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Hyperchaotic system, as an important topic, has become an active research subject in nonlinear science.Over the past two decades,
hyperchaotic system between nonlinear systems has been extensively studied. Although many kinds of numerical methods of the
system have been announced, simple and e
cient methods have always been the direction that scholars strive to pursue. Based on
this problem, this paper introduces another novel numerical method to solve a class of hyperchaotic system. Barycentric Lagrange
interpolation collocation method is given and illustrated with hyperchaotic system ( ̇� = �� + �� − ��, ̇� = �� − ��, 0 ≤ 
 ≤ �, �̇ =
�(� − �) + ��, ̇ = �(� − ) + ��,) as examples. Numerical simulations are used to verify the e�ectiveness of the present method.

1. Introduction

Many chaotic systems have been developed such as Lorenz
system [1], Rossler system [2], and Chen system [3]. As chaos
theory progresses,manynew chaotic systems [4–8] have been
proposed, specially hyperchaotic systems [9–15]. A hyper-
chaotic system is usually characterized as a chaotic system
with more than one positive Lyapunov exponent, implying
that the dynamics expand in more than one direction,
giving rise to more complex chaotic dynamics. Barycentric
interpolation collocation method [16, 17] is a high precision
method. Some authors have used barycentric interpolation
collocation method to solve various kinds of problems [16–
23]. 	is paper suggests the barycentric interpolation collo-
cation method to solve a class of hyperchaotic system, and a
hyperchaotic system (1) is adopted as an example to elucidate
the solution process.

We consider the following 4D butter�y hyperchaotic
system with butter�y phenomenon [24]:

�̇ = �� + �� − ��,
̇� = �� − ��, 0 ≤ 
 ≤ �,
�̇ = � (� − �) + ��,
̇ = � (� − ) + ��,

(1)

where �, �, �,  are the state variables and �, �, �, � are the
positive constant parameters of the system which satisfy the
following initial conditions:

� (0) = �1,
� (0) = �2,
� (0) = �3,
 (0) = �4.

(2)

2. The Numerical Solution of System (1)

First of all, we give initial function �0(
), �0(
) and construct
the following linear iterative format of system (1):

̇�� = ��� + ��� − ��−1��,
̇�� = ��−1�� − ���, � = 1, 2, . . . ,
̇�� = � (�� − ��) + ��−1��,
̇� = � (�� − �) + ��−1��,

(3)

Next, we use the barycentric Lagrange interpolation
collocation method to solve (3).
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In the interval [0, �] takes � di�erent nodes, 0 ≤ 
1 <
2 < ⋅ ⋅ ⋅ < 
� ≤ �. 	e barycentric interpolation of
��(
), ��(
), ��(
), �(
)(� = 1, 2, 3, ⋅ ⋅ ⋅ ) can be written as
[16, 17]

�� (
) =
�
∑
�=1
�� (
) �� (
�) ,

�� (
) =
�
∑
�=1
�� (
) �� (
�) ,

�� (
) =
�
∑
�=1
�� (
) �� (
�) ,

� (
) =
�
∑
�=1
�� (
) � (
�) .

(4)

��(
) = ��/(
 − 
�)/∑��=1(��/(
 − 
�)) is, respectively,
barycentric Lagrange interpolation primary function and

�� = 1/∏��=1,� ̸=�(
� − 
�) is center of gravity interpolation

weight.
Use formula (4), the functions ���(
), ���(
), ���(
), ��(
)

can be expressed as

��� (
) =
�
∑
�=1
��� (
) �� (
�) ,

��� (
) =
�
∑
�=1
��� (
) �� (
�) ,

��� (
) =
�
∑
�=1
��� (
) �� (
�) ,

�� (
) =
�
∑
�=1
��� (
) � (
�) .

(5)

So, linear iterative format (3) can be written in following
partitioned matrix form:

[[[[[
[

� − �� 0 diag (��−1) − �� 0
0 � + �� −diag (��−1) 0
−�� diag (��−1) � + �� 0
0 −�� −diag (��−1) � + ��

]]]]]
]

[[[[[
[

��
��
��
�

]]]]]
]

=
[[[[[
[

0
0
0
0

]]]]]
]
.

