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through a volume-of-fluid method
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A spherical drop, placed in a second liquid of the same density, is subjected to shearing between

parallel plates. The subsequent flow is investigated numerically with a volume-of-fluid ~VOF!
method. The scheme incorporates a semi-implicit Stokes solver to enable computations at low

Reynolds number. Our simulations compare well with previous theoretical, numerical, and

experimental results. For capillary numbers greater than the critical value, the drop deforms to a

dumbbell shape and daughter drops detach via an end-pinching mechanism. The number of daughter

drops increases with the capillary number. The breakup can also be initiated by increasing the

Reynolds number. © 2000 American Institute of Physics. @S1070-6631~00!02002-X#

I. INTRODUCTION

The study of dynamics of a drop in shear flow is of

fundamental importance in dispersion science, and has

evoked great interest, most notably since the experiments of

G. I. Taylor.1,2 The reader is referred to two review articles3,4

for references on this subject. More recently, experimental

observations of the sheared breakup have been recorded in

Ref. 5: A strong shear is applied to a single drop, which

elongates and undergoes end pinching via a process which is

termed ‘‘elongative end pinching’’ as opposed to ‘‘retractive

end pinching,’’ studied in Ref. 6. These processes, which

yield daughter drops, are paradigms of theoretical investiga-

tions into emulsification and mixing.4,7–9 Computational

studies10 have elucidated regimes where the drop deforms to

the point of breaking, but results on the motion past breakup

are limited. Further numerical exploration on the stages in

the formation of daughter drops under shear are reported in

this paper. The simulations are conducted as three-

dimensional initial value problems, with the volume-of-fluid

scheme.11,12

The experimental work of Ref. 5 focuses on a viscous

drop suspended in a second immiscible liquid ~the matrix

liquid! in a cylindrical Couette device. The difference in den-

sity between the two liquids is a minor effect, and the flow is

sufficiently slow, so that centrifugal effects in the cylindrical

device are not important. A theoretical model for this is sim-

ply three-dimensional Couette flow with zero gravity, as

shown in Fig. 1. The liquid drop has an undeformed radius a

and viscosity md , and the matrix liquid has viscosity mm .

The matrix liquid is undergoing a simple shear flow between

two parallel plates, placed a distance d* apart. The undis-

turbed velocity field is u5ġzi, where ġ is the imposed shear

rate. Additional parameters for our numerical simulations are

the interfacial tension s, and the spatial periodicities lx
* and

ly
* in the x and y directions, respectively. There are six di-

mensionless parameters: A capillary number Ca5aġmm /s ,

where an average shear rate is defined ġ5U*/d*, the vis-

cosity ratio l5md /mm , the Reynolds number Re

5rmġa2/mm , the dimensionless plate separation d5d*/a , di-

mensionless spatial periodicities lx5lx
*/a and ly5ly

*/a .

In the study of drop dynamics in shear flow, one of the

greatest difficulties is that the domain of interest contains an

unknown free boundary, namely the interface. The interface

moves from one location to another, and may undergo severe

deformations including breakup. The interface plays a major

role in defining the system and it must be determined as part

of the solution. To investigate this problem numerically, the

primary step is to choose an interface tracking method.

There are many interface tracking methods,13 such as the

moving grid method, the front tracking method, the level set

method and the volume-of-fluid method, hereinafter called

the VOF method. Each of these methods has its own advan-

tages and disadvantages. In the past, all numerical studies of

a viscous drop in shear flow have been performed with the

boundary integral method, combined with a front tracking

method. An advantage of the front tracking method is the use

of marker particles to track the interface explicitly; the infor-

mation regarding location and curvature of the interface is

explicitly available during the whole calculation process.

Therefore, each boundary condition can be applied directly

and accurately. This generally reduces by a considerable

amount the resolution required to maintain accuracy. As a

consequence, boundary integral methods have been applied

successfully to the problem of drop deformation in shear

flow. However, the implementation of boundary integral

methods poses a major obstacle, because it is very difficult to

handle merging and folding interfaces. This requires re-

ordering the interface points and can result in a significant

logical programming and computational overhead. The VOF

method, on the other hand, provides a simple way of treating

the topological changes of the interface, as well as ease of

generalization to the three-dimensional case. The latter two

issues are key issues in the simulation of drop breakup in

simple shear flow. The VOF method was first introduced by

DeBar14 in 1974, followed by significant advance froma!Electronic mail: renardyy@math.vt.edu
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Youngs’ work15 eight years later. Recent works include Refs.

