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ABSTRACT

An axisymmetric numerical model has been developed to simulate Ward’s (1972) laboratory experiments.
It was shown by Davies-Jones (1976) that this experiment is more geophysically relevant than all previous
experiments in that Ward’s experiment exhibits both dynamical and geometrical similarity to actual
tornadoes.

Major results are 1) the core size versus inflow angle relationship agrees very nearly with Ward’s mea-
surements, 2) the numerical and laboratory surface pressure patterns are in agreement, and 3) it is demon-
strated that the core radius is independent of the Reynolds number at high Reynolds number (Ward’s data
also exhibit this behavior).

Based on this axisymmetric model some speculation concerning the nature of the asymmetric multiple
vortex phenomenon is made. Furthermore, the numerical model allows the examination of the interior flow
field. As a consequence, an explanation is offered in Section 6 for the double-walled structure sometimes
observed in natural vortices.

The experiments with no-slip boundary conditions reveal a very complicated flow structure in the vicinity

of r=25=0. The computed flow field is strongly reminiscent of that described by Benjamin (1962).

1. Introduction

Laboratory models of atmospheric vorticies date
from the early 1950’s. However, it is argued by Davies-
Jones (1976) in a critical review of the subject that
none of the early models are both dynamically and
geometrically similar to natural vortices. Consider the
vortex chamber in Fig. (1.1). According to Davies-
Jones (1976), there are four independent nondimen-
sional numbers which govern the flow. They are ry/7.,
h/ro=a (the aspect ratio), roM/(2Q)=S (the swirl
ratio) and Q/(vh)=N (the radial Reynolds number).
The quantities 27rQ and 2xM are the volume flow rate
through the chamber and the circulation at the outer
wall, respectively. The quantities 7, 7, and % are
defined in Fig. (1.1). Davies-Jones (1973, 1976) comes
to the conclusion that the experimental model of
Ward (1972) obtains values of these quantities which
agree with natural vortices better than any previous
model. Ward’s model also exhibits many features
observed in natural vortices. Among these are a
characteristic surface pressure pattern and multiple
vortices,

An attempt to use numerical methods to study
atmospheric vortices must be preceded by the successful
simulation of the more controllable laboratory vortex.
In view of the above discussion, it was decided the

! The National Center for Atmospheric Research is sponsored
by the National Science Foundation.

simulation of Ward’s (1972) experiment would prove
to be a formidable test of both the physical concepts
of the nature of the vortex and the numerical method.

An axisymmetric numerical model has been developed
which gives results more in accord with Ward’s data
than previous modeling attempts. Specifically, 1) the
core size versus inflow angle [arctan (v/u),..,] agree .
almost exactly with Ward’s measurements, 2) the
predicted surface pressure distributions are in near
exact agreement with Ward’s, and 3) it is demonstrated
that the core radius is independent of the Reynolds
number (V) at the high Reynolds number used (Ward’s
data also exhibit this behavior). It is impossible for
the axisymmetric model to simulate the asymmetric
multiple vortex phenomena. However, it has been
suggested (Ward, 1972; Davies-Jones, 1973, 1976)
that the multiple vortices arise as an instability on a
cylindrical vortex sheet. The present model shows this
cylindrical vortex sheet to be the solution as N — o,
All of these results are obtained using a free-slip lower
boundary condition. A no-slip lower boundary condition
induces a number of fascinating secondary flow features
such as vortex breakdown, inertial waves on the column
and inertial wave breaking.

2. Ward’s model

Ward recognized that tornadoes typica]ly occur
within updrafts which are an order of magnitude
larger than the funnel diameter (e.g., 10 km compared
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to 0.5 km). Furthermore, the depth of the inflow layer
which supplies the updraft is typically 2 km. Ward
termed the ratio of the updraft diameter to the inflow
depth the “configuration ratio’” (twice the inverse
aspect ratio defined above). This parameter exercises
great control over the experimental results. The
strength of Ward’s model derives from the incorporation
of “rising motion over an area appreciably greater in
diameter than the depth of the converging layer.”
Hence, the geometry of the laboratory vortex could be
made similar to actual tornadoes. Ward’s model is
also dynamically similar since Davies-Jones (1973)
estimated the swirl ratio .S for tornado cyclones to be
O(1) and this S is achieved by Ward’s model. Although
Reynolds number similarity is not achieved, this may
be irrelevant since most of Ward’s results are indepen-
dent of N. (This result is confirmed by the numerical
model.)

Ward’s apparatus is shown in Fig. (2.1). There is a
cylindrical chamber bounded above by a honeycomb
grid over which suction is created by an exhaust fan.
The rotating screen at the bottom imparts a specified
amount of angular momentum to the in-rushing air.
The honeycomb grid divorces the fan vortex from the
flow in the chamber. The experiment possesses the
advantage that the suction and screen rotation rate
can be varied independently. Outlined in Fig. (2.1) is
the area covered by the numerical model.

