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AasmAcT: Numerical models that assume hydrostatic pressure are usually sufficiently accurate for applica-
tions in civil engineering where the vertical component of the velocity is relatively small. Nevertheless, the
vertical momentum, and, hence, the nonhydrostatic pressure component. cannot be neglected when the bottom
topography of the domain changes abruptly, as in cases of short waves, or when the flow is determined by
strong density gradients. In this paper a numeriéal method for the three-dimensional (3D) quasi-hydrostatic,
free-surface flows is outlined The governing equations are the Reynolds-averaged Navier-Stokøs equations with
the pressure decomposed into the sum of a hydrostatic component and a hydrodynarnic component. The mo-
mentum equations, the incompressibility condition, and the equation for the free surface are integrated by a
time-splitting method in such a fashion that the resulting numerical solution is mass conservative and stable at

a minimal computational cost. Several applications serve to illustrate the effect of the deviation from the hy-
drostatic pressure.

INTRODUCTION

Problems where the hydrostatic approximation is no longer
valid include flOws over rapidly varying slopes (such as near
continental shelf edges) and short waves where the ratio of
the vertical-to-horizontal scales of motion is not very small
One of the most popular numerical methods that successfully
simulates free-surface flows for the Navier-Stokes equations is
the marker-andcelI method developed by Harlow and Welch
(1965). The marker-and-cell method has been improved in
several ways (Buigarelli et al. 1984; Tome and McKee 1994),
but a severe stability restriction, relating the time step to the
spatial discretization and to the free-surface wave speed, in-
hibits this method from being applied to three-dimensional
(3D) geophysical flows with a sufficiently flue grid to resolve
the small-scale nonhydrostatic component of the flow. The sta-
bility condition on the surface wave speed can be removed by
making the rigid lid approximation (Cox 1984). The rigid lid
approximation, however, does not allow for realistic propa-
gation of surface waves, and thus, tidal flows cannot be aim-
ulated.

Explicit integration of the shallow-water equations is known
to allow for a time step limited by the Courantcondition based
on fast gravity waves (Stelling 1983; Blumberg and Mellor
1987). To circumvent this condition implicit methods were in-
itially derived based upon an AD! type of factorization for the
barotropic pressure mode and the continuity equation (Leen-
dertse 1967; Stelling 1983), and were latàr based upon fully
implicit integration of these modes (Benqud et al. 1982; Wil-
ders et al. 1988; Casulli 1990). These methods can be extended
to 3D models, based upon the hydrostatic pressure assumption
(Madala and Piacsek 1977; Leendertse 1989; de Goede 1991;
Casulli and Cheng 1992; Stelling and Leendertse 1992; Casulli
and Cattani 1994).

This paper describes how an extension can be constructed
within the aforementioned computational framework that al-
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lows numerical integration of the full Reynolds-averaged Na-
vier-Stokes equations for simulating large-scale noithydrostatic
flows (Casulli 1995; Casulli and Stelling 1996; Mabadevan et
al. 1996a,b). This is achieved by a fractional step method
where the hydrostatic and the hydrodynamic component of the
pressure are considered separately. The resulting algorithm is
relatively simple, numerically stable even at large Courant
numbers, and suitable for simulations of complex 3D flows
usmg flue spatial resolution and relatively large time steps.
Moreover, when the vertical momentum is neglected, the hy-
drostatic solution is produced as a particular case.

GOVERNING EQUATIONS

The governing 3D, primitive variable equations describing
the free-surface flows can be derived from the Navier-Stokes
equations after Reynolds averaging. Such equations express
the physical principle of conservation of mass and momentum.
The momentum equations for an incompressible fluid have the
following form (Pedlosky 1979):
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where u(x, y, z, t), v(x, y, z, t), and w(x, y, z, t) = velocity
components in the horizontal x, y and vertical z-direction; t =
time; p(x, y, z, t) = pressure; g = gravitational acceleration;
p = fluid density; and p." and p." = coefficients of horizontal
and vertical eddy viscosity respectively. For applications to
mesoscale oceanic flows the vertical component of the Con-
oils acceleration should also be incorporated in (1)(3) (Ma-
hadevan et al. 1996a).

