as:
x0 ∈ C

yn = (1 − βn)xn + βnTxn
xn+1 = (1 − αn)Txn + αnTyn

(2)

Recently in 2014, Gursoy and Karakaya in [6] introduced new iteration process called Picard-S iteration
process, as follow
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x0 ∈ C

zn = (1 − βn)xn + βnTxn
yn = (1 − αn)Txn + αnTzn

xn+1 = Tyn

(3)

They proved that the Picard-S iteration process can be used to approximate the fixed point of contraction
mappings. Also, by providing an example, it is shown that the Picard-S iteration process converge faster
than all Picard, Mann, Ishikawa, Noor, SP, CR, S, S∗, Abbas, Normal-S and Two-step Mann iteration
processes.

After this in 2015, Thakur et. al. [22] used a new iteration process, defined as:
x0 ∈ C

zn = (1 − βn)xn + βnTxn
yn = T((1 − αn)xn + αnzn)

xn+1 = Tyn.

(4)

With the help of numerical example they proved that (4) is faster than Picard, Mann, Ishikawa, Agarwal,
Noor and Abbas iteration process for suzuki generalized nonexpansive mappings.

We note that the speed of convergence of iteration process (3) and (4) are almost same.

Problem 3.1. Is it possible to develop an iteration process whose rate of convergence is even faster than the iteration
processes (2) and (3)?

To answer this, we introduce a new three-step iteration process known as ”M Iteration Process”, defined
as: 

x0 ∈ C
zn = (1 − αn)xn + αnTxn

yn = Tzn
xn+1 = Tyn

(5)

We now establish the following useful result:

Lemma 3.2. Let C be a nonempty closed convex subset of a Banach space X, and let T : C → C be a Suzuki
generalized nonexpansive mapping with F(T) , ∅. For arbitrary chosen x0 ∈ C, let the sequence {xn} be generated by
(5), then limn→∞

∥∥∥xn − p
∥∥∥ exists for any p ∈ F(T).

Proof. Let p ∈ F(T) and z ∈ C. Since T Suzuki generalized nonexpansive mappings, so

1
2

∥∥∥p − Tp
∥∥∥ = 0 ≤

∥∥∥p − z
∥∥∥ implies that

∥∥∥Tp − Tz
∥∥∥ ≤ ∥∥∥p − z

∥∥∥ .
So by Proposition 2.1(ii), we have∥∥∥zn − p

∥∥∥ =
∥∥∥(1 − βn)xn + βnTxn − p

∥∥∥
≤ (1 − βn)

∥∥∥xn − p
∥∥∥ + βn

∥∥∥Txn − p
∥∥∥

≤ (1 − βn)
∥∥∥xn − p

∥∥∥ + βn

∥∥∥xn − p
∥∥∥

=
∥∥∥xn − p

∥∥∥ . (6)

Using (6) together with Proposition 2.1(ii), we get∥∥∥yn − p
∥∥∥ =

∥∥∥Tzn − p
∥∥∥

≤

∥∥∥zn − p
∥∥∥

≤

∥∥∥xn − p
∥∥∥ . (7)
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Similarly, by using (7) together with Proposition 2.1(ii), we have∥∥∥xn+1 − p
∥∥∥ =

∥∥∥Tyn − p
∥∥∥

≤

∥∥∥yn − p
∥∥∥

≤

∥∥∥xn − p
∥∥∥ . (8)

This implies that {
∥∥∥xn − p

∥∥∥} is bounded and non-increasing for all p ∈ F(T).Hence limn→∞

∥∥∥xn − p
∥∥∥ exists,

as required.

Theorem 3.3. Let C be a nonempty closed convex subset of a uniformly convex Banach space X, and let T : C→ C
be a Suzuki generalized nonexpansive mapping. For arbitrary chosen x0 ∈ C, let the sequence {xn} be generated by
(5) for all n ≥ 1, where {αn} and {βn} are sequence of real numbers in [a, b] for some a, b with 0 < a ≤ b < 1. Then
F(T) , ∅ if and only if {xn} is bounded and limn→∞ ‖Txn − xn‖ = 0.