3. Mathematical model

The laboratory experiments show there is an axisym-
metric regime for swirl ratios S<1. The present model
explores the flow in this regime. The governing equa-
tions are written under the restrictions of no azimuthal
variations, constant density and viscosity. The momen-
tum equations are (in cylindrical coordinates)

utun,+wu,—r 102

= — —lpr+ V{ [7'_1 (ru) r:|r+uz2} ’

(3.1)

Fre. 1.1. A typical vortex chamber [concept after Lewellen
(1971)7]. Regions 1, 2 and 3 denote the outer flow, the top and
bottom boundary layer regions and the core, respectively. The
quantities 7o, 75, %, Qin and Qous are the exhaust radius, inflow
radius, inflow depth, volume inflow rate and volume outflow rate,
respectively.
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Fi1c. 2.1. Schematic of Ward’s (1972) apparatus.
The computational domain is indicated.

vt uv+wv,+ruv

=77 (r0), ] +vee), 3.2)

wetuw,+ww,= —pp. v w)+w.. . (3.3)
The conservation of mass equation is

1 (ru) 4w, =0. (3.4)

The quantities %, v, w, p and » are the radial, azimuthal
and vertical velocities, pressure and eddy viscosity,
respectively. The independent variables are radius 7,
height z and time ¢. Subscripts denote partial differentia-
tion. The radial, azimuthal and vertical components of
the vorticity vector are

E=—0, n=w,—w, {=r(r), (3.5a,b,c)
respectively. A streamfunction ¢ is defined such that
u=rt, w=—riy,. (3.6a,b)

The circulation I' is defined by
=7, 3.7

A convenient method for solving Egs. (3.1)-(3.4) is
to first form the governing equation for 5. This is
accomplished -by combining the vertical derivative of
Eq. (3.1) with the radial derivative of Eq. (3.3). Thus,

"lt"-](‘h r—l"l) =r7? (Pz) -+ VI: (r—l (777) r) r+"lzz]: (3 8)

where J(x,y)=xy,—x,y. is the Jacobian operator.
An equation for.T is obtained upon multiplying Eq.
(3.2) by 7, i.e.,

Ti—rUW,D)=v[r@T,)+T..]. (3.9

The result of substituting Egs. (3.6a) and (3.6b) into
Eq. (3.5b) is
="+ (r'¥,),. (3.10)

Eqgs. (3.8)-(3.10) constitute the basic system of three
equations in the three unknowns ¢, I' and #.

The boundary conditions are of crucial importance
for the successful simulation of the laboratory data.
The following set of conditions allow solutions which
agree well with Ward’s data. Fig. (3.1) contains a map
of the domain, the grid-point mesh and boundary
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31Grid Points inr * A, =27/(31-)=(1/15)
61Grid Points inz  A,=4'/(61-1)=(1/15)'

Fic. 3.1. The computation domain. A rectangular grid of
equally spaced points is used for all experiments except those
where frictional lower boundary conditions are used. In that
case, Az=3}Ax. :

conditions used. The boundary conditions are as follows:

1) u=9=T=0 for r=0 and 0<2< H. Symmetry
requires there be no radial motion at the center (#=0).
The azimuthal vorticity n=—w, at =0 since % is
zero for all z (ie., #,=0). Again symmetry requires
—w,=n=0 at r=0. If I' were any number other than
zero at r=0, v would be infinite here.

2) w=9=T,=0 for =0 and 0<r<R. The lower
surface is impermeable (w=0). The azimuthal vorticity
n=u, since w is zero for all » (i.e., w,=0). Requiring
the shear stresses (which are proportional to %, and v,,
respectively) to vanish is equivalent to demanding
n=I",=0. This (free-slip) condition allows the isolation
of the updraft-swirl interaction since in this case
boundary-layer-associated vorticity is absent. Section
7 presents some preliminary calculations using the
nonslip conditions w=#=T=0 at z=0.

3) u=T,=1%,=0 for 3=H and 0<r< R. We require
the flow to have no radial component as it exits (#=0).
We also require approximate cyclostrophic balance as
the flow exists. Consider the diffusion term in Eq. (3.1).
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Using the Egs. (3:4) and (3.5b), it is easy to show
[7—1 (7’14) r]r+uzz=77z.

Since % is zero at 2=H and it is expected that the term
wu, 1s small, requiring that 5, be zero leads to cyclo-
strophic balance. The condition T',=0 (free-slip) is
unfaithful to the laboratory experiment since the
honeycomb removes rotation from the outgoing air.
The condition I'=0, however, leads to the development
of an upper boundary layer which requires fine grid
resolution. After carrying out integrations with both
conditions, it became clear that since this condition
has only a slight effect on the general results, the
following solutions all have I',=0 at 3= H.

