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Abstract. Given a convex cone K and matrices A and B, one wishes to find a scalar λ and a

nonzero vector x satisfying the complementarity system

K ∋ x ⊥ (Ax − λBx) ∈ K+.

This problem arises in mechanics and in other areas of applied mathematics. Two numerical

techniques for solving such kind of cone-constrained eigenvalue problem are discussed, namely,

the Power Iteration Method and the Scaling and Projection Algorithm.
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1 Introduction

The Euclidean space Rn is equipped with the inner product 〈y, x〉 = yT x and

the associated norm ‖ ∙ ‖. The dimension n is greater than or equal to 2. Orthog-

onality with respect to 〈∙, ∙〉 is indicated by means of the symbol ⊥. Through-
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out this work, one assumes that:

K is a pointed closed convex cone in Rn,

A and B are real matrices of size n × n,

〈x, Bx〉 > 0 for all x ∈ K\{0}. (1)

We are interested in solving numerically the following cone-constrained

generalized eigenvalue problem. As usual, K+ indicates the positive dual cone

of K .

Problem 1.

Find λ ∈ R and a nonzero vector x ∈ Rn such that

K ∋ x ⊥ (Ax − λBx) ∈ K+.

Problem 1 arises in mechanics [9, 10] and in various areas of applied mathe-

matics [4, 5, 6, 12, 13]. The specific meanings of A and B depend on the context.

It it important to underline that, in the present work, the matrices A and B are

not necessarily symmetric.

An interesting particular case of Problem 1 is the so-called Pareto eigenvalue

problem, whose precise formulation reads as follows.

Problem 2.

Find λ ∈ R and a nonzero vector x ∈ Rn such that

R
n
+ ∋ x ⊥ (Ax − λx) ∈ Rn+.

For the general theory behind Problems 1 and 2, the reader is conveyed to the

references [7, 11, 15, 16]. This note focuses only on numerical issues. To be

more precise, we discuss two specific algorithms for solving cone-constrained

eigenvalue problems, namely, the Scaling and Projection Algorithm (SPA) and

the Power Iteration Method (PIM). Both techniques have some features in com-

mon, but they are different in spirit. A third algorithm, based on optimization

techniques, is formulated and left open for future examination.
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2 Numerical experience with the SPA

All computational tests are carried out for the particular choice B = In , but

the formulation of the SPA is given for a general matrix B as in (1). The SPA

is an iterative method designed for solving Problem 1 written in the following

equivalent form:

Problem 3.

Find λ ∈ R and vectors x, y ∈ Rn such that

(A − λB)x = y

K ∋ x ⊥ y ∈ K+

φ(x) = 1. (2)

The normalization condition (2) prevents x from being equal to 0. Adding

such condition does not change the solution set of the original cone-constrained

generalized eigenvalue problem. As example of function φ, one may think of

φ(x) = ‖x‖,

φ(x) =
√

〈x, Bx〉,

φ(x) = 〈e, x〉 with e ∈ int(K+), (3)

but other options are also possible. Our favorite choice is the linear function (3)

because in such a case the set

Kφ =
{

x ∈ K : φ(x) = 1
}

is not just compact, but also convex. In the parlance of the theory of convex

cones, the set Kφ corresponds to a “base” of K . Unless explicitly stated other-

wise, we assume that the choice (3) is in force.

The SPA generates a sequence {x t}t≥0 in Kφ , a sequence {λt}t≥0 of real num-

bers, and a sequence {yt}t≥0 of vectors in R
n . The detailed description of the

algorithm is as follows:

• Initialization: Fix a positive scaling factor s. Pick u ∈ K\{0} and let

x0 = u/φ(u).
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• Iteration: One has a current point x t in Kφ . Compute the Rayleigh-Ritz

ratio

λt = 〈x t , Ax t〉/〈x t , Bx t〉 ,

the vector yt = Ax t − λt Bx
t , and the projection

vt = 5K [x
t − syt ].

The projection vt is necessarily in K\{0}. Proceed now to a φ-normal-

ization:

x t+1 = vt/φ(vt) .

One could perfectly well consider a scaling factor that is updated at each

iteration, but in this section we stick to the case of a fixed scaling factor. The

case of a variable scaling factor will be commented in Section 4. The next

convergence result is taken from [11].

Theorem 1. If {x t}t≥0 converges to a certain vector x̄ , then

(a) {λt}t≥0 converges to λ̄ = 〈x̄, Ax̄〉/〈x̄, Bx̄〉.

(b) {yt}t≥0 converges to ȳ = Ax̄ − λ̄Bx̄ .

(c) (x̄, λ̄, ȳ) solves Problem 3.

