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NUMERICAL RESOLUTION OF AN “UNBALANCED” MASS TRANSPORT

PROBLEM
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Abstract. We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which
accommodates non balanced initial and final densities. The augmented Lagrangian numerical method
introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method
on an idealized error estimation problem in meteorology.
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1. Introduction

From Monge’s theory “des déblais et des remblais” in the late 18th century [35] to present days, a considerable
amount of work in mass transport theory has been gathered [10,12,19,22,24,28,30,33,36,37,39]. Apart from its
use in different theoretical studies [2,11,13–15,38]) potential “industrial” applications also emerge, for instance
in medical imaging, astronomy, meteorology etc. [9, 21, 23, 26, 29, 31, 32, 34]. The design of efficient numerical
methods is therefore already an issue for the applied mathematicians [1, 3, 4, 6–8, 17, 26, 27].

A major obstacle to the actual use of the Monge–Kantorovitch mass transfer problem (MKP) – that yields
the Wasserstein distance between density functions – is the total mass balance constraint on the data of the
problem: The solution of the MKP provides an optimal transfer map between two (initial and final) prescribed
density functions with identical L1-norm. In other words the classical MKP provides a transfer map preserving
the total mass. One rarely faces “real” balanced data, therefore using the MKP on unbalanced data either
requires some normalization or a modification of the MKP. Different normalizations have been tested in [34]
and it seems that such a process unavoidably modify the mass distribution and therefore the transfer map itself.
If the balance default is caused by noise or other non significant phenomena, a normalization of the data can
seriously impair the relevance of the MKP solution.

We therefore focus on the second option and propose a modification of the the MKP which is similar to
the penalization technique presented in [7]. We here adapt the augmented Lagrangian technique of [6] to the
time-dependent and penalized formulation of the MKP and obtain a robust numerical method for unbalanced
data.

Section 2 presents the mathematical model, Section 3 the augmented Lagrangian numerical method. We illus-
trate the method in Section 4 on a particular application related to an error estimation problem in meteorology.
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2. Mixed L
2-Wasserstein distance

2.1. The Monge–Kantorovitch problem

Let us first recall the mono-phasic “classical” formulation of the Monge–Kantorovitch problem (MKP).
Given two bounded, non-negative measurable functions ρ0 and ρT with same L1 norm (same mass) and

compact support in a bounded subset D of R
d, find an application M which realizes the transport from ρ0 to

ρT in the following sense: for all Borel set A, M satisfies

∫

M−1(A)

ρ0(x)dx =

∫

A

ρT (x)dx, (1)

and achieves the minimal cost
∫

D

|x−M(x)|2ρ0(x)dx. (2)

2.2. The Wasserstein distance

We recall here the time-dependent formulation of the Wasserstein distance (for details see [6] or [25]). We are
given two density functions ρ0(x) > 0 and ρ1(x) > 0 of x ∈ D, a bounded open set in R

d. We further assume
that they are bounded and normalized – we will say “balanced”:

∫

ρ0(x)dx =

∫

ρ1(x)dx = 1. (3)

We fix a time interval [0, T ] (T = 1 in the sequel) and consider all possible time-dependent, density et velocity
fields, ρ(t, x) > 0, v(t, x) ∈ R

d, satisfying the continuity equation

∂tρ+ ∇.(ρv) = 0, v · ~n = 0 on ∂D (4)

for 0 < t < T and x ∈ D, ~n is the outward normal to ∂D. The boundary condition express that the mass
cannot flow out of the zone of interest D.

Initial and final conditions

ρ(0, .) = ρ0, ρ(T, .) = ρ1 (5)

are prescribed for equation (4). Then, the square of the Wasserstein distance (also called L2-Kantorovitch
distance – see [19] for a review) is given by

dwas(ρ0, ρ1)
2 = inf

ρ,v

{

1

T

∫ ∫ T

0

ρ(t, x)|v(t, x)|2dxdt

}

, (6)

among all (ρ, v) satisfying (4) and (5). The minimization problem (6) can be shown to be convex with linear
constraints in the variable (ρ,m = ρv). Indeed using these new variables:

dwas(ρ0, ρ1)
2 = inf

ρ,m

{

1

T

∫ ∫ T

0

|m|2
2ρ

dxdt

}

(7)

and (4) transforms in

∂tρ+ ∇.(m) = 0 m · ~n = 0 on ∂D. (8)