Proof. Suppose F(T) , ∅ and let p ∈ F(T). Then, by Lemma 3.2, limn→∞

∥∥∥xn − p
∥∥∥ exists and {xn} is bounded.

Put

lim
n→∞

∥∥∥xn − p
∥∥∥ = r. (9)

From (6) and (9), we have

lim sup
n→∞

∥∥∥zn − p
∥∥∥ ≤ lim sup

n→∞

∥∥∥xn − p
∥∥∥ = r. (10)

By Proposition 2.1(ii), we have

lim sup
n→∞

∥∥∥Txn − p
∥∥∥ ≤ lim sup

n→∞

∥∥∥xn − p
∥∥∥ = r. (11)

On the other hand by suing Proposition 2.1(ii), we have∥∥∥xn+1 − p
∥∥∥ =

∥∥∥Tyn − p
∥∥∥

≤

∥∥∥yn − p
∥∥∥

=
∥∥∥Tzn − p

∥∥∥
≤

∥∥∥zn − p
∥∥∥ .

Therefore

r ≤ lim inf
n→∞

∥∥∥zn − p
∥∥∥ . (12)

From (10) and (12), we get

r = lim
n→∞

∥∥∥zn − p
∥∥∥

= lim
n→∞

∥∥∥(1 − βn)xn + βnTxn − p
∥∥∥

= lim
n→∞

∥∥∥βn(Txn − p) + (1 − βn)(xn − p)
∥∥∥ . (13)

Using (9), (11) and (13) togather with Lemma 2.4, we get

lim
n→∞
‖Txn − xn‖ = 0.
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Conversely, suppose that {xn} is bounded and limn→∞ ‖Txn − xn‖ = 0. Let p ∈ A(C, {xn}). By Proposition
2.1(iii), we have

r(Tp, {xn}) = lim sup
n→∞

∥∥∥xn − Tp
∥∥∥

≤ lim sup
n→∞

(3 ‖Txn − xn‖ +
∥∥∥xn − p

∥∥∥)

≤ lim sup
n→∞

∥∥∥xn − p
∥∥∥

= r(p, {xn}).

This implies that Tp ∈ A(C, {xn}). Since X is uniformly convex, A(C, {xn}) is singleton, hence we have
Tp = p. Hence F(T) , ∅.

Now we are in the position to prove weak convergence theorem.

Theorem 3.4. Let C be a nonempty closed convex subset of a uniformly convex Banach space X with the Opial
property, and let T : C → C be a Suzuki generalized nonexpansive mapping. For arbitrary chosen x0 ∈ C, let the
sequence {xn} be generated by (5) for all n ≥ 1, where {αn} and {βn} are sequence of real numbers in [a, b] for some a, b
with 0 < a ≤ b < 1 such that F(T) , ∅. Then {xn} converges weakly to a fixed point of T .

Proof. Since F(T) , ∅, so by Theorem 3.3, we have that {xn} is bounded and limn→∞ ‖Txn − xn‖ = 0. Since X
is uniformly convex hence reflexive, so by Eberlin’s theorem there exists a subsequence {xn j } of {xn} which
converges weakly to some q1 ∈ X. Since C is closed and convex, by Mazur’s theorem q1 ∈ C. By Lemma
2.2, q1 ∈ F(T). Now, we show that {xn} converges weakly to q1. In fact, if this is not true, so there must exist
a subsequence {xnk } of {xn} such that {xnk } converges weakly to q2 ∈ C and q2 , q1. By Lemma 2.2, q2 ∈ F(T).
Since limn→∞

