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The lens effect of acoustic waves in a two-dimensional (2D) phononic crystal is studied 

by numerical simulation based on the finite-difference time-domain (FDTD) method. 

We calculate the phonon band structure of 2D phononic crystals, consisting of metal 

cylinders placed periodically in water. Lens effect is observed by the negative 

refraction of acoustic waves, which results in refocusing of the waves at the point 

outside the crystal. To increase the focal intensity, we introduce a 2D phononic crystal 

shield with a different composition of material, which returns the incident waves back 

to the lens via the perfect reflection. Also, the dependence on filling fraction of metal 

in the crystal is studied. 

 

 

1. INTRODUCTION 

 

The periodic structure consisting of a media 

that has different permittivity and permeability 

is called photonic crystal. Having the unique 

characteristics, such as the photonic band gaps, 

this artificial crystal can control the electro- 

magnetic wave propagation. Therefore, photonic 

crystal is expected to play important roles in 

various applications. Recently, the research focus 

in this direction has been extended to the study of 

acoustic waves in periodic composites, called 

phononic crystals[1]. Phononic crystal is also 

expected to poses the complete band gaps in 
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which sound and vibration are forbidden to 

propagate in all directions. Therefore, phononic 

crystal can be used to design various acoustic 

devices, such as the acoustic filters and 

waveguide [2]. 

Recently, new phenomenon called negative 

refraction is suggested as another unique feature 

in photonic crystal [3]. By the multiple 

scatterings, waves refract at the crystal surface 

as if crystal has negative refractive index. 

Analogous to this in the photonic crystal, negative 

refraction is also investigated in phononic crystal 

[4,5,6]. Negative refraction results in “lens effect” 

without the convex shape, in other words, 

phononic crystal can be a flat acoustic lens. This 
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characteristic is promising for novel acoustic 

devices, acoustic sensor and power supply to 

heart pacer. There are, however, some issues to 

resolve before applying the material to these 

applications, such as the high reflectivity at the 

surface of phononic crystal. Purpose of the 

present study is to approach to the issue by 

increasing the focal intensity. Specifically, we 

focus two approaches. One of approaches is 

covering the aoustic source with a phononic 

crystal shield, and the other is varying the filling 

fraction of the crystal.  

This paper is organized as follow: Chapter 2 

explains mechanism of negative refraction. 

Methodologies used in the present study are 

described in Chap. 3. Chapter 4 shows and 

discusses the results of the simulations. Finally, 

summary is given in Chap.5 

 

2. NEGATIVE REFRACTION 

 

It is called negative refraction that waves 

refract at crystal surface as if the crystal has 

negative refractive index. A diagram of negative 

refraction is shown in Fig.1. Negative refraction 

can be caused if the phonon band structure has a 

convex peak at the M point. For example, we 

suppose that the band structure of certain 

phononic crystal consisting metal cylinder in 

liquid and that of liquid look like Fig.2. A purple 

line represents the band structure of phononic 

crystal, and a black line is that of liquid base. The 

yellow region is the frequency range where 

negative refraction can be observed. The 

relationship between incident and refracted 

k-vector on the equivalent frequency surface 

(EFS) is depicted in Fig.3. The thin and thick 

arrows represent the wave vector and group 

velocity, respectively. The group velocity is 

determined by the frequency gradient at the k 

point ( ௚ݒ ൌ ߲߱/߲݇ ). When the incident waves 

propagate in liquid base, both the group velocity 

and the ncident waves are parallel to the wave 

vector. As the waves enter the region of phononic 

crystal, the wave vector of refracted wave is 

changed with conserving the vector component 

parallel to the interface. On the EFS of phononic 

crystal, direction of the group velocity is changed 

to the direction pointing to the M point in the k 

space, leading to the negative refraction. 

 

Fig.1 Schematics of negative refraction. Blue and 

red thick arrow indicate incident and 

refracted waves, respectively. 

 

Fig.2 The band structure of the phononic crystal 

(purple line) and liquid base (black line). The 

yellow region is the frequency range where 

negative refraction can be observed. Inset 

shows a square lattice and its Brillouin zone. 

