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Numerical Simulation of a Steady-State Electron 
Shock Wave in a Submicrometer 

Semiconductor Device 
Carl L. Gardner 

Abstract-The hydrodynamic model consists of a set of nonlinear 
conservation laws for particle number, momentum, and energy, cou- 
pled to Poisson’s equation for the electric potential. The nonlinear con- 
servation laws are just the Euler equations of gas dynamics for a gas 
of charged particles in an electric field, with the addition of a heat 
conduction term. Thus the hydrodynamic model PDE’s have hyper- 
bolic, parabolic, and elliptic modes. 

The nonlinear hyperbolic modes support shock waves. The first nu- 
merical simulations of a steady-state electron shock wave in a semicon- 
ductor device are presented, using the hydrodynamic model. For the 
ballistic diode (which models the channel of a MOSFET), the shock 
wave is fully developed in Si (with 1-V bias) at 300 K for a 0.1-pm 
channel and at 77 K for a 1.0-pm channel. 

I. INTRODUCTION 

HE hydrodynamic model treats the propagation of electrons T in a semiconductor device as the flow of a compressible 
charged fluid. This electron gas has a soundspeed,’ and the 
electron flow may be either subsonic or supersonic. In the case 
of supersonic flow, electron shock waves will in general de- 
velop in semiconductor devices. 

The hydrodynamic equations consist of a set of nonlinear 
conservation laws for particle number, momentum, and energy, 
coupled to Poisson’s equation for the electric potential. The 
nonlinear conservation laws are just the Euler equations of gas 
dynamics’ for a gas of charged particles in an electric field, with 
the addition of a heat conduction term. Thus the hydrodynamic 
model PDE’s have hyperbolic, parabolic, and elliptic modes. 

The nonlinear hyperbolic modes support nonlinear shock and 
contact waves. Electron shock waves should occur in silicon 
devices at short length scales or at low temperatures. The first 
numerical simulations of a steady-state electron shock wave in 
a semiconductor device will be presented, using the hydrody- 
namic model. The simulations were performed for the ballistic 
diode (which models the channel of a MOSFET). With a 1-V 
bias across the diode, the shock wave is fully developed in Si 
at 300 K for a 0.1-pm channel and at 77 K for a 1 .O-pm chan- 
nel. 

This investigation focuses on appropriate numerical methods 
for steady-state simulations (including shock waves) when the 
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’For an introduction to the Euler equations and shock waves see [ I ] .  
phonon gas. 

electron flow is both subsonic and supersonic. The one-dimen- 
sional (1D) steady-state hydrodynamic equations will then be 
elliptic in the subsonic regions and hyperbolic/elliptic in the 
supersonic regions. Central differences may be used in the el- 
liptic regions. However, in the hyperbolic/elliptic regions, cen- 
tral differences are unstable and a hyperbolic method (e.g., some 
form of upwinding) must be used. In this paper, I will use a 
second upwind method for both elliptic and hyperbolic/elliptic 
regions. In the elliptic regions, the second upwind method is 
related to the Scharfetter-Gummel exponential fitting method. 

I give a brief introduction to the hydrodynamic model in Sec- 
tion 11, and describe the nonlinear waves that the model sup- 
ports. In Section 111, I describe the ballistic diode problem, and 
discuss the central difference and second upwind discretizations 
of the 1D steady-state hydrodynamic equations. In Section IV 
I compare central difference and second upwind computations 
for steady-state subsonic flow of electrons in the ballistic diode. 
In Section V, I discuss transonic electron flow in the ballistic 
diode using the second upwind method. Section V-A presents a 
steady-state Mach 1.6 electron shock wave in Si at 300 K,  and 
Section V-B presents a steady-state Mach 4.1 electron shock 
wave in Si at 77 K. These electron shock waves are analogous 
to the shock wave that forms in a converging-diverging Lava1 
nozzle for transonic gas flow. In Section VI, I make some con- 
cluding remarks. 