16–19.

Our numerical study differs from previous works in the

following points. The velocity and pressure are used as

primitive variables and the incompressibility constraint is

satisfied on the fluids by a projection method. The boundary

integral method incorporates a simple shear flow out to in-

finity. We examine the limitations of this assumption by

changing the plate separation, from placing the plates close

to the drop and then farther away. We can also take into

account the inertia term and consider higher Reynolds num-

ber flow, and therefore, investigate the approximation of low

Reynolds number motion by Stokes flow. Previous numeri-

cal works, on the other hand, are quasi-steady Stokes flows:

Given the drop shape at each time step, the boundary integral

method is used to solve for a steady velocity field through an

iteration. Our numerical method is designed to solve initial

value problems, and a steady solution would be reached

eventually. However, for capillary numbers close to critical,

this evolution takes a longer time and becomes computation-

ally expensive. From the theoretical point of view, our code

could be converted to a steady code by neglecting the time-

dependent acceleration term. However, the details in our pro-

jection method are not easily converted, and the numerical

resolution does not become cheaper. We, therefore, compare

the past Stokes flow results against low Reynolds number

flow and against unsteady Stokes flow, where the inertial

convective term has been neglected.

The VOF method conserves mass accurately, and this is

essential for calculating the steady solution at low capillary

numbers because the final shapes are obviously sensitive to

the drop volume. However, questions have been raised on

the accuracy of calculation for the surface tension force.20

The goal of this work is, therefore, twofold. On the one hand,

we investigate the physics of the deformation of a viscous

drop by simple shear by the VOF method. On the other hand,

this is a prototype problem to test the accuracy of the VOF

method, through the comparison with existing results from

the boundary integral approach. A satisfactory comparison

will be shown in subsequent sections, thus justifying the use

of the VOF method to explore the dynamics of a drop in the

breakup regime, which is difficult to treat with the boundary

integral method. The rest of this paper is organized as fol-

lows. In Sec. II, the governing equations and the numerical

method are given. In Sec. III, we study the deformation of a

viscous drop for subcritical capillary number, where the drop

is stretched to an approximately ellipsoidal shape. The de-

tails of the shape and the values of the critical capillary num-

ber, computed by our method for various viscosity ratios of

the drop to matrix liquids, agree quantitatively with results in

the literature. The main advantage of our method is that it

conserves mass, and no rescaling of the mass is needed dur-

ing the calculation. A loss of mass would otherwise cause an

overestimation of the interfacial tension force. This accuracy

is especially important for the computation of this evolution,

where each stage depends sensitively on the interfacial ten-

sion force. In Sec. IV, the breakup of a viscous drop is in-

vestigated. Figure 13 shows an experimental observation of

Ref. 5 for two fluids of different viscosities, and our numeri-

cal simulation of Fig. 16 captures the main features. Initially,

the elongative end-pinching mechanism produces the largest

daughter drops, followed by the production of a small drop,

then a large drop, then a small drop, then two large drops,

toward the center of the bridge. Section V is an investigation

of inertial effects. The dynamics of the drop breakup for

Stokes flow is replicated at low Reynolds numbers, and the

addition of a small amount of inertia leads to small changes.

However, an increase in Reynolds number, which is equiva-

lent to making the liquids less viscous, leads to more com-

plicated flow patterns. Finally, a conclusion is given in Sec.

VI.

II. NUMERICAL METHOD

A. The equations of motion

The flow is composed of two immiscible liquids of dif-

ferent densities and viscosities. The placement of the two

fluids is represented by a concentration function C

C~x!5H 1 fluid 1

0 fluid 2
. ~2.1!

The average values of density and viscosity are interpolated

by the following formulas

r5Cr11~12C !r2 , ~2.2!

m5Cm11~12C !m2 . ~2.3!

The concentration function C is governed by a transport

equation

]C

]t
1u•¹C50, ~2.4!

where u is the velocity of the flow. The fluids are incom-

pressible

¹•u50, ~2.5!

and governed by the Navier–Stokes equations

rS ]u

]t
1u•¹uD52¹p1¹•mS1F, ~2.6!