4) u=uy, T'=Ty, =0 for =R and 0<2<Ah. The
radial inflow and circulation are specified at r=R.
This is equivalent to specifying the inflow angle
af{tan'[v(R)/#(R)]}. The condition =0 is of par-
amount importance. A previous investigation (Harlow
and Stein, 1974) used w=0 at the inflow. That leaves
7 unspecified and hence nonzero. Thus, an unspecified
amount of azimuthal vorticity is advected into the
domain and the effect is profound [witness the differ-
ence between the results of present calculations and
the Harlow-Stein (1974) model]. Physically, the vertical
velocity is zero at the rotating screen but becomes
non-zero as the edge of the exhaust radius is approached
(which is where the model domain begins).?

5) u=(@"T),=9p=0 for r=R and k<z<H. A
fictitious impermeable wall is placed here (#=0). This
corresponds to the observational fact that the converg-
ing layer of warm moist air is of limited height (Davies-
Jones (1976)). The last two conditions are manifesta-
tions of the free-slip condition.

The initial conditions in all the experiments are
n(r,2)=0, y=y(r,z), which is the solution of Eq. (3.10)
with =0 and I'(r,2) =0 for all 7, 2 except at r=R and
0< 2< k where T is specified. The next section describes
the time evolution of this state.. _ ’

" The numerical method used to solve Egs. (3.8)-
(3.10) is straightforward. The spatial differencing has .
second-order accuracy. The nonlinear terms are
differenced using the schemes of Arakawa (1966). The
Fuler method is used for the first time step; thereafter
the leapfrog technique is employed. Viscous terms are
lagged one time step. Averaging among time levels
was performed every 20 time steps to avoid mode
splitting. The time step chosen satisfies the CFL
(Courant-Freidricks-Lewy) and diffusive stability crite-
ria throughout the integration.

The majority: of the experiments used the eddy
viscosity »=1.86 cm? s! (0.002 ft? s7); the molecular
viscosity of air is approximately 0.139 cm? s (0.00015

2 This point was also verified experimentally by the author on a
recent visit to the University of Oklahoma where Ward’s model
is currently being used.
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F16. 4.1. The initial conditions for all experiments. The vorticity and circulation are zero
everywhere; the streamlines are derived from Laplace’s equation (V% =0). This figure and
the three subsequent figures detail the time evolution of the solution for N =1000 and a=22°.
In this and all subsequent contour plots, dashed lines signify negative values. The specified
inflow velocity is the constant uo, hence ¢ (R,z) = Ruyz for 0< z< /. In all experiments #o= —1.0
ft 7 and R=2 ft, thus ¥ (R,z)=— (2.0 ft> s71)z for 0< 2<% and is — (2.0 ft2 s} forz2 A.
Since 2= 1.0 ft, Ymin = —2.0 ft3 571 ¢ is contoured in intervals of 0.1 ft3 572 starting from the zero

value at the axis and lower boundary.

ft* s7), Section 5 contains the results of varying »
over a very wide range. The inflow velocity u, is
30.5 cm s~ (1 fts~7) for all experiments. Hence N =R/
v=10® for most experiments.

Ward found that two basic parameters governed the
core size—the ‘“‘configuration ratio” and the inflow
angle «. Later, Davies-Jones (1973) reanalyzed Ward’s
data and found that the core size is solely a function of
the swirl ratio S. The swirl ratio is related to the
configuration ratio and the inflow angle in the following
way. In Section 1 S was defined as RI'(R)/(2Q), but
since I'(R) = Rv, and Q= Rhu,,

(3.11)

Since the configuration ratio ¢c=2R/k and vo/u,= tanc,
S=(c/4) tana. (3.12)

In the majority of the experiments ¢=4; hence the
swirl ratio is simply the tangent of the inflow angle.

4, Time evolution

The initial ¢, T' and 5 are shown in Fig. 4.1. Air
enters from the right, turns and exits out the top.
The flow is irrotational. Notice the vertical velocity
(=77 ¢,) is not zero at the entrance. The vertical
velocity field is displayed in Section 6 and it appears
that w~z at r=R. This is simply the solution for an

irrotational solenoidal flow near a stagnation point
(see Batchelor, 1967, p. 105). Since the streamfunction
Y=—kz?/2, u=—kr/2 and w=ksz in that case. The
classical solution differs from the one shown in Fig. 4.1
at and above the height z=/% since we demand that
u=0at z=H.