(6)

	e matrix � = (���(
�))�,�=1,2,⋅⋅⋅� is � order matrix. � is

� order unit matrix, diagonal matrix diag(��−1) =
diag(��−1(
1), ��−1(
2), . . . , ��−1(
�)), and diagonal matrix
diag(��−1) = diag(��−1(
1), ��−1(
2), . . . , ��−1(
�)). 	e vec-
tor

Table 1: Parameters used in Experiments 1–5.

Figures a b c d k

Figure 1 1.378 0.5 0.6 0.097
Figure 2 1.378 0.5 0.6 0.097
Figure 3 0.2 0.5 0.8 0.063
Figure 4 0.3 0.5 0.8 0.063
Figure 5 0.6 0.5 0.8 0.063
Figure 7 1 0.5 2 1
Figure 8 1 0.5 2 1
Figure 9 8 3 4 -2 0.2
Figure 10 8 3 4 -2 0.2
Figure 11 15 2.5 0.75 2 0.2
Figure 12 15 2.5 0.75 2 0.2

[��, ��, ��, �] = [�� (
1) , �� (
2) , . . . , �� (
�) , �� (
1) ,
�� (
2) , . . . , �� (
�) , �� (
1) , �� (
2) , . . . , �� (
�) , � (
1) , . . . ,
� (
�)] .

(7)

At last, we use initial conditions (2).
Take formula (4) into initial conditions (2); we can get the

following discrete equations of initial conditions:

�
∑
�=1
�� (0) �� (
�) = �1,
�
∑
�=1
�� (0) �� (
�) = �2,
�
∑
�=1
�� (0) �� (
�) = �3,
�
∑
�=1
�� (0)� (
�) = �4.

(8)

In this paper, we use displacement method to impose the
initial conditions. 	e detailed procedure is as follows.

	e �rst 1 of (6) are replaced separately by the equation
of initial conditions (8) in turn.

So, we can get that ��(
�), ��(
�), ��(
�), �(
�), ($ =
1, 2, ⋅ ⋅ ⋅�) are approximate solution of (1) and (2).

3. Numerical Experiment

In this section, six numerical experiments are studied to
demonstrate the e�ectiveness of the present method. All
experiments are computed using MatlabR2017a. In Exper-
iments 1–6, we choose Chebyshev nodes, the accuracy of

iteration control is % = 10−10, and the initial iteration value
�0 = �0 = �0 = 0; �1 = �1 = �1 = �. Parameters of the
numerical Experiments 1–5 are listed in Table 1.

Experiment 1. We consider the following hyperchaotic sys-
tem [25]:

�̇ = −� − � − �,
̇� = �,
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�̇ = � (1 − �2) − ��,
̇ = ��,

(9)

where �, �, �,  are the state variables and �, �, �, � are the
positive parameters of the system, which satisfy the following
initial conditions:

� (0) = 0,
� (0) = 0,
� (0) = 0,
 (0) = 0.1.

(10)

We choose Chebyshev nodes; the number of nodes� =
40. Numerical results of Experiment 1 are given in Figures 1
and 2.

Figure 1 is states of the hyperchaotic system for Exper-
iment 1 with � = 1.378, � = 0.5, � = 0.6, � = 0.097,
which is obtained by using the current method, and (�) is the
states of � and � and (�) is the states of � and . Figure 2 is
hyperchaotic attractors of the system for Experiment 1 with
� = 1.378, � = 0.5, � = 0.6, � = 0.097, which is obtained
by using the current method. Among them, (�) is the graph
projected on (�, �)-plane; (�) is the graphprojected on (�, )-
plane; (&) is the graph projected on (�, )-plane; (') is the
graph in three-dimensional (�, �, �)-space.
Experiment 2. We consider the following hyperchaotic sys-
tem [26]:

�̇ = � (� − �) + ��,
̇� = �� − � − �� + ,
�̇ = �� − ��,
̇ = −�� + �,

(11)

where �, �, �,  are the state variables and �, �, �, � are the
positive parameters of the system, which satisfy the following
initial conditions:

� (0) = 1,
� (0) = 0,
� (0) = 1,
 (0) = 0.

(12)

We choose Chebyshev nodes, the number of nodes� =
40, and the parameters � = 0.5, � = 0.8, � = 0.063. Numerical
results of Experiment 2 are given in Figures 3–6.

