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Using an arbitrary Lagrangian-Eulerian method on an adaptive moving unstructured mesh, we carry

out numerical simulations for a rising bubble interacting with a solid wall. Driven by the buoyancy

force, the axisymmetric bubble rises in a viscous liquid toward a horizontal wall, with impact on

and possible bounce from the wall. First, our simulation is quantitatively validated through a detailed

comparison between numerical results and experimental data. We then investigate the bubble dynam-

ics which exhibits four different behaviors depending on the competition among the inertial, viscous,

gravitational, and capillary forces. A phase diagram for bubble dynamics has been produced using the

Ohnesorge number and Bond number as the two dimensionless control parameters. Finally, we turn

to the late stage of the bubble rise characterized by a small flux of liquid escaping from the thin film

between the wall and the bubble. Since the thin film dynamics can be accurately described by the lubri-

cation approximation, we carry out numerical simulations to compare the simulation results with the

predictions of the lubrication approximation. Remarkable agreement is obtained to further demonstrate

the accuracy of the simulations. Published by AIP Publishing. https://doi.org/10.1063/1.5055671

I. INTRODUCTION

The interaction of a bubble or droplet with a solid sur-

face occurs in a variety of industrial and natural processes.1,2

Many experimental, numerical, and theoretical studies have

been carried out in the past years, yet there are still problems

related to bubble-wall collision that are not fully understood.

The purpose of the present work is to numerically investigate

the interaction between a rising bubble and a horizontal solid

wall above.

Three major processes have been simulated in our study.

First, the bubble accelerates from where it is released and

quickly reaches a steady state of rising in which the bubble

shape and velocity remain constant. Then there is the bounc-

ing process with the bubble impact on and bounce from the

wall. Finally there is the thin film drainage process in which

the bubble slowly squeezes the liquid film between the wall

and the bubble.

For the first process, i.e., the rise of a bubble in a liq-

uid, most of the studies are focused on the terminal velocity

and bubble deformation. Duineveld3 experimentally studied

the rising velocity and bubble shape in pure water at a high

Reynolds number. Wu and Gharib4 reported experimental

studies on the shape and path of small air bubbles rising in

clean water.

Regarding the dynamics of the bouncing process, the

interaction between a rising bubble and a horizontal wall has

been studied extensively over the past decades. Tsao and Koch5

a)Author to whom correspondence should be addressed: maqian@ust.hk.

observed a bubble bouncing from a horizontal wall by using

a high-speed camera. Klaseboer et al.6 studied the rebound of

a drop impinging on a wall both experimentally and numer-

ically. Legendre et al.7 and Zenit and Legendre8 studied a

bubble bouncing from a solid wall in a viscous liquid exper-

imentally. Recently, Kosior et al.9 reported the influence of

n-octanol on the bubble impact velocity and bouncing from

hydrophobic surfaces experimentally. Qin et al.,10 Albadawi

et al.,11 Klaseboer et al.,12 and Manica et al.13 theoretically

and numerically studied the bubble rise, impact, and bounce

processes. The film drainage process was investigated in

Ref. 6 experimentally and in Ref. 10 numerically. In addi-

tion, bubbles interacting with fluid-fluid interfaces were also

studied in many studies.14–16

There have been many theoretical and numerical stud-

ies on the dynamics of a bubble or drop approaching a solid

surface. Yiantsios and Davis17 analyzed the buoyancy-driven

motion of a drop toward a solid surface or a deformable inter-

face using the lubrication theory and boundary-integral theory.

Power18 studied the interaction of a deformable bubble with

a rigid wall at a small Reynolds number. Based on an earlier

study,6 Klaseboer et al.12 successfully predicted the bubble

trajectory and thin film drainage by using a force balance

model. The terminal velocity of a rising bubble has been noted

to be an important factor in bubble dynamics.3,4,19 A num-

ber of numerical methods have been used for solving the

multiphase flow problems, including the Volume of Fluid

(VOF) method,11,16,20 front tracking method,21 level set

method,22,23 and phase field method.24 A mass-conserving lat-

tice Boltzmann method, which is a diffuse interface model,

1070-6631/2018/30(11)/112106/9/$30.00 30, 112106-1 Published by AIP Publishing.

