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	is paper numerically simulates three-dimensional Kolmogorov model with chaotic dynamic behavior by barycentric Lagrange
interpolation collocationmethod. Some numerical examples are studied for 
nding some newchaotic behaviors anddemonstrating
some existing chaotic dynamic behaviors of the Kolmogorov model. Results obtained by the present method indicate that the
method has merits of small operations and good numerical stability.

1. Introduction

J.P. Berrut [1, 2] introduced barycentric Lagrange interpo-
lation and studied its numerical stability and convergence.
Barycentric Lagrange interpolation is unconditionally stable
at the Chebyshev points. S.P. Li, Z.Q. Wang [3, 4] gave some
algorithms of barycentric Lagrange interpolation collocation
method (BLICM). Some authors [3, 5–8] solved all sorts
of equations and showed the BLICM has merits of small
operations and high precision (see [3, 4, 9]). 	is paper
numerically simulates some three-dimensional Kolmogorov
models with chaotic dynamic behavior. 	e purpose of this
paper is to 
nd some new chaotic behaviors and verify the
existing chaotic dynamic behaviors by the BLICM.

	ree-dimensional Kolmogorov models comprise a sig-
ni
cant class of ecological models that are used widely in
ecology to represent the dynamic behavior of prey and
predators, which are expressed in the following form:

��
�� = ��1 (�, �, �) ,
��
�� = ��2 (�, �, �) ,

��
�� = ��3 (�, �, �) ,

�, �, � ≥ 0, 0 ≤ � ≤ �,
(1)

where �, �, � represents the population density of the species
and ��(�, �, �) represents the per capita growth rate of the�, �, � species.

In ecology, the most frequently used model is the Lotka-
Volterra system; that is, each per capita growth function �� is
ane and chosen as the logistic growth. In this circumstance,
model (1) reads as

��
�� = � (1 − �11� − �12� − �13�) ,
��
�� = � (2 − �21� − �22� − �23�) ,
��
�� = � (3 − �31� − �32� − �33�) .

�, �, � ≥ 0, 0 ≤ � ≤ �,

(2)
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Figure 1: 	e three species food chain model for Experiment 1 with  = 1: (�1) time series plot; (�1) phase diagram of �; (�1) phase diagram
of �; (�1) projected on the (�, �)-plane; (�1) on the three-dimensional space.

Model (2) is a totally competitive system if all parameters�, ��� are positive.
	ere are several famous functional responses in the

Kolmogorov model which are referred to as Holling type I,
type II, type III, type IV, Monod-Haldane type, Hassel-Verley
type, Beddington-DeAngelis type functional response, etc.

In this paper, we consider the following three-
dimensional Kolmogorov model with functional response:

��
�� = � (1 − �11� − �12� − �13�) + ℎ1 (�, �, �) ,
��
�� = � (2 − �21� − �22� − �23�) + ℎ2 (�, �, �) ,
��
�� = � (3 − �31� − �32� − �33�) + ℎ3 (�, �, �) ,

�, �, � ≥ 0, 0 ≤ � ≤ �,

(3)

with the following initial condition:

� (0) = �1,

� (0) = �2,
� (0) = �3,

(4)

where �, �, � represent the population density of the species
and ℎ�(�, �, �) is the known functional response. �, ��, ���
are known constants. �, �, � are unknown functions of
time �.

Many researchers [10–20] studied the dynamics of
three dimensional Kolmogorov model with di�erent type
of functional response in theory. 	ey found some chaotic
dynamics [13, 18–23] of the three-dimensional Kolmogorov
model. Chaos and hyperchaos exist inmanynatural processes
and are one of the main contents of nonlinear science
research. Although many kinds of numerical methods of
the Kolmogorov model have been announced, simple and
ecient methods have always been the direction that scholars
strive to pursue. 	is paper suggests the BLICM to solve the
three-dimensional Kolmogorov model. Model (3) is adopted
as an example to elucidate the solution process.
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Figure 2: 	e three-species food chain model for Experiment 1 with  = 4.2: (�2) time series plot; (�2) phase diagram of �; (�2) on the
three-dimensional space; (�2) projected on the (�, �)-plane; (�2) projected on the (�, �)-plane; (�) projected on the (�, �)-plane.

