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Abstract A kind of spectral meshless radial point inter-

polation method is proposed to degenerate parabolic

equations arising from the spatial diffusion of biological

populations and satisfactory agreements is archived. This

method is based on collocation methods with mesh-free

techniques as a background. In contrast to the finite-ele-

ment method and those meshless methods based on

Galerkin weak form, such as element-free Galerkin, there

is no integration tools in this approach. Furthermore, some

numerical experiments are given to validate the accuracy of

the results and stability of the present method.

Keywords Radial point interpolation � Spectral mesh-free

method � Finite difference � Biological population equation

Introduction

The biological population problems have attracted much

attention and research recently [1, 2]. Biologists believe

that dispersal or emigration play a key role in the regula-

tion of population of some species. A persuasive example

of this suggestion occurs in a paper by Carl [3], whose

observations on a population of arctic ground squirrels

showed that this species achieves population control by the

dispersal of animals from densely populated areas of

favorable habitat into unfavorable areas, where burrow

sites are not available, and where they are subjected to

intensive predation.

Consider the following nonlinear biological population

model

ouðx; tÞ
ot

¼ o2u2

ox2
þ o2u2

oy2
þ rðuÞ; x ¼ ðx; yÞ 2 X � R2;

t 2 ½0; T�; ð1Þ

with a given initial condition uðx; 0Þ, where u denotes the

population density, and r represents the population supply

due to births and deaths. We can consider a more general

form for r as huað1� rubÞ, in which h; a; r; b 2 R. The

field uðx; tÞ gives the number of individuals’ per-unit vol-

ume at position x and time t, and it is integral over any

subregion X to give the total population of X at time t. The

field rðuÞ gives the rate at which individuals are supplied

(per-unit volume) exactly at x through the births and

deaths. The flow of population from point to point is then

depicted by the diffusion velocity vðx; tÞ, which provides

the average velocity of those individuals who occupies x at

the time t. The fields u, v, and r should be consistent with

the following law of population balance (for any regular

subregion X for the defined region during all the time t):

d

dt

Z
X
udVþ

Z
oX

u� v� ndV ¼
Z
X
rdV; ð2Þ

where n is the outward unit normal vector to the boundary

oX of X. This equation means that the rate of change of

population of X addition to the rate at which individuals

left X across its boundary should be equal to the rate at

which individuals are directly supplied to X [4, 5].

Several papers have considered the existence, unique-

ness, and regularity of weak solutions [4–9] for general

degenerate parabolic equations of Eq. (1). Numerical

solutions of the biological population equation have sel-

dom been explored and investigated, though some

& Saeid Abbasbandy

abbasbandy@yahoo.com

1 Department of Mathematics, Imam Khomeini International

University, Ghazvin 34149-16818, Iran

123

Math Sci (2016) 10:123–130

DOI 10.1007/s40096-016-0186-9

http://orcid.org/0000-0003-3385-4152
http://crossmark.crossref.org/dialog/?doi=10.1007/s40096-016-0186-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40096-016-0186-9&amp;domain=pdf


numerical struggles have been done in this field. Modeling

of the biological population problem (1) has been explored

using the element-free Kp-Ritz method in [1]. An improved

element-free Galerkin method for numerical modeling of

the biological population problem (1) has also been applied

by Zhang et. al. [2]. Shakeri and Dehghan obtained

numerical solution of the model using He’s variational

iteration method [10].

In general, themesh-freemethods can be grouped into two

categories, first category uses the equation in weak form, for

instance, element-free Galerkin method (EFG), improved

element-free Galerkin method (IEFG), complex variable

element-freeGalerkinmethod (CVEFG), improved complex

variable element-free Galerkinmethod (ICVEFG), meshless

local Petrov–Galerkin method, and etc. [11–21], and the

second category applies the strong form of the equation, for

example, meshless collocation approach [22–28]. In addi-

tion, the meshless methods depend on how their shape or

basis function constructed are different, and itmight be based

on interpolation or curve fitting and etc. [29–41].