CrossMark 
f- dockfor11p<Y1 .. 

https://doi.org/10.1063/1.5055671
https://doi.org/10.1063/1.5055671
https://doi.org/10.1063/1.5055671
mailto:maqian@ust.hk
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5055671&domain=pdf&date_stamp=2018-11-27


112106-2 Zhang et al. Phys. Fluids 30, 112106 (2018)

was proposed by Fakhari et al.25 The above methods are non-

conforming methods; i.e., the interface is not composed of

lines in the mesh.

The Arbitrary Lagrangian-Eulerian (ALE) method is an

interface conforming method with the interface being com-

posed of lines in the mesh. Étienne et al.26 simulated the

free surface flow of a viscoelastic material by using the ALE

method. Hu27 and Hu et al.28 carried out direct numerical sim-

ulations of fluid-solid systems using the ALE technique. Yue

et al.29 simulated bubble growth in polymer foaming using

the ALE method. Qin et al.10 numerically investigated the

interaction of a rising bubble with a solid wall using the ALE

method. In this work, they considered a large Bond number

(Bo) which leads to large bubble deformation. In addition, the

three modes they presented in a phase diagram are mostly in

the overdamped regime.

In the present work, we consider a small Bond number

with limited bubble deformation, with a focus on the transi-

tion between underdamped and overdamped bubble dynam-

ics. On the one hand, our simulations are able to accurately

capture the oscillatory behaviors of the bubble in the under-

damped regime. On the other hand, our simulations are able to

achieve quantitative agreement with the prediction of lubrica-

tion approximation for the thin film between the wall and the

bubble in the late stage of the bubble rise. Our numerical sim-

ulations are carried out using the ALE method. We track the

interface explicitly to allow accurate application of boundary

conditions at the interface. The finite element method (FEM)

employing an adaptive unstructured triangulation method is

applied. Further details on the numerical method used in the

present work can be found in Ref. 30.

The paper is organized as follows. In Sec. II, we present the

governing equations with boundary conditions and the numer-

ical method applied here. In Sec. III, we present the validation

of numerical simulation through a comparison with experi-

mental data. In Sec. IV, we present the numerical results for

the transition between underdamped and overdamped bubble

dynamics. Four distinct regimes of bubble dynamics are iden-

tified, and a phase diagram is produced using the Ohnesorge

number (Oh) and Bo as the two control parameters. In Sec. V,

we present the numerical results showing quantitative agree-

ment with the prediction of a lubrication approximation for

the thin film dynamics in the late stage of the bubble rise. The

paper is concluded in Sec. VI.

II. MATHEMATICAL FORMULATION

A. Governing equations and boundary conditions

Consider a gas bubble that is driven by buoyancy force and

rises in a liquid toward a horizontal wall. We assume that the

fluids are Newtonian, the interfacial tension is uniform, and the

flows are incompressible. The governing equations are given

by



∇ · u = 0,

ρ
(

∂u
∂t

+ u · ∇u
)

= ρg − ∇p

+∇ ·
{
µ
(

∇u + ∇uT
)}

+ T ,

(1)

where u is the flow velocity, the density ρ is a constant in

each phase, t is the time, g is the gravitational acceleration,

p is the pressure, µ is the shear viscosity, and T = −σ(∇·n)nδ

is the capillary force density. Here σ denotes the gas-liquid

interfacial tension, n is the interfacial normal vector, and δ is

the surface Dirac function which is non-zero at the gas-liquid

interface.

For the axisymmetric dynamics, the governing equation

(1) can be written in cylindrical coordinates with (r, θ, z)

∈ Ω, where Ω is the flow domain. Under the assumption of

axisymmetry, the continuity equation is

1

r

∂

∂r
(ru) +

∂v

∂z
= 0 (2)

and the momentum equation is given by

ρ
du

dt
= −
∂p

∂r
+

1

r

∂

∂r

(

r

(

2µ
∂u

∂r

))

+
∂

∂z

(

µ

(

∂v

∂r
+
∂u

∂z

))

−
2µu

r2
,

(3)

ρ
dv

dt
= −
∂p

∂z
+

1

r

∂

∂r

(

rµ

(

∂v

∂r
+
∂u

∂z

))

+
∂

∂z

(

2µ
∂v

∂z

)

+ ρg, (4)

where u and v are the radial (r) and axial (z) velocity com-

ponents. The boundary condition applied at the gas-liquid

interface Γ is a natural condition expressing the force balance

between the interfacial tension and stress,

[(−pI + µD · n)]+
−
= σκn, (5)

where [·]+
−

denotes the difference between the physical quantity

on the two sides of the interface,

D =

[
2ur uz + vr

uz + vr 2vz

]
(6)

is the strain rate tensor, and κ is the curvature. We consider a gas

that is incompressible and maintained at a constant pressure

p0 (which can be assumed to be 0), with density and viscosity

being zero.