The convexity with respect to (ρ,m) of the integrand in (7) follows from formula (22). The solution is unique
and and an augmented Lagrangian numerical technique has been proposed in [6] for its computation.
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Remark 2.1. As already mentioned in this previous paper, a striking property of this distance is its smoothness
with respect to translations. Let us assume for instance that ρ1 is compactly supported in R

d and obtained
from ρ0 through a translation τµ

ρ1(x) = ρ0(x− µ), (9)

for µ ∈ R
d. Then it can be checked that the density is analytically given by

ρ(t, x) = ρ0

(

x− t

T
µ

)

(10)

and the optimization problem (4) simply yields a quadratic dependence of the distance with respect to the
translation:

dwas(ρ0, ρ1)
2 = |µ|2

∫

ρ0(x) dx. (11)

Remark 2.2. It is possible to express the L2-distance using a similar time dependent formulation. We indeed
remark that

dL2(ρ0, ρ1)
2 = inf

ρ,v

{

1

T

∫ ∫ T

0

|∂tρ(t, x)|2dxdt

}

, (12)

with (ρ, v) again subject to the constraints (2) and (3). The optimization problem does not depend anymore
on v and constraint (2) is just mentioned here by analogy with Section 1.1. We again have to consider a convex
minimization problem. The cost function appearing on the right hand side of (11) can be differentiated. The
optimality condition simply express that the optimal ρ(t, x) satisfies (3) and

∂2
ttρ = 0 (13)

and is therefore simply given by the time interpolation formula

ρ(t, x) =
ρ1(x) − ρ0(x)

T
t+ ρ0(x). (14)

Replacing ∂tρ in (11), we finally obtain the claimed L2-distance:

dL2(ρ0, ρ1)
2 =

∫

|ρ1(x) − ρ0(x)|2dx.

2.3. The mixed relaxed distance

It is clear (see [7,16,34]) that the behavior with respect to translation and dilation makes, in some applications,
the choice of the distance a sensitive issue and the Wasserstein distance may be a good choice. However the
constraint of mass balance (3) is rarely satisfied.

We proposed in [7] a penalization formulation for unbalanced mass data. A classical technique in optimal
control for dealing with two point (initial and final) boundary conditions is to relax one of these, for instance
the final condition ρ(T, .) = ρ1 and enforce it through a penalization term added to the cost functional. More
precisely instead of (6), we used the relaxed MKP

drelax(ρ0, ρ1)
2 = inf

m

{

T

∫ ∫ T

0

|m|2
2ρ

dxdt+
γ

2

∫

D

|ρ(T, x) − ρ1(x)|2dx
}

(15)

where γ is a positive penalty parameter. Note that ρ is not anymore a minimization variable. It is a state
variable defined by ρ0 and (8). The final density ρ(T, x) is necessarily balanced with ρ0 because it is a solution
to the conservation law (4) but not necessarily with ρ1 now decoupled from the constraints. Existence and
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uniqueness of a solution for problem (15) was formally established in [7] where we use a conjugate gradient
method. This numerical method turns out to be sensitive to the implicit constraint ρ > 0 which is necessary to
the convex characterization of the integrand (formula (22)). One goal of this paper is to adapt the more robust
augmented Lagrangian method of [6] to a slightly different modification of the MKP involving the L2-distance.

2.4. The mixed distance

In this paper we propose to work on unbalanced data by considering the mixed Wasserstein/L2-distance in
the following sense: given two possibly unbalanced densities ρ0 and ρ1, find ρ̃1 – the closest density to ρ1 in
the L2-sense – which minimizes the Wasserstein distance dwass(ρ0, ρ̃1). It can be formulated as

inf
ρ̃1

{

dwass(ρ0, ρ̃1)
2 +

γ

2
dL2(ρ̃1, ρ1)

2
}

(16)

where γ is a positive parameter balancing the two distances.
Remark that this problem is conceptually very close to (15) even though we here keep the minimization with

respect to the whole ρ field. It can be reformulated as

dmix(ρ0, ρ1)
2 = inf

ρ,m,ρ̃1

{

T

∫ ∫ T

0

|m|2
2ρ

dxdt+
γ

2

∫

|ρ̃1(x) − ρ1(x)|2dx
}

(17)

with the additional constraint

ρ(T, .) = ρ̃1 (18)

together with the usual constraint ρ(T, .) = ρ0 and continuity equation (8) to be satisfied.
One can observe that constraint (18) just indicates that the minimization variables ρ(T, .) and ρ̃1 have to be

the same. Eliminating ρ̃1 reduces (17) to (15). We here focus on formulation (17) and solve it by adapting the
augmented Lagrangian method of [6].