∥∥∥xn − p
∥∥∥ exists for all p ∈ F(T). By Theorem 3.3 and Opial’s property, we have

lim
n→∞

∥∥∥xn − q1

∥∥∥ = lim
j→∞

∥∥∥xn j − q1

∥∥∥
< lim

j→∞

∥∥∥xn j − q2

∥∥∥
= lim

n→∞

∥∥∥xn − q2

∥∥∥
= lim

k→∞

∥∥∥xnk − q2

∥∥∥
< lim

k→∞

∥∥∥xnk − q1

∥∥∥
= lim

n→∞

∥∥∥xn − q1

∥∥∥ ,
which is contradiction. So q1 = q2. This implies that {xn} converges weakly to a fixed point of T.

Next we prove the strong convergence theorem.

Theorem 3.5. Let C be a nonempty compact convex subset of a uniformly convex Banach space X, and let T : C→ C
be a Suzuki generalized nonexpansive mapping. For arbitrary chosen x0 ∈ C, let the sequence {xn} be generated by
(5) for all n ≥ 1, where {αn} and {βn} are sequence of real numbers in [a, b] for some a, b with 0 < a ≤ b < 1. Then {xn}

converges strongly to a fixed point of T .

Proof. By Lemma 2.3, we have that F(T) , ∅ so by Theorem 3.3, we have limn→∞ ‖Txn − xn‖ = 0. Since C is
compact, so there exists a subsequence {xnk } of {xn} such that {xnk } converges strongly to p for some p ∈ C.
By Proposition 2.1(iii), we have∥∥∥xnk − Tp

∥∥∥ ≤ 3
∥∥∥Txnk − xnk

∥∥∥ +
∥∥∥xnk − p

∥∥∥ , for all n ≥ 1.
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Letting k → ∞, we get Tp = p, i.e., p ∈ F(T). Since, by Lemma 3.2, limn→∞

∥∥∥xn − p
∥∥∥ exists for every

p ∈ F(T), so xn converge strongly to p.

Senter and Dotson [20] introduced the notion of a mappings satisfying condition (I) as.
A mapping T : C→ C is said to satisfy condition (I), if there exists a nondecreasing function f : [0,∞)→

[0,∞) with f (0) = 0 and f (r) > 0 for all r > 0 such that ‖x − Tx‖ ≥ f (d(x,F(T))) for all x ∈ C, where
d(x,F(T)) = infp∈F(T)

∥∥∥x − p
∥∥∥.

Now we prove the strong convergence theorem using condition (I).

Theorem 3.6. Let C be a nonempty closed convex subset of a uniformly convex Banach space X, and let T : C→ C
be a Suzuki generalized nonexpansive mapping. For arbitrary chosen x0 ∈ C, let the sequence {xn} be generated by
(5) for all n ≥ 1, where {αn} and {βn} are sequence of real numbers in [a, b] for some a, b with 0 < a ≤ b < 1 such that
F(T) , ∅. If T satisfy condition (I), then {xn} converges strongly to a fixed point of T.

Proof. By Lemma 3.2, we have limn→∞

∥∥∥xn − p
∥∥∥ exists for all p ∈ F(T) and so limn→∞ d(xn,F(T)) exists. Assume

that limn→∞

∥∥∥xn − p
∥∥∥ = r for some r ≥ 0. If r = 0 then the result follows. Suppose r > 0, from the hypothesis

and condition (I),

f (d(xn,F(T))) ≤ ‖Txn − xn‖ . (14)

Since F(T) , ∅, so by Theorem 3.4, we have limn→∞ ‖Txn − xn‖ = 0. So (14) implies that

lim
n→∞

f (d(xn,F(T))) = 0. (15)

Since f is nondecreasing function, so from (15) we have limn→∞ d(xn,F(T)) = 0. Thus, we have a
subsequence {xnk } of {xn} and a sequence {yk} ⊂ F(T) such that∥∥∥xnk − yk

∥∥∥ < 1
2k

for all k ∈N.