FIG. 1. Flow schematics. The computational domain is spatially periodic in

the x and y directions with periodicities lx
* and ly

* , respectively. Plate

separation is d*. Upper wall moves with velocity (U*,0,0). The lower wall

is at rest. Drop radius is a , and drop viscosity is md . The matrix viscosity if

mm .
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where r is the density, m the viscosity, p the pressure, S the

strain rate tensor

Si j5

1

2
S ]u j

]x i

1

]u i

]x j
D ,

and F the source term for the momentum equation. F in-

cludes gravity and the interfacial tension force. The interfa-

cial tension force is Fs5sknSds , where s is the interfacial

tension, k is the mean curvature and nS is the normal to the

interface.

B. Temporal discretization and projection method

Our numerical method is composed of three parts: A

second-order VOF method to track the interface, a projection

method to solve the Navier–Stokes equations on the MAC

grid ~Fig. 2!, and finally, a continuum method for modeling

the interfacial tension.16,17,21–23 The 2D ~two-dimensional!
version is explained in detail in Ref. 11, and the axisymmet-

ric version in Ref. 12. The generalization to the three-

dimensional version is straightforward and we sketch it here.

1. The volume fraction field

In order to successfully represent and track the interface,

we must answer three questions: ~1! How do we represent

the interface on a finite mesh? ~2! How will the interface

evolve in time? and ~3! how should we apply boundary con-

ditions on the interface? At the discrete level, the concentra-

tion function C is represented by the volume fraction of one

fluid, say fluid 1. This is also called the VOF function. When

a cell is filled by fluid 1, VOF51, and when a cell does not

contain any of this fluid, VOF50. The interface lies in the

cells with the VOF between 0 and 1. It is well known that the

VOF method conserves mass while still maintaining a sharp

representation of the interface. One of the most important

ingredients is the accurate computation of the curvature of

the interface from the volume fraction field. This difficulty

provides a test of accuracy for our implementation of the

boundary conditions posed at the interface.

Given an interface, we can calculate a unique volume

fraction field. On the other hand, given a volume fraction

field, the reconstruction of the interface, together with an

accurate orientation and local curvature, poses a problem.

This affects the approximation of the boundary conditions at

the interface. The interfacial tension condition at the inter-

face cannot be applied directly, but rather as a body force

over the cells which contain the interface. Two such formu-

lations have been implemented in this work. The first is the

continuous surface force formulation of Ref. 24, in which

fs5sknS , and Fs5fs¹C . The second is the formulation of

Ref. 21, in which Fs5¹•T5sdSknS and T5@(12nS

^ nS)sdS# , which leads to a conservative scheme for the

momentum equation. We have compared the results obtained

from these two formulations. The difference is very small,

roughly 1% for the simulation of a drop settling to a steady

solution on the 64364 mesh. We have a preference for the

second formulation because we only need to estimate the

first derivatives of n.

2. The projection method

The simultaneous solution of the continuity and momen-

tum equations is computationally expensive. An efficient ap-

proximation is provided by a projection method,25 which

proceeds as follows. Given the physical quantities at time

level n , the first step is to calculate an intermediate velocity

u* which satisfies

u*2u
n

Dt
52u

n
•¹u

n
1

1

r
~¹•~mS!1F!n. ~2.7!

u* is not, in general, divergence-free. We then correct u* by

the pressure term

u
n11

2u*

Dt
52

¹p

r
, ~2.8!

where u
n11 at time level n11 satisfies

¹•u
n11

50. ~2.9!

The key idea of this projection method is to substitute Eq.

~2.8! into Eq. ~2.9!, to obtain a Poisson equation for the

pressure

¹•S ¹p

r
D52

¹•u*

Dt
. ~2.10!

The solution of this equation is the most time-consuming

part of the Navier–Stokes solver and an efficient solution is

crucial for the performance of the whole method. Potentially,

the multigrid method is the most efficient method. The basic

idea of the multigrid method26 is to combine two comple-

mentary procedures: One basic iterative method to reduce

the high-frequency error, and one coarse grid correction step

to eliminate the low-frequency error. We choose a two-color

Gauss–Seidel iterative method because it breaks the depen-

dence between the variables and, therefore, allows for paral-

lelization of the scheme. We use a Garlerkin method to pro-

vide a good coarse grid correction.