The interface moves with the fluid velocity. As a result,

the interface motion is described by the kinematic boundary

condition
dx

dt
= u(x), (7)

where x = (x, y, z) denotes the position of a point on the

interface.

B. Numerical method

The numerical method used in this study has been pre-

sented in Refs. 26 and 30. It is suitable for solving two-

dimensional and axisymmetric three-dimensional Stokes and

Navier-Stokes equations. Below is an outline of the method.

There have been many excellent mesh generators, e.g.,

BAMG,31 Triangle,32 and GRUMP.33 These generators pre-

scribe the position of a boundary but not the vertices on it.

An adaptive mesh generator was described in Ref. 30 where

the interfaces between different phases are lines of the mesh

system, and the triple junction points (if any) are mesh nodes.

The interfacial motion can be tracked by adapting the mesh to

the shape of the interfaces. The mesh can be generated by the

following algorithm:

1. The motion of the vertices at the interfaces is determined

by its velocity. The Laplacian smoothing technique is

used to relocate the vertices not at the interfaces.
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FIG. 1. An illustration of an adaptive mesh.

2. Edges not at the interfaces are swapped according to the

Delaunay condition.

3. Edge splitting/contraction is used to refine or coarsen the

mesh.

The adaptive unstructured mesh is very flexible and

can fit around nearly all geometries. Figure 1 illustrates the

unstructured mesh at some time instant in the present work.

An Arbitrary Lagrangian-Eulerian (ALE) method is

employed, which combines the advantages of both Lagrangian

and Eulerian methods and alleviates the drawbacks. Dynamic

boundary conditions at the interfaces can be incorporated

naturally and accurately in a finite element method (FEM).

Combining ALE with FEM, the weak form of the conti-

nuity equation and momentum equation can be discretized

on a finite element triangulation. The augmented Lagrangian

technique with the Uzawa method is used to exactly enforce

the zero divergence of velocity. The SPOOLES (Sparse

Object Oriented Linear Equations Solver) is used as a linear

solver.

III. VALIDATION OF NUMERICAL SIMULATION

Here we consider a bubble that rises in a liquid toward

a horizontal solid surface with a high velocity due to the

large buoyancy force. In this dynamic regime, the bubble

may repeatedly bounce from the solid surface with oscil-

latory deformation during the process of alternate rise and

bounce.

There exist several approaches to the investigation of this

phenomenon. A model based upon force balance has been pre-

sented by Manica et al.
13 Numerical simulation based on the

volume of fluid (VOF) method has been presented by Albadawi

et al.
11 These two studies compared their numerical results

with the experimental data of Kosior et al.
9 In the present work,

in order to validate our numerical method and demonstrate its

advantage, we carry out a simulation for exactly the same case:

a gas bubble of diameter D = 1.48 mm is released deep in the

water and reaches its terminal velocity before the first impact

on the solid surface. In this case study, the Ohnesorge number

is 0.0031 and the Bond number is 0.298.

The bubble is released with an initial velocity equal to

zero. Then the velocity increases with a decreasing acceler-

ation until the terminal velocity is reached. Given the high

terminal velocity, the bubble motion is characterized by alter-

nate rise and bounce. The oscillatory variation of the bubble

velocity, defined as the velocity at the centroid of the bubble, is

plotted in Fig. 2. The dashed line represents the data extracted

FIG. 2. The oscillatory time variation of the bubble velocity. Here we make

comparison with the numerical results (dashed-dotted line) obtained from the

work of Albadawi et al. and the experimental results (dashed line) obtained

from the work of Kosior et al. The terminal velocity in our simulation is

≈348 mm/s, in good agreement with the experimental value.

from the experimental work by Kosior et al.,9 the dashed-

dotted line represents the computational results of Albadawi

et al.,11 and the solid line represents the computational results

in the present work. It is readily seen that our simulation results

show a quantitative agreement with the experimental data.