Figure 3 is phase portraits of a new hyperchaotic system
for Experiment 2 with � = 0.2 by using the current method.
(�1) is the graph projected on (�, �)-plane; (�1) is the graph
projected on (�, �)-plane; (�1) is the graph projected on (�, �)-
plane; (�1) is the graph projected on (�, )-plane; (&1) is the

graphprojected on (�, )-plane; ('1) is the three-dimensional
(�, �, �) space graph. Figures 4 and 5 are phase portraits of a
new hyperchaotic system for Experiment 2 obtained by using
the current method with � = 0.3 and � = 0.6, respectively.
Figure 6 is time series plots of a new hyperchaotic system for
Experiment 2 with di�erent parameter value �. (�) and (�)
represent time series when � = 0.2; (�) and (&) represent time
series when � = 0.3; (�) and (') represent time series when
� = 0.6.
Experiment 3. We consider the following butter�y hyper-
chaotic system [24]:

̇� = �� + �� − ��,
̇� = �� − ��,
�̇ = � (� − �) + ��,
̇ = � (� − ) + ��,

(13)

where �, �, �,  are the state variables and �, �, �, � are the
positive constant parameters of the system, which satisfy the
following initial conditions:

� (0) = 1,
� (0) = 0,
� (0) = 1,
 (0) = 0.

(14)

We choose Chebyshev nodes; the number of nodes� =
30. Numerical results of Experiment 3 are given in Figures 7
and 8.

Figure 7 is states of a novel butter�y hyperchaotic system
for Experiment 3 with � = 1, � = 0.5, � = 2, � = 1,
which is obtained by using the current method, and (�) is the
states of � and � and (�) is the states of � and . Figure 8 is
phase portraits of a novel butter�y hyperchaotic system for
Experiment 3 with � = 1, � = 0.5, � = 2, � = 1, which is
obtained by using the currentmethod.Among them, (�) is the
graph projected on (�, �)-plane; (�) is the graph projected on
(�, )-plane; (&) is the graph projected on (�, �)-plane; (') is
the graph projected on (�, )-plane; (*) is the graph in three-
dimensional (�, �, )-space.
Experiment 4. We consider the following hyperchaotic Chen
system [27]:

�̇ = � (� − �) ,
̇� = (� − �) � + �� − ,
�̇ = �� − ��,
̇ = � + -,

(15)

where �, �, �,  are the state variables and �, �, �, �, - are the
positive constant parameters of the system, which satisfy the
following initial conditions:
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Figure 1: States of the hyperchaotic system for Experiment 1 with � = 1.378, � = 0.5, � = 0.6, and � = 0.097: (a) �, � states; (b) �,  states.
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Figure 3: Phase portraits of a new hyperchaotic system for Experiment 2 with � = 0.2 (�1) on � − � plane, (�1) on � − � plane, (�1) on � − �
plane, (�1) on � −  plane, (&1) on � −  plane, and ('1) in � − � − � space.
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Figure 5: Phase portraits of a new hyperchaotic system for Experiment 2 with � = 0.6 (�3) on � − � plane, (�3) on � − � plane, (�3) on � − �
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Figure 6: 	e time series plots of a new hyperchaotic system for Experiment 2. (�) and (�) represent time series when � = 0.2; (�) and (&)
represent time series when � = 0.3; (�) and (') represent time series when � = 0.6.
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� (0) = 1,
� (0) = 0,
� (0) = 1,
 (0) = 0.

(16)

We choose Chebyshev nodes; the number of nodes� =
35. Numerical results of Experiment 4 are given in Figures 9
and 10.

Figure 9 is time response of the hyperchaotic Chen

system’s variable states for Experiment 4with � = 8, � = 3, � =
4, � = −2, - = 0.2, which is obtained by using the current
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method, and (�) is the states of � and � and (�) is the states
of � and . Figure 10 is phase portraits of the hyperchaotic
Chen system for Experiment 4 with � = 8, � = 3, � = 4, � =
−2, - = 0.2, which is obtained by using the current method.
Among them, (�) is the graph projected on (�, �)-plane; (�) is
the graph projected on (�, �)-plane; (&) is the graph projected
on (�,)-plane; (') is the graph projected on (, �)-plane;
(*) is the graph in three-dimensional (�, �, �)-space; (ℎ) is the
graph in three-dimensional (�, �, )-space.