Incidentally, if we assume v is independent of z and
use these values of # and w, we can integrate Eq. (3.2)
twice to obtain the result

I'=T.[1—exp(—kr2/4v)]. 4.1
This solution for (%,v,w) is known as the Burgers-Rott
vortex (see, e.g., Lewellen, 1976). Since I' is independent
of z in this solution there is no interaction between the
swirl and the meridional motion [see Eq. (3.8)]. We
shall see that this interaction is of crucual importance
in the determination of the vortex core radius (to be
defined). However, the Burger-Rott solution is useful
for zeroth-order considerations. We shall next consider
the time evolution of the state described by Fig. 4.1.
The azimuthal velocity at r=R and 0Lz<A is
increased to a value of 12.19 cm s (0.4 ft s7) (=22°,
in this example). Fig. 4.2 shows the solution at {=5.0s.
The circulation imposed by the rotating screen is being
advected into the domain. A “front” of nonzero T'
advances into the previously nonrotating fluid. Ahead
of the front I'=0, while behind the front I'=T'y (the
entrance value). The front slants from the lower left
to the upper right implying (I'?),<0. Therefore, by
Eq. (3.8) we find that 5,<0. Since 5 is initially zero,
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F16. 4.2. The streamfunction, circulation and azimuthal vorticity at {=35.0 s. Since a=22°
and |ug| =1.0 ft s71 I'(R,2)=0.8 ft? 57! for 0K z< 4. T' is contoured in intervals of 0.06 ft2 s
starting from the zero value at the axis. » is zero at the left, right and lower boundary and is
initially zero at the upper boundary. The contour interval is 1 s starting at a value slightly

greater than the minimum.,

7(#) <0 and has its minimumni centered near the position
of the maximum slope of the front. The magnitude of
7 at this time is insufficient to induce any perceptible
change in the streamline pattern.

Fig. 4.3 indicates the front has advanced further
inward and has a lessened vertical derivative. The,
azimuthal vorticity, however, has increased due to
the factor = multiplying (I'?), in Eq. (3.8). A most
interesting development occurs in the streamline field;
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the zero streamline separates from the lower rigid
surface and reattaches on the center axis. In this region
enclosed by the zero streamline, downflow occurs near
the axis.

The separation of the zero streamline is a necessary
feature of the solution in a slightly viscous fluid.
Consider a fluid parcel entering with an amount of
angular momentum (rv). Since (in a slightly viscous
fluid) the angular momentum is conserved, » increases

llTII;II’:IIlIEH,‘ LARRARARRRARE"
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E 3
E 3
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Frc. 4.3. As in Fig. 4.2 at t=7.0 s. Note that ¢ becomes positive with the area enclosed
by the zero streamline, The relative high indicates downflow along the axis,
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Fi1c. 4.4. As in Fig. 4.2 except at 1=30.0 s.

as the parcel approaches the axis. When v increases to
a degree where the outward centrifugal force balances
the applied inward pressure gradient, radial motion
must cease. But the parcel must continue to move
because new air is continually being supplied at =R
and the only way for it to move is up. In a more viscous
fluid, a parcel can approach the axis while its angular
momentum is diffused outward. The next section
examines this process in more detail.

The steady-state solutions (¢=30.0 s) are displayed
in Fig. 4.4. These patterns are essentially unchanged
after approximately f=17.0 s. A further check was

¥

made by computing the flux of T' out the top and
comparing this to the exactly known influx of T'.

For the remainder of this paper we refer to the
zero streamline which separates from the floor as the
core boundary. This is consistent with Ward’s experi-
mental definition, since he determined the core size by
releasing smoke near r=2=0. Save for some diffusion
the smoke mixing ratio Smr obeys a steady-state
equation J (¢,Smr) =0 with the solution Smr=Smr ().
Since the zero streamline passes through r=2=0, it is
clear that the separated zero streamline can be identified
with the “core” as defined by Ward.
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F1c. 5.1. The steady-state patterns of ¢, I' and 5 for N=>50 and «=45°. Since «=45° and
luol =1.0 ft 571, I'(R,2) =2 {2 s~ for 0K 2< & The same contour intervals as those in Figs. 4.1-
4.4 are used here and in Fig. 5.2. Note how diffuse the I field is.
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Fi1G. 5.2. The steady-state patterns of ¢, I and 5 for N =1000 and o=45°. The radial gradient
of T' (and, consequently ) is concentrated within a narrow region. Note the enlargement of
the core over that in Fig. 5.1,

\
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5. Comparison of experiments with different eddy diffusion in the laboratory model through a series of
viscosity simple tests.

Lilly (1969), Ward (1972) and Davies-Jones (1973)  Using an inflow angle «=45°, we vary » through
argued that the main features of the tornadic circulation —several orders of magnitude and investigate the effect
could be explained in terms of inviscid fluid dynamics. on the steady-state solution. Fig. 5.1 shows the solution
This section evaluates the role played by viscous for N=350. The circulation is very diffuse; accordingly,
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JF1G. 5.3. The steady-state patterns of ¢, I' and n for N==1.3X10¢ and a=45°. This value of
N comes from using the molecular viscosity of air at room temperature. Although the patterns
exhibit many small-scale irregularities, the large-scale features such as the core size and the
concentration of vorticity in the core wall persist. T' is contoured every 0.6 ft? s~ while 7 is
contoured every 11.0 s, The reason for this is that small-scale streamfunction variations
when twice differentiated (to get vorticity) yield locally large values. The essential feature
is that the vorticity is significantly nonzero only along the core.
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the negative azimuthal vorticity is widely spread
toughhrout the domain. Note the core size.