3. The augmented Lagrangian numerical method

3.1. The Lagrangian

The computational bounded domain is denoted D ∈ R
d and the following notations will be used:

– ∇x is the spatial gradient in R
d;

– ∇t,x = {∂t,∇x} is the time-space gradient in R
d+1;

– ∆t,x = ∂2
t + ∆x is the time-space Laplacian;

– for two vectors in R × R
d, a, b and a′, b′, {a, b}.{a′, b′} = aa′ + b.b′ denotes the inner product.

The MKP can be written as a saddle-point problem by introducing a space-time dependent Lagrange multi-
plier φ(t, x) for constraints (4) and (5).

The Lagrangian is given by:

L(φ, ρ,m, ρ̃1) =

∫ T

0

∫

D

|m|2
2ρ

− ∂tφρ−∇xφ.m dxdt −
∫

D

φ(0, .)ρ0 − φ(T, .)ρ̃1dx+
γ

2

∫

D

|ρ̃1 − ρ1|2dx (19)

where the terms involving φ come from the integration by part of (4) and using boundary conditions (5–18).
The MKP is equivalent to the saddle-point problem:

inf
ρ,m,ρ̃1

sup
φ

L(φ, ρ,m, ρ̃1). (20)
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The (formal) optimality conditions for this problem are:











































∂tφ+
|m|2
2ρ2

= 0,
m

ρ
= ∇xφ,

∂tρ+ ∇x.m = 0,

ρ(0, .) = ρ0,

ρ(T, .) = ρ̃1,

φ(T, .) = γ(ρ1 − ρ̃1).

(21)

Notice that, if m is eliminated, we recover the equations of a pressureless potential flow. If ρ̃1 is eliminated we
get a “classical” direct/adjoint optimality system (in the optimal control theory).

3.2. A new Lagrangian

We continue to adapt the augmented Lagrangian strategy of [6] and build a new Lagrangian for which the
methods of [20] can be applied. Let us first observe that, for positive ρ (which becomes an implicit constraint),
we have, pointwise in time and space,

|m(t, x)|2
2ρ(t, x)

= sup
{a,b}∈K

[a(t, x)ρ(t, x) + b(t, x).m(t, x)] (22)

where

K =

{

{a, b} : R ×D → R × R
d, s. t. a+

|b|2
2

≤ 0, ∀(t, x) ∈ R ×D

}

· (23)

Notice that the left-hand side of (22) becomes infinite whenever ρ vanishes or ρ is positive and m vanishes. It is
also important to notice that the optimal b (= m

ρ
) above has to satisfy b ·~n = 0 on ∂D because of the boundary

conditions on m. We can thus also restrain K to

K =

{

{a, b} : R ×D → R × R
d, s. t. a+

|b|2
2

≤ 0. ∀(t, x) ∈ R ×D and b · ~n = 0, ∀(t, x) ∈ R × ∂D

}

·
(24)

Using formula (22) the non-linear integrand can be replaced by a linear function that has to be optimized with
respect to the new variable (a, b). This term will eventually be combined to produce a new linear constraint
that can advantageously be “augmented” as proposed in [20] (see below).

Consequently it is natural to adopt the same strategy on the non-linear L2-norm penalization. We use the

Legendre transform of x→ x2

2 to dualize the penalization term:

|ρ̃1 − ρ1|2
2

= sup
c

[

c(ρ̃1 − ρ1) −
c2

2

]

(25)

where c is a function on D and (25) holds pointwise.
We follow the terminology of [6] and use the following variables and notations:

µ = {ρ,m} q = {a, b}, 〈µ, q〉 =

∫ T

0

∫

D

µ.q, (26)

F (q) = 0 if q ∈ K, +∞ else, G(φ) =

∫

D

φ(0, .)ρ0 dx. (27)
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We also need the new functional:

H(c) = γ

∫

D

cρ1 +
c2

2
dx (28)

and for clarity will set ψ = φ(T, .) a redundant notation for the Lagrange multiplier at time T .
After some calculations and changing the inf/sup saddle point problem into an sup/inf, we rewrite prob-

lem (20) as:

sup
µ,ρ̃1

inf
φ,ψ,q,c

[

F (q) +G(φ) +H(c) + 〈µ,∇t,xφ− q〉 −
∫

D

[ρ̃1(ψ + γc)

]

dx. (29)

Notice that µ and ρ̃1 are now Lagrange multipliers of linear constraints which will be “augmented” in the next
section. To comply fully with the hypothesis of [20], the integrand of H should be linear (like G) – it is here non
linear (but nicely quadratic). Also, the function F should be coercive and is not. In [6], we used a coercive ǫ
perturbation of F : Fǫ(q) = F + ǫ|q|2. In practice such a modification does not seem necessary and recent
theoretical developments [25] back this observation.