2.1 Applying the SPA to the Pareto eigenvalue problem

The Pareto eigenvalue problem already exhibits many of the mathematical dif-

ficulties arising in the context of a general convex cone K . While dealing with

the Pareto cone Rn+ one chooses

φ(x) = x1 + x2 + . . . + xn (4)

as normalizing function. This corresponds to the linear choice (3) with e =

(1, 1, . . . , 1)T belonging to the interior of Rn+.

A few words on terminology are appropriate at this point in time. One usually

refers to

σpareto(A) =
{

λ ∈ R : (x, λ) solves Problem 2
}
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as the Pareto spectrum (or set of Pareto eigenvalues) of A. The map σpareto:

Mn → 2R has some similarities with the classical spectral map, but the differ-

ences are even more numerous. It deserves to be stressed that

πn = max
A∈Mn

card
[

σpareto(A)
]

is finite, but grows exponentially with respect to the dimension n of the underly-

ing Euclidean space. Thus, a matrix of a relatively small size could have a very

large number of Pareto eigenvalues. In view of this observation, it is simply not

reasonable to try to compute all the elements of σpareto(A). A more realistic goal

is finding just one or a bunch of them.

2.1.1 Testing on a 2× 2 matrix with 3 Pareto eigenvalues

We start by considering the 2 × 2 matrix

A =

[

8 −1

3 4

]

(5)

whose Pareto spectrum is displayed in Table 1. For ease of visualization, the

Pareto eigenvalues are arranged in increasing order. The corresponding solutions

are named starting from S1 up to S3.

Sol. name λ x1 x2 y1 y2

S1 5 0.25 0.75 0 0

S2 7 0.5 0.5 0 0

S3 8 1 0 0 3

Table 1 – Solution set of the Pareto eigenproblem associated with matrix (5).

For this small size matrix, the SPA was able to detect all the solutions. Table 2

shows which solution was detected as function of a scaling parameter s varying

in steps of 0.1 units.

A first conclusion that can be drawn from this example is that the detected

solution does not need to be in the same face of the Pareto cone as the initial

vector u. Which one is the detected solution depends on the initial point u and,

perhaps more significantly, on the size of the scaling factor. This and subsequent
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s Sol. ♯ Its. s Sol. ♯ Its.

0.1 S1 75 0.5 S1 6

0.2 S1 35 0.6 S1 12

0.3 S1 20 0.7 S1 16

0.4 S1 13 0.8 S1 37

s Sol. ♯ Its. s Sol. ♯ Its.

0.9 S1 82 1.3 S3 4

1.0 S2 2 1.4 S3 4

1.1 S3 5 1.5

1.2 S3 4 to 10
S3 3

Table 2 – Influence of the scaling factor s on the detected solution and on the number of

iterations required by the SPA to achieve convergence. Thematrix A under consideration

is (5) and the initial point is u = (0, 1).

tests show that no changes in the detected solution and in the number of iterations

occur when the parameter s is taken beyond a certain threshold value.

Observe that the solutions S1 and S3 were found by several of the values

assumed by s, whereas the solution S2 was detected only with the specific choice

s = 1. In short, some Pareto eigenvalues are more likely to be found than others.

Remark 1. For a given u, the detected solution and the number of iterations

required by the SPA to achieve convergence may be very sensitive with respect

to the parameter s. In Table 2 one observes substantial changes while passing

from s = 0.9 to s = 1.1.

2.1.2 Testing on a 3× 3 matrix with 9 Pareto eigenvalues

We now test the SPA on the matrix

A =






8 −1 4

3 4 1/2

2 −1/2 6




 (6)

whose Pareto spectrum is displayed in Table 3. This specific matrix has 9 Pareto

eigenvalues and, probably, this is the largest possible cardinality for the Pareto
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Sol.

name
λ x1 x2 x3 y1 y2 y3

S1 4.133975 0 1 0.267949 0.071797 0 0

S2 4.602084 0.185257 1 0.092628 0 0 0

S3 5 0.333333 1 0 0 0 0.166667

S4 5.866025 0 0.267949 1 3.732051 0 0

S5 6 0 0 1 4 0.5 0

S6 7 1 1 0 0 0 1.5

S7 8 1 0 0 0 3 2

S8 9.397916 1 0.602084 0.5 0 0 0

S9 10 1 0 0.5 0 3.25 0

Table 3 – Solution set of the Pareto eigenproblem associated with matrix (6).

spectrum of a 3 × 3 matrix. We know for sure that a 3 × 3 matrix cannot have

11 or more Pareto eigenvalues. We have not found yet a 3 × 3 matrix with 10

Pareto eigenvalues and seriously doubt that such a matrix exists.