Increasing NV to 1000 (Fig. 5.2) shows the transition
between the inner region (I'=0) and the outer region
(I'=Typ) to be quite narrow. Notice the azimuthal
vorticity is confined to a narrow sheet; in fact, all
three components of vorticity are nonzero only within
this narrow region. Fig. 5.3 further illustrates this
behavior. Although the small-scale features are terribly
messy, the larger scale features are essentially the same
as observed in Fig. 5.2. That is, the core size is the
same, and a concentrated vortex sheet exists which
separates an inner region of almost stagnant flow from
an outer region of irrotational (I'~T') flow. Fig. (5.6)
summarizes the behavior of the core radius as a function
of N. The reason why the large-scale features persist in
the limit of very small viscosity is as follows.

The type of flow which tends to develop as the
steady-state solution in the small viscosity limit is
shown schematically (Fig. 5.4). There are two regions:
the inner region has I'=0 and w=—W,. The flow is
irrotational except at the discontinuity which separates
the two flow regimes. The stability of such a flow to
axisymmetric perturbations 8 can be easily investigated
by standard techniques (Rotunno, 1977). A general
criterion for the stability of axisymmetric disturbances
was derived by Howard and Gupta (1962). A Fourier
decomposition of & is made and the solution for a
Fourier component §.,,674+%7% is obtained. The quantity
o is related to the axial wavenumber v, wo and T
through a dispersion equation o=o(y; Wo/Vy). For
certain values of ¥ and W/ V%, o is real indicating the
REGION 2 -

REGION 2 REGION |

Vi

sioe view T 1 13:

i -Wo Wo
4
R R
{ i r
T'=CONSTANT
v~1

\$=8(z1)
T=rv=0

F16. 5.4. Idealized flow believed to be attained in the inviscid
limit. Region 1 contains a uniform downdraft with no azimuthal
motion. Region 2 contains a uniform updraft and its azimuthal
velocity is proportional to r7!. Here §=4(z) represents an
axisymmetric perturbation of the material surface separating
the two regions.
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F1c. 5.5. The results of a stability analysis of the flow shown
in Fig. 5.4. The perturbation §(z,/) behaves as ei*=*ot; 4, is the
real part of ¢ and represents the rate at which unstable perturba-
tions grow. The quantity v is the axial wavenumber. Note that
for v small enough the perturbation is stable.

mode is unstable. The real part ¢, of ¢ is the growth
rate. Fig. 5.5 is a graph of the growth rate versus
axial wavenumber for increasing values of the parameter
W/ V. Notice the low wavenumbers are stabilized by
the rotation while the small wavenumbers are destabil-
ized by the radial shear of the wvertical velocity.
Hence, Fig. 5.5 indicates that the large-scale features of
the solution are preserved, but the small-scale instabili-
ties cause considerable wrinkling of the core wall.
A slight increase of » damps these small waves but
does not alter the basic circulation T' to a degree where
the core size is. changed. The value of »=1.86 cm? st
(0.002 £t2 s™) was chosen to achieve this goal.

Ward (1972) observed the formation of multiple
vortices when the swirl ratio exceeds a certain value.
Ward (1972) and Davies-Jones (1973, 1976) have

0.6 T T T
05} ~
o4l -
rCOI'e
Touter 0.3 |- -
0.2t —
ol . —
0 1 1 |
i0' 102 103 10° 10%
N

Fi1c. 5.6. Average core size versus Reynolds number. The radial
position of the separated zero streamline varies slightly with
height. Hence the crosses represent half the sum of the outermost
and innermost position of the zero streamline. For these experi-
ments o=45°.
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F1c. 6.1. The steady-state patterns of ¥, I' for N = 1000 and «=6°. The same contour intervals
as those in Figs. 4.1-4.4 are used here and in Fig. 6.2

attributed these vortices to an instability of a cylindrical
vortex sheet. Since the present model is axisymmetric,
it is impossible to simulate this phenomenon. However,
the fact that the axisymmetric model tends toward a
cylindrical vortex sheet configuration lends support to
their hypothesis.

6. Comparison with Ward’s data

The section contains a comparison of the numerical
and laboratory data. Specifically, we wish to compare
the effects of varying the imposed swirl on the core
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size. A further test is provided by comparing the
numerical with the laboratory surface pressure patterns.
Since Ward used no internal probes, quantitative flow
comparisons are not possible.