11. THE HYDRODYNAMIC MODEL 

The hydrodynamic equations are 

an 
at 
- + V . (nu) = 

- aP + vV . p + p . V u  = -enE - V ( n T )  + 
at 

V . (eVq5) = - e ( N D  - NA - n ) ,  E = -Vq5 (4) 

where n is the electron density, U is the velocity, p is the mo- 
mentum density, e (  > 0 )  is the electronic charge, E is the elec- 
tric field, T is the temperature in energy units (Boltzmann’s 
constant k has been set to 1 ), W is the energy density, K is the 
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thermal conductivity, the subscript c indicates collision3 terms, 
E is the dielectric constant, + is the electric potential, NO is the 
density of donors, and NA is the density of acceptors. Equation 
(1) expresses conservation of electron number, (2) expresses 
conservation of momentum, (3) expresses conservation of en- 
ergy, and (4) is Poisson’s equation for the electric potential. 

The transport equations (1)-(3) were derived by Bladtekjaer 
[2] as the first three moments of the Boltzmann equation. 

The hydrodynamic model can also describe multiple species 
cif charge carriers (e.g., upper and lower valley electrons and 
holes) by adding extra copies of (1)-(3). 

To close the set of equations, I will assume that the energy 
bands are parabolic 

p = mnv W = i n T  + fmnu2 (5)  

where m is the effective electron mass. 
Equations (1)-(3) are in conservation form, and may be writ- 

ten in terms of the variables n ,  U ,  T, and +. These variables 
represent the simplest choice for upwind methods and for the 
ballistic diode boundary conditions. In addition, discretizing the 
PDE’s is conservation form eliminates some of the discretiza- 
tion ambiguities that plague nonconservation forms of the 
PDE’s, and convergence of the Newton method used to solve 
the steady-state equations is more robust. 

In the absence of heat conduction ( K = 0 in (3)), (1)-(3) are 
the Euler equations with source terms due to the collision terms 
and the electric field. The polytropic gas constant y = 2 for the 
“monatomic” electron gas ( y represents the relationship be- 
tween the total internal energylparticle U = W / n  - mv2/2  of 
the gas and the temperature T: ( y - 1)  U = T . )  The transport 
equations then are hyperbolic, with five nonlinear waves [ l ] ,  
131: 

Nonlinear Waves Characteristic Speed Discontinuous Variables 

2 shocks A , = u + c  U ,  n ,  T 
3 contacts A. = U U T ,  T 

Here U is the particle velocity normal to the wave, and vT is the 
particle velocity tangential to the wave. The soundspeed c = 

With heat conduction (nonzero K ) ,  (1)-(3) are hyperbolic ( 4  
modes) plus parabolic ( 1  mode) [4]. There are now only four 
nonlinear hyperbolic waves 

m. 

Nonlinear Waves Characteristic Speed Discontinuous Variables 

2 shocks A , = v f c  
2 contacts A, = v 

v ,  n 
V T  

The contact wave corresponding to a discontinuity in T has dis- 
appeared due to the parabolic heat conduction term V . ( KVT) 
in (3), and the soundspeed c = m. The limit K -+ 0 is a 
singular limit, with a discontinuous change in the soundspeed 
and the number of nonlinear waves (see [4] for a detailed anal- 
ysis). For T = a T o  and To = 300 K,  c = & 1.3 x lo7 cm/s,  
while for To = 77 K, c = & 6.6 X lo6 cm/s.  

3The collision terms may include the effects of electron-phonon and 
electron-impurity collisions, electron-hole generation and recombination, 
intervalley and interband scattering, etc. 

111. THE BALLISTIC DIODE PROBLEM 
The n+-n-n+ ballistic diode models electron flow in the chan- 

nel of a MOSFET, and exhibits hot electron effects at scales on 
the order of a micrometer. The diode begins with an n +  
“source” region, is followed by an n “channel” region, and 
ends with an n+ “drain” region. 