3.3. The augmented Lagrangian

As mentioned above, in the new saddle-point problem (29) we now consider µ = {ρ,m} and ρ̃1 as the
Lagrange multipliers of constraints acting on φ, q, ψ (= φ(T, .)) and c, namely

∇t,xφ− q = 0, ψ + γc = 0. (30)

Thus, following [20] we define the “augmented” Lagrangian:

Lr(φ, q, c, µ, ρ̃1) = F (q) +G(φ) +H(c) + 〈µ,∇t,xφ− q〉 −
∫

D

[ρ̃1(ψ + γc)] dx

+
r1

2
〈∇t,xφ− q,∇t,xφ− q〉 +

r2

2

∫

D

[(ψ + γc)2] dx (31)

where r1, r2 are positive parameters which are a priori chosen identical in the sequel of this paper. We recall
that ψ is a shorthand notation for φ(T, .). The corresponding saddle-point problem

sup
µ,ρ̃1

inf
φ,q,c

Lr(φ, q, c, µ, ρ̃1) (32)

clearly has the same solution as (20).

3.4. The algorithm

A simple algorithm of [20], called ALG2, based on relaxations of the Uzawa algorithm is now used to solve the
problem. We get a three step iterative method which constructs a sequence (φn, ψn, qn, cn, µn, ρ̃1

n) expected to
converge to the saddle-point.

ALG2:

• (φn−1, qn−1, µn, ρ̃1
n) are given.

• Step A: Find φn such that:

Lr(φ
n, qn−1, cn−1, µn, ρ̃1

n) ≤ Lr(φ, q
n−1, cn−1, µn, ρ̃1

n), ∀φ. (33)

Then set
ψn = φn(T, .).

• Step B: Find qn, cn such that:

Lr(φ
n, qn, cn, µn, ρ̃1

n) ≤ Lr(φ
n, q, c, µn, ρ̃1

n), ∀q, c. (34)
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• Step C: Do the gradient descent

µn+1 = µn + r1(∇t,xφ
n − qn)

ρ̃1
n+1 = ρ̃1

n − r2(ψ
n + γcn)

(35)

where, apparently, the custom is to use r1, r2 the parameter of the augmented constraints as the gradient
steps (hence maybe the need to pick up different rs for the two constraints).

• Go back to step A.

Step A and B simply are a relaxation method for the minimization part of the saddle-point problem. Step C
is a gradient step for the dual problem.

3.5. The practical algorithm

We now discuss each of step of the abstract algorithm for our particular Lagrangian.

Step A

To solve Step A, we need to differentiate Lr with respect to φ and get for φn:

G(φ) + r1 < ∇t,xφ
n − qn−1,∇t,xφ > + < µn,∇t,xφ > +r2

∫

D

[(φn(T, .) + γcn−1(.))φ(T, .)] = 0, ∀φ.

After integrating by part in space and time and using the various boundary conditions we see that this is the
variational formulation of the space-time Laplace equation

−r1∆t,xφ
n = ∇t,x.

(

µn − r1q
n−1
)

(36)

with boundary conditions:
r1∂tφ

n(0, .) = ρ0 − ρn(0, .) + r1a
n−1(0, .), (37)

r1∂tφ
n(T, .) + r2φ

n(T, .) = r1a
n−1(T, .) − r2γc

n−1(.) (38)

and
r1∇xφ

n(0, .) · ~n = r1b
n−1(0, .) · ~n. (39)

Notice that (37) is a weak way of enforcing the initial density conditions. The strong way is to force ρn(0, .) = ρ0.
We use a publicly available fortran package (HS3CRT by R. Sweet) that uses a FFT technique to solve this

problem on a finite difference staggered grid.