The steady-state solution for a=0° is the same as
that shown in Fig, 4.1, The steady-state solutions for
a=06° and 45° are shown in Figs. 6.1 and 6.2, respec-
tively. The core size increases with increasing a.
Accordingly the “front” in the circulation field and
the negative vorticity maximum move further away
from the axis with increasing «. These results are
summarized in Fig. 6.3 where the core radius as a

n
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F16. 6.2. The steady-state patterns of ¢, I' and 5 for ¥ =1000 and «=45°. The same contour
intervals as those in Figs. 4.1-4.4 are used here.
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F1c. 6.3. Nondimensional core radius versus inflow angle.
Ward’s data correspond to a configuration ratio ¢=4. The size of
the vertical bars is a measure of the scatter in the data. The size
of the vertical bars for the present experiment (with N =1000)
is a measure of the vertical variation of the core boundary.
The crossed points are taken from Figs. 19 and 20 of Harlow and
Stein (1974) which use N =50,

function of inflow angle is plotted. Also in the same
graph are Ward’s experimental values and the results
of a previous modelling attempt (Harlow and Stein,
1974). The present model differs from the Harlow and
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F1c. 6.4. Steady-state pattern of the logarithm of ¥ for the
case ¢=4, N =350 and a=45°. The left-hand contour plot is after
Harlow and Stein (1974), where the condition w=0 at r=R,
z< & is used rather than n=0 at =R, z</% which is used in the
present model (the right-hand contour plot).
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F1c. 6.5. Nondimensional core radius versus swirl ratio (after
Davies-Jones, 1973). The parameter o is the aspect ratio #/R.
Solid curves are 7core/R=sin? (a theoretical relationship derived
by Ward) for the different a. The data plotted in this way indicate
the core radius is solely a function of S. The bars represent cases
from the numerical experiment using ¢=4 and 2.2.

Stein (HS) model in two aspects. As mentioned in
Section 3, we require =0 on the inflow boundary
while HS require w=0. The other difference is we use a
much lower viscosity for our comparisons with Ward’s
data. Fig. 6.4 is a comparison of the steady-state
streamline pattern (the logarithm of (Y+a constant)
is plotted for comparison with HS) for the case ¢=4,
N=350 and a=45° The nondimensional position of
the recirculating cell’s center in the HS result is 0.139
while the present model’s is 0.241. We believe the
reason for this is as follows. We have demonstrated in
Section 4. that the vertical gradient of I' produces
negative 7 which induces the central downdraft. The
HS model inflow boundary appears to have w,<0 and
hence, p=—w,>0. Thus, it seems the flow must
penetrate further inward in- the HS model before the
term 73(I%)z in Eq. (3.8) can counteract the effect
of the inward positive 7 advection from the boundary.
Note also the core boundary in the present model
exhibits much less vertical variation. HS define the
core as the eleventh streamline away from the center-
low of the recirculating cell because this leads to the
best fit with Ward’s data. However, as Fig. 6.3 indicates,
consistent application of this criterion leads to a nonzero
core radius even when a=0°.

Note that our core size is slightly larger than the
laboratory data indicate. We will show in the following
section, however, that the incorporation of some type
of frictional lower boundary condition tends to decrease
the core size for a given a.

Davies-Jones (1973) replotted Ward’s data and
found the core size depends solely on the swirl ratio.
Using Eq. (3.12), we can put our data from the two
experiments using different ¢ on Davies-Jones graph

Unauthenticated | Downloaded-08/23/22 02:44 PM UTC



1952

.20

I L AL L NSLI LI D NI B
1.8 - X - o
i X % ] 0.70
1.6 X
1.4 -1.00
12 — "
B . a
P
= 1.LO - <
PL {-150 2
0.8 —
0.6  fx .
0.4 —_ Ward's Data- X __. -200
| Present Experiment-— |
0.2 N=103, Free-slip _|
a=6°, Configuration Ratio=4 |
0.0 U N T I S T N T I T N T Y O
00 02 04 06 08 10 12 14 |6 18 20

RADIUS (ft.)

Fi1c. 6.6. Surface pressure versus radius. The solid line represents
the numerical data for N=1000 and a=6°. The crosses are data
points measured by Ward for «=6°. Note the relative high in

pressure occurs for all practical purposes at the same radius in

the numerical and laboratory experiments.

(Fig. 6.5). These results lend further support to the
notion that the core size is a function only of S.