The challenge that (6) offers to the SPA is not the “large” number of Pareto

eigenvalues, but the fact that some of them are hard to detect numerically. In

Table 4 and in the sequel, the notation S j/m indicates that the solution S j was

found within m iterations and the symbol∞ indicates that convergence did not

occur within 2000 iterations. Some of the conclusions that can be drawn from

Table 4 are:

i) Given an initial point u, it is possible to recover several solutions to the

Pareto eigenvalue problem by letting the scaling factor s to assume dif-

ferent values. One should not expect however to recover all the solutions

(unless of course one changes also the initial point).

ii) Given an initial point u, there are values of s for which the SPA does not

converge. It is very difficult to identify the convergence region

S(u) ≡ values of s for which SPA converges when initialized at u

for the scaling factor, and to see what kind of structure such a region

possesses. Table 4 shows that S(u) is not necessarily an interval.

Comp. Appl. Math., Vol. 28, N. 1, 2009
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Scaling factor s

u 0.3 0.4 0.5 0.6 0.7

(0, 1, 0) S2/24 S3/186 S1/316 ∞ ∞

(0, 1, 1) S1/26 S1/18 S1/12 S1/8 S1/12

(1, 1, 1) S1/28 S1/19 S1/13 S1/8 S1/13

u 0.8 → 1.6 1.7 1.8 1.9 2 → 10

(0, 1, 0) ∞ S9/4 S9/4 S9/3 S9/3

(0, 1, 1) ∞ S9/10 S5/14 S5/6 S9/4

(1, 1, 1) ∞ S9/11 S5/15 S5/7 S9/5

Table 4 – Influence of the initial point u and the scaling factor s on the detected solution

and on the number of iterations required by the SPA to achieve convergence. The matrix

under consideration is (6).

2.1.3 Testing on random matrices and random initial points

Table 5 has been produced as follows. For each dimension n ∈ {2, 3, . . . , 9}, one

generates a collection of 1000 stochastically independent random matrices with

uniform distribution on the hypercube [−1, 1]n×n . For each one of these 1000

random matrices, one generates a collection of 100 stochastically independent

random initial vectors with uniform distribution on the hypercube [0, 1]n . One

applies the SPA to each one of the 105 = 1000 × 100 random pairs (A, u) and

counts the number of times in which convergence occurs within 2000 iterations.

As one can see from Table 5, the best performances of the SPA are obtained

when the scaling factor s lies in the interval [0.1, 0.4]. When s is taken in such

range, the percentages of convergence are all above 90 per cent. This good new

speaks favorably of the SPA. The same experience as in Table 5 is carried out for

n ∈ {10, 20, 30, 100}, but with a different set of values for the scaling factor s.

Table 6 displays the obtained results. One sees that the overall performance of

the SPA diminishes as the dimension n gets larger. For n = 100 the best score

of convergence is 78%. This is still acceptable.

Table 7 reports on the case n ∈ {200, 300, 400, 500, 1000}. In this range of

dimensions, the performance of the SPA is a bit less satisfactory. For instance,

when n = 1000 the best score of convergence is 62%.
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n
Scaling factor s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2 100 100 100 100 100 100 100 100

3 99 99 99 99 98 99 99 99

4 98 98 97 98 97 97 95 94

5 97 97 96 96 95 96 93 89

6 94 95 94 94 95 91 89 84

7 94 93 95 94 93 90 85 75

8 94 92 91 93 90 86 79 63

9 93 93 93 91 89 84 68 52

Table 5 – SPA applied to a sample of 105 random pairs (A, u). The figures on the table

refer to percentages of convergence. The best performances for each n ∈ {2, 3, . . . , 9}

are indicated with a bold font.

n
Scaling factor s

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2

10 33 51 70 85 90 93 91 91

20 44 66 80 86 87 89 88 87

30 53 72 85 83 85 87 86 80

100 75 76 77 76 78 76 78 64

Table 6 – SPA applied to a sample of 105 random pairs (A, u). The figures on

the table refer to percentages of convergence. The best performances for each

n ∈ {10, 20, 30, 100} are indicated with a bold font.

n
Scaling factor s

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

200 66 72 70 71 72 72 69 69

300 65 70 69 67 71 65 63 64

400 66 66 65 67 62 62 60 54

500 64 67 63 63 64 61 57 50

1000 58 62 60 54 45 × × ×

Table 7 – SPA applied to a sample of 105 random pairs (A, u). The figures on

the table refer to percentages of convergence. The best performances for each

n ∈ {200, 300, 400, 500, 1000} are indicated with a bold font. The cases indicated

with a cross were not tested.
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2.2 Applying the SPA to a circular eigenvalue problem

A circular eigenvalue problem is a prototype of eigenvalue problem with con-

straints described by a nonpolyhedral cone:

Problem 4.