Step B

We cannot differentiate Lr with respect to q and qn is simply obtained by solving

inf
q

[F (q) +
r1

2
< ∇t,xφ

n − q,∇t,xφ
n − q > + < µn,∇t,xφ

n − q >],

which is equivalent to:

infq∈K < ∇t,xφ
n +

µn

r1
− q,∇t,xφ

n +
µn

r1
− q > ·

It is important to notice that this minimization can be performed pointwise in space and time. Indeed, let
us set:

pn(t, x) = {αn(t, x), βn(t, x)} = ∇t,xφ
n(t, x) +

µn(t, x)

r1
·

Then qn(t, x) = {an(t, x), bn(t, x)} is obtained by solving in (a, b):

inf
(a,b)∈K

{

(a− αn(t, x))2 + |b− βn(t, x)|2, a+
|b|2
2

≤ 0

}

·
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This is turns out to be a simple one dimensional projection problem which can be computed analytically or
using Newton’s method. The projection of the discretized variables turns out to be not that simple as the α
and β variable have to be defined on two different staggered grid. This problem is analyzed in detail in [25].

Minimizing Lr with respect to c is easy (quadratic) and gives pointwise in space

γcn =
γ(ρ̃1

n − ρ1) − r2ψ
n

(1 + r2γ)
·

Again ψn (=φn(T, .)) cannot be discretized on the same grid points as ρ̃1
n and cn. They are staggered and

distant of half a time step dt. In practice we make a linear approximation using the final time boundary
condition:

ψn =
φn(T, .) + dt

2 (an−1(T, .) − γcn−1)

1 + dt
2

·

Step C

Step C is simply the pointwise update – a gradient step for the dual problems:

µn+1 = µn + r1(∇t,xφ
n − qn),

ρ̃n+1
1 = ρ̃n1 − r2(ψ

n + γcn).

As discussed in [6] each iteration of this algorithm costs an optimal O(N logN) operations where N is the
number of grid points in time and space.

3.6. Convergences

ALG2 convergence

We first check that the ALG2 iteration process converges. We let the algorithm run over a large (1000) number
of iterations and observe four criteria: the Wasserstein and L2-distance components of the mixed distance

dwass(ρ0, ρ̃1(x))
2 =

∫ ∫ T

0

|m|2
2ρ

dxdt, dL2(ρ1, ρ̃1(x))
2 =

∫

|ρ̃1(x) − ρ1(x)|2dx (40)

and the duality errors given as L2-norms of the gradients with respect to the dual variables µ and ρ̃1

duality error 1 =

(

∫ ∫ T

0

‖∇t,xφ
n − qn‖2dxdt

)
1

2

, duality error 2 =

(
∫

|ψn + γcn|2dx
)

1

2

. (41)

We take D =] − 1, 1[×] − 1, 1[, x = (x1, x2) ∈ R
2, T = 1, γ = 1 and r1 = r2 = 1. We discretize the three

dimensional space-time domain using a 32× 32× 32 grid. We show on Figures 1 and 2 the evolution of the four
criteria above for two tests:
Test 1. We use balanced initial and final densities, two Gaussian functions centered respectively at (0.7, 0.7)
and (−0.7,−0.7):

ρ0(x) = e−30((x1−0.7)2+(x2−0.7)2), ρ1(x) = e−30((x1+0.7)2+(x2+0.7)2).

Test 2. We perturb the final density so that the data in now not balanced:

ρ0(x) = e−30{(x1−0.7)2+(x2−0.7)2}, ρ1(x) = e−30{(x1+0.7)2+(x2+0.7)2} + 0.2e−40(x2

1
+x2

2).

Both (balanced and unbalanced) tests indicate a convergence thus confirming the convexity of our mixed func-
tional. Note that as in the pure Wasserstein case the deterioration of the convergence rate indicates a rather
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Figure 1. Test 1.
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Figure 2. Test 2.

flat cost function. We emphasize that we did not study the impact of the r1, r2 parameters – in particular we
always set r1 = r2.

γ convergence

We here investigate the impact of the parameter γ on the produced solution. In particular we want to check,
for balanced data, the expected convergence towards respectively the Wasserstein and L2-distances. The results
of the table below concern the balanced densities of Test 1 above and use the same numerical parameters
except for γ.