Fig. 6.6 shows the close agreement between the
numerical and laboratory surface pressure patterns.
The high-pressure ‘“ring” is a characteristic feature
of the vortex. The steady-state inviscid form of Eq.

u v
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(3.1) along the lower surface (z=0) is
1? V% 1 apP :
(;)T——;: —;Prégr—. (6.1)

In Section 4, we noted that the initial meridional flow is
similar to the classical irrotational corner flow. The solu-
tions shown above indicate the flow outside the core re-
mains similar to the classical solutions. The tangential
flow outside the core is irrotational (v=~r~!). Hence,
approximate forms for # and v are

r R
u=—uy, v=-—1,
r

(6.2a,b)

where uy and v, are defined in Section 3. We substitute
these into Eq. (6.1) to obtain

o? g P,
S
R2p3 u02 p

-

or using Eq. (3.12) with ¢=4,

rat
P,~<——) -5
R
We know that for small » Eq. (6.3) does not apply
and that the pressure increases with increasing radius

(P,>0). For a local pressure maximum the pressure
must begin to decrease beyond some radius. Eq. (6.3)

(6.3)
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F1G. 6.7. The steady-state patterns of #, v and w for N=1000 and a=22°. The solid line
cutting across the # contour plot is the zero line to the right of which the flow is inward and
decelerating from the inlet value of —1.0 ft s71. The contour interval is 0.1 ft s, The » field
is contoured every 0.2 ft s71, starting with the zero axis value » increases outward until the core
is reached, then v decreases as 7! to the inlet value of 0.4 ft s The solid line separating the
dashed and solid lines in the w contour plot is the zero velocity line. The w field is contoured

every 0.1 it s7L
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Fic. 6.8. The steady-state patterns of £ ¢ and P/p for N=1000 and a=22°. The £ field is
contoured every 0.15 s and the { field is contoured every 1.0 s7! and reaches a maximum of
approximately 10.0 s7! in the core wall. The P/p field is computed relative to a value of zero
at r=3=0. The first line from the axis is a zero line and hence P/p <0 between the axis and
this line. The P/p field is contoured in intervals of 0.2 ft2 s72, Note the relative maximum near

the surface.

indicates that that radius is r=RS%. Clearly, for S>1
the high pressure ring is outside the domain. To
summarize, a parcel of air enters with a specified amount
of angular momentum (rv). As 7 decreases, v increases
and hence, an outward centrifugal force develops. When
this outward force balances the inward inertial force,
P,=0. Thus, there exists a local pressure maximum
(stagnation point) at that radius.

Other flow quantities of interest are displayed in
Figs. 6.7 and 6.8. We consider the a=22° case. Fig. 6.7
displays the radial, azimuthal and vertical velocity
fields. Fig. 6.8 displays the radial and vertical vorticities
and the pressure (divided by density p). Note again the
concentration of vorticity in the core wall. The pressure
minimum is displaced slightly off the axis. This is due
to the fact that the inner downdraft which terminates
at the lower surface is associated with a local stagnation
point at 7=2z=0, the pressure lowers as the flow turns
radially outward at the corner. Another relative
minimum in pressure is associated with the strong

updraft just outside the vortex core. Most investigators’

agree the tornado funnel is made visible by condensation
which is induced by the lowered pressure in the center
of the rotating flow. It sometimes occurs that tornadoes
appear to have double walls [see for example, the
beautiful work of Golden (1973)]. A possible explana-
tion is as follows. Consider the steady-state solution
for a=45° N=2000 shown in Fig. 6.9. The interior
condensation is induced by the lower center pressure
due to cyclostrophic flow. The outer wall which is
generally much lighter (thus we can see through it to

the inner wall) is condensation induced by the low-
pressure associated with the large vertical velocity
just outside the core. The fact that the outer wall is
lighter than the inner wall is consistent with the model
result that the pressure drop is less outside the core
than within. These aspects are more apparent in the
solutions with larger swirl ratios.

w
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Fi1c. 6.9. The steady-state patterns of w and P/p for N =2000
and a=45° The line enclosing the relative low (—0.135) is a
zero line as is the first line away from the axis. The contouring is
the same as in Figs. 6.7 and 6.8. This figure emphasizes the fact
that there is a lowered pressure just outside the core wall which
is associated with the intense updraft.
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F1c. 7.1. The steady-state patterns of ¥, T’ and n for N =1000 and «=22° using the no-slip
conditions #=v=0 and z=0. In this and the following figure the contouring for ¢ and T is
the same as used in Figs. 4.1-4.4. However, due to the large boundary-layer induced vorticity,
7 is contoured in intervals of 6.0 s™!. Note the wave structure.

7. Experiments with a mno-slip lower surface
condition

Although our investigation in this area is not com-
plete, preliminary results are sufficiently interesting to
be reported here. We investigate two types of non-slip
conditions. The first is #=v=0 at 2=0. Since the high
laboratory Reynolds number leads to a very thin
boundary layer, we have increased the vertical resolu-
tion in the following experiments by a factor of 2.

o
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r

The Reynolds number used (N=1000) permits the
proper resolution of the boundary layer. However, the
laboratory Reynolds number may be much larger
(~10%). Thus, the no-slip conditions #=v=0 at z=0
may be relevant only to a laminar flow. Maxworthy
(1972) performs a vortex experiment which is largely
in the laminar regime ; some qualitative comparisons are
made below.