The fluid density p is specified by an equation of state p =
p(T, S), where T and S denote the temperature and the salinity,
respectively. If either the temperature or the salinity concen-
tration cannot be assumed constant, a transport equation for T
or S must also be given as follows:
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where c = T, 5; and v and v = coefficients of horizontal and
vertical eddy diffusivity, respectively. Here, for simplicity
only, the horizontal eddy diffusivity coefficient is assumed to
be constant.

By denoting with q(x, y, t) the free surface measured from
the undisturbed water surface, the pressuxep(x; y, z, t) in (1)-
(3) can be decomposed into the sum of a hydrostatic compo-
nent and a hydrodynamic component. The hydrostatic pressure
component is determined from the vertical mOmentum equa-
tion (3) by neglecting the convective and the viscous accel-
eration terms. Additionally, by using the Leibnitz integration
rule, the hydrostatic pressure gradient can be split into the
barotropic and the baroclinic components as follows:

Vp(x, y, z, t) = gp(x, y, , t)V, y, 0 + g f Vp(x, y, , t) d

The atmospheric pressure term is usually prescribed and, for
simplicity only, is assumed to be constant. Thus, the momen-
tUm equations (l)(3), after the Boussinesq approximation,
can also be. written as
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where q = normalized hydrodynamic pressure that is the de-
viation from the hydrostatic pressure divided by the constant
reference density po; and h and v = kinematic eddy viscosity
coefficients:

The conservation of volume is expressed by the following
incompressibility condition:

Ou Ov Ow++=0 (9)
Ox Oy Oz

Integrating the continuity equation (9) over the depth and
using a kinematic condition at the free surface leads to the
following free-surface equation:

..ii+±[fudz] +-[fvdz]=0 . (10)

where h(x; y) = water depth measured from the undisturbed
water surface.. When the rigid lid approximation is made, vi(x,
y, t) is no longer a function of time and (10) is not needed.
On the other hand, when the hydrostatic approximation is
made, (8) is neglected and q(x, y, z, t) = 0 is assumed through-
out In this latter case the hydrodynamic component of the
pressure is assumed not to have, any affect on the resulting
circulatioti.

The boundary conditions at the free surface are specified by
prescribing the wind stresses as

Ov Ov
+ U

ot Ox

(6).

v ='YT(VaV) (lla,b)

where = nonnegative wind stress coefficient and u,, and Va
= prescribed wind velocity components in the x- and y-direc-
floss, respectively. At the bed, the bottom friction is specified
by

Ou OvV1='YBU; V"1='yV (12a,b)

where y = nonnegative bottom friction coefficient. T'pically,
YB can be derived from any turbulent boundary-layer assump-
tion. The vertical eddy viscosity coefficient vv can be deter-
mined from an appropriate turbulence closure model that is
beyond the scope of the present investigation. Here, it will
only be assumed that iP is nonnegative everywhere.

NUMERICAL APPROXIMATION

To obtain an efficient numerical method whose stability is
independent of the free-surface Wave speed, wind stress, bot-
tom friction, and vertical eddy viscosity, a fractional step
scheme is derived. In the first step the hydrodynamic pressure
is neglected and the gradient of surface elevation in the hori-
zontal momentum equations (6) and (7) and the velocity in
the free-surface equation (10) are discretized by the 0-method
(Casulli and Cattani 1994). Moreover, for stability, the vertical
viscosity terms will be discretized implicitly. In the second
step the intermediate velocity computed in the first step is
corrected by adding the hydrodynamic pressure terms that are
calculated in such a fashion that the resulting velocity field is
divergence free throughout the computational domain.

The physical domain is subdivided into NXNYNZ rectangular
boxes of length x, width y, and height Azk = Zk+u2 -
Zk-U2, respectively, where Zk2U2 are given level surfaces. Each
box is numbered at its center with indices i, j, and k. The
discróte u velocity is then defined at half integer i and integers
j and k; v is defined at integers i, k and half integerj; w is
defined at integers i, j and half integer k q is defined at in-
tegers i,J, and k. Finally, r is defined at integer i, j. The water
depth h(x, y) is specified at the u and v rizOtal grid points.