Let us be more precise: we observe, after convergence of the ALG2 algorithm, the values of the Wasserstein
and L2-components of the mixed distance. When γ increases, the L2-penalization forces the final computed
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density to match the given final density and the Wasserstein component of the distance (second line in the
table) approaches the correct value of Wasserstein distance. Thanks to the imposed boundary conditions, our
test behaves as if we translate a Gaussian in all space (and not on the torus). The exact solution is given
by (see (11))

dwas(ρ0, ρ1)
2 = |µ|2

∫

ρ0(x) dx

where µ is the translation distance. In our case µ2 = 2(1.4)2 = 3.92 and a quadrature formula gives
∫

ρ0(x) =
0.102745727 so that a reliable estimate of the Wasserstein distance is

dwas(ρ0, ρ1)
2 = 0.4027

which is in good accordance with the value obtained for γ = 100 in the table.
When γ decreases, the impact of the penalization is weaker and the mass transfer activity decreases. The

initial density tend to remains stationary and therefore the L2-component of the distance (third line in the
table) goes to the L2-norm of the difference between initial and final prescribed densities. In our Test 1 case

∫

|ρ1(x) − ρ0(x)|2 dx = 0.1046

which matches the L2-component of the mixed distance for ν = 0.01.

γ 0.01 0.1 1 10 100

∫ ∫ T

0

|m|2
2ρ

dxdt 1.7 × 10−7 4.7 × 10−5 0.0060 0.3754 0.4099

∫

|ρ̃1(x) − ρ1(x)|2dx 0.1042 0.0925 0.0629 0.0001 2.2 × 10−8

Another way to understand the γ dependence of the problem is to look at the time evolution of the den-
sity ρ(., x). Figures 3 and 5 show the level curves of ρ(t, x) for different time steps and for the two extreme
values of γ. When γ = 100 the final density is forced to match ρ1 and then the mass transport minimizes
the Wasserstein criterion (translation). The elliptical shape of the Gaussian is probably caused by the missing
mass – the initial and final Gaussian are partially supported outside the domain. Notice (Fig. 4) that the
convergence is slower for large γ. When γ = 0.01 the L2- component is not so important and then we minimize
a Wasserstein criterion with no imposed final density. The optimal solution does not transfer mass at all and
small noise appears (Fig. 5).

4. Application: Drift errors between unbalanced perturbed data

4.1. Motivation

In this section we experiment our algorithm in view of a particular target application suggested by Mike
Cullen (see also [16, 18]). It concerns the problem of the quantitative comparison of weather forecast with the
actual observed weather in view of assessing the quality of the forecasting technique. This problem is therefore
typically the computation of a distance between two density functions. One represents the forecast of a physical
quantity (the rain density for instance) at a fixed date and time and the other is the actual observed weather
variable at same date and time.

There are apparently two sources of errors that respectively exclude L2 and Wasserstein distances. The first
type of error is generally a drift: the forecast is reasonably accurate both in shape and intensity but, maybe
because of errors in winds, slightly translated compared to the actual observed data. The L2-distance here is



NUMERICAL RESOLUTION OF AN “UNBALANCED” MASS TRANSPORT PROBLEM 861

timestep 1 timestep 3 timestep 5 timestep 7

timestep 9 timestep 11 timestep 13 timestep 15

timestep 17 timestep 19 timestep 21 timestep 23

timestep 25 timestep 27 timestep 29 timestep 31

Figure 3. Level curves of ρ for γ = 100.
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Figure 4. Convergence.
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Figure 5. Level curves of ρ for γ = 0.01.

a poor choice because it is very sensitive to translations and cannot take into account the “good” part of the
forecast: shape and intensity. As discussed in [7], Wasserstein distance is here an excellent choice (provided data
are balanced). Indeed, formula (11) indicates that this distance is very smooth with respect to translations.

The second source of errors originates in local perturbations away from the main zones of activity which
cannot be forecasted either because of the physics limitations of the model or insufficient observed initial data
that is fed into it. Here the Wasserstein distance is not a good choice because of this additional mass – we
expect the main tracked zone to roughly conserve the mass. So using a normalization process to balance data
unavoidably causes additional mass transport which is charged to the Wasserstein distance evaluation while
having nothing in common with the first “translation” source of errors. Conversely the L2-distance is locally
good at the perturbation. As we assume the forecast to predict low or nil intensities in these zones the local
L2-norm difference is a relevant measure of this particular failure of the forecasting technique.

As we can see, a subtle combination of both distance is needed. One would like to measure – using an
automatic procedure – the drift error using the Wasserstein distance and the local perturbation errors using
the L2-norm. We explain in Sections 4.2 and 4.3 how, under certain limitations, our mixed distance can achieve
this goal on idealized test cases.