The effects of holes may be neglected for the ballistic diode 
problem. This implies that 

(;) = o .  
C 

The collision terms in ( 2 )  and (3) are approximated in terms of 
momentum and energy relaxation times. For the relaxation times 
and the thermal conductivity, I take the Baccarani-Wordeman 
models [5] (s)c = z, rp = m--  P n o  TO 

e T  (7 )  

-( W- :nTo) 

= 7,  

Irn 0 

e 
K = K~ - nTo ( 9 )  

where To is the ambient device temperature, pn0 = pn0( To, ND 
+ N A )  is the low-field electron mobility, and U, = U,( To)  is 
the saturation velocity. The models for rp and r,  include the 
effects of electron-phonon and electron-impurity collisions. 

In lD ,  the hydrodynamic model consists of three nonlinear 
conservation laws (for electron number, momentum, and en- 
ergy), plus Poisson’s equation for the electric potential 

d 
dx 

f, = - ( n u )  = 0 

d d+ d mnv f, = - (mnv’) - en - + - (nT) + - = 0 (11) 
dv d x d r  TP 

+ 

imnv’ + i n ( T  - TO) 
= 0 (12) 

7, 

d ’4 
dr 

f+ = E 7 + e ( N  - n )  = 0. 

For boundary conditions I take charge neutral contacts ( n  = 
N ) in thermal equilibrium ( T = To) with the ambient temper- 
ature at xmin and x,,,, with a bias V across the device: e+ (xmin) 
= Tln  ( n / n i )  and e+(x,,,) = T l n  ( n / n i )  + eV,  where n, is 
the intrinsic electron concentration. 

The variables n ,  T ,  and + are defined at the grid points i = 
0, 1, . . , N - 1, N, while the velocity U is defined at the 
midpoints of the elements 1, ( i  = 1, . . * , N ) connecting grid 
points i - 1 and i .  The boundary conditions specify n ,  T, and 
4 at i = 0 and i = N. Equations (IO), (12), and (13) are en- 
forced at the interior grid points i = 1, * . * , N - 1, while (1 1) 
is enforced at the midpoints of the elements l; ,  i = 1, . . * , N. 
The discrete equations are then derived by using either central 
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differences (if the flow is everywhere subsonic) or the second 
upwind method (for subsonic or transonic flow problems). 

The second upwind method4 is a conservative’ discretization 
which captures the essential physical transport property of 
supersonic flow, that advected quantities directly influence the 
solution only downstream. The method is formally first-order 
accurate, but is competitive with second-order upwind schemes. 
For subsonic flow, the second upwind method corresponds to 
the Scharfetter-Gummel discretization for strong electric fields; 
for weak electric fields the Scharfetter-Gummel discretization 
corresponds to central differences [7]. 

Equations (10)-(13) have the form 

where 
g,  = n g,, = mnu 

g ,  = nT -t mnu2 - en$ 

d 4  d 
d x d x  h,, = -en - + - (nT) 

and where the source terms s,, s,, and s, depend only on n ,  U ,  

and T. In the second upwind method, the advection terms 
d ( u g ) / d x  in (14) are discretized using second upwind differ- 
ences 

where 

and central differences are used for h,, h,, and h,. Recall that 
the velocity vi + I is located at the midpoint of element l j  + 

To linearize the discretized version of (lo)-( 13), I use New- 
ton’s method 

4See, e.g., [61. 
’The first-order upwind method is not conservative at points where the 

velocity changes sign. 

where J is the Jacobian and t is a damping factor [8] between 0 
and 1 ,  chosen to insure that the norm of the residual f decreases 
monotonically. 