In the current work, we testify spectral meshless radial

point interpolation (SMRPI) method [42–44] on the prob-

lem (1) and then make simulations on two numerical

experiments which leads to satisfactory results. A tech-

nique based on radial point interpolation is adopted to

construct shape functions, also called basis functions, using

radial basis functions. These shape functions have delta

function property in the frame work of interpolation;

therefore, they convince us to impose boundary conditions

directly. The time derivatives are approximated by the

finite-difference time-stepping method. This method is

based on collocation methods with mesh-free techniques as

a background. In contrast to those meshless methods based

on weak form, there is no integration tools in this approach.

Therefore, the computational complexity of SMRPI

method seems to be of low order.

The time discretization approximation

In the current work, let us to employ a time-stepping

scheme to evaluate the time derivative. To this end, the

following first-order finite-difference approximation for the

time derivative operator is adopted:

ouðx; tÞ
ot

ffi 1

Dt
ðukþ1ðxÞ � ukðxÞÞ: ð3Þ

Moreover, we apply the following approximations using

the Crank–Nicolson technique:

o2u2

ox2
þ o2u2

oy2
ffi 1

2

o2ðukþ1Þ2

ox2
þ o2ðukÞ2

ox2
þ o2ðukþ1Þ2

oy2
þ o2ðukÞ2

oy2

 !
;

ð4Þ

rðuðx; tÞÞ ffi 1

2
rðukþ1ðxÞÞ þ rðukðxÞÞ
� �

; ð5Þ

where ukðxÞ ¼ uðx; kDtÞ and x ¼ ðx; yÞ. Applying the

above approximation and impose them to the original

Eq. (1), we are conducted to the following time dis-

cretization equation:

ukþ1 ¼ uk þ Dt
2

o2ðukþ1Þ2

ox2
þ o2ðukÞ2

ox2
þ o2ðukþ1Þ2

oy2

(

þ o2ðukÞ2

oy2
þ r½ukþ1� þ r½uk�

)
: ð6Þ

The basis functions in the frame of MLRPI

Consider a continuous function uðxÞ defined in a domain X,
which is represented by a set of field nodes. The uðxÞ at a
point of interest x is approximated in the form of

uðxÞ ¼
Xn
i¼1

RiðxÞai þ
Xm
j¼1

pjðxÞbj ¼ RTðxÞaþ PTðxÞb;

ð7Þ

where RiðxÞ is a radial basis function (RBF), n is the number

of RBFs, pjðxÞ is monomial in the space coordinate x, and

m is the number of polynomial basis functions. Coefficients

ai and bj are unknown which should be determined. In the

current work, we use the thin plate spline (TPS) as radial

basis functions in Eq. (7) which is defined as follows:

RðxÞ ¼ r2m lnðrÞ; m ¼ 1; 2; 3; . . . ð8Þ

To determine ai and bj in Eq. (7), we consider a support

domain, such as a disk or square, surrounding the point of

interest x and use all nodes included in the support domain

to form a system of equations based on Eq. (7). In this way,

coefficients of ai and bj are obtained. Therefore, by the idea

of interpolation, Eq. (7) is converted to the following form:

uðxÞ ¼ UTðxÞUs ¼
Xn
i¼1

/iðxÞui; ð9Þ

where /iðxÞ are called the RPIM shape functions which

have the Kronecker delta function property, that is

/iðxjÞ ¼
1; i ¼ j; j ¼ 1; 2; . . .; n;

0; i 6¼ j; i; j ¼ 1; 2; . . .; n:

�
ð10Þ

This is because the RPIM shape functions are created to

pass thorough nodal values. Moreover, the shape functions

are the partitions of unity, that is

Xn
i¼1

/iðxÞ ¼ 1; ð11Þ
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for more details about RPIM shape functions and the way

they are constructed, the readers are referred to see [42].