The terminal velocity in our simulation is ≈348 mm/s,

which agrees with the experimental value very well, with a

relative discrepancy about 0.5%. Distinct “approach-bounce”

cycles are clearly seen. In addition, high frequency oscillations

can be observed in the first two increasing stages of the veloc-

ity variation. This is neither an experimental nor a numerical

artifact but a reality because the very small Ohnesorge num-

ber here leads to a number of sub-oscillations. Physically, a

very small Oh means the viscous damping is very weak and

oscillations may exist at different scales due to the joint effect

of inertia and interfacial tension. The time scale for oscilla-

tion and that for velocity damping are measured relative to

each other in the dimensionless parameter Oh, which will be

explained in Subsection IV A.

The oscillatory variation of the aspect ratio of the bubble

is shown in Fig. 3, in which our numerical results are compared

FIG. 3. The oscillatory variation of the aspect ratio of the bubble. Here we

make comparison with the numerical results (dashed-dotted line) obtained

from the work of Albadawi et al. and the experimental results (dashed line)

obtained from the work of Kosior et al. An enlarged part of the graph is put

in the inset to better show the high frequency oscillations.
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with the numerical results of Albadawi et al. and the experi-

mental results of Kosior et al. Here the aspect ratio is defined

as RA = dh/dv, where dh is the maximum extent of the bubble

in the horizontal direction and dv is the maximum extent of

the bubble in the vertical direction.

Our simulation results are good for both the bubble veloc-

ity and aspect ratio. This is particularly seen when the sub-

oscillations at shorter time scales are concerned. The dynamics

at low Oh is more complicated because viscous damping is

weak and oscillations arise from the joint effect of inertia and

interfacial tension. Furthermore, the high impact speed will

lead to the excitation of high frequency oscillation modes. In

fact, when the impact speed is low (with the bubble released

not far from the solid surface), no high frequency oscillation

mode is observed. Physically, an oscillation requires the inertia

to take effect. A high frequency oscillation mode occurs at a

small length scale that is smaller than the bubble size. To have

a sufficiently large Re number at the small length scale, a large

velocity is required. Therefore, the high frequency modes only

appear at small Oh with high impact speed.

In Fig. 4, the interfaces from our simulation (red solid

lines) are superimposed on the pictures from Ref. 9 at different

times during the first and second collisions and after bouncing.

The upper row of each sequence shows top-view photos, which

clearly display the variation of the diameter of the liquid film.

The lower row of each sequence shows the shape and position

of the bubble. It is clearly seen that our numerical results are

in good agreement with the experimental results. The bubble

hits the wall for the first time with the terminal velocity which

is high. As a result, during the collision and rebound, the oscil-

latory deformation of the bubble is strong. The approaching

velocity for the second collision is smaller than the terminal

velocity, leading to a weaker oscillatory deformation of the

FIG. 4. The interfaces from our simulation (red solid lines) are superimposed

on the pictures from Kosior et al.9 at different times during the first and second

collisions and after bouncing. Here, due to the difference (≈1 ms) between the

experimental data and our numerical results for the oscillation period (≈34.6

ms), there will be an accumulated difference after a few cycles. Therefore,

to optimize the comparison for bubble shapes, we have adjusted the initial

time instants for the 1st and 2nd collisions, respectively. We have checked

the numerical convergence in determining the oscillation period. The small

relative difference between the experimental data and our numerical results

(≈3%) may be caused by the small uncertainty in physical parameters, e.g.,

bubble diameter and interfacial tension.

bubble than in the first collision. Finally, the bubble acquires

a fixed shape with a thinning liquid film between the bubble

and the solid surface.

IV. DYNAMIC PHASE DIAGRAM

A. Control parameters

The dynamics of bubble can exhibit different behaviors

depending on the competition among the inertial, viscous,

gravitational, and capillary forces. In addition to the density

and viscosity ratios, the two most important dimensionless

parameters are the Bond number and Ohnesorge number. The

Bond number measures the gravitational force relative to the

interfacial tension force, given by

Bo =
∆ρgD2

σ
,

where∆ρ is the difference between the liquid and gas densities,

g is the gravitational acceleration, D is the characteristic length

(i.e., the diameter of the bubble in spherical shape), and σ

is the interfacial tension. The Bond number can be used to

characterize the shape of a bubble moving in a surrounding

liquid, with a larger Bo leading to a bigger deformation of

bubble shape.