Find λ ∈ R and a nonzero vector x ∈ Rn such that

Lθ ∋ x ⊥ (Ax − λx) ∈ L+θ .
(7)

Here, Lθ stands for the n-dimensional circular cone whose half-aperture angle

is θ ∈]0, π/2[, and whose revolution axis is the ray generated by the canonical

vector en = (0, . . . , 0, 1)T . In short,

Lθ =
{

x ∈ Rn : (cos θ)‖x‖ ≤ xn
}

. (8)

A circular eigenvalue problem differs substantially from a Pareto eigenvalue

problem, the main difference being that a circular spectrum

σθ (A) =
{

λ ∈ R : (x, λ) solves Problem 4
}

does not need to be finite. As shown in [16], the set σθ (A) could perfectly well

contain one or more intervals of positive length.

Figure 1 – The circular cone Lθ and its dual L
+
θ .
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As seen in Figure 1, the dual cone of Lθ is again a circular cone. In fact, as

reported in [3], one has the general relation L+θ = L(π/2)−θ . The projection of

z ∈ Rn onto Lθ can be evaluated by using the explicit formula

5Lθ [z] =









z if z ∈ Lθ

0 if z ∈ −L+θ

v if z ∈ Rn \ (Lθ ∪ −L+θ )

with

vi = zi −

√

‖z‖2 − z2n − zn tan θ

1+ [tan θ ]2
zi

√

‖z‖2 − z2n
∀i ∈ {1, . . . , n − 1},

vn = zn +

√

‖z‖2 − z2n − zn tan θ

1+ [tan θ ]2
tan θ.

The above expression of v can be found in [1] or obtained simply by working

out the Karush-Kuhn-Tucker optimality conditions for the convex minimization

problem

minimize ‖x − z‖2

x ∈ Rn s.t. (cos θ)‖x‖ ≤ xn.

For dealing with the circular eigenvalue problem, one uses

φ(x) = xn (9)

as normalization function. This corresponds to the linear choice (3) with vector

e = en . Note that en belongs to the interior of L
+
θ .

A convex cone whose half-aperture angle is 90 degrees is no longer pointed,

so the SPA implemented with the linear normalizing function (9) could run into

numerical troubles if θ increases beyond a certain threshold.

We are interested in examining the performance of the SPA as function of the

half-aperture angle θ of the circular cone. The numerical experiment reported

in Table 8 concerns a sample of 105 random pairs (A, u) generated in the same

way as in Tables 5, 6, and 7. The SPA is tested with three different values of s

and with values of θ incremented in steps of 10 degrees.

Some of the conclusions that can be drawn from Table 8 are:
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θ
Scaling factor s

θ
Scaling factor s

θ
Scaling factor s

0.05 0.1 1 0.05 0.1 1 0.05 0.1 1

5 100 100 100 5 100 100 100 5 100 100 100

15 100 100 100 15 100 100 100 15 100 100 100

25 99 99 99 25 100 100 100 25 100 100 100

35 94 99 96 35 100 100 63 35 100 100 53

45 88 97 93 45 100 100 1 45 100 100 0

55 78 93 86 55 98 99 0 55 100 100 0

65 69 89 83 65 91 91 0 65 93 95 0

75 63 83 78 75 74 73 0 75 72 74 0

85 57 80 74 85 40 54 0 85 39 50 0

Table 8 – SPA applied to a sample of 105 random pairs (A, u). One considers the cases

n = 3 (left), n = 50 (middle), and n = 100 (right). The figures on the tables refer to

percentages of convergence.

i) For each tested scaling factor s and dimension n, one observes that the

rate of success of the SPA decreases as the half-aperture angle increases.

The best results are obtained for circular coneswithmoderate half-aperture

angle. As predicted by common sense, dealing with circular cones with

half-aperture angle near 90 degrees is problematic.

ii) As we already saw in previous numerical experiences, a right choice of

scaling factor is crucial for obtaining a good performance of the SPA.

As a general rule, when dealing with large dimensional problems one

should reduce the size of the parameter s. As one can see in the mid-

dle table and in the right table, the choice s = 1 is appropriate only if

the half-aperture angle does not exceed 25 degrees. Beyond this angular

threshold, the performance of the SPA deteriorates very quickly. By con-

trast, if one uses a smaller scaling factor, say s = 0.1, then the SPA works

perfectly well in a wider range of half-aperture angles.

3 Theory and numerical experience with the PIM

The power iteration method is a well known algorithm for finding the largest

eigenvalue in modulus of a given matrix. To fix the ideas, consider the case of

Comp. Appl. Math., Vol. 28, N. 1, 2009
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an n × n real matrix M with real eigenvalues λ1, . . . , λn such that

|λ1| > |λ2| > . . . > |λn|.