2. Barycentric Lagrange Interpolation
Collocation Method

First of all, we discrete computational interval [0, �] by
Chebyshev points into 0 = �1 < �2 < ⋅ ⋅ ⋅ < �� = � and
construct following linear iterative format of model (3):

����� = 1�� − (�11�� + �12�� + �13��) ��−1
+ ℎ1 (��−1, ��−1, ��−1) ,

����� = 2�� − (�21�� + �22�� + �23��) ��−1

+ ℎ2 (��−1, ��−1, ��−1) ,
����� = 3�� − (�31�� + �32�� + �33��) ��−1

+ ℎ3 (��−1, ��−1, ��−1) .
(5)

	e format (5) is convergent; then ��(�) �→ �(�),��(�) �→ �(�), ��(�) �→ �(�), (� �→ ∞).
Next, we transform format (5) into the following linear

algebraic equations.

[[[[[
[

� − 1� + �11diag (��−1) �12diag (��−1) �13diag (��−1)
�21diag (��−1) � − 2� + �22diag (��−1) �23diag (��−1)
�31diag (��−1) �32diag (��−1) � − 3� + �33diag (��−1)

]]]]]
]

[[[
[

��
��
��

]]]
]

= [[[
[

ℎ1 (��−1, ��−1, ��−1)
ℎ2 (��−1, ��−1, ��−1)
ℎ3 (��−1, ��−1, ��−1)

]]]
]

(6)

where � = ( ��(��))�,�=1,2,⋅⋅⋅� is ! order matrix. � is !
order unit matrix and diag is a symbol of diagonal matrix

composed of vectors.  �(�) = ("�/(� − ��))/∑��=1("�/(� − ��))
is, respectively, barycentric interpolation primary function
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Figure 3: A tritrophic food web system for Experiment 2 with the initial condition (1): (�1) time series plot of �, �, �; (�1) phase diagram of �;(�1) on the three-dimensional space; (�1) projected on the (�, �)-plane; (�1) projected on the (�, �)-plane; (�1) projected on the (�, �)-plane.
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Figure 4: A tritrophic food web system for Experiment 2 with the initial condition (2): (�2) time series plot of �, �, �; (�2) phase diagram of �;(�2) on the three-dimensional space; (�2) projected on the (�, �)-plane; (�2) projected on the (�, �)-plane; (�2) projected on the (�, �)-plane.
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Figure 5: Time series plots and the three-dimensional space graphs of the tritrophic food chain model for Experiment 3 with di�erent
parameters: (�) and (�)$ = 7; (�) and (�)$ = 9; (�) and (�)$ = 12.

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t

x,
y,
z

x
y
z

x
y
z

x
y
z

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

x,
y,
z

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

x,
y,
z

0
0.5

1
1.5

2

0.40.60.811.21.4
0.4

0.6

0.8

1

1.2

1.4

xy

z

0
0.5

1
1.5

2

0.20.40.60.811.2
0.9

1

1.1

1.2

1.3

1.4

xy

z

0
0.5

1
1.5

2

0.2
0.40.6

0.8
11.2

0.5

1

1.5

xy

z

(a1) (a2)
(a3)

(b1) (b2) (b3)

Figure 6: Time series plots and the three-dimensional space graphs of Experiment 4 with di�erent parameters: (�1) and (�1)%1 = 0.958; (�2)
and (�2)%1 = 0.989; (�3) and (�3)%1 = 1.089.



6 Complexity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

x

z

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

y

z

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

x

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

x

z

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

y

z

(c1) (c2) (c3)

(d1) (d2) (d3)

Figure 7: 	e results of Experiment 4: (��) with %1 = 0.958 and (��) with %1 = 0.989(& = 1, 2, 3), (�1) and (�1) projected on the (�, �)-plane;(�2) and (�2) projected on the (�, �)-plane; (�3) and (�3) projected on the (�, �)-plane.
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Figure 8: Time series plots and the three-dimensional space graphs of Experiment 5 with di�erent parameters: (�1) and (�1) � = 1.4; (�2) and(�2) � = 1.575; (�3) and (�3) � = 1.62.
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Figure 9: 	e results of Experiment 5: (��) with � = 1.4 and (��) with � = 1.575 (& = 1, 2, 3), (�1) and (�1) projected on the (�, �)-plane; (�2)
and (�2) projected on the (�, �)-plane; (�3) and (�3) projected on the (�, �)-plane.