3. Three-dimensional semi-implicit scheme

The above description completes the characterization of

our numerical method. However, one weakness is that it is

an explicit method, and not suitable for simulations of low

Reynolds number flows or Stokes flows. For an explicit

method, the time step Dt should be less than the viscous time

scale, Tm5rh2/m , where h denotes the mesh size. There-

FIG. 2. Location of variables in a MAC mesh cell.
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fore, simulations of low Reynolds number flows or Stokes

flows are subject to strict stability limitations and are expen-

sive. In order to overcome this difficulty, we have presented

a semi-implicit scheme for the two-dimensional case in Ref.

11 and proved that this scheme is unconditionally stable. It is

more difficult to prove the stability of the three-dimensional

~3D! scheme. The stability analysis can be carried out as

follows. The 3D semi-implicit scheme for the u-component

is

u*2un

Dt
5

1

rn

]

]x
~2mnux

*!1

1

rn

]

]y
~mnuy

*1mn
vx

n!

1

1

rn

]

]z
~mnuz

*1mnwx
n!, ~2.11!

and similarly for the v , w components. Let u ,v ,w

;exp(iax1iby1igz) and let m51, r51 for simplicity.

Then

S
u*2un

Dt

v*2v
n

Dt

v*2v
n

Dt

D 5S 22a2
2b2

2g2 0 0

0 2a2
22b2

2g2 0

0 0 2a2
2b2

22g2
D S u*

v*

w*
D 1S 0 2ab 2ag

2ab 0 2bg

2ag 2bg 0
D S un

v
n

wn
D ,

~2.12!

which reduces to

S 11Dt~2a2
1b2

1g2! 0 0

0 11Dt~a2
12b2

1g2! 0

0 0 11Dt~a2
1b2

12g2!
D S u*

v*

w*
D

5S 1 2abDt 2agDt

2abDt 1 2bgDt

2agDt 2bgDt 1
D S un

v
n

wn
D . ~2.13!

The eigenvalues of the left matrix are 11Dt(2a2
1b2

1g2), 11Dt(a2
12b2

1g2) and 11Dt(a2
1b2

12g2).

The eigenvalues of the right matrix are solutions of the fol-

lowing cubic equation

detS 12l 2abDt 2agDt

2abDt 12l 2bgDt

2agDt 2bgDt 12l
D 50. ~2.14!

Let h512l . The above equation can be written as

h3
2~a2b2

1a2g2
1b2g2!Dt2

22a2b2g2Dt3
50.

~2.15!

For the cubic equation

h3
1ah2

1bh1c50, ~2.16!

we first compute

Q[
a2

23b

9
5

1

3
~a2b2

1a2g2
1b2g2!Dt2,

R[
2a3

29ab227c

54
5a2b2g2Dt3.

Since Q3>R2, the cubic equation has three real roots. These

are found by computing

u5arccos~R/AQ3!,

in terms of which the three roots are

h1522AQ cosS u

3
D2

a

3
,

h2522AQ cosS u1p

3
D2

a

3
, ~2.17!

h3522AQ cosS u12p

3
D2

a

3
.

However,

uh1,2,3u2<~ u2AQu!2< 4
3 ~a2b2

1a2g2
1b2g2!Dt2

<~a2
1b2

1g2!2Dt2.

It is then easy to see the absolute values of the three eigen-

values of the right matrix are less than those of the left ma-

trix. In summary, the above semi-implicit scheme is first-

order accurate in time and unconditionally stable. The

stability of this scheme is crucial for the simulation of low

Reynolds number flow and Stokes flow.