The Ohnesorge number measures the viscous force rel-

ative to the inertial and interfacial tension forces, defined

by

Oh =
µ

√
ρσD

,

where µ is the shear viscosity, ρ is the liquid density, and σ

and D are the same as above. Physically, this dimensionless

parameter can be understood as a ratio of two time scales: (i)

the time scale for oscillation τosc ∼
√

ρD3/σ determined by

the inertial and interfacial tension forces and (ii) the time scale

for velocity relaxation τrel ∼ ρD2/µ determined by the inertial

and viscous forces, with Oh = τosc/τrel. If τosc is much smaller

than τrel, then Oh is small, the viscous damping is weak, and

oscillatory behaviors may occur.

B. Four regimes of bubble dynamics

In our simulations, the liquid water is confined in an

enclosed tube with 200 mm in height and 80 mm in diam-

eter. A spherical gas bubble of diameter D ∼ 1 mm is released

from the bottom of the tube. The flow is assumed to be axisym-

metric, and a cylindrical coordinate system with coordinates

r and z is used. Accordingly, our computational domain is

[0, 40] × [−200, 0], with the origin located at the center of the

upper surface of the tube. The center of the bubble is initially

located at (r0, z0) = (0, −180), which is deep enough for the

bubble to reach the terminal velocity before hitting the upper

wall.

We fix ρ = 1000 kg/m3 for liquid density and use different

values for bubble diameter D, viscosity µ, and interfacial ten-

sion σ in our simulations. Different combinations of D, µ, and

σ will give rise to different dynamic behaviors of the bubble

which rises and approaches the upper wall and then may or

may not bounce. The terminal velocity plays an important role

in controlling the bubble dynamics. The higher the terminal

1st 

collision 

2nd 

collision 

after 
bouncing 
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FIG. 5. Four dynamic regimes are iden-

tified for the bubble which rises and

approaches the upper wall and then

may or may not bounce. Here the red

(blue) curves represent the positions of

the center of the upper (lower) gas-

liquid interface. (a) Absolute bounc-

ing: the upper and lower interfaces both

show oscillatory positions. (b) Marginal

bouncing: the upper interface slowly

and monotonically approaches the wall

without oscillation, while the lower

interface still shows an oscillatory posi-

tion. (c) Marginal overdamping: the

upper interface slowly and monotoni-

cally approaches the wall without oscil-

lation, while the lower interface shows

a non-monotonic yet non-oscillatory

behavior. (d) Absolute overdamping:

the upper and lower interfaces both

slowly and monotonically approach the

wall without oscillation.

velocity is, the more easily and probably the bubble bounces.

Therefore, we release the bubble far away from the upper wall

to make sure that the bubble reaches its terminal velocity in all

the simulations reported in this work.

Four distinct dynamic regimes have been observed in a

large number of numerical simulations. Figure 5 illustrates the

four regimes by plotting the bubble positions for four different

cases. The red curves represent the positions of the center of

the upper gas-liquid interface, and the blue curves represent

the positions of the center of the lower gas-liquid interface. The

four dynamic regimes are illustrated by four sub-figures as fol-

lows. In Fig. 5(a), the upper and lower interfaces both show

oscillatory positions, and this regime is called the regime of

absolute bouncing; in Fig. 5(b), the upper interface slowly and

monotonically approaches the wall without oscillation, while

the lower interface still shows an oscillatory position, and this

regime is called the regime of marginal bouncing; in Fig. 5(c),

the upper interface slowly and monotonically approaches the

wall without oscillation, while the lower interface shows a

non-monotonic yet non-oscillatory behavior, and this regime

is called the regime of marginal overdamping; in Fig. 5(d),

the upper and lower interfaces both slowly and monotoni-

cally approach the wall without oscillation, and this regime is

called the regime of absolute overdamping. Here we mention

that the validation case in Sec. III is in the regime of absolute

bouncing.

In Fig. 6, the four dynamic regimes are separated in a

two-dimensional plot, in which the horizontal axis is µ and

the vertical axis is
√

ρσD. The three straight lines, all passing

through the origin, are used to indicate the separation of four

regimes. Note that Oh = µ/
√

ρσD is a constant along each

line. Therefore, Fig. 6 implies that the four dynamic regimes

are predominantly separated by Oh, which becomes smaller

toward the upper left part and larger toward the lower right

part. It is readily seen that at very small Oh, the viscous force

is too weak to suppress the oscillation which is a joint effect of

inertial and interfacial tension forces. As a result, the bubble

is likely to bounce. At large Oh, however, the viscous dissipa-

tion is strong enough for the bubble to enter the overdamped

regime where oscillation is impossible. Note that if the Ohne-

sorge number were the only control parameter, then the four

regimes of bubble dynamics would be perfectly separated by

the three indicative straight lines. Obviously, this is not the

case, and below we show that the Bond number also plays a

role.