The classical power iteration method consists in generating a sequence {x t}t≥0

by selecting an initial point x0 and applying the recursive formula

x t+1 =
Mx t

φ(Mx t)
, (10)

where φ is typically the Euclidean norm ‖ ∙ ‖ or a certain linear function. One

expects the sequence {x t}t≥0 to converge to an eigenvector u1 associated to the

eigenvalue λ1. See, for instance, Section 13.4 in Schatzman’s book [14] for a pre-

cise formulation of the convergence result. The limit u1 satisfies necessarily the

normalization condition φ(u1) = 1. The eigenvalue λ1 is obtained by using ei-

ther the relation λ1 = φ(Mu1) or the Rayleigh-Ritz ratio λ1 = 〈u1, Au1〉/‖u1‖
2.

Remark 2. If one wishes to find a different eigenvalue, then one chooses a

convenient shifting parameter β ∈ R and applies the iteration scheme (10) to

the shifted matrix M − β In . By the way, the so-called inverse power iteration

method consists in applying (10) to the inverse of the matrix M − β In .

It is not difficult to adjust the power iterationmethod to the case of a generalized

eigenvalue problem involving a pair (A, B) of matrices. However, incorporating

a cone K into the picture is a matter that requires a more careful thinking. For

the sake of clarity in the discussion, we leave aside the matrix B and concentrate

on K . The problem at hand reads as follows.

Problem 5.

Find λ ∈ R and a nonzero vector x ∈ Rn such that

K ∋ x ⊥ (Ax − λx) ∈ K+.

In principle, the usual spectrum of A has very little to do with

σK (A) =
{

λ ∈ R : (x, λ) solves Problem 5
}

,

Comp. Appl. Math., Vol. 28, N. 1, 2009
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the latter set being called the K - spectrum (or set of K - eigenvalues) of A. How-

ever, regardless of the choice of K , one always has the inclusion

σK (A) ⊂
[

λmin
(

Asym
)

, λmax
(

Asym
)]

, (11)

with λmin(Asym) and λmax(Asym) denoting, respectively, the smallest and the

largest eigenvalue of the symmetric part

Asym =
A + AT

2

of the matrix A. The computation of the extremal eigenvalues of a symmetric

matrix presents no difficulty.

Lemma 1. Consider any β ∈ R such that

β > λmax
(

Asym
)

. (12)

Then, the following conditions are equivalent:

(a) x is a K - eigenvector of A.

(b) x and 5K [βx − Ax] are nonzero vectors pointing in the same direction.

Proof. For all λ ∈ R and x ∈ Rn , one has the general identity

βx − Ax = (β − λ)x − (Ax − λx).

This relation is at the core of the proof. Let x be a K - eigenvector of A and

let λ be the associated K - eigenvalue. In particular, x is a nonzero vector in K .

Furthermore, the combination of (11) and (12) shows that γ = β−λ is a positive

scalar. By applying Moreau’s theorem [8] to the orthogonal decomposition

βx − Ax = γ x
︸︷︷︸

∈K

− Ax − λx
︸ ︷︷ ︸

∈K+

,

one obtains

γ x = 5K
[

βx − Ax
]

. (13)

Comp. Appl. Math., Vol. 28, N. 1, 2009
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This confirms that x and 5K [βx − Ax] are nonzero vectors pointing in the

same direction. Conversely, suppose that x 6= 0 and that (13) holds for some

positive scalar γ . Then, one can draw the following conclusions. Firstly, x ∈ K

because γ x ∈ K and γ > 0. Secondly, in view of Moreau’s theorem, the

equality (13) yields

γ x − (βx − Ax) ∈ K+,

〈γ x, γ x − (βx − Ax)〉 = 0.

We have proven in this way that x is a nonzero vector satisfying the complemen-

tarity system

K ∋ x ⊥ (Ax − (β − γ )x) ∈ K+.

In other words, x is a K - eigenvector of A and λ = β − γ is the associated

K - eigenvalue. �

Condition (b) in Lemma 1 provides the inspiration for the formulation of the

PIM in the context of a cone-constrained eigenvalue problem. The detailed

description of this algorithm is as follows:

• Initialization: Select a shifting parameter β as in (12). Pick a nonzero

vector u ∈ K and let x0 = u/φ(u).

• Iteration: One has a current point x t in Kφ . Compute first the projection

vt = 5K
[

βx t − Ax t
]

, (14)

and then the φ-normalized vector

x t+1 = vt/φ(vt). (15)

As was the case with the SPA, a sequence generated by the PIM remains in the

compact set Kφ . The emphasis of the PIM is the computation of K - eigenvectors.

If one wishes, at each iteration one can also evaluate the Rayleigh-Ritz ratio

λt = 〈x t , Ax t〉/‖x t‖2 ,

but this is not really necessary.
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Theorem 2. Let {x t}t≥0 be generated by the PIM.

(a) The general term x t is well defined, i.e., the projection vt is different

from 0.