and "� = 1/∏��=1,� ̸=�(�� − ��) is center of gravity Lagrange

interpolation weight. 	e vector

[��, ��, ��] = [�� (�1) , �� (�2) , . . . , �� (��) , �� (�1) ,
�� (�2) , . . . , �� (��) , �� (�1) , �� (�2) , . . . , �� (��)] . (7)

	e vector

[ℎ1 (��−1, ��−1, ��−1) , ℎ2 (��−1, ��−1, ��−1) ,
ℎ3 (��−1, ��−1, ��−1)]
= [ℎ1 (��−1 (�1) , ��−1 (�1) , ��−1 (�1)) , . . . ,
ℎ1 (��−1 (��) , ��−1 (��) , ��−1 (��)) ,
ℎ2 (��−1 (�1) , ��−1 (�1) , ��−1 (�1)) , . . . ,
ℎ2 (��−1 (��) , ��−1 (��) , ��−1 (t�)) ,
ℎ3 (��−1 (�1) , ��−1 (�1) , ��−1 (�1)) , . . . ,
ℎ3 (��−1 (��) , ��−1 (��) , ��−1 (��))] .

(8)

	e last and the 
rst line of equations (6) are replaced
separately by the equation of the initial condition (9) in turn.

�∑
�=1

 � (0) �� (��) = �1,
�∑
�=1

 � (0) �� (��) = �2,
�∑
�=1

 � (0) �� (��) = �3.

(9)

So, we can get a numerical solution of (3) and (4).

3. Numerical Experiments

In this section, some numerical examples are studied to
demonstrate the accuracy of the present method. 	e exam-
ples are computed using MatlabR2017a. In numerical exper-
iments, the number of nodes ! = 40. 	e accuracy

of iteration control ; = 10−10 and the initial iteration
value �0 = �0 = �0 = 0; �1 = �1 = �1 = �.
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Figure 10:	e results of Experiment 6: (�1) time series plot of �, �, �; (�1) phase diagram of �; (�1) phase diagram of �; (�1) projected on the(�, �)-plane; (�1) on the three-dimensional space.

Experiment 1. We consider the following three-species food
chain model [18]:

�̇ = � (1 − �
50) − 0.1��

1 + 0.1� ,
̇� = −� + 0.05�� − 0.1��

1 + 0.2� ,
�̇ = −� + 0.03��,

(10)

where  is real parameters, which satisfy the initial condition�(0) = 1, �(0) = 2, �(0) = 1.Results of Experiment 1 are given
in Figures 1-2.

Figure 1 is obtained by using the current method with  =1. Among them, (�1) is the time series plot; (�1) is the phase
diagram of �; (�1) is the phase diagram of �; (�1) is the graph
projected on (�, �)-plane; (�1) is the three-dimensional space
graph. Figure 2 is obtained by using the current method with = 4.2. (�2) is the time series plot; (�2) is the phase diagram of�; (�2) is the three-dimensional space graph; (�2) is the graph
projected on (�, �)-plane; (�2) is the the graph projected on(�, �)-plane; (�) is the graph projected on (�, �)-plane.

Figure 1 gets some new chaotic behaviors. Figure 2
veri
es the existing chaotic dynamic behaviors [18]. Our

study suggests that model (10) will go chaotic when the rate
of the self-reproduction of the prey is large. Our numerical
results are in good agreement with the theory [18].

Experiment 2. We consider the following tritrophic food
chain model [19]:

�̇ = � [1 − � − �
1 + 1.4� − �

1 + 5� + 8�] ,

̇� = � [−0.16 + �
1 + 1.4� − 0.1�

1 + 5� + 8�] ,

�̇ = 0.1�2 − 0.5�2
1 + 8� + 8�,

(11)

In comparison with [19], we get better numerical results;
results of Experiment 2 are given in Figures 3-4. Our
numerical results are in good agreement with the theory [19].

Figures 3 and 4 are obtained by using the current method
with the initial conditions (1): �(0) = 1, �(0) = 1, �(0) = 1
and the initial conditions (2): �(0) = 1, �(0) = 0, �(0) =1, respectively. (�1) and (�2) are the time series plot of�, �, �; (�1) and (�2) are the phase diagram of �; (�1) and
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Figure 11: 	e results of Experiment 6: (�2) time series plot of �, �, �; (�2) phase diagram of �; (�2) phase diagram of �; (�2) projected on the(�, �)-plane; (�2) on the three-dimensional space.