FIrst Step: HydrostatIc Pressure

The first. step of calcUlations is performed by neglecting the
hydrodynamic pressure terms in the momentum equations
(6)(8). The resulting velocity field at the new time level 15
not yet final and will be denoted by ü, i, and . A semi-
implicit discretization for the momentum equations ()(8)
takes the following form:.

u7:I2J.k = Fu7+11, - g [0(T)1 - r1) + (1 - O)('i7+. -
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where Az is usually defined as the distance between two con-
secutive level surfaces except near the bottom and near the
free surface where Az is the distance between a level surface
and bottom or free surface, respectively. In general, Az de-
pends on the spatial location and, near the free surface, also
depends on the time step. The vertical space mcrement Az is
also allowed to vanish to account for variable geometries and
for the wetting and drying of tidal flats. Of course, the cor-
responding momentum equations (13), (14), or (15) are not
defined at a grid point characterized by Az = 0 In (13)(15),
F is a flmte difference operator that includes the explicit dis-
cretization of the convective terms, the horizontal viscosity
terms, and the Coriolis acceleration Eqs. (13)(l-5) also in-
clude appropriate discretizations of the boundary conditions
(11) and (12) at the free surface and at the bottOm (Casulli
and Cheng 1992).

For each i,j, the set of (15) form a linear, tridiagonal system
of N - 1 equations with unknowns k = 1, 2,
N 1. The coefficient matrix of these systems is symmetric
and positive definite. Thus, the intermediate vertical compo-
nent of the velocity can be determined uniquely and efficiently
by a direct method. Eqs. (13) and (14) also constitute a set of
linear tridiagonal systems that are coupled to the unknown
water surface elevation q". To determine v, and for nu-
merical stability, the intermediate velocity field is required to
satis1', for each i, j, the discrete analog of the free-surface
equation (10)

Tk,j Th,,, .!['' N,

A afl A II -nfl
A I

iZ,+UJ.kU,+I,2J.k - .kZg_u2j.kUI_u2.J,k
L*-i k-I

e;E
N,_''- Z4J+lfl.kVjJ+Ifl.k

k-I

k-I
(16)

Eqs. (13), (14), and (16) now constitute a large linear system
Of NrNy(2Nz + 1) equations with unknowns
and j'. For computational convenience this system is first
reduced to a smaller, five diagonal system of only NAN, equa-
tions in which q7' are the only unknowns. Specifically, upon
multiplication by Az+l,.k and AzJ+l,2.k, (13), (14), and (16)
are first written in matrix notation as

At ,.fl nflA7+11jU7.,j = - Og (Th+I.J - 1k., )AZ7+1,2, (17)

At n+l nfl= - Og - (rkj+i - q )AZ.,+1,2 (18)
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(14)

= - 0 [(AZ - (AZ7_111)TO7Z.j]

- 0 [(AZ1+112)T'112 - (19)

where O7J and 7J2IJ = vectors of N, components u and v
at the specified hOrizontal location; A = symmetric, positive
definite, tridiagonal matrix of order N,; and G+ =
vectors containing all the explicit terms in (13) and (14), re-
spectively; & contains all' the explicit terms in (16); and, fi-
nally, AZ denotes a vector of N, components 4z7+.,. and
AZJ+u2.k. Then, formal substitution of the expressions for
U7I,ZJ and U2 from (17) and (18) into (19) yields

- gO2 { [(AZ)TA AZ]7+zj(Ti7Z'j ,.n+I)

- '[(AZ)TAAZ]7_uj(117.- -

gO2 2 {[(AZ)TA AZ]+112(i1 - J+l)

- [(AZ)TAAZ]1_112(r -
= 8 - ([(AZ)TAG]7+1,2,, - [(AZ)TAG]_i,j}

At
- ([(AZ)TAG],+1 - [(AZ)TA'G]_}

Since the matrix A is an M-matrix, A has nonne,$ative -ele-
ments everywhere. Therefore the quantity (AZ) A'AZ is
nonnegative everywhere. Hence, (20) constitutes a five diag-
onal system of NN, equations for the unknowns ic'. This
system is symmetric and positive definite; thus (20) has a
unique solution that can be efficiently determined by a pre-
conditioned conjugate gradient method. Oncç the new free-
surface location has been determined, (17) and (18) constitute
a set of 2Nfl thdiagonal systems that can be easily solved to
deterthine u7+1, and V,.JU2.k throughout the computational
domain. Next, the new vertical increments Az can be updated
to account for the new free-surface location.