C. Spatial discretization

An Eulerian mesh of rectangular cells is used. The mo-

mentum equations are finite differenced on a locally variable,

staggered mesh. As Fig. 2 shows, the x component of veloc-
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ity u i2(1/2), j ,k , the y component of velocity v i , j2(1/2),k and

the z component of velocity w i , j ,k2(1/2) are centered at the

right face, front face and top face of the cell, respectively,

whereas the pressure, p i , j ,k is located at the center. This is

the so-called MAC method. In our previous work, the con-

centration function was defined on the same mesh grid as the

velocity and the pressure. This is not obligatory. Indeed, low

Reynolds number flow is characterized by slow change of

velocity in space and in time. On the other hand, the flow

behavior is dominated by the interface evolution. Therefore,

in order to achieve accurate representation of the interface,

more concentration values are needed. Based on this obser-

vation, we define the concentration function on a computa-

tional grid which is twice as fine as the grid for the velocity

and pressure ~Fig. 3!. An adaptive mesh would be superior,

but our two-level method is easily built upon our previous

work and presents a compromise between the simplicity and

the efficiency. To insert our previous routines into the two-

level-mesh grid method, the only work we need to do is to

implement a prolongation procedure, which extrapolates the

velocities from the coarse grid to the fine grid and a restric-

tion procedure, which transfers the concentration value from

the fine grid to the coarse grid. The prolongation relations are

derived by a bilinear interpolation. For each coarse grid

node, four ~eight! fine grid values are derived for the 2D case

~3D case!. For the u-velocity in the 2D case, let (ic , jc) and

(i f , j f ) denote coarse and fine mesh indices, respectively.

Then i f 52(ic)21, j f 52( jc)21 and

U f~ i f , j f !5
1
4 ~3U1

c
1U2

c !,

U f~ i f , j f 11 !5
1
4 ~U1

c
13U2

c !, ~2.18!

U f~ i f 11,j f !5
1
8 ~3U1

c
1U2

c
13U3

c
1U4

c !,

U f~ i f 11,j f 11 !5
1
8 ~U1

c
13U2

c
1U3

c
13U4

c !, ~2.19!

where the superscripts c , f denote coarse and fine grid val-

ues. The v-velocities can be prolongated by equivalent rela-

tions. To recover the concentration function on the coarse

grid, the restriction procedure is simply made by averaging

nearby values; that is

Cc~ ic , jc !5
1
4 ~C f~ i f , j f !1C f~ i f 11,j f !1C f~ i f , j f

11 !1C f~ i f 11,j f 11 !!. ~2.20!

This two-level method refines only the interface tracking on

the finer grid and keeps the resolution of the velocity field on

the coarse grid. This is a cheap way to improve accuracy, but

it should be used with caution because the velocity @Eq.

~2.19!# interpolated from the coarse grid is no longer

divergence-free on the fine grid. This may violate the mass

conservation. A divergence-free interpolation can be ob-

tained through the following lower order formulas:

U f~ i f , j f !5U1
c ,

U f~ i f , j f 11 !5U1
c ,

U f~ i f 11,j f !5U1
c , ~2.21!

U f~ i f 11,j f 11 !5U1
c .

The direct simulation of two fluid flow is often limited

by computing cost and machine memory, especially in the

3D case. Three issues have been of utmost importance in

order to improve performance: The accuracy, the stability

and the efficiency. The entire code has been parallelized: On

the Origin2000 with 16 parallel processors, the efficiency of

our code is more than 80%.

III. NUMERICAL STUDIES OF CRITICAL CAPILLARY
NUMBER

In the simple shear flow illustrated in Fig. 1, the dynam-

ics of the drop is essentially determined by two competing

forces: the viscous shear stress mmġ of the matrix liquid

which causes the drop deformation and the characteristic

Laplace pressure s/a which resists the deformation. The

capillary number Ca5mmġa/s , defined as the ratio between

FIG. 3. Coarse and fine mesh grid.

FIG. 4. Scalar measures of deformation and orientation.

TABLE I. Taylor deformation parameter D for steady-state drop for l51;

Stokes flow. A, B and C represent the computational domains 23131, 2

3132 and 23134, respectively.

Ca 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.42

A 0.689 unsteady unsteady

B 0.119 0.181 0.244 0.309 0.372 0.469 0.585 unsteady

C 0.114 0.172 0.232 0.293 0.360 0.436 0.541

TABLE II. Orientation parameter 452u of drop upon reaching steady state,

for l51; Stokes flows. A, B and C represent the computational domains

23131, 23132 and 23134, respectively.