4.2. Balancing (1D)

We first focus on a simple 1D problem to try and estimate the values of γ that suits the needs described in
the previous section. Let (Fig. 6)

ρ0(x) = mΞ]0,l[(x)
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Figure 6. Initial and final densities.

be the characteristic function of segment ]0, l[ times a constant m. In accordance with the above described
application, we set (all parameters are positive):

ρ1(x) = mΞ]µ,l+µ[(x) + δρ(x)

where µ is a (small) translation parameter and δρ a perturbation (ρ0 and ρ1 are not balanced) taken as

δρ(x) = δmΞ]d,d+δl[(x)

where δm and δl are small with respect to m and l; and d is such that the supports are disjoint:

]d, d+ δl[∩]0, l[= ∅, ]d, d+ δl[∩]µ, l + µ[= ∅.

We recall that the optimization problem we solve can be written

inf
ρ̃1
Cρ0,ρ1(ρ̃1) (42)

where the cost function is defined by

Cρ0,ρ1(ρ̃1) = dwass(ρ0, ρ̃1)
2 +

γ

2
dL2(ρ0, ρ̃1)

2. (43)

We now evaluate this cost function for three different values of ρ̃1 – balanced with ρ0 – corresponding both to
the pathological and desired behaviors of the algorithm:

a) No transport

As explained in Section 3.6, γ may be so low that no mass at all (or very little) is transported. It corresponds
– in the limit case γ = 0 – to

ρ̃1 = ρ0.
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The cost function then yields

Ca = Cρ0,ρ1(ρ0)

= dwass(ρ0, ρ0)
2 +

γ

2
‖mΞ]µ,l+µ[ −mΞ]0,l[‖2 +

γ

2
‖Ξ]d,d+δl[‖2

= 0 + γ µm2 +
γ

2
δl δm2.

b) Partial transport

Conversely, when γ is very large and the data not balanced the optimization problem can override the mass
transport criterion and allocate mass to minimize the L2-component even if the transport cost is higher. The
extreme case looks like

ρ̃1 = δρ+
ml − δl δm

l
Ξ]µ,l+µ[.

Some mass has been transfered to fill in the perturbation δρ and there is not enough left to translate exactly
the main characteristic function, hence the parameter ml−δl

l
in front of the second term in the above formula

which adjusts the height of the characteristic function to ensure the mass balance of ρ̃1 with ρ0.
We now compute the cost function

Cb = dwass(ρ0, ρ̃1)
2 +

γ

2
‖mΞ]µ,l+µ[ −

ml− δl

l
Ξ]µ,l+µ[‖2

≃ d2 δl δm+ µ2(ml − δl δm) +
γ

2

δl2 δm2

l

where we approximate the Wasserstein part by two separate translation cost.

c) Perfect transport

We finally arrive at the desired solution. We wish γ to be such that the Wasserstein part of the cost function
picks up the small mass µ translation and the L2 part the perturbation δρ. In other word we want the optimal ρ̃1

to be

ρ̃1 = mΞ]µ,l+µ[.

In which case the cost function gives

Cc = µ2ml+
γ

2
δl δm2.

The rule on γ

We can now derive a heuristic rule on γ that satisfies our objectives. Definitely, necessary conditions to get
the desired ρ̃1 are

Cc < Ca, Cc < Cb.

These two conditions translate into

µ l

m
< γ < 2

l

δm (l − δl)

(

d2 − µ2
)

. (44)

We illustrate numerically this section using l = 1, m = 10, µ = 0.1, d = 1.7, δl = 0.1, δm = 1. With these
data (44) becomes

0.01 < γ < 6.4.

All 1D computations are performed using 32 points in time and 128 in space. As the mixed distance cost
function – like Wasserstein distance’s – is convex but very flat, a few hundred iterations are sufficient to get a
good estimate of the cost function.
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Figure 7. γ dependence.

Figure 7 shows the numerically estimated translation (from formula (11))

µ =

√

dwas(ρ0, ρ̃1)2
∫

ρ0(x) dx
(45)

and L2-norm dl2(ρ1, ρ̃1)
2 as a function of γ. Notice these are non-linear but monotone functions. One can also

observe behavior analyzed above. The “good” value of γ, i.e. for which we recover the correct values of the
translation and L2-error (here both 0.1) is approximately 0.25.

We show in Figure 8 both ρ1 the prescribed final density – not balanced with ρ0 – and ρ̃1 the optimal final
density solution of (16) – that has the same mass as ρ̃(0).