Physical Parametys: In silicon, the effective electron mass 
m = 0.26me at 300 K and 0.24m, at 77 K, where me is the 
electron mass, E = 11.7, and ni = 1.45 X 1 O l o  cm-3 at 300 K 
and 2.84 x cm-3 at 77 K. The best value of K,, appears 
to be K~ = 0.4, according to comparisons of hydrodynamic and 
Monte Carlo simulations of the ballistic diode at 300 K [9] 
(using only one species of electrons). Monte Carlo simulations 
of the ballistic diode at 77 K are needed to determine the de- 
pendence of K~ on To, T, etc. 

I use the following models for pno and us [5], [lo]: 

pmin = 80 cm2/V . s 

(300 K / T ~ ) O . ~ ’  
(3Oo/200)O.~~ (200 K/Tof l 5  

(To L 200 K )  

(To < 200 K) 

(22) 
cm2 

A p  = (300 KITo? 1430 - - pmin 
v - s  

NEf = (T0/300 K)3’2 1.12 X l O I 7  ~ 3 1 1 ~ ~  (23) 

where N ,  = No + NA is the total impurity concentration, and 

2.4 x lo7 cm/s. (25) 
us(To)  = 1 + 0.8 exp (0.5T0/300 K)  

IV. COMPUTATIONS FOR SUBSONIC FLOW 
For the subsonic computations, I take a diode consisting of a 

0.1-pm source, a 0.4-pm channel, and a 0.1-pm drain. In the 
n +  region, the doping density N = 5 x l O I 7  ~ m - ~ ,  while in the 
n region N = 2 X l O I 5  ~ m - ~ .  ( I  use a hyperbolic tangent fitting 
over k0.05 pm at the junctions. ) The ambient device temper- 
ature To = 300 K = 0.0259 eV. The saturation velocity U ,  = 
1.03 x lo7 cm/s.  Note that U ,  < c ( T o )  = 1.3 X lo7 cm/s. 

To validate the second upwind method for subsonic prob- 
lems, I performed simulations (with 120 grid intervals) of the 
ballistic diode at V = 1 V using the hydrodynamic model. The 
simulations are in good agreement with other hydrodynamic and 
Monte Carlo simulations of the same device [9], [11]-[13], al- 
though there are differences due to the different numerical meth- 
ods and the different models for rp,  r,, and K .  

Fig. 1 compares the temperature of the electron gas for the 
central difference and second upwind methods. Note that the 
temperature increases as the electrons flow from left to right 
across the channel. The maximum temperature is five times 
higher than ambient. Recall that the drift-diffusion model as- 
sumes the electron temperature T = To throughout the device. 
Also note the slight cooling of the electron gas as the electrons 
enter the channel. This cooling results from the electrons hav- 
ing to overcome a small potential barrier at the junction (see the 
electric field in Fig. 2,  computed using the second upwind 
method). 

In Fig. 3, I compare the electron velocity for the central dif- 
ference and second upwind methods. Note that U > U ,  through- 
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15, Temperature , 

0 1 2 3 4 

Fig. 1. Electron temperature in electron-volts for V = 1 V, 0.4-pm chan- 
nel, 300 K: central difference (solid) versus second upwind (dotted). x is 
i n  0.1 pm for all figures. 

Electric Field 

20 

I I 

Fig. 2. Electric field in kilovolts per centimeter for V = 1 V ,  0.4-pm 
channel, 300 K. 

1 . 2 5 1  

Fig. 3.  Electron velocity in IO' cm/s for V = 1 V, 0.4-pm channel, 
300 K: central difference (solid) versus second upwind (dotted). 

out most of the channel. Typical Mach numbers for these flows 
are 5 0 . 7 .  The difference n - N between the electron density 
and the density of the background impurity ions is shown in 
Fig. 4 (using the second upwind method). Note the dipole do- 
main (an electron depletion region followed by an accumulation 
region) at the source-channel junction and the large depletion 
region at the channel-drain junction. The effect of the dipole 
domain is to set up a local electric field opposing diffusion of 
electrons from the source to the channel. The large depletion 
region at the channel-drain junction provides electrons to the 
channel, and (with the channel) sets up the electric field driving 
electrons from the channel to the drain. Even for this 0.4-pm 

0.15t Density n-N 

-0.1 

-0 .15 - @  . 0 5 V  

X 

Fig. 4. n - N in 10" cm-' for V = 1 V, 0.4-pm channel, 300 K 

device at a 1-V bias, the electron kinetic energy can be as much 
as 15% of the total energy. 