Ca 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.42

A 33.0 unsteady unsteady

B 8.48 12.1 15.0 17.1 19.6 25.3 30.7 unsteady

C 8.58 12.3 15.5 17.9 19.1 23.3 27.3
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these two forces, provides a useful measure of efficiency of

the shear flow to deform the drop. Another important number

is defined as the ratio of drop viscosity to matrix liquid vis-

cosity l5md /mm . These two dimensionless parameters

characterize the behavior of the suspended drop, provided

the Reynolds number Re5rmġa2/mm is small. Several previ-

ous experimental, theoretical and numerical studies have

shown that when l is less than four, there is a ‘‘critical

capillary number’’ Cac , above which the drop continues to

deform without reaching a steady shape, and this leads to

disintegration. For capillary number Ca under the critical

value, a steady drop shape exists in a steady shear flow. The

critical capillary number for breakup of an isolated drop in

shear flow is lowest for l roughly around 0.6,30 and the value

is just slightly less than the case for l51, where Cac

'0.41 is critical.27

In the case where the drop evolves to a steady shape, two

parameters have been used to measure the deformation at-

tained by the drop in its final stage. The first is the Taylor

deformation parameter, D5(L2B)/(L1B), where L and B

are the half-length and half-breadth of the drop, respectively.

The second parameter is the angle u of orientation of the

drop with the axis of shear strain ~Fig. 4!. Our first goal in

this paper is to compute the critical capillary number accu-

rately; i.e., for capillary number less than the critical value,

FIG. 5. Cross-sectional slice in the x-z

plane through the center of the drop

for steady-state solution in simple

shear flow. l51, equal densities,

Stokes flow. Velocity vectors are dis-

played.

FIG. 6. Superposition of drop shapes obtained by one-level method ~outer

line! and two-level method ~inner line!. 23134 domain. Ca50.40, Re

50.0, l51, equal densities. Cross-sectional slice in the x-z plane through

the center of the drop.

FIG. 7. Steady-state velocity field and drop shape for Ca50.40 calculated

by the two-level method. 23134 domain, Re50.0, l51, equal densities.

Cross-sectional slice in the x-z plane through the center of the drop.
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we should obtain a steady solution. By comparing our results

to the previous results in the literature, we can then judge the

accuracy of the VOF method. We have studied the case

which has been most analyzed in the literature with the

boundary integral method: l51. The drop is given an initial

radius a50.25 and the unperturbed shear rate is 1.0. The

external Reynolds number is then Re5reġa2/me50.0625,

and this is in the Stokes flow regime. For Ca less than the

critical value, we have retrieved the same steady solution.

Numerical simulations of Stokes flows have been con-

ducted for capillary numbers Ca50.10, 0.15, 0.20, 0.25,

0.30, 0.35, 0.40, and 0.42. The computational domains are

boxes of dimensions 23131, 23132, and 23134. The

difference in height among the boxes is used to investigate

the effect of plate separation. The initial condition at time

T50.0 is that the drop has a spherical form and the initial

velocity field is null inside the computational domain. The

no-slip condition is imposed on the top and bottom plates

and periodic conditions in the x direction and y direction.

Constant velocities are imposed on the top and bottom plates

such that the shear rate is constant during the whole compu-

tation. All the computations have been done with the one-

level method. The mesh sizes are Dx5Dy5Dz51/32. The

parameters D and u for the steady-state solutions are shown

in Tables I and II, respectively.

The first remark from these computations is that the

VOF method is accurate and we are able to predict the cor-

rect critical capillary number. In the 23132 computational

domain, we obtained a steady solution for capillary number

Ca50.40 and the flow is unsteady for Ca50.42. This result

agrees with previous numerical results obtained with bound-

ary integral methods. Figure 5 shows cross sections of the

FIG. 8. Deformation of a viscous drop in simple shear flow. Comparison of

the steady-state drop deformation parameter D for viscosity ratio l51.0,

equal densities, Stokes flow. L VOF computations; h boundary integral

computations of Rallison; 3 boundary integral computations of Kwak

et al.; n boundary integral computations of Kennedy et al.; s experimen-

tal results by Rumscheidt and Mason; the solid line represents the

asymptotic results by Cox for small deformation ~cf. Fig. 11 of Ref. 28!.