Second Step: Hydrodynamlc Preseure -

In the second step of calculations the new velocity field
U,.*, V,2.k. and wW+ is computed by correcting the
intermediate velocity field with the gradient of the hydrody-
namic pressure. The new hydrodynanuc pressure is thus de-
termined by requiring that the new velocity field iS divergence
free. Specifically, the discrete momentum equations are taken
tobe

.n+l -nfl , nfl 11+1
"i+112.J.k - U,fU2,J,*

Ax q,+lJ.k qJ.k

-nfl nfl n+l
- Vi.j+l,2.k

A
q4,+l.k qJ.k

nfl -nfl I n+l n+l
WJ.k+l,2 - W,.J.k+1,2 A nfl q41.+1 qJ.ft

1/2

and, hi each computational box laying below the free surface,
the discretized incompressibility condition is taken to be

Un A nfl unll A n+I
+112.J.k Zf1/2.J.k. - - -l12.J.k Zj-l/j.k

Ax
nfl A nflnfl AZ"1 -

+ - LJf112.k V,j-j,-_t zIJ-1,2.k

nfl nfl+ W41.kl,2 W41.t_l,2 = 0

(20)

-

(24)
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-
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Eqs. (21)(24) constitute a linear system with 2NN,(2N -
1) equations and 2N1N,(2N - 1) unknowns
wW+2 and q7 throughout the computational domain. This
system can be reduced to a smaller one by substituting the
expressions for the new velocities from (21)(23) into the in-
compressibility equation (24). There results the following fi-
mte difference Poisson equation for the hydrodynamic pres-
sure:

+

r p1+1 lp+Ij 11+1 - ( ,,+l p1+1 A i,+1
.q,+I.J.k - jF-Z,+ 1/2.J,k qij.* q,-lJ.kp.zi- I/2.J.k

L
t.

x2

p1+1 p1+1 - , 11+1 .1+1

+ qJ+1.k qLJ.k,(_azj+1,2.k - q1.J.k qJ-1.k, i,J-1/2.h

p1+1
qJ.k+l '141k

A n+1

-n+I A p1+1 -n+I A p1+1
U,+1,ZJ.ki.IZi+ 1J2,J.k U,_l,2.J.kJIZj- 1/2.J.k

.p1+1 A p1+1 -p1+1 ,+1
TJg.j+ 1J2.ki_1Z4J+1/2.k ViJ_l,2.,k LJ-112.*
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Eq. (25) forms a seven diagonal linear system of NXN(NZ
- 1) equations and NXNY(NZ - 1) unknowns that is sym-
metric and positive definite. Thus, (25) can be solved itera-
tively by the preconditioned conjugate gradient method. Once
the hydrodynamic pressure is computed, the corresponding ve-
locity field is readily determined from (21)(23).

At the solid impenetrable boundaries, the condition of zero
normal flow is imposed through (21)(23), which translates
to Neumann type of boundary conditions on (25). At the free
surface, the Dirichlet type of boundary conditions on (25) are
specified by setting the hydrodynamic pressure qW equal to
zero. At the open boundaries either the normal velocity or the
nonhydrostatic pressure should be specified. Accordingly, this
translates into the Neumann or Dirichiet type of boundary con-
dition for (25). Often, however, neither the normal velocity
nor the pressure are available; in these cases the hydrostatic
approximation (q =0) can be assumed at the open boundaries.

In summary, the numerical solution of the free-surface
Reynolds-averaged Navier-Stokes equations at each time step
is obtained by solving a sequence of linear systems, to obtain

n+1 -n+1 p1+I -p1+1 p1+1 i,+1 p1+1
, uI+112.J.k, V,.J+2.k, Wij.k+112, I.J.k, i+I/2j.k' V+uxt, an

wW+l,2, respectively. The sequence of linear systems is as
follows:

The five diagonal system of (20) is solved for 7j'.
For each i, j, the tridiagonal systems of (13), (14), and
/1 I 1 £ n+1 -n+1 -p1+1are soivcu or UI+U2J.k, anu W,.J.k+U2, re-

spectively.
The hydrodynamic pressure q' is determined by solv-
ing the seven diagonal system of (25).
The final velocity field U2.J.k, and wW+
obtained explicitly from (21)(23).

Each of the aforementioned systems is symmetric and positive
definite; thus, the existence and uniqueness of the numerical
solutioti is assured.

Finally, when the density cannot be assumed to be constant,
the transport equation (4) must also be solved numerically by
using a semi-implicit Eulerian-Lagrangian method or any con-
servative semi-implicit scheme.