FIG. 6. The four dynamic regimes identified in Fig. 5 are separated in a two-

dimensional plot, with the horizontal axis given by µ and the vertical axis

given by
√

ρσD. The solid triangles are in the regime of absolute bouncing,

the hollow triangles are in the regime of marginal bouncing, the hollow circles

are in the regime of marginal overdamping, and the solid circles are in the

regime of absolute overdamping. The indicative straight lines all pass through

the origin. Along each line, Oh = µ/
√

ρσD is a constant. Here the density ρ

is fixed, while the bubble diameter D, viscosity µ, and interfacial tension σ

are varied to generate a large number of different cases, with each belonging

to one of the four regimes.
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FIG. 7. A phase diagram showing the control by the dimensionless parame-

ters Oh and Bo. The symbols are the same as in Fig. 6.

C. Phase diagram

Besides Oh, the Bond number Bo is also expected to play

a role in controlling bubble dynamics because it controls the

deformation of bubble shape. A larger Bo leads to larger defor-

mation. As a result, the effective length scale is made larger

than the original and nominal diameter D, and hence the effec-

tive Oh is made smaller than the nominal Oh calculated using

D. Physically, this smaller effective Oh makes oscillation more

likely to occur. This trend can be observed in Fig. 7, which

shows that a bubble is more likely to oscillate as Bo is increased

and Oh is fixed at a relatively small value. In addition, Bo also

controls the terminal velocity and hence the kinetic energy of

impact by which oscillatory modes may be excited.

V. THIN FILM DYNAMICS

Both experiments and simulations show that after the

“approach-bounce” cycles (if any) are finished, the bubble

is very close to the wall and its rise is extremely slow. The

dynamics in this regime is dominated by a balance between

the buoyancy force due to the gravity and the lubrication force

due to the liquid film between the wall and the bubble. Physi-

cally, the late stage of the bubble rise is characterized by a small

flux of liquid escaping from the thin film whose dynamics can

be accurately described by the lubrication approximation.34 In

this section, we carry out numerical simulations to compare

the simulation results with the predictions of the lubrication

approximation. Remarkable agreement is obtained to further

demonstrate the accuracy of the simulations.

A. Lubrication approximation

Assuming the flow to be axisymmetric, we use the cylin-

drical coordinates r and z with the origin located at the center

of the upper wall. Let h(r, t) denote the thickness of the liquid

film between the upper wall and the bubble. The rising velocity

of the upper gas-liquid interface is given by

w(r, t) = −
∂h(r, t)

∂t
, (8)

as a function of r and t. At each r, there is a liquid flux escaping

from the film, given by the continuity equation∫ r

0

2πr̃w(r̃, t)dr̃ = 2πrh(r, t)ū(r, t), (9)

in which ū(r, t) is the h-averaged radial velocity at r, defined

by

ū(r, t) =
1

h(r, t)

∫ 0

−h(r,t)

u(r, z, t)dz, (10)

in which u(r, z, t) is the radial velocity. We then have

ū(r, t) =

∫ r

0

r̃w(r̃, t)dr̃

rh(r, t)
. (11)

Since the liquid layer is thin and h(r, t) varies slowly with r,

the equation governing the slow flow becomes

µ
∂2u

∂z2
=

∂p

∂r
, (12)

where ∂p/∂r is independent of z under the lubrication approx-

imation. Solving Eq. (12) with the boundary conditions u|z=0

= 0 on the solid surface and ∂u
∂z
�
�z=−h = 0 on the gas-liquid

interface, we have

u(r, z, t) =
1

2µ

∂p

∂r
(z2 + 2hz). (13)

Combining Eqs. (10) and (13), we obtain

ū(r, t) == −
1

3µ

∂p(r, t)

∂r
h2(r, t). (14)

We then obtain

∂p(r, t)

∂r
= −

3µ

∫ r

0

r̃w(r̃, t)dr̃

rh3(r, t)
(15)

from Eqs. (11) and (14).