FIG. 9. Deformation of a viscous drop in simple shear flow. Comparison of

the steady-state drop orientation angle u measured in degree for viscosity

l51.0, equal densities, Stokes flow. L VOF computations; h boundary

integral computations of Rallison; 3 boundary integral computations of

Kwak et al.; n boundary integral computations of Kennedy et al.; s ex-

perimental results by Rumscheidt and Mason; the solid line represents the

asymptotic results by Cox for small deformation ~cf. Fig. 11 of Ref. 28!.

FIG. 10. Cross-sectional slice in x-z plane through the center of the drop. In

the top three figures, the viscosity ratio is l50.5 and Ca50.38, 0.40, 0.42.

In the bottom plot, l50.1, Ca50.40. The top and bottom solutions have

achieved steady states. Equal densities, Stokes flow.
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steady shapes in the x-z plane for Ca50.1, 0.2, 0.30, and

0.40. It is evident that the larger the capillary number, the

larger the drop deformation and rotation. We should mention

that mass conservation is essential for the accurate calcula-

tion of the steady parameters D and u. If a method were to

lose mass during the calculation, the effective capillary num-

ber would decrease and the method would overestimate the

surface tension force. Our simulations show that our VOF

method has a very accurate mass conservation property. For

example, take the Ca50.40 case; the total VOF of the drop is

2144.675 initially, and it is 2144.619 when the steady solu-

tion is reached. The loss of mass is 0.0026%. This level of

precision is yet to be achieved by the front-tracking and level

set methods.

Secondly, we study the influence of the distance between

the two plates where the boundary conditions are imposed.

In all these calculations, the undeformed drop has radius a

50.25. When the plate separation is small (d51 or d/a

54), no steady solution was obtained for Ca50.40. The

close proximity of the two plates reduces the critical capil-

lary number. On the other hand, for large plate separations

(d52, 4, or d/a58, 16!, the liquids have more space to

arrange themselves and the results show less sensitivity to

the placement of the walls. The effect of Reynolds number

was also studied by investigating the Navier–Stokes flow at

the previously mentioned Re50.0625. On the computational

domain 23132, we obtained the steady parameters D

50.312 and u528.1 for Ca50.25. These values are only

slightly larger than the values obtained from Stokes flow. We

FIG. 11. Evolution of drop shape for

Ca50.42 in domain 33132, l51,

equal densities, Re50.0.

FIG. 12. Cross-sectional slice in the x-z plane through the center of the drop.

Velocity vector fields in the x-z plane are shown during the breakup of a

drop in simple shear flow for capillary number Ca50.42, l51, equal den-

sities, Re50.0.
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conclude that the unsteady Stokes flow is a good approxima-

tion for low Reynolds number flow.

Our steady parameters obtained from the 23134 do-

main agree well with those of Refs. 28 and 29 which treat the

case of walls out at infinity, for small capillary numbers. For

example, for Ca50.20, we obtained D50.232, while D

50.224 in Ref. 28 and D50.236 in Ref. 29. For Ca50.25,

we obtained D50.293, while D50.272 in Ref. 28 and D

50.290 in Ref. 29. However, the discrepancy widens for

larger capillary number. We obtained D50.541 for

Ca50.40, in comparison to D50.50 in Ref. 28 and no

steady solution is found in Ref. 29. We believe that this is

essentially due to the lack of mesh refinement. The larger the

capillary number, the more the drop is stretched, and the

larger the curvature at the ends of the drop. Hence, more

resolution is needed for accurate computation of the surface

tension force. To justify this idea, we have refined the rep-

resentation of the interface on the 23134 domain. For rea-

son of efficiency, we used the two-level method rather than

refining the entire mesh. We obtained the improved result of

D50.534 and u518.5. The significance of this is shown in

Fig. 6, where the drop shapes obtained by the two-level and

the one-level methods are superimposed; the inner line is

computed with the two-level method and the outer line with

the one-level method. The two drop shapes coincide well

except at the ends, where the curvature is large. Therefore,

the results obtained by the two-level method represent a sig-

nificant improvement on those by the one-level method.

To examine more carefully the drop deformation in the

shear flow, we plot the drop shape and the velocity fields in

the x-z plane, cut through the middle of the bubble, in Fig. 7.