V.  COMPUTATIONS FOR TRANSONIC FLOW 
Higher electron velocities can be obtained by increasing the 

bias V across a device or by making the active device length 
shorter. Since the electron soundspeed c = q, higher elec- 
tron Mach numbers may also be obtained by lowering the am- 
bient temperature To. 

Preliminaly numerical evidence for a steady-state electron 
shock wave in the ballistic diode (at both 300 and 77 K )  using 
the hydrodynamic model was given by the author in [14]. The 
mathematical analogy with gas dynamics (including the math- 
ematical necessity of shock waves in the hydrodynamic model) 
was made in [14] and by the author, Jerome, and Rose in [13]. 
Fatemi, Jerome, and Osher presented numerical evidence for 
the existence of a transient shock wave in the ballistic diode at 
50 K using a high-order nonoscillatory upwind scheme in [15], 
although the models form,  rp, r , ,  and K were unphysical at 50 
K. 

In this investigation, I will present two parameter regimes for 
the ballistic diode in which there is a transition from subsonic 
to supersonic electron flow just to the right of the n+-n junction 
and from supersonic to subsonic flow to the left of the n-n+ 
junction. In analogy with gas dynamical flow in a Laval noz- 
zle,6 a shock wave develops at the transition from supersonic 
to subsonic flow. The n+-n-n+ doping of the ballistic diode cor- 
responds to the converging-diverging geometry of the Laval 
nozzle. 

The hydrodynamic shocks simulated below have a more com- 
plicated structure than shocks supported by the Euler equations 
of gas dynamics, due to the heat conduction term V . ( K V T )  in 
(3), the relaxation time source terms in ( 2 )  and (3), and the 
coupling of the electron gas to the electric field. For the (invis- 
cid) Euler equations, a shock wave is an exact discontinuity in 
n, U ,  and T, where U is the normal velocity of the gas [l]. In 
gas dynamics with heat conduction and viscosity, a shock wave 
varies rapidly but smoothly over a short viscous length scale 
[ 13, [ 171, [ 181. (The hydrodynamic model neglects the effects 
of viscosity in the electron gas.) If there is heat conduction, but 
no viscosity, the situation is more complex [17], [18]. In the 
frame of the shock, the flow ahead of the shock is supersonic 
and behind the shock is subsonic. If the Mach number M of the 
flow ahead of the shock is greater than 1 but less than a critical 

'See [ 161 for a theoretical and numerical investigation of a steady-state 
shock wave in a Laval nozzle. 
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Density n, N Density n-N 
I I I 

I I I I 
I I 

X 
-0.5 0 0 .5  1 1 . 5  

Fig. 5 .  Doping profile (dotted) and electron density (solid) in 10l8 
at V = 1 V for 0.1-pm channel device at 300 K. 

2 .  5, Velocity, Mach Number , 

X 
-0.5 0 0 .5  1 1 . 5  

Fig. 6 .  Electron velocity (solid) in lo7 cm/s  and Mach number (dotted) 
for V = 1 V, 0.1-pm channel, 300 K.  

Mach number M,, the shock is a rapidly varying smooth profile. 
If M > M,, then there is an outer profile to the shock wave with 
an inner exact discontinuity [17]. ( M ,  = U , / C  = 1.74 for a 
polytropic gas with y = 5/3,  where c = JT/m.) In simula- 
tions with numerical viscosity, the inner discontinuity will be 
spread out over several grid intervals. 