In the simplest case of h(r, t) = h(t) being independent of

r, p can be expressed as

p(r, t) =
3µw(t)

4h3(t)
(R2 − r2) (16)

with p(R, t) = 0. The integrated vertical force due to the pressure

distribution within r = R is given by

F(R, t) =

∫ R

0

2πrp(r, t)dr =
3π

8

µw(t)R4

h3(t)
. (17)

In our problem, however, h is a function of r and the

pressure can be expressed as

p(r, t) =

∫ r

R

∂p

∂r̃
(r̃, t)dr̃, (18)

with p(R, t) = 0 and ∂p/∂r̃ given by Eq. (15). The integrated

vertical force F(R, t) is still given by

F(R, t) =

∫ R

0

2πrp(r, t)dr. (19)

Using h(r, t) from our simulations, we can calculate

F(R, t) according to Eqs. (18) and (19) under the lubri-

cation approximation. The integrated vertical force F(R, t)

so obtained is then compared to the corresponding numer-

ical result FN (R, t) = ∫
R

0 2πr[P(r, t) − P(R, t)]dr, in which

P(r, t) is the pressure in the numerical simulations. This is to

verify if our simulation results agree with the predictions of

the lubrication approximation.
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FIG. 8. The ratio of h(r = 0, t) to hmin(t), h(r = 0, t)/hmin(t), plotted as a

function of time t. As t increases, the thinnest point of the liquid film moves

away from r = 0.

B. Numerical results

In our simulation, a gas bubble of diameter D = 3.335 mm

is initially placed 15 mm below the solid wall in the liq-

uid which is 95% glycerin + water. The liquid density is

ρ = 1244 kg/m3, and the viscosity is µ = 0.5501 Pa s. The

diameter of our cylindrical computational domain is 40 times

of the diameter of the gas bubble. The parameter values used

here are different from those in Secs. III and IV. This is to

help our simulations quickly enter into the regime of thin film

dynamics. The distance between the wall and the center of the

upper surface of the bubble is h(r = 0, t). The thickness at the

thinnest point of the film is denoted by hmin(t). The bubble is

released at time t = 0. Figure 8 shows that when t is small, hmin

occurs at r = 0, i.e., h(r = 0, t) = hmin(t). As time goes by, the

thinnest point of the liquid film moves outward and the upper

FIG. 9. The shape of the liquid film between the bubble and the wall. Upper:

The bubble is far from the wall and hmin occurs at r = 0. Lower: At t ≈ 20 s,

hmin occurs at the neck.

surface of the bubble acquires a concave shape (see Fig. 9 for

the thin film at t ≈ 20 s).

Figure 10(a) shows the time variation of the film thick-

ness, with the blue line representing hmin(t) and the red stars

representing h(r = 0, t). The bubble rises very fast in the first

second and then slows down. This is also observed in Fig. 10(b)

for ∂

∂t
hmin(t) and ∂

∂t
h(r = 0, t). After time t = 27 s [at which

hmin = 7.27 × 10−3 mm, h(r = 0) = 4.07 × 10−2 mm], the

computation breaks down. We believe that the breakdown of

our computation is caused by the insufficient numerical res-

olution. If we use finer mesh and smaller time step, then the

computation can continue. It will be shown below that for

time t between tl = 3.7 s and tu = 25 s, good agreement can

be achieved between the simulation results and the predic-

tions of the lubrication approximation. We note that there exist

some sudden jumps in the curves for ∂h/∂t. They correspond

to the time instants of remeshing by which numerical errors are

introduced.

As the film is very thin (from several microns to several

tens of microns), the pressure P in the thin film is almost inde-

pendent of z according to the lubrication approximation. In

Fig. 11(a), we plot the pressure in the film as a function of r

at t ≈ 20 s. It can be observed that the pressure shows a sharp

drop near the neck; i.e.,
�
�
�

∂P

∂r

�
�
�

is very large. The neck forma-

tion and the sharp drop of pressure at the neck are expected in

0

FIG. 10. (a) Film thickness h plotted as a function of t. The blue line repre-

sents hmin(t) and the red stars represent h(r = 0, t). For t ≤ 1.13 s, hmin(t)

= h(r = 0, t). For t > 1.13 s, hmin occurs at the neck which moves outward

gradually. The difference between hmin(t) and h(r = 0, t) is shown in the inset

with a better resolution. (b) The rate of change in h, ∂h/∂t, plotted as a function

of t for hmin(t) and h(r = 0, t).
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FIG. 11. (a) Pressure in the thin film, plotted as a function of r. Here the

pressure value at r is obtained by averaging over the film thickness as follows.