Operational matrices of high-order derivatives

The essential tools of the current approach is operational

matrices which is constructed and described briefly in this

section. In fact, the operational matrices make the method

easy to apply the high-order differential equations which are

really difficult to handle by the majority of methods, espe-

cially those techniques based on weak forms. Consider the

total N nodes for covering the domain of the problem, i.e.,

X ¼ X [ oXð Þ. On the other hand, aswe noted in the previous
section, n is depend on the point of interest x (so, we call it nx)

in Eq. (9) which is the number of nodes included in support

domainXx corresponding to the point of interest x. Therefore,

we have nx �N and Eq. (9) could be reformulated as

uðxÞ ¼ UTðxÞUs ¼
XN
j¼1

/jðxÞuj: ð12Þ

In fact, there is one shape (basis) function /jðxÞ, j ¼
1; 2; 3; . . .;N corresponding to the node x, we define

Xc
x ¼ xj : xj 62 Xx

� �
, and then, it is straightforward, from

the previous section, to conclude

8xj 2 Xc
x : /jðxÞ ¼ 0: ð13Þ

The derivatives of uðxÞ are easily obtained as

ouðxÞ
ox

¼
XN
j¼1

o/jðxÞ
ox

uj;
ouðxÞ
oy

¼
XN
j¼1

o/jðxÞ
oy

uj; ð14Þ

and also high derivatives of uðxÞ are clearly obtained as

osuðxÞ
oxs

¼
XN
j¼1

os/jðxÞ
oxs

uj;
osuðxÞ
oys

¼
XN
j¼1

os/jðxÞ
oys

uj; ð15Þ

where
osð�Þ
oxs

and
osð�Þ
oys

are the sth derivative with respect to

x and y, respectively. By indicating u
ðsÞ
x ð�Þ ¼ osð�Þ

oxs
and

u
ðsÞ
y ð�Þ ¼ osð�Þ

oys
, and substituting x ¼ xi in Eq. (14), we can

formulate the discrete differentiations process as a matrix-

vector multiplications

u0x1
u0x2

..

.

u0xN

0
BBBBB@

1
CCCCCA

¼

o/1ðx1Þ
ox

o/2ðx1Þ
ox

� � � o/Nðx1Þ
ox

o/1ðx2Þ
ox

o/2ðx2Þ
ox

� � � o/Nðx2Þ
ox

..

. ..
. . .

. ..
.

o/1ðxNÞ
ox

o/2ðxNÞ
ox

� � � o/NðxNÞ
ox

0
BBBBBBBBB@

1
CCCCCCCCCA

u1

u2

..

.

uN

0
BBBB@

1
CCCCA;

ð16Þ

u0y1
u0y2

..

.

u0yN

0
BBBBB@

1
CCCCCA

¼

o/1ðx1Þ
oy

o/2ðx1Þ
oy

� � � o/Nðx1Þ
oy

o/1ðx2Þ
oy

o/2ðx2Þ
oy

� � � o/Nðx2Þ
oy

..

. ..
. . .

. ..
.

o/1ðxNÞ
oy

o/2ðxNÞ
oy

� � � o/NðxNÞ
oy

0
BBBBBBBBBB@

1
CCCCCCCCCCA

u1

u2

..

.

uN

0
BBBB@

1
CCCCA;

ð17Þ

we indicate above coefficients matrices as Dx and Dy,

respectively. In addition, clearly, we propose the following

matrix-vector multiplications for high-order derivatives

UðsÞ
x ¼ DðsÞxU; UðsÞ

y ¼ DðsÞyU; ð18Þ

where

UðsÞ
x ¼ uðsÞx1

; uðsÞx2
; . . .; uðsÞxN

� �T
; ð19Þ

UðsÞ
y ¼ uðsÞy1

; uðsÞy2
; . . .; uðsÞyN

� �T
; ð20Þ

DðsÞxij ¼
os/jðxiÞ
oxs

; ð21Þ

DðsÞyij ¼
os/jðxiÞ
oys

; ð22Þ

U ¼ ðu1; u2; . . .; uNÞT : ð23Þ

Discretization and numerical implementation
for the method

Equation (6) can be rewritten as

ukþ1¼ukþDt ukþ1o
2ukþ1

ox2
þ oukþ1

ox

	 
2

þuk
o2uk

ox2
þ ouk

ox

	 
2
( )