The other condition was originally used by Taylor -
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F16. 7.2. The steady-state patterns of ¢, I' and 4 for N=1000 and o:=22° using the Taylor
conditions (#,9) = K (%,,v.) at z=0 where K =23.1 cm. The zero streamline now separates before
the axis is reached and core undulations are less pronounced than in Fig. 7.1.
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(1915) and more recently by Kuo (1971). It is required
that (u,v)=K (u.,9,) at 2=0 which is regarded as the
top of the turbulent surface layer. The condition is
that the velocity and stress be in the same direction
at the top of the turbulent surface layer. Note that when
K =0 we recover the no-slip condition and when K — «
we recover the free-slip condition. In the following
example we choose K=3.1 cm. '

Fig. 7.1 shows the solutions for a=22° using the
no-slip condition and increased vertical resolution.
The most striking difference between this and the free-
slip flow (Fig. 6.4) occurs in the lower left corner.
The core wall now has a number of axial wrinkles which
appear to be centrifugal waves. The time evolution
indicates the lower wave develops first, then the upper
wave; the axial phase does not shift throughout the
integration. These standing waves appear to be break-
ing ; notice how some lines of constant T form S shapes
in the antinode of the wave. This indicates that (locally)
(I'?), <0 (Rayleigh’s criterion for inertial instability).

The similarities between these results and the theory
of vortex breakdown as advanced by Benjamin (1962)
are immediately apparent. Benjamin likens the sudden
enlargement of the vortex core to the sudden increase
in depth of fluid flowing in an open channel under the
influence of gravity (i.e., a hydraulic jump). Benjamin
argues that in passing from a supercritical to a sub-
critical state, the flow force (w4 P/p) is increased.
But to maintain a steady flow, the flow force must be
the same on either side of the jump. Benjamin shows
that the standing waves in the subcritical flow act to
reduce the upstream flow force in such a way as to
maintain a steady state. This description holds for weak
jumps (i.e., a transition from a slightly supercritical to
a subcritical state). For stronger transitions, dissipation
occurs first in the form of breaking of the lead wave
with nonbreaking standing oscillations downstream.
Stronger transitions lead to breaking of the downstream
waves. A structure very similar to that calculated in
Fig. 7.1 is observed by Maxworthy (1972, Fig. 5a).

As remarked earlier, results using the no-slip condi-
tion for the Reynolds number used should only be
compared with a laminar (at least upstream of the
breakdown) flow. The flow in Ward’s experiments is
turbulent and does not show a strong resemblance to
the flow of Fig. 7.1. Instead, Ward’s flow appears much
as the flow in Fig. 7.2. This figure contains the steady-
state solutions for @=22° with the Taylor conditions
at the lower surface. Here, the zero streamline does
not penetrate to the axis but separates as before.
Undulations on the column are still present, but are not
as pronounced as in Fig. 7.1. Notice that the same
vertical resolution as in the free-slip cases can be used.

Experiments currently in progress are designed to
examine more closely the flow in the corner region.
Obviously, the flow in this region is of paramount
importance, since in the atmosphere this is the region
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of human habitation. A proper resolution of boundary
layer processes is a key element in the understanding
of the vortex as a whole.

8. Conclusions

Davies-Jones (1976) argues that Ward’s (1972)
laboratory experiment is more geophysically relevant
than earlier models in that Ward’s model exhibits both
dynamic and geometric similarity to tornadoes. In view
of this, it was decided that a numerical simulation of
Ward’s experiment would be a valuable precursor to a
necessarily more sophisticated tornado model.

Using an axisymmetric constant density and viscosity
model, we come to the following major conclusions.

1) The core size is mainly a function of the swirl
ratio as argued by Davies-Jones (1973). This result is
contingent on the proper specification of the azimuthal
vorticity at the inflow boundary. A previous model
left the inflow boundary value of 7 unspecified, and
hence, severely altered the core size versus swirl ratio
relationship.

2) The core size is independent of the Reynolds
number for large Reynolds number. Varying the
constant viscosity in a series of experiments indicates
the core size does not change as the viscosity becomes
very small (its molecular value). The core size obtained
in the small viscosity limit is the one which best agrees
with Ward’s (1972) data.

3) These solutions lend support to the notion that
the core is relatively stagnant and the outer flow
moves irrotationally and that these two regions are
separated by a thin region of high vorticity.

Preliminary calculations using frictional lower bound-
ary conditions are reported. The frictional lower
boundary appears to induce ‘‘vortex breakdown” as
described by Benjamin (1962). Briefly, vortex break-
down is characterized by a sudden enlargement of the
core with standing waves on the downstream (sub-
critical) side. Since Benjamin’s (1962) theory does not
treat the case where there is a solid boundary normal
to the core axis (as we have), it is clear that additional
work must be done to assess the relevancy of Benjamin’s
(1962) theory. Calculations of this nature are currently
in progress.
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