(b) If {x t}t≥0 converges to a certain x̄ , then x̄ is a K - eigenvector of A.

(c) The K -eigenvalue of A associated to x̄ is given by

λ̄ = 〈x̄, Ax̄〉/‖x̄‖2 = β − φ(5K [β x̄ − Ax̄]). (16)

Proof. Suppose, on the contrary, that vt = 0 at some iteration t . From the

usual characterization of a projection, one has

〈βx t − Ax t , w〉 ≤ 0 ∀w ∈ K .

In particular, 〈βx t − Ax t , x t〉 ≤ 0. Since x t 6= 0, one obtains

β ≤
〈x t , Ax t〉

‖x t‖2
≤ λmax

(

Asym
)

,

a contradiction with assumption (12). This takes care of (a). Suppose now that

{x t}t≥0 converges to x̄ . By passing to the limit in (14) one sees that {vt}t≥0

converges to

v̄ = 5K [β x̄ − Ax̄].

As done before with each term vt , one can also prove that v̄ is different from 0.

By passing now to the limit in (15), one gets

x̄ = v̄/φ(v̄).

Since γ̄ = φ(v̄) is a positive scalar, the nonzero vectors x̄ and v̄ are pointing

in the same direction. In view of Lemma 1, one concludes that x̄ is a K -

eigenvector of A. The first equality in (16) is obvious, while the second one

is implicit in the proof of Lemma 1. �

The inequality (12) has been helpful at several stages. Lemma 1 and The-

orem 2 remain true if one works under the weaker assumption

β > sup
x∈K

‖x‖=1

〈x, Ax〉,
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but the evaluation of the above supremum could be a bothersome task. From a

purely theoretical point of view, one could even work under the assumption

β > sup
λ∈σK (A)

λ. (17)

In practice, it makes no sense relying on (17) because σK (A) is unknown

a priori.

3.1 Applying the PIM to the Pareto eigenvalue problem

3.1.1 Testing on a small size matrix

We start by testing the PIM on the matrix (6). Recall that (6) is a nonsymmetric

3× 3 matrix with 9 Pareto eigenvalues. All of them are positive and the largest

one is λ = 10. A straightforward computation shows that

Asym =






8 1 3

1 4 0

3 0 6




 , λmax

(

Asym
)

= 10.2682.

The symbol ∞ in Table 9 means, as usual, that convergence does not occur

within 2000 iterations. Observe that number of iterations required by the PIM

to achieve convergence increases as β goes further and further away from the

threshold value (17). So, it is not a good idea to take β excessively large.

Shifting parameter β

u 5 6 7 8 9 10 11 20 50

(0, 1, 0) E ∞ ∞ S2/22 S2/9 S2/10 S2/14 S2/47 S2/143

(0, 1, 1) E S1/8 S1/21 S1/31 S1/41 S1/50 S1/60 S1/140 S1/391

(1, 1, 1) E E E S1/32 S1/42 S1/51 S1/61 S1/143 S1/397

Table 9 – Influence of the initial point u and the parameter β on the detected solution

and on the number of iterations required by the PIM to achieve convergence. The matrix

under consideration is (6).

On the other hand, the symbol E in Table 9 indicates that an error occurs

while performing the first iteration of the PIM. To be more precise, the PIM

must stop because projecting onto K produces the zero vector. This unfavorable
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situation does not contradict the statement (a) of Theorem 2. What happens is

simply that the value of β under consideration does not satisfy the assumption

(12), not even the weaker condition (17). In connection with this issue, it is

worthwhile mentioning that if one uses a parameter β smaller than the right-

hand side of (17), then the PIM may still work in the sense that each projection

vt may be different from 0 and {x t} may converge to a K - eigenvector of A.

Logically speaking, (17) is a sufficient condition for the PIM to work properly,

but such condition is not necessary.

In Table 10 one applies the PIM to thematrix (6), but one considers a sample of

108 random initial points. The question that is being addressed is the following

one: to which Pareto eigenvalue of (6) is the PIM most likely to converge?

β
Obtained solution % of

S1 S2 S3 S4 S5 S6 S7 S8 S9 None success

10 48.6 0 11.3 0 26.4 0 13.7 0 0 0 100.0

15 52.4 0 10.6 0 22.6 0 14.4 0 0 0 100.0

20 47.1 0 10.4 0 21.8 0 14.6 0 0 6.1 93.9

25 47.2 0 10.4 0 21.4 0 14.6 0 0 6.5 93.5

Table 10 – PIM applied to the matrix (6). The figures on the table refer to percentages of

convergence to each particular solution. A sample of 108 random initial points is being

considered.

3.1.2 Testing on random matrices and random initial points

The same kind of numerical experiment as in Section 2.1.3 is now carried out

with the PIM. To avoid excessive repetitions, we consider only the case of a

dimension n ranging over {3, 6, 12}.