(�2) are the three-dimensional space graph; (�1) and (�2)
are the graph projected on (�, �)-plane; (�1) and (�2) are the
graph projected on (�, �)-plane; (�1) and (�2) are the graph
projected on (�, �)-plane. It can be seen that the change of
initial conditions leads to signi
cant changes in the time
series diagrams of �, �, and �.
Experiment 3. We consider the following tritrophic food
chain model [20]:

̇� = � [1 − �
30 − D�

�2/� + � + 60] ,
�̇ = � [−0.05 + 0.6�

�2/� + � + 60 − 0.2�
� + 50 + 0.21�] ,

�̇ = � [−0.06 + 0.12�
� + 50 + 0.21�] ,

(12)

where � is real parameters, which satisfy the initial
condition �(0) = 5, �(0) = 4, �(0) = 2. Our numerical
simulations and experimental results of [20] are con
rmed.
Results of Experiment 3 are given in Figure 5.

Figure 5 is obtained by using the current method. (�)
is time series plot and (�) is the three-dimensional space
graph with � = 7; (�) is time series plot and (�) is the three-
dimensional space graph with � = 9; (�) is time series plot
and (�) is the three-dimensional space graphwith � = 12. We
can see that, from the 
gure, the �uctuation range of �, �, �
at � = 900 is very large when � = 7; the �uctuation range of�, �, � at � = 900 is obviously reduced when � = 9; �, �, � at� = 900 almost all tend to be stationary when � = 12.
Experiment 4. We consider the following model with
Beddington-DeAngelis-type functional response [21]:

�̇ = � (1 − �
%) − ���

1 + �� + �� ,
̇� = %1���1 + �� + �� − E� − �1�,

�̇ = E� − �2�,
(13)

where , %, �, �, �, E, �1, �2, and %1 are real parameters, which
satisfy the initial condition �(0) = 1.6, �(0) = 0.5, �(0) = 0.5.
We choose the parameters  = 1.5, % = 1.6, � = 1.4, � = 1, � =



10 Complexity

0 20 40 60 80 100 120
0

1

2

3

4

5

6

t

x,
y,
z

x
y
z

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−15

−10

−5

0

5

10

15

x

d
x/
d
t

0.8 1 1.2 1.4 1.6 1.8 2
−4

−3

−2

−1

0

1

2

3

y

d
y/
d
t

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.8

1

1.2

1.4

1.6

1.8

2

x

y

0
2

4
6

0.5
1

1.5
2

−1

−0.5

0

0.5

1

z
x

y

(a3) (b3)

(c3) (d3) (e3)

Figure 12: 	e results of Experiment 6: (�3) time series plot of �, �, �; (�3) phase diagram of �; (�3) phase diagram of �; (�3) projected on the(�, �)-plane; (�3) on the three-dimensional space.

0.1, E = 0.09, �1 = 0.5, �2 = 0.05. Results of Experiment 4 are
given in Figures 6-7.

Figure 6 is time series plots and the three-dimensional
space graphs of a predator-prey model with Beddington-
DeAngelis type functional response for Experiment 4 with
di�erent parameters obtained by using the current method.(�1) is time series plot and (�1) is the three-dimensional space
graph with %1 = 0.958; (�2) is time series plot and (�2) is the
three-dimensional space graph with %1 = 0.989; (�3) is time
series plot and (�3) is the three-dimensional space graph with%1 = 1.089. Figure 7 is obtained by using the current method
with %1 = 0.958 and %1 = 0.989, respectively. (�1) and (�1)
are the graph projected on (�, �)-plane; (�2) and (�2) are the
graph projected on (�, �)-plane; (�3) and (�3) are the graph
projected on (�, �)-plane.
Experiment 5. We consider the following model with
Monod-Haldane type response function [22]:

�̇ = F1�(1 − �
%1) − I��

J + K�2 ,

̇� = �I��
J + K�2 − (E + L1) �,

�̇ = E� − L2�,
(14)

where F1, %1, I, K, �, J, E, L1, and L2 are real parameters, which
satisfy the initial condition �(0) = 1, �(0) = 1, �(0) = 1.
We choose the parameter F1 = 1.6, %1 = 1.72, I = 1.4, K =0.01, E = 0.09, J = 0.7, L1 = 0.5, L2 = 0.05.