Using the pressure value p(r, z) obtained at each grid point, we compute P(r)

according to P(r) = 1
h(r) ∫

0
−h(r) p(r, z)dz, where h(r) is the film thickness at r.

The arrow points to the data point at the neck where the pressure drops sharply.

Note that there is no pressure variation beyond r = 2 mm. (b) The integrated

vertical force F(∞, t) numerically calculated and the buoyancy force FB are

approximately equal, with a relative error below 1%.

the asymptotics of thin film dynamics. The pressure changes

slowly with r far away from the neck and approaches a con-

stant when r is big enough. This is because the liquid is almost

in a hydrostatic state far away from the film, with a negligibly

small flux of liquid escaping from the film. Using the numerical

results for the pressure P(r, t), we compute the integrated verti-

cal force F(∞, t) = ∫
∞

0 [P(r, t) − P(∞, t)]2πrdr on the bubble

due to P. Figure 11(b) compares F(∞, t) and the buoyancy

force FB = ρg
(

4π
3

R3
)

, which are approximately equal, with a

relative error below 1%.

Finally we make comparison for the integrated verti-

cal force. We compare the numerical result FN (R, t) with

the prediction of the lubrication approximation F(R, t). The

numerical result FN (R, t) is computed by using Eq. (19) with

p(r, t) replaced by P(r, t) − P(R, t) obtained from the simula-

tion. When R is selected at a circle close to the neck,
�
�
�

∂P
∂r

�
�
�

at

r = R is very large, and hence a small change in R will result

in a big shift of P(R, t), which is taken as the reference point

in P(r, t) − P(R, t). So we choose R a bit away from the neck.

The prediction of the lubrication approximation F(R, t) can be

calculated by using h(r, t) obtained from the simulation and

Eqs. (8), (18), and (19). Figure 12 shows the relative error E(t)

between the numerical result FN (R, t) and the prediction of

FIG. 12. The relative error E(t) between the numerical result FN (R, t) and the

prediction of the lubrication approximation F(R, t) for the integrated vertical

force. Results are shown for different values of R away from the neck. Here

the sudden jumps correspond to the time instants of remeshing.

the lubrication approximation F(R, t), with E(t) given by

E(t) =
F(R, t) − FN (R, t)

FN (R, t)
(20)

for four different values of R. The main purpose here is to

demonstrate the accuracy of our ALE method by comparing

our simulation results with the prediction of the lubrication

approximation. Although we only focus on the pressure and

its integral (the vertical force F) in the present work, we can

certainly look at the flow field to acquire more details on the

thin film dynamics. We want to point out that our method can

be used to investigate the whole process, regardless of whether

or not the bubble is close enough to the solid wall to validate

the lubrication approximation.

VI. CONCLUSIONS

We have numerically investigated a rising bubble inter-

acting with a solid wall. This is carried out by employing an

arbitrary Lagrangian-Eulerian method on an adaptive moving

mesh. In order to accurately approximate the boundary con-

dition, the interface is composed of mesh lines; hence, our

method is an interface-conforming method. The finite element

method is used to discretize the governing equations, and the

Uzawa algorithm is applied to solve the discrete system. We

consider a bubble that is driven by the buoyancy force in a vis-

cous liquid and rises toward a horizontal wall, with possible

“approach-bounce” cycles. We start from a quantitative vali-

dation of our simulation by comparing the numerical results

with experimental data for a bubble which reaches its terminal

velocity before the impact on the wall. We then identify four

distinct behaviors for the bubble dynamics governed by the

competition among the inertial, viscous, gravitational, and cap-

illary forces. We produce a phase diagram with the Ohnesorge

number and Bond number acting as the two dimensionless

control parameters. We finally investigate the late stage of the

bubble rise characterized by a thinning liquid film between the

wall and the bubble. Comparing the simulation results with

the predictions of the lubrication approximation for thin film

dynamics, we obtain remarkable agreement to further demon-

strate the accuracy of the simulations. We hope that the results

presented here for a rising bubble interacting with a solid wall
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can be found useful to the study of bubble dynamics in a more

general context.35–38
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