Since one works with a sample of random pairs (A, u), it is not entirely clear

how to choose the parameter β in order to optimize the performance of the PIM.

In Table 11 we explore what happens with the choices

βk = λmax
(

Asym
)

+ (k/2) − 1 with k = 1, 2, 3, 4. (18)

Note that β1 is smaller than λmax
(

Asym
)

. The heuristic selection rule (18) may

look strange at first sight, but it is based on statistical information concerning
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the distribution of the random variable λmax
(

Asym
)

when n ∈ {3, 6, 12}.

n
Shifting parameter β

β1 β2 β3 β4

3 81 99 98 98

6 92 94 95 95

12 89 91 89 91

Table 11 – PIM applied to a sample of 105 random pairs (A, u). The best performances

for each dimension n ∈ {3, 6, 12} are indicated with a bold font.

The figures on Table 11 refer to percentages of success. The word “success”

means, of course, that the PIM has worked properly, failure corresponding to a

case of lack of convergence or to the obtention of a projection equal to 0. As one

can see, the percentages of success of the PIM do not change too much when β

ranges over (18).

In Figure 2 we enlarge the field of values taken by the parameter β. The idea

is identifying the largest interval over which β leads to a favorable and stable

rate of success.

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

25

50

75

100

β

Figure 2 – PIM applied to a sample of 105 random pairs (A, u). The parameter β is

increased in steps of 0.2 units from−1 to 15. The upper, intermediate, and lower curves

correspond to the cases n = 3, n = 6, and n = 12, respectively. The vertical axis

indicates percentage of success.
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One observes a very interesting plateau phenomenon: for each dimension n,

there is a corresponding range [β lower
n , β

upper
n ] of values for β in which the PIM

performs at its top level. The height of each plateau depends on the dimension:

the height decreases as n increases. Note also that the interval [β lowern , β
upper
n ] is

almost identical for the three tested values of n.

4 SPA versus PIM

From a conceptual point of view, the SPA and the PIM are different methods.

However, they share in common at least two important steps: a projection onto

the cone K and a φ-normalization procedure.

Are the SPA and the PIM two different algorithms after all? The answer is

yes if the scaling factor s and the shifting parameter β are not allowed to change

from one iteration to the next. If one is more flexible and considers instead a

sequence {st}t≥0 of scaling factors and a sequence {βt}t≥0 of shifting parameters,

then one can reformulate the SPA as a PIM, and viceversa.

Proposition 1. Let B = In . The following statements are true:

(a) Implementing the t-th iteration of the PIM with βt > 〈x t , Ax t〉/‖x t‖2

produces the same outcome as implementing the t-th iteration of the

SPA with

st =

[

βt −
〈x t , Ax t〉

‖x t‖2

]−1

. (19)

(b) Conversely, implementing the t-th iteration of the SPA with st > 0 pro-

duces the same outcome as implementing the t-th iteration of the PIM

with

βt =
1

st
+

〈x t , Ax t〉

‖x t‖2
. (20)

Proof. The projection map 5K and the normalizing function φ are both posi-

tively homogeneous. Hence, φ-normalizing the projected vector 5K [x
t − st y

t ]

produces the same result as φ-normalizing the projected vector 5K [(1/st)x
t −

yt ]. It suffices then to observe that

(1/st)x
t − yt = βt x

t − Ax t ⇐⇒ (1/st)x
t − (Ax t − λt x

t) = βt x
t − Ax t

⇐⇒ (1/st) + λt = βt (21)
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with λt = 〈x t , Ax t〉/‖x t‖2. Of course, one rewrites the equality (21) in the

form (19) for proving part (a), and in the form (20) for proving part (b). �

4.1 Numerical experience with a sequence {st}t≥0

We have tested again the SPA on random matrices and random initial points,

but this time we have used a variable scaling factor st . The attention is focused

on dimensions not exceeding n = 30. Inspired by the relation (19) and the

experimental data reported in Figure 2, we choose a scaling factor st obeying to

the feedback rule

st =

[

β −
〈x t , Ax t〉

‖x t‖2

]−1

with β = 6. (22)

The word “feedback” is used here to indicate that st is updated by taking in

account the current value x t of the state vector x .

Table 12 reports on the outcome of this experiment. The most important

lesson of this experiment is the following one: the SPA implemented with the

feedback rule performs equally well as the SPA implemented with the constant

scaling factor s that is optimal for the prescribed dimension. For instance, when

n = 9, the feedback rule leads to a rate of success of 93%, a percentage that

matches the rate of success of the SPA implemented with the optimal choice

s = 0.1 (cf. Table 5).

n 3 6 9 12 15 18 21 24 27 30

% 99 95 93 90 89 89 87 88 85 86

Table 12 – For each n ∈ {3, 6, 9, . . . , 30}, the SPA was applied to a sample of 105

random pairs (A, u). The variable scaling factor used was (22). Figures correspond

to percentages of convergence.