PROPERTIES OF METHOD

In geophysical applications the flow domain is characterized
by having a vertical scale much smaller than the horizontal

I,y2

qI.J.k_I]
ai+1

Zi.j.* -1/2

(25)

is

scale; thus, the vertical increments Az are much smaller than
both Ax and Ay. In terms of the seven diagonal linear system
(25) the preceding consideration implies a stronger tie among
the vertical between the q that results into a faster conver-
gence of the iterative method. Moreover, in geophysical appli-
cations the hydrostatic pressure is usually a good approxima-
tion for the total pressure. This means that the hydrodynamic
pressure is close to zero almost everywhere and the variations
of the hydrodynamic pressure are some order of magnitude
smaller than the variations of the hydrostatic pressure. For this
reason, rather than using a more direct approach to compute
for the total pressure out of a seven diagonal system, more
efficiency is gained from computing a rapidly varying hydro-
static pressure from several iterations on a five diagonal sys-
tem. Next, the slowly varying hydrodynamic pressure is ob-
tained from a larger seven diagonal system, but in only afew
iterations. Thus, although fully nonhydrostatic flows can be
simulated by the present model, the model's applinability to
flows where the hydrodynamic pressure represents a small per-
turbation is particularly effective. These flows are defined as
quasi-hydrostatic flows.

As it may be noted, the free-surface is calculated before the
correction for the hydrodynamic pressure. Thus, the model ac-
curacy is limited by the fact that the hydrodynamic pressure
is assumed to be small compared with the hydrostatic pressure.

If the discrete vertical momentum equation (15) is ne-
glected, the resulting system admits an infinity of solutions.
One of these solutions can be chosen in such a way that the
intermediate velocity field is exactly discrete divergence free,
that is, W11112 = 0 and

-n.+1 A n+1 -+l A ...n+1
-n+1 UI+U,j.kL.1Zj+uxJ.k -

Wjj.k+1/2 - W41_112
Ax

-n+l A n+1 -n+1 A p1+1
V,.J+1,ZkZ4J+l/2.k V4j_li2.kZjJ_1,2.k

k=l,2.....N1 (2.6)

In this particular case the seven diagonal system of (25) be-
comes homogeneous and, therefore, the unique solution of (25)
becomes q = 0 identically for every i, j, k. Consequently,
(.1\ (23' n+1 p1+I fl+1

) icuLice to - U,+U2.J.k, Vj.,+U2j, - V,.J+UZk, an
w7J,2 = +1/2 that is the hydrostatic solution that is ob-
tained with the method descnbed by Casulli and Cattani
(1994).

Another important property of the present formulation arises
from the fact that for N = I the vertical spacing Az represents
the total water depth, and the hydrodynamic pressure is iden-
tically zero. Moreover, one can easily verify that this algorithm
reduces to a two-dimensional (2D) numerical method that is
consistent with the 2D, vertically integrated shallow water
equations and that, for 9 = 1, yields the method described by
Casulli (1990). This-property of the algorithm leads to a com-
puter code that can be used for both 3D problems as well as
2D problems. More importantly, when the 3D model is applied
to a typical coastal plain tidal embayment characterized by
deep channels connected to large and flat shallow areas, a great
savings in computing is achieved because the deep channels
are correctly represented in three dimensions whereas the flat
shallow areas are represented only in two dimensions.

The foregoing algorithm also applies to the Reynolds-av-
eraged Navier-Stokes equations in curvilinear coordinates and
with a coordinate in the vertical (Blumberg and Mellor 1987;
Mahadevan et al. 1996b).

Though a rigorous stability analysis is not yet available, for
9 1/2 the stability of this scheme has been observed to be
independent of the celerity, bottom friction, wind stress, and
vertical eddy viscosity. A mild limitatiOn on the time step is
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imposed by the explicit discretization of the baroclinic pres-
sure gradient and horizontal eddy viscosity terms.

APPLICATIONS

This section shows the importance of the nonhydrostatic
pressure for various situations that are relevant for applications
in civil engineering. In general, one might argue that hydro-
static models are capable of predicting the vettical structure
of mainly horizontal flow. However, if the vertical component
of the velocity vector is also of some importance, then hydro-
static models will not be accurate. A few examples will illus-
tate this point.