4.3. γ optimization

Our algorithm allows to compute amongst other things the mapping

γ → dl2(ρ1, ρ̃1)
2 (46)

where ρ̃1 is the optimal final density. As we explained in the previous section we would like to “tune” γ such
that ρ̃1 = 0 in the perturbed zone and ρ̃1 = ρ0(x− µ) in the zone where translation occurs. After convergence
we therefore should get

dl2(ρ1, ρ̃1) =

∫

|δρ(x)|2 dx.

In our synthetic test example we of course know this quantity (
∫

|δρ(x)|2 dx = 0.1) and we can invert numerically
the function defined by the mapping (46). We used a simple dichotomy algorithm which gives after 10 iterations

γ = 0.2783, dL2(ρ1, ρ̃1) = 0.0989, µ =

√

dwas(ρ0, ρ̃1)2
∫

ρ0(x) dx
= 0.1080.

We show in Figure 8 the associated optimal density ρ̃(1) (down left) compared to ρ1 (top right) the prescribed
final density. Most of mass has correctly been translated only in the main region. One can note the presence of
residual mass on the left of the main characteristic function and we have no explanation for that.
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Figure 8. Row wise: ρ0, ρ1, ρ̃1, ρ̃1, ρ̃1 − ρ1.

Remark that in practice of course δρ is not exactly known but if the region where the translation occurs is
roughly known then ρ1 − ρ0 outside this domain should be a good guess for δρ.

4.4. 2D results

We now present results which indicate that the numerical strategy applied in the previous section is also
relevant in 2D. Our test case is defined by

ρ0(x) = 10 e−30((x1−0.1)2+(x2−0.1)2), ρ1(x) = 10 e−30(x2

1
+x2

2) + δρ(x)

where the theoretical translation is therefore µ = 0.1
√

2 and the perturbation

δρ(x) = e−80((x1−0.7)2+(x2−0.7)2) + e−80((x1+0.7)2+(x2−0.7)2) + e−80((x1−0.7)2+(x2+0.7)2) + e−80((x1+0.7)2+(x2+0.7)2)

has separate support and L2-norm
∫

|δρ(x)|2dx ≃ 0.078539774.

We use 16 points in time and a 64 × 64 grid in space.
The dichotomy algorithm described in Section 4.3 allows to find an optimal γ = 0.2159 for which

dl2(ρ1, ρ̃1) = 0.0784689113, µ = 0.13.

We show in Figure 9 the prescribe initial and and final densities, the optimal density ρ̃1 and the absolute value
of the difference between ρ1 and ρ̃1.

5. Conclusion and prospects

All our numerical tests have demonstrated the robustness and efficiency of the method – it converges – even
for discontinuous and compactly supported data (such as characteristic functions).



NUMERICAL RESOLUTION OF AN “UNBALANCED” MASS TRANSPORT PROBLEM 867

0
20

40
60

0

50

0

5

10

0
20

40
60

0

50

0

5

10

0
20

40
60

0

50

0

5

10

0
20

40
60

0

50

0

5

10
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We would like to point out that we incorporated more realistic non-permeable boundary conditions (our
previous papers and code only worked for periodic boundary conditions in space).

The method seems well adapted to the depicted application at least in the idealized cases where the opti-
mization of γ allows to roughly separate the Wasserstein translation phenomena from the L2-error estimate.

We did not investigate a number of open questions such as:

• The impact of parameters r1 and r2 on the speed of convergence.
• The impact of the space discretization. In particular a coarse discretization causes a loss of the mass

conservation property for large γ. Small Spurious oscillation may also appear at sharp density discon-
tinuities and may – inconsistently with the model – provoke the apparition of negative mass.

• Incorporate dilations in the idealized test case.
• The generation of negative mass (Rem. 4.1).
• The underestimation of the translation in the 2D case.
• As usual time is an artificial dimension and the question of time discretization is still non investigated.

We just tried to compute the same 2D test case using only 4 time steps instead of 16, we found

dl2(ρ1, ρ̃1) = 0.0784689113, µ = 0.126951993

which differs only by a few percents. This observation backs up the idea that a coarse time discretization
is sufficient to represent the fairly simple time behavior of the problem (the optimal trajectories – the
characteristics of equation (4) – are straight lines in the pure Wasserstein case).
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[35] G. Monge, Mémoire sur la théorie des déblais et des remblais. Mem. Acad. Sci. Paris (1781).
[36] F. Otto, The geometry of dissipative evolution equation: the porous medium equation. Comm. Partial Differential Equations

26 (2001) 101–174.
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