5 By way of conclusion

Our main comments on the SPA and the PIM are as follows:

1. The SPA generates a bounded sequence {(x t , λt , y
t)}t≥0 that depends on

a certain initial point u and a certain scaling parameter s > 0. If the

sequence converges, then its limit (x̄, λ̄, ȳ) is a solution to Problem 3.
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2. The SPA does not aim at finding all the solutions to Problem 3. This is

not just because the number of solutions could be very large, but also be-

cause some solutions could be extremely hard to be detected. It happens in

practice that some solutions are hard to be found even if the SPA is initial-

ized at a convenient initial point. The existence of such “rare” solutions is

somewhat intrinsic to the nature of the cone-constrained eigenvalue prob-

lem. An interesting open question is understanding why some solutions

are so hard to be detected and others are not. An appropriate theoretical

analysis remains to be done.

3. The SPA was extensively tested in the Paretian case. One of the main

conclusions of Section 2.1 is that the scaling factor s > 0 must be chosen

with care if one wishes the SPA to produce a convergent sequence. Exten-

sive numerical experimentation has been carried out for Pareto eigenvalue

problems with random data. Specifically, the entries of the matrix A and

the entries of the initial vector u were considered as independent random

variables uniformly distributed over the interval [−1, 1]. For each di-

mension n, there is a convenient range of values for the scaling factor s.

A good choice of s is one for which the SPA converges in a vast majority

of cases, see Tables 5, 6, and 7.

4. The PIM has the advantage of relying on a parameter β that is not too

sensitive with respect to dimensionality. Thanks to the plateau phenom-

enon described in Section 3.1.2, there is no need of putting too much

effort in selecting the shifting parameter β. One just needs to make sure

that β lies in a certain range that is easily identifiable.

We end this work by mentioning an open alternative. Observe that Problem 3

is about finding a triplet (x, λ, y) that lies in the closed convex cone Q = K ×

R× K+, and that solves the system of nonlinear equations

Ax − λBx − y = 0,

〈x, y〉 = 0,

φ(x) − 1 = 0.
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In principle, one could apply any method for solving systems of nonlinear

equations on closed convex cones. Do such methods exist in the literature? Are

they efficient? These questions open the way to a broad discussion that deserves

a detailed treatment in a separate publication.

A natural idea that comes to mind is finding a global minimum over Q of the

residual term

f (x, λ, y) = μ1‖Ax − λBx − y‖2 + μ2〈x, y〉
2 + [φ(x) − 1]2,

where μi are positive scalars interpreted as weight coefficients. For instance,

Friedlander et al., [2] use a residual minimization technique for solving a so-

called horizontal linear complementarity problem. However, in our particular

context, one should not be too optimistic about residual minimization. Indeed,

this technique may produce a local minimum that is not a global one.

Last but not the least, our original motivation was solving a very specific

cone-constrained eigenvalue problem arising in mechanics (namely, detecting

directional instabilities in elastic systems with frictional contact). The problem

at hand is highly structured and will be treated in full extent in a forthcoming

work. However, we want to mention here some features that could be of interest

for non-specialists:

– Firstly, the cone defining the constraints is a Cartesian product K =

K1 × . . . × KN of a large number of closed convex cones living in small

dimensional Euclidean spaces. As a consequence of this, the vector

x = (x[1], . . . , x[N ]) breaks into N blocks and Problem 1 leads to a col-

lection of subproblems (coupled, in general).

– Secondly, some of the blocks x[r ] are unconstrained, i.e., Kr = R
nr .

This means that K is unpointed, a situation that is preferable to avoid.

One way to overcome this difficulty is by applying our algorithms to the

constrained subproblems and by treating the unconstrained ones as in clas-

sical numerical linear algebra. Of course, all this requires some necessary

adjustments.

– Thirdly, the constrained blocks x[r ] obey to the unilateral contact law and

the Coulomb friction law. Typically, Kr is a closed convex cone dependent
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on the coefficient of friction. It is also possible to accommodate the more

general case of an anisotropic friction law.

Specially structured matrices are not reflected by the random data used in this

paper. Our primary concern has been focussing in problems for which the matrix

A has no structure whatsoever.

Remark 3. The results presented in Tables 6 and 7 were produced with the

IST Cluster, which is a Cluster 1350 computing system from IBM. It has a total

of 70 computing nodes each with 2 POWER dual core processors at 2.3 GHz,

with 2GB per core. All the nodes are running the AIX 5.3 operating system. The

parallel processeswere connectedusing libraryMPI (MessagePassing Interface).

The programs developed during this study were writen in FORTRAN.
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