þDt ukþ1o
2ukþ1

oy2
þ oukþ1

oy

	 
2

þuk
o2uk

oy2
þ ouk

oy

	 
2
( )

þDt
2

r½ukþ1�þr½uk�
� �

: ð24Þ

To overcome nonlinearity, suppose uk + 1
u uk in the

right-hand side of the above equation. This is possible if

the time step Dt be sufficiently small, therefore, Eq. (24)

can be converted to

ukþ1 ¼ uk þ 2Dt uk
o2uk

ox2
þ ouk

ox

	 
2

þuk
o2uk

oy2
þ ouk

oy

	 
2
( )

þ Dtr½uk�: ð25Þ

Now, consider N scattered nodes on the boundary and

domain of the problem (1), i.e., X ¼ ðX [ oXÞ. Assuming
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that uðxi; kDtÞ; i ¼ 1; 2; . . .;N are known, our purpose is to

compute uðxi; ðk þ 1ÞDtÞ; i ¼ 1; 2; . . .;N. For nodes which

are included in the inside of the domain, i.e., xi 2 X, to
obtain the discrete system of algebraic equations, let us

substitute approximate formulas (12) and (14), (15) into

equation (25), then

ukþ1 ¼ uk þ 2Dt
XN
j¼1

/jðxÞukj

 ! XN
j¼1

o2/jðxÞ
ox2

ukj

 !(

þ
XN
j¼1

o/jðxÞ
ox

ukj

 !2
9=
;

þ 2Dt
XN
j¼1

/jðxÞukj

 ! XN
j¼1

o2/jðxÞ
oy2

ukj

 !(

þ
XN
j¼1

o/jðxÞ
oy

ukj

 !2
9=
;

þ Dtr
XN
j¼1

/jðxÞukj

 !" #
: ð26Þ

Now, by setting x ¼ xi, i ¼ 1; 2; 3; . . .;NX (NX is the

number of nodes in X) in the above equation and then

applying notations (19)–(23), we obtain

ukþ1
i ¼ uki þ 2Dt ui

XN
j¼1

Dð2Þxiju
k
j

 !
þ

XN
j¼1

Dxiju
k
j

 !2
8<
:

9=
;

þ 2Dt ui
XN
j¼1

Dð2Þyiju
k
j

 !
þ

XN
j¼1

Dyiju
k
j

 !2
8<
:

9=
;

þ Dtr ui½ �: ð27Þ

Enforcement of boundary conditions

There are several techniques to enforcing essential

boundary conditions in meshless methods, such as the use

of penalty methods, Lagrange multipliers and modified

variational principles, etc. In the current work, the essential

boundary conditions are imposed directly.

Simply-supported boundary conditions

In the case of simply-supported boundary conditions, we

have

uðx; tÞ ¼ gðx; tÞ; x 2 oX; 0� t� T : ð28Þ

For nodes which are located on the boundary oX, we set as

ukþ1ðxiÞ ¼ gðxi; ðk þ 1ÞDtÞ; i ¼ 1; 2; . . .;NoX; ð29Þ

where NoX is the number of nodes located on oX.

Clamped boundary conditions

In the case of clamped boundary conditions, it is usually

included the following types of boundary conditions:

ouðx; tÞ
on

¼ gðx; tÞ; x 2 oX; 0� t� T : ð30Þ

Therefore, in this case, for nodes which are located on the

boundary oX, we set as

n1ðxiÞ
ou

ox
xi; k þ 1Mtð Þ þ n2ðxiÞ

ou

oy
xi; ðk þ 1ÞDtð Þ

¼ gðxi; ðk þ 1ÞDtÞ;
ð31Þ

where n ¼ n1ðxiÞiþ n2ðxiÞj is the outward unit normal to

the boundary oX at xi 2 oX. Then, we have the following

equations:

n1ðxiÞ
XN
j¼1

Dxiju
kþ1
j þ n2ðxiÞ

XN
j¼1

Dyiju
kþ1
j

¼ gðxi; ðk þ 1ÞDtÞ; i ¼ 1; 2; . . .;NoX;

ð32Þ

where NoX is the number of nodes on oX.