Our numerical simulation results are in good agreement
with the theory [22]. We give some new chaotic behaviors.
Results of Experiment 5 are given in Figures 8-9.

Figure 8 is time series plots and the three-dimensional
space graphs of a predator-prey systemwithMonod-Haldane
type response function for Experiment 5 with di�erent
parameters obtained by using the current method. (�1) is
time series plot and (�1) is the three-dimensional space graph
with � = 1.4; (�2) is time series plot and (�2) is the three-
dimensional space graph with � = 1.575; (�3) is time series
plot and (�3) is the three-dimensional space graph with � =1.62. Figure 9 is obtained by using the current method with� = 1.4 and � = 1.575, respectively. (�1) and (�1) are
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Figure 13: 	e results of Experiment 6: (�4) time series plot of �, �, �; (�4) phase diagram of �; (�4) phase diagram of �; (�4) projected on the(�, �)-plane; (�4) on the three-dimensional space.

Table 1: Parameters used in Experiment 6.

Figure �1(�) �2(�) �3(�) �1(�) �2(�) �3(�) �1(�) �2(�)
10, 11, 12 0.85 + sin(2Mt) 0.75 + sin(2Mt) 0.8 + sin(2Mt) 0.35 + cos(2Mt) 0.5 0.4 0.6 0.45 + sin(2Mt)
13, 14, 15 0.45 + sin(2Mt) 0.75 + sin(2Mt) 0.8 + sin(2Mt) 0.5 + cos(2Mt) 0.35 0.4 0.26 0.3 + sin(2Mt)

the graph projected on (�, �)-plane; (�2) and (�2) are the
graph projected on (�, �)-plane; (�3) and (�3) are the graph
projected on (�, �)-plane.
Experiment 6. We consider the following model with aWatt-
type functional response [23]:

̇� = � (�1 (�) − �1 (�) �) − �1 (�) � (1 − exp (−��
�
 ))

+ �1 (�) (� − �) ,
̇� = � (�2 (�) − �2 (�) �) + �2 (�) (� − �) ,

�̇ = � (�3 (�) − �3 (�) �) + �2 (�) � (1 − exp (−��
�
 )) ,

(15)

Our numerical simulation results are in good agreement
with the theory [23]. Compared with [23], we get better
numerical results and give some new chaotic behaviors.
Results of Experiment 6 are given in Figures 10–15.We choose
the parameter; see Tables 1-2.

Figures 10–12 are obtained by using the current method.(�1), (�2), and (�3) are the time series plot of �, �, �; (�1), (�2),
and (�3) are the phase diagram of �; (�1), (�2), and (�3) are
the phase diagram of �; (�1), (�2), and (�3) are the graph
projected on (�, �)-plane; (�1), (�2), and (�3) are the three-
dimensional space graph. Figures 13–15 are obtained by using
the currentmethod. (�4), (�5), and (�6) are the time series plot
of �, �, �; (�4), (�5), and (�6) are the phase diagram of �; (�4),(�5), and (�6) are the phase diagram of �; (�4), (�5), and (�6)
are the graph projected on (�, �)-plane; (�4), (�5), and (�6) are
the three-dimensional space graph.
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Figure 14: 	e results of Experiment 6: (�5) time series plot of �, �, �; (�5) phase diagram of �; (�5) phase diagram of �; (�5) projected on the(�, �)-plane; (�5) on the three-dimensional space.

Table 2: Parameters used in Experiment 6.

Figure � N �1(�) �2(�) �1 �2 �3
10 1 0.5 0.2 + cos(2M�) 0.3 + sin(2M�) 0 1 1

11 1 0.5 0.2 + cos(2M�) 0.3 + sin(2M�) 1 0 1

12 1 0.5 0.2 + cos(2M�) 0.3 + sin(2M�) 1 1 1

13 1 0.35 0.4 + cos(2M�) 0.1 + sin(2M�) 0 1 1

14 1 0.35 0.4 + cos(2M�) 0.1 + sin(2M�) 1 0 1

15 1 0.35 0.4 + cos(2M�) 0.1 + sin(2M�) 1 1 1

4. Conclusions and Remarks

In this paper, the three dimensional Kolmogorov model
was solved by using the barycentric Lagrange interpolation
collocation method. 	ese numerical experiments illustrate
that numerical results of the present method are the same as
experimental results.

All computations are performed by the MatlabR2007b
so�ware packages.
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