 

Fig.3 EFS in k space of liquid (black contour) and 

phononic crystal (purple contour) in ω1. The 

thin and thick arrows indicate the wave 

vector and the group velocity, respectively. 
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  Appling this principle of negative refraction, we 

demonstrate “lens effect” illustrated in Fig.4. The 

phononic crystal slab is placed in liquid with the 

surface normal to the ΓΜ direction, and a line 

source is placed at the left side of the slab. 

Acoustic waves are emitted from the line source 

and propagate into the phononic crystal slab, 

which has negative refractive index. The 

transmitted waves are then refocused at the right 

side of slab. 

 

Fig.4 Schematics for “lens effect” by negative 

refraction. 

 

3. METHODOLOGY 

3.1 Basic Equation 

  We consider a 2D system consisting of infinitely 

long cylinders parallel to the ݖ  axis and the 

material parameters are independent on the 

coordinate ݖ. The propagation of elastic wave is 

assumed to be only in ݔ‐ ݕ  plane. The elastic 

wave equation in such a system is written as  

ߩ           డ２௨ೣడ௧మ ൌ డఛೣೣడ௫ ൅ డఛೣ೤డ௬                        ሺ1ሻ 

ߩ           డ２௨೤డ௧మ ൌ డఛೣ೤డ௫ ൅ డఛ೤೤డ௬                       ሺ2ሻ 

where ݑ௫,ݑ௬  are the ݔ‐ or ݕ‐ component of the 

displacement and ߩ  is the mass density. The 

stress tensor ߬௜,௝ሺ݅, ݆ ൌ ,ݔ   ሻis represented asݕ

          ߬௫௫ ൌ ଵଵܥ డ௨ೣడ௫ ൅ ଵଶܥ డ௨೤డ௬                  ሺ3ሻ 

          ߬௫௬ ൌ ସସܥ ቀడ௨೤డ௫ ൅ డ௨ೣడ௬ ቁ                   ሺ4ሻ 

          ߬௬௬ ൌ ଵଶܥ డ௨ೣడ௫ ൅ ଵଵܥ డ௨೤డ௬                  ሺ5ሻ 

where ܥଵଵ ଵଶܥ ,  and ܥସସ  are elastic constants 

which depend on the position. In an isotropic 

system, these are related to the longitudinal and 

transverse speeds of wave ܿ௟ and ܿ௧ as ܥଵଵ ൌ ସସܥ ,௟ଶܿߩ ൌ ଵଶܥ ௧ଶ andܿߩ ൌ ଵଵܥ െ   .ସସܥ2

 

3.2 FDTD Method 

  The FDTD method, which is based on a discrete 

algorithm for solving a differential equation in 

spatial and time domain, is a powerful tool to 

analyze the wave transmission. Using this 

method, we can observe displacement field as 

time advances. 

  The FDTD method is also able to calculate the 

dispersion relations of phonons [7,8]. Based on 

the Bloch theorem, owing to the periodicity, the 

displacement and the stress are written as 

,ሺ࢘ݑ          ሻݐ ൌ ݁௜࢑·ܷ࢘ሺ࢘,  ሻ                        ሺ6ሻݐ

         ߬ሺ࢘, ሻݐ ൌ ݁௜࢑·࢘ܶሺ࢘,  ሻ                         ሺ7ሻݐ

where ࢘ ൌ ሺݔ, ሻݕ  is a position in ݔ‐ ݕ  plane, ࢑ ൌ ൫݇௫, ݇௬൯ is a Bloch wave vector, and ܷሺ࢘,  ሻݐ

and ܶሺ࢘, ሻ are periodic functions which satisfy ܷሺ࢘ݐ ൅ ,ࢇ ሻݐ ൌ ܷሺ࢘, ሻ and ܶሺ࢘ݐ ൅ ,ࢇ ሻݐ ൌ ܶሺ࢘, ࢇ ሻ withݐ  being a lattice translation vector. After the 

stationary state is reached, temporal spectra of 

the displacements are Fourier-transformed to 

frequency domain. We then identify the 

eigenfrequency at a given wave vector by finding 

the peaks in the frequency spectra. 