The first example deals with the nonbreaking waves result-
ing for a relatively large ratio of total depth H = h + i to the
wave length X. In such a case the hydrostatic pressure as-
sumption does not apply and, for sufficiently small-wave am-
plitude, the wave celerity c is better approximated by the fol-
lowing dispersion relation:

2 3

TIMe (CCC)

FIG. 1. Free-Surface Waves of Small AmplItude

(27)

A square basin of length L = 10 m and depth h = 10 m is
discretized with 400 square cells of equal sides x = =
0.5 m. Starting with zero initial velocity the flow is driven by
an initial free surface of constant slope r = 0.02x - 0.1. By
neglecting bottom friction, horizontal, and vertical viscosity, the
calculation is carned out with a small time step t = 0.001 s.
The choice of such a small time step enables higher accuracy
since, in this example, the flow is fully nonhydrostatic. The
expected solution consists of a standing wave of length X =
2L and frequency f = dX, where c is given by the preceding
dispersion relation. Fig. 1 shows the water surface elevation
at x = 10 in, clearly indicating that the wave speed computed
without the hydrostatic approximation is in much better agree-
ment with the wave speed estimated analytically by the din-
persion relation (27). Accordingly, the resulting flow structure
is very different for the two runs [Figs. 2(a,b)].

The second example is concerned with spatial evolution of
steep waves propagating over a longshore bar. To this purpose
we refer to the Scheldt Flume experiment carried at Delft Hy-
draulics (Beji and Battijes 1994). The flume has an overall
length of 30 m. The bottom profile is shown in Fig. 3. The
still water level over the horizontal bottom was 0.4 m and
reduced to 0.1 m over a submerged trapezoidal bar.. At the end
of the flume a plane beach with a 1:25 slope serves as a wave
absorber. The computational domain is discretized using .x =

= 1 cm. A sinusoidal wave of I-cm amplitude and period
T= 2.02 s is specified at the left open boundary. The time step
chosen for this example is it = 0.01 s. The resulting water
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surface elevation at three stations located at 2, 13.5, and 15.7
m from the open boundary is compared against the measure-
ments obtained by M. W. Dingemans (private communication,
1993) at Delft Hydraulics on a similar experiment in Figs.
4-6, respectively. This example illustrates the potential of the
present model in dealing with complex wave problems that
were, so far, only solved by means of the Boussinesq-type
models (Beji and Battijes 1994). For this example the hydro-
static solution is totally different and, of course, unrealistic.

The third example is concerned with the so-called "lock-
exchange" problem. A rectangular basin of length L =2 m and
depth h = 0.3 m is initially filled with two fluids with different
densities Pi 1.03 and P2 = 1.0, separated by a vertical dath

(a)

4
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(b)

FIG. 2. CIrculation in Oscillating Basin: (a) with Hydrostatic
Approximation; (b) without Hydrostatic Approximation
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located centrally in the basin. A constant eddy viscosity v"
v i0 m2/s has been used to prevent the development of
interfacial instabilities. The governing equations now include
an equation for the density and the baroclinic pressure terms
in the momentum equations. The density equation is discre-
tized with a semi-implicit Eulerian-Lagrangian method
whereas the bajoclinic terms are discretized explicitly. The
bottom friction is neglected, the initial velocities are zero,. and
the discretization parameters are taken to be x = = 1 cm
and it = 0.01 s. Once the dam is removed the resulting hy-
drostatic solution shows the development of two discontinui-
ties moving in opposite directions [Fig. 7(a)]. Once again, the
nonhydrostatic solution obtained for this example is quite dif-
ferent as shown in Fig. 7(b). In the hydrostatic case the shape
of the front is rectangular, whereas in the nonhydrostatic case
the shape is rounded. Following Turner (1973), the latter is a
more realistic shape of the interface. In Simpson (1987) sev-
eral pictures of density-driven interfaciál currents are given;
none of them giving front shapes similar to Fig. 7(a).