So using (8),we get∥∥∥xnk+1 − yk

∥∥∥ ≤ ∥∥∥xnk − yk

∥∥∥ < 1
2k
.

Hence∥∥∥yk+1 − yk

∥∥∥ ≤

∥∥∥yk+1 − xk+1

∥∥∥ +
∥∥∥xk+1 − yk

∥∥∥
≤

1
2k+1

+
1
2k

<
1

2k−1
→ 0, as k→∞.

This shows that {yk} is a Cauchy sequence in F(T) and so it converges to a point p. Since F(T) is
closed, therefore p ∈ F(T) and then {xnk } converges strongly to p. Since limn→∞

∥∥∥xn − p
∥∥∥ exists, we have that

xn → p ∈ F(T). Hence proved.

4. Numerical Example

For numerical interpretations first we construct an example of Suzuki generalized nonexpansive map-
ping which is not nonexpansive.
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Example 4.1. Define a mapping T : [0, 1]→ [0, 1] by

Tx =

 1 − x if x ∈
[
0, 1

8

)
x+7

8 if x ∈
[

1
8 , 1

]
.

Need to prove that T is Suzuki generalized nonexpansive mapping but not nonexpansive.
If x = 3

25 , y = 1
8 we see that∥∥∥Tx − Ty

∥∥∥ =
∣∣∣Tx − Ty

∣∣∣
=

∣∣∣∣∣1 − 3
25
−

57
64

∣∣∣∣∣
=

∣∣∣∣∣1600 − 192 − 1425
1600

∣∣∣∣∣
=

17
1600

>
1

200
=

∥∥∥x − y
∥∥∥ .

Hence T is not nonexpansive mapping.
To verify that T is Suzuki generalized nonexpansive mapping, consider the following cases:
Case I: Let x ∈

[
0, 1

8

)
, then 1

2 ‖x − Tx‖ = 1−2x
2 ∈

(
3
8 ,

1
2

]
. For 1

2 ‖x − Tx‖ ≤
∥∥∥x − y

∥∥∥ we must have 1−2x
2 ≤ y − x,

i.e., 1
2 ≤ y, hence y ∈

[
1
2 , 1

]
. We have

∥∥∥Tx − Ty
∥∥∥ =

∣∣∣∣∣ y + 7
8
− (1 − x)

∣∣∣∣∣ =

∣∣∣∣∣ y + 8x − 1
8

∣∣∣∣∣ < 1
8
,

and ∥∥∥x − y
∥∥∥ =

∣∣∣x − y
∣∣∣ > ∣∣∣∣∣18 − 1

2

∣∣∣∣∣ =
3
8
.

Hence 1
2 ‖x − Tx‖ ≤

∥∥∥x − y
∥∥∥ =⇒

∥∥∥Tx − Ty
∥∥∥ ≤ ∥∥∥x − y

∥∥∥ .
Case II: Let x ∈

[
1
8 , 1

]
, then 1

2 ‖x − Tx‖ = 1
2

∣∣∣ x+7
8 − x

∣∣∣ = 7−7x
16 ∈

[
0, 49

128

]
. For 1

2 ‖x − Tx‖ ≤
∥∥∥x − y

∥∥∥ we must have
7−7x

16 ≤
∣∣∣y − x

∣∣∣ , which gives two possibilities:

(a). Let x < y, then 7−7x
16 ≤ y − x =⇒ y ≥ 7+9x

16 =⇒ y ∈
[

65
128 , 1

]
⊂

[
1
8 , 1

]
. So

∥∥∥Tx − Ty
∥∥∥ =

∣∣∣∣∣x + 7
8
−

y + 7
8

∣∣∣∣∣ =
1
8

∥∥∥x − y
∥∥∥ ≤ ∥∥∥x − y

∥∥∥ .
Hence 1

2 ‖x − Tx‖ ≤
∥∥∥x − y

∥∥∥ =⇒
∥∥∥Tx − Ty

∥∥∥ ≤ ∥∥∥x − y
∥∥∥ .