Experiment 5. We consider the following hyperchaotic sys-
tem [28]:

̇� = � (� − �) + ��,
�̇ = �� − �� + -,
�̇ = −�� + �� + 0.5,
̇ = −��,

(17)
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Figure 12: Hyperchaotic attractors of a new hyperchaotic system for Experiment 5 with � = 15, � = 2.5, � = 0.75, � = 2, - = 0.2. (�) (�, �)
plane; (�) (�, �) plane; (&) (�, ) plane; (') (�, �) plane; (*) (�, ) plane; (ℎ) (�, ) plane.
where �, �, �,  are the state variables and �, �, �, �, - are the
positive constant parameters of the system, which satisfy the
following initial conditions:

� (0) = 0,
� (0) = 1,
� (0) = 2,
 (0) = 3.

(18)

We choose Chebyshev nodes; the number of nodes� =
40. Numerical results of Experiment 5 are given in Figures 11
and 12.

Figure 11 is the time series plots of a new hyperchaotic
system for Experiment 5 with � = 15, � = 2.5, � = 0.75, � =
2, - = 0.2, which is obtained by using the current method,
and (�) is the states of � and � and (�) is the states of � and
. Figure 12 is hyperchaotic attractors of a new hyperchaotic
system for Experiment 5 with � = 15, � = 2.5, � = 0.75, � =
2, - = 0.2, which is obtained by using the current method.
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Among them, (�) is the graph projected on (�, �)-plane; (�) is
the graph projected on (�, �)-plane; (&) is the graph projected
on (�, )-plane; (') is the graph projected on (�, �)-plane;
(*) is the graph projected on (�, )-plane; (ℎ) is the graph
projected on (�, )-plane.
Experiment 6. We consider the following 4D hyperchaotic
system [29]:

�̇ = �,
̇� = −� (ℎ� + ��2 + ��) ,

�̇ = �
2

�2 +
�2
�2 +

2
�2 − 1,

̇ = −-�,

(19)

where�, �, �,  are the state variables and �, �, �, �, -, ℎ are the
positive constant parameters of the system, which satisfy the
following initial conditions:

� (0) = 0.1,
� (0) = 0.01,
� (0) = 0.01,
 (0) = 0.1.

(20)

We choose Chebyshev nodes; the number of nodes� =
35. Numerical results of Experiment 6 are given in Figures
13–15.

Figure 13 is phase portraits of a 4D hyperchaotic system

for Experiment 6 with 1/�2 = 2.7, 1/�2 = 1, 1/�2 = 1.5, � = 3,
- = 1, and ℎ = 5, which is obtained by using the current
method. Among them, (�1) is the graph projected on (�, �)-
plane; (�1) is the graph projected on (�, �)-plane; (�1) is the
graph projected on (�, �)-plane; (�1) is the graph projected
on (�, )-plane; (&1) is the graph projected on (, �)-plane.
Figure 14 is phase portraits of a 4D hyperchaotic system for

Experiment 6 with 1/�2 = 3, 1/�2 = 3, 1/�2 = 3, � = 3,
- = 1, and ℎ = 5, which is obtained by using the current
method. Figure 15 is the time series plots of a 4Dhyperchaotic
system for Experiment 6. ('1) and (*1) are obtained by using

the current method with 1/�2 = 2.7, 1/�2 = 1, 1/�2 = 1.5,
� = 3, - = 1, and ℎ = 5. ('2) and (*2) are obtained by using

the current method with 1/�2 = 3, 1/�2 = 3, 1/�2 = 3, � = 3,
- = 1, and ℎ = 5.

4. Conclusions and Remarks

In this paper, a class of hyperchaotic system has been
solved by using barycentric Lagrange interpolation colloca-
tion method. 	e numerical simulation results are in accord
with the theoretical analyses and circuit implementation.
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Numerical simulations are provided to verify the e�ectiveness
and feasibility of the proposed numerical results, which are
in agreement with theoretical analysis. In the further work,
we will be devoted to studying fractional-order hyperchaotic
system.

Data Availability

	e data used to support the �ndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

	e authors declare that there are no con�icts of interest
regarding the publication of this article.

Acknowledgments

	is paper is supported by the Natural Science Foundation
of Inner Mongolia [2017MS0103], Inner Mongolia maker
Collaborative Innovation Center of JiningNormalUniversity,
and the National Natural Science Foundation of China
[11361037].

References

[1] E. N. Lorenz, “Deterministic non-periodic �ow,” Journal of the
Atmospheric Sciences, vol. 20, pp. 130–141, 1963.
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