This provides a very nice visualization of the flow pattern of

the drop in shear flow. Far away from the droplet, we see the

basic simple shear flow pattern, with the flow moving toward

the left at the top and toward the right at the bottom. Near the

droplet, the velocity is tangential to the interface and the flow

moves along the interface, which is consistent with the con-

ditions at a free surface. The competition between the exter-

nally imposed shear flow and the surface tension driven flow

produces a closed vortical motion interior to the drop.

Figures 8 and 9 show graphs of D and u for the steady

states attained for viscosity ratio l51, along with results of

previous experimental and numerical investigations ~cf. Fig.

11 of Ref. 28!. We conclude that the VOF method obtains

results comparable to the boundary integral method.

FIG. 13. Reproduction of Fig. 4.3.1.a of Ref. 5 showing a typical breakup.

Matrix viscosity 7.0 Pa.s, drop viscosity 4.3 Pa.s, interfacial tension 10.7

mN/m, initial drop radius 0.048 cm, shear rate 2.17/s, equal densities.

FIG. 14. Interface evolution as viewed from the side of the computational

box 83131 during breakup for Ca50.45, Re50.125, l51, equal densi-

ties. 256364364 grid.
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We have also investigated the critical capillary number

for different viscosity ratios l. The top three plots in Fig. 10

show the case l50.5 and the bottom plot shows the case

l50.1, with equal densities, and zero Reynolds number. The

sequence of shapes for l50.5 are the solutions after a rela-

tively long time for Ca50.38, 0.40, and 0.42. The elliptical

shape for Ca50.38 is attained as a steady-state solution. The

Taylor parameter is D50.55. The shapes for Ca50.40 and

0.42 are still evolving toward the dumbbell shape. The evo-

lution for Ca50.40 is extremely slow, indicating that this

capillary number is close to and above the critical value for

breakup. Both Ca50.40 and 0.42 clearly display the forma-

tion of the waist near the center of the drop, which signals

the initiation of breakup. Our simulations show that the criti-

cal capillary number for viscosity ratio l50.5 lies between

0.38 and 0.40, which is slightly less than the one for l51.

This is in good agrement with Grace’s experimental data,30

for which the minimum critical capillary number is in the

region of l50.6, and is slightly less than that for l51.

Their data show also that at viscosity ratios much less than 1,

or much greater than 1, the critical capillary number in-

creases rapidly. We have also confirmed this. The bottom

plot in Fig. 10 shows the steady-state shape for l50.1 and

Ca50.40. The drop has an ellipsoidal form and the Taylor

parameter is D50.44, which is much less than the D

50.54 for l51. This confirms that a much larger critical

capillary number is needed for drop breakup at this low vis-

cosity ratio. The velocity vector plot clearly shows that the

vortical motion inside the drop is markedly stronger than for

l51 because the drop liquid is now much less viscous than

the matrix liquid.

IV. RUPTURING A DROP IN SHEAR WITH THE VOF
CODE

When the shear rate is increased past a critical value, the

drop ruptures. Based upon previous works, the critical cap-

illary number for l51 is roughly 0.41. Indeed, our compu-

tation predicts an unsteady solution for Ca50.42 in the do-

main 33132. Figure 11 shows the evolution of the drop

shape on a 96332364 mesh grid. The drop continuous to

deform and eventually breaks up. The competition between

the externally imposed shear flow and the surface tension

driven flow is clearly evident in the figures. Initially, the

most noticeable motion is the elongation of the drop,

stretched by the viscous shear stress of the external flow

~time T50.0, 10.0, and 20.0!. To time T530.0, we see

FIG. 15. Interface evolution as viewed from the top of the computational

box 83131 during breakup for Ca50.45, Re50.125, l51, equal densi-

ties. 256364364 grid.

FIG. 16. Interface evolution as viewed from the top of the computational

box 123131 during breakup for Ca50.55, l50.77, equal densities. 256

364364 grid.

TABLE III. Reynolds numbers just below break-up values for different

capillary numbers. l51, equal densities.

Ca 0.1 0.15 0.2 0.25 0.3 0.35

Re 21.5 10.0 4.0 1.5 0.6 0.2
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clearly that a waist is formed near the center of the drop, and

the drop continually thins. The drop is beginning to lengthen

slowly and a visible neck is formed near the bulbous end.

The subsequent scenario is described in Ref. 31; this neck

will eventually lead to the ends pinching off and the remain-