The transonic computations use the second upwind method. 
(The central difference method becomes unstable just as the 
maximum Mach number of the flow slightly exceeds 1 .) 

A. Electron Shock Wave at 300 K 
For the transonic computations at 300 K, I take a diode con- 

sisting of a 0.1-pm source, a 0.1-pm channel, and a 0.1-pm 
drain. In the n +  region, the doping density N = 5 x 10” ~ m - ~ ,  
while in the n region N = 2 x lOI5 cm-3 (see Fig. 5 ) .  (I use a 
hyperbolic tangent fitting over k0.0125 pm at the junctions.) 

Figs. 5-9 present a simulation of a Mach 1.6 electron shock 
wave at V = 1 V (with 120 grid intervals). Since the simulation 
is steady-state, we are in the rest frame of the shock. The shock 
profile develops at x, = 0.035 pm (see Fig. 6),  and is spread 
over about 5 A x .  The electron flow is subsonic behind ( b )  the 
shock profile and supersonic ahead ( a )  of the shock profile. 
Note that the shock wave is a sharp profile in U ,  M ,  and n (see 
Fig. 7) ,  and that nb > n,, ub < U, .  

The simulation of the 300 K shock wave has converged under 
mesh refinement with 120 grid intervals. The width of the shock 
wave (from the peak at x = 0.033125 pm to the slight “bend” 
at x = 0.044125 pm) is 0.0200, 0.01250, and 0.010000 pm 
for 60, 120, and 240 grid intervals, respectively. 

“’1 0 . 2  

Fig. 7. n - N in loi8 c r K 3  for V = 1 V ,  0.1-pm channel, 300 K. 

Temperature 

0.15  

0.125 

I Ix  
- 0 . 5  0 0 . 5  1 1 . 5  

Fig. 8 .  Electron temperature in electron-volts for V = 1 V ,  0.1-pm 
channel, 300 K.  

Electric Field 

20 

Fig. 9. Electric field in kilovolts per centimeter for V = 1 V,  0.1-pm 
channel, 300 K. 

Fig. 5 shows the doping profile and the electron density. The 
electron density in the channel is almost two orders of magni- 
tude greater than the background doping for this very short de- 
vice. The dipole domain (Fig. 7) at the source-channel junction 
has been distorted into a new wave consisting of a depletion 
region followed by a region where the electron density is sig- 
nificantly greater than the background doping density. The large 
depletion region at the channel-drain junction extends well into 
the drain. The electron temperature (Fig. 8) is also elevated 
well into the drain. Note the slight cooling of the electron gas 
as the electrons enter the channel, due to the small potential 
barrier at the junction. The electric field in Fig. 9 is qualita- 
tively similar to the field in Fig. 2, but the peak value is 3X 
higher. For this flow the electron kinetic energy can be as large 
as 45 % of the total energy. 
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0 . 0 6.- 

0 . 0 4 -  

Density n, N 

,- - - - -- 
I 

30x: 

Fig. 10. Doping profile (dotted) and electron density (solid) in 10" cm-3 
at V = 1 V for 1-pm channel device at 77 K. 

Fig. 12. n - N in  10" cm-3 for V = 1 V ,  1-pm channel, 77 K. The dotted 
curve is n - N magnified 30 x , 

Temperature 

0.12 

Fig. 13. Electron temperature in electron-volts for V = 1 V, 1-pm 
channel, 77 K. 

Fig. 11. Electron velocity (solid) in lo7 cm/s and Mach number (dotted) 
for V = 1 V ,  1-pm channel, 77 K .  ,,+ Electric Field , 

B.  Electron Shock Wave at  77 K 
For the transonic computations at 77 K, I take a diode con- 

sisting of a 0.1-pm source, a 1.0-pm channel, and a 0.1-pm 
drain. In the n+  region, the doping density N = 10'' cm-3 at 
77 K, while in the n region N = l O I 5  cm-3 at 77 K (see Fig. 
10). ( I  use a hyperbolic tangent fitting over k0.05 pm at the 
junctions.) The ambient device temperature To = 77 K = 
0.00665 eV. The saturation velocity U ,  = 1.26 x lo7 cm/s.  
Note that U ,  > c (  To) = 0.66 X lo7 cm/s.  