Numerical simulations

In this section, we aim to demonstrate that the SMRPI

approach has a wider applications by testifying two examples

of the type in Eq. (1). To show the accuracy and convergence

of the method, maximum absolute error e1 defined by

e1ðuÞ ¼ kuexact � uapproxk1
¼ fjuexactðxi; tÞ � uapproxðxi; tÞj : i ¼ 1; 2; . . .;Ng;

ð33Þ

is used, where fuapprox; papproxg are exact and numerical

SMRPI solutions, respectively. In implementing the

SMRPI method, we consider support domain as a disk with

the radius rs ¼ 4:2h, where h ¼ 0:1 is the distance length

between two nodes in x- or y-directions.

Example 1 Considering the following biological popula-

tion equation:

ouðx; tÞ
ot

¼ o2u2

ox2
þ o2u2

oy2
þ huað1� rubÞ;

x ¼ ðx; yÞ 2 ½0; 1�2; t 2 ½0; T�;
ð34Þ

with the initial condition

uðx; 0Þ ¼ ffiffiffiffiffi
xy

p
; x 2 ½0; 1�2; ð35Þ

with h ¼ 1
5
, a ¼ 1, and r ¼ 0, and the exact solution is

uðx; tÞ ¼ e
t
5
ffiffiffiffiffi
xy

p
; x 2 ½0; 1�2: ð36Þ
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In this problem, we set Dt ¼ 0:00001. Figure 1 shows

SMRPI simulations and the absolute errors in some levels

of specific values of the time. Figure 2 compares the exact

and approximate SMRPI solutions.

Example 2 Considering the following biological popula-

tion equation:

ouðx; tÞ
ot

¼ o2u2

ox2
þ o2u2

oy2
þ huað1� rubÞ;

x ¼ ðx; yÞ 2 ½0; 1�2; t 2 ½0; T�;
ð37Þ

with the initial condition

uðx; 0Þ ¼ e
xþy
3 ; x 2 ½0; 1�2; ð38Þ

with h ¼ �1, a ¼ 1, r ¼ � 8
9
, and b ¼ 1, and the exact

solution is

uðx; tÞ ¼ e
1
3
ðxþyÞ�t; x 2 ½0; 1�2: ð39Þ

In this problem, we set Dt ¼ 0:00001 as well. Figure 3

shows SMRPI simulations and the absolute errors in some

levels of specific values of the time. Figure 4 compares the

exact and approximate SMRPI solutions. As it is seen, the

SMRPI and the exact solutions are not distinguishable,

while we have adopted a very simple idea to overcome the
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Fig. 1 SMRPI simulations and the absolute errors for Example 1
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nonlinearity, as it has been pointed out in Sect. ‘‘Dis-

cretization and numerical implementation for the method’’.

Conclusions

In this paper, the biological population equation has been

investigated using the spectral meshless radial point inter-

polation method. The shape (basis) functions constructed

by radial point interpolation augmented to monomials have

been employed to approximate the 2D displacement field.

A system of nonlinear discrete equations is obtained

through application of the SMRPI. The nonlinear equation

system is solved by iteration with a very simple scheme. A

mesh-free method does not require a mesh to discretize the

domain of the problem under consideration, and the

approximate solution is constructed entirely based on a set
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Fig. 3 SMRPI simulations and the absolute errors for Example 2

128 Math Sci (2016) 10:123–130

123



of scattered nodes. In SMRPI technique, in contrast to

those meshless methods based on weak form, there is no

integration tools in this approach. Therefore, the compu-

tational complexity of SMRPI method seems to be of low

order. The numerical results are in excellent agreement

with exact solutions.
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