-0.02
30 32 34 36

TIMe Cs)

FIG. 5. Water Surface Elevation at 13.5 m from Open Boundary

The fourth example is concerned with a fully 3D problem.
A square basin with sides of 100 m and depth of 10 m is filled
with a fluid whose initial free surface has' the, shape of a
Gaussian surface with the peak located at the center of the
basin r(x, y, 0) = e°" The bottom friction, horizontal,
and vertical viscosity have been neglected The discretization
parameters are &r = = = 1 m so that the computational
domain is filled with 100,000 finite difference ce1ls The time
step is taken to be tit = 0.1 s. At time- t 10 s the original
wave is reflected against the side walls and is back at the
center of the basin according to the celerity that, in this case,
is about 10 m/s [Fig. 8(a)]. Fig. 8(b) shows a completely dif-
ferent wave pattern at time t = 10 s obtained for the same
problem without the hydrostatin approximation. Thus, the hy-
drostatic solution cannot be correct.

Finally the present method has also been applied to simu-
late the tidal flow in the Lagoon of Venice- in a situation where
the hydrostatic approximation is valid. The Lagoon of Venice
covers an area of about 50 km2and consists of several inter-
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FIG. 7. Baroclinlc Circulation: (a) with Hydrostatic Approxima-
tion at t= 6 a; (b)wlthout Hydrostatic Approximation at t= 6.

connected narrow channels with a maximum width of 1 km
and up to 50-rn deep encircling large and flat shallow areas.
The lagoon is connected to the Adriatic Sea through three nar-
row inlets, namely Lido, Malamocco, and Chioggia. The city
of Venice is located in the lagoon near the Lido inlet. A con-
siderable portion of the Lagoon of Venice consists of tidal
flats, and proper treatment of flooding and drying is essential.
The tidal amplitudes in the Adriatic Sea are about 0.4 m. Tides
propagate from the Adriatic Sea into the lagoon through the
three inlets. The lagoon has been covered with a 672 by 846
by 200 finite difference mesh of Cx = = 50 m and with
the maximum iz being 0.25 m. Thus, the total number of grid
points is 113,702,400, but only 1,637,508 of these are active.
This fine computational mesh allows for a very accurate de-
scription of the tree-like structure of the main channels as shown
in Fig. 9. The fluid is assumed homogeneous (unstratified) and
is driven at the three inlets where an M2 tide of 0.4-rn ampli-
tude and 12-lunar-h period has been specified. With an inte-
gration time step it = 15 mm the central processing unit time
required to run one tidal cycle on a DEC 600 5/333 worksta-
tion is 41 mm under the assumption of hydrostatic flow. Cal-
culating the nonhydrostatic flow requires only 16 mm of ad-
ditional central processing unit time per tidal cycle. This is
justified by the larger horizontal scale over the vertical scale
of this example. Consequently, one iteration of a precondi-
tioned conjugate gradient method is sufficient to solve the
seven diagonal system [(25)] at each time step and, accord-
ingly, the calculations with and without the hydrostatic ap-
proximation gives similar results (Fig. 10). The use of such a
large time step has been made to emphasize the fact that the
present model remains stable even for exceptionally large
Courant numbers, but, of course, a smaller time step should
be used if higher time accuracy is desired.

CONCLUSIONS

A finite difference method for solving the 3D Reynolds-
averaged Navier-Stokes quations has been outlined. The im-
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FIG. 8. Wave Pattern Generated: (a) wfth Hydrostatic Approx-
imation; (b) without Hydrostatic Approximation

plicit coupling between the momentum and the free-surface
equation renders this scheme unconditionally stable with re-
spect to the surface wave speed. For most geophysical appli-
cations, where the horizontal space steps are to be taken much
larger than the vertical ones, the bottom friction and the ver-
tical viscosity terms also have been discretized implicitly.
Moreover, since the hydrodynamic pressure is much smaller
than the hydrostatic pressure in geophysical flows, a further
improvement in computational efficiency has been achieved
by decoupling the hydrostatic from the hydrodynamic pres-
sure. Thus the hydrostatic pressure is determined by solving a
five diagonal linear system defined over the 2D x-y-domain.
To determine the hydrodynamic pressure, fewer iterations on
a larger seven diagonal system are sufficient.

The computational examples given in this paper show that
this algorithm is suitable for accurate simulation of geophys-
ical flows as well as practical engineering problems charac-
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terized by waves or other phenomena for which the hydrostatic
pressure alone is insufficient to obtain correct simulations.
Several other examples, such as local outfalls, selective with-
drawal, flow in the vicinity of structures (like weirs), medium
waves in harbors, tidal flows in estuaries, all produced excel-
lent results without extensive tuning of model parameters. It
can be concluded that this method enhances the range of prob-
leins that can be solved by computational methods for free-
surface flows.
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