(b). Let x > y, then 7−7x
16 ≤ x − y =⇒ y ≤ x − 7−7x

16 = 23x−7
16 =⇒ y ∈

[
−

33
128 , 1

]
. Since y ∈ [0, 1], so

y ≤ 23x−7
16 =⇒ x ≥ 16y+7

23 =⇒ x ∈
[

7
23 , 1

]
. So the case is x ∈

[
7
23 , 1

]
and y ∈ [0, 1] .

Now x ∈
[

7
23 , 1

]
and y ∈

[
1
8 , 1

]
is already included in case (a). So let x ∈

[
7

23 , 1
]

and y ∈
[
0, 1

8

)
, then∥∥∥Tx − Ty

∥∥∥ =

∣∣∣∣∣x + 7
8
− (1 − y)

∣∣∣∣∣
=

∣∣∣∣∣x + 8y − 1
8

∣∣∣∣∣ .
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Table 1: Sequences generated by M, Picard-S and S iteration processes.
M Picard-S S

x0 0.9 0.9 0.9
x1 0.9984375 0.9984375 0.9875
x2 0.999986267089844 0.999978963614444 0.998653671324426
x3 0.999999942021466 0.999999737837406 0.999865772752021
x4 0.999999999962418 0.999999996885298 0.999987242180259
x5 1 0.999999999964181 0.999998826296532
x6 1 0.999999999999598 0.999999894547974
x7 1 0.999999999999996 0.999999990694634
x8 1 1. 0.999999999190409
x9 1 1. 0.999999999930363
x10 1 1. 0.999999999994067

Figure 1: Convergence of iterative sequences generated by M (dots), Picard-S (dashes) and S (line) iteration processes to the fixed
point 1 of mapping T defined in Example 4.1.

For convenience, first we consider x ∈
[

7
23 ,

1
2

]
and y ∈

[
0, 1

8

)
, then

∥∥∥Tx − Ty
∥∥∥ ≤ 1

16 and
∥∥∥x − y

∥∥∥ > 33
184 . Hence∥∥∥Tx − Ty

∥∥∥ ≤ ∥∥∥x − y
∥∥∥ .

Next consider x ∈
[

1
2 , 1

]
and y ∈

[
0, 1

8

)
, then

∥∥∥Tx − Ty
∥∥∥ ≤ 1

8 and
∥∥∥x − y

∥∥∥ > 3
8 . Hence

∥∥∥Tx − Ty
∥∥∥ ≤ ∥∥∥x − y

∥∥∥ . So
1
2 ‖x − Tx‖ ≤

∥∥∥x − y
∥∥∥ =⇒

∥∥∥Tx − Ty
∥∥∥ ≤ ∥∥∥x − y

∥∥∥ .
Hence T is Suzuki generalized nonexpansive mapping.

Numerically we compare our new iteration process with two existing iteration processes. First is S
iteration process (2) and the second is Picard-S iteration process (3).

In ”Table 1” we can see some of the first terms of a sequence generated by M, Picard-S and S iteration
processes for αn = 2n

√
7n+9

, βn = 1
√

3n+7
, where initial value x0 = 0.9 and operator T is that of Example 4.1. Set

the stop parameter to ‖xn − 1‖ ≤ 10−15, where ”1” is the fixed point of T. Graphic representation in given in
Figure 1. We can easily see that the new M iterations are the first converging one than the S iterations and
the Picard-S iterations.

In order to see how far from exactly ”1” the value of xn is for a certainly value of n, we resort to arbitrary
precision calculations and get the Figure 2.
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Figure 2: Graphs for M, Picard-S and S iteration processes where the value of k indicates that the value of the recursion after a certain
number of steps is only 10k units away from fixed point 1 of mapping T defined in Example 4.1.
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