 

4. RESULTS 

4.1 Band Structure 

  The band structure calculated with the FDTD 

method is shown in Fig.5. The material 

parameters, the mass density and sound speed, 

are as follow: ߩ ൌ 19.3 g/cmଷ , ܿ௟ ൌ 5.09 km/s , ܿ௧ ൌ 2.8 km/s  for tungsten; ߩ ൌ 10.5 g/cmଷ , ܿ௟ ൌ 3.70 km/s , ܿ௧ ൌ 1.7 km/s  for silver;        ߩ ൌ 1.0 g/cmଷ , ܿ௟ ൌ 1.49 km/s  for water, 

respectively. 
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Figure 5 (a) plots the band structure of 

phononic crystals consisting of silver and 

tungsten cylinders in water, which have different 

filling fraction f. (silver: f=0.7, tungsten: f=0.5). 

The colored central region is the frequency range 

which can reflect incident waves. Frequency 

values are in units of 2ܿߨ/ܽ , ܿ  and ܽ  are 

longitudinal sound speed of tungsten and lattice 

constant, respectively. Inset shows a square 

lattice and its Brillouin zone. 

 

 
Fig.5 Band structures of 2D phononic crystals; (a) 

phononic crystals consisting of silver (red 

cross) and tungsten (blue cross) cylinders in 

water, respectively. The colored central 

region is the frequency range in which 

incident waves are reflected; (b) phononic 

crystals with different filling fractions. Inset 

shows a square lattice and its Brillouin zone. 

 
Fig.6 EFS of phononic crystal consisting of 

tungsten cylinders in water. (filling fraction 

f=0.5) 

 

Figure 5 (b) shows the band structure for 

different filling fraction. As the filling fraction is 

lowered, the first band increases. 

Next, we analyze EFS of the phononic crystal 

consisting of tungsten cylinders in water with 

f=0.5, as shown in Fig.6. 

 

4.2 Effect of Shielding 

  We show the result of propagating acoustic 

waves via the FDTD simulations. Figure 7 depicts 

time average of normalized intensity 

distributions of displacement field without shield. 

We can see that the acoustic waves are focused at 

the right side of the phononic crystal slab in water. 

The normalized incident acoustic wave frequency 

is ω=0.66, at which we expected the negative 

refraction from the band-structure analysis.  

  Next, we show similarly the result with a shield 

in Fig.8. We can see the refocused point at the 

right side with higher intensity than the result 

without shield. The normalized intensity of the 

refocused point increases 2.2 times compared 

with the normalized intensity without the shield. 
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Fig.7 Time average of normalized intensity 

distributions of displacement field without 

shield. Normalized incident frequency is 

ω=0.66. 
 

 

Fig.8 Time average of normalized intensity 

distributions of displacement field with 

shield. Normalized incident frequency is 

ω=0.66. 

 

4.3 Dependence on Filling Fraction 

  By varying filling fraction, the band structure 

of phononic crystal can be changed significantly, 

as indicated in Fig.5 (b). Setting filling fraction to 

several values between 0.3 and 0.6, we perform 

the FDTD calculation on a similar model to that 

in Fig.7. The results are shown in Fig.9. These 

figures clearly reveal that the focal intensity is 

dependent strongly on the filling fraction, which 

has been expected from the EFS contour analysis.  

We show the relationship between the 

refocused intensity and the filling fraction in 

Fig.10. The results shown in Fig.10 shows that 

refocused intensity has maximum value around 

f=0.36. Vertical axis is focal intensity normalized 

by the intensity at f=0.36.  

 

Fig.9 Time average of normalized intensity 

distributions of displacement field for 

different filling fractions, 0.3, 0.4, 0.5, 0.6. 

 

Fig.10 Relationship between refocused intensity 

and filling fraction. Vertical axis is the focal 

intensity normalized by the intensity at 

f=0.36. 

 

5. SUMMARY 
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  We have presented that highly efficient “lens 

effect” of 2D phononic crystal can be obtained by 

optimizing its transmission properties by using 

the FDTD method. We proposed two approaches. 

The first approach is to cover the acoustic source 

with the phononic crystal shield, which achieves 

strong focal intensity. The second approach is to 

change the filling fraction of metallic cylinder in 

the phononic crystal. We found that an 

appropriate value of the filling fraction to 

maximize the refocused intensity is around 36%. 
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