Figs. 10-14 present a simulation of a Mach 4.1 electron shock 
wave at V = 1 V (with 240 grid intervals). The shock profile 
develops at x, = 0.3 pm (see Fig. 1 l ) ,  and is spread over about 
1OAx. The electron flow is subsonic behind the shock profile 
and supersonic ahead of the shock profile. Note that the shock 
wave is a much sharper profile in U ,  M, and n (see Fig. 12) than 
the Mach 1.6 shock wave, and that n b  > nu, Ub < U, .  

The simulation of the 77 K shock wave has converged under 
mesh refinement with 240 grid intervals. The width of the shock 
wave (from the peak at x = 0.30125 pm to the right-angle 
"bend" at x = 0.35125 pm)  is 0.08, 0.060, 0.0550, and 
0.05000 pm for 60, 120, 240, and 480 grid intervals, respec- 
tively. 

Fig. 10 shows the doping profile and the electron density. 
The dipole domain (Fig. 12) at the source-channel junction and 
the large depletion region at the channel-drain junction are 
clearly visible. The electron temperature is plotted in Fig. 13. 
Note the dramatic cooling of the electron gas as the electrons 
enter the channel, due to the potential barrier at the junction. 

-254 I 
Fig. 14. Electric field in kilovolts per centimeter for V = 1 V, 1-pm 

channel, 77 K. 

The electric field in Fig. 14 differs qualitatively from the fields 
in Figs. 2 and 9 in that the presence of the strong shock wave 
is manifest near x = 0.3 pm. The electron kinetic energy can 
be as large as 80% of the total energy for this flow. 

VI. CONCLUSION 
Supersonic flow need not involve shock waves. The electron 

flow changes smoothly from subsonic to supersonic in Figs. 6 
and 11 as the electrons enter the channel. It is the transition 
from supersonic flow to subsonic flow that generically neces- 
sitates a shock wave in gas dynamics-that is, a wave over 
which density, velocity, and (if heat conduction equals zero) 
temperature change very rapidly. The n+ drain in the source- 
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channel-drain structure of the ballistic diode provides the 
mechanism to force a supersonic flow in the channel back down 
to subsonic flow. 

In an ideal limit (no viscosity and no heat conduction), the 
shock wave is an exact discontinuity in density, velocity, and 
temperature. Based on the analogy with gas dynamics, I expect 
the Mach 4.1 shock wave at 77 K to consist of an outer shock 
profile plus an inner exact discontinuity, which could be re- 
solved computationally over 1-2 grid intervals with a higher 
order Godunov method. With the second upwind method, the 
inner discontinuity appears to be spread over 3Ax with 480 grid 
intervals (the electron velocity changes from 2.31 x lo7 to 1.68 
x lo7 cm/s over 3Ax). Note that the discontinuous jump in U 

(and n )  for the 77 K shock waves implies a discontinuity in 
dT/dx,’ which is visible in Fig. 13. (The Mach 1.6 shock wave 
at 300 K should be a smooth shock profile.) 

Since the ballistic diode models the channel of a MOSFET, 
the development of the electron shock wave should have impli- 
cations for MOSFET performance, perhaps as a threshold effect 
in the I-V curves or switching time. Computations in progress 
for a two-dimensional FET should reveal more clearly further 
implications of the electron shock wave. 

The 1D shock computations imply that the electron shock 
waves are an integral part of the hydrodynamic model. The 
shock waves allow for higher electron velocities in the diode 
channel (the maximum U in Figs. 6 and 11 is greater than 2v,) 
and thus faster switching times, and provide a richer space- 
charge structure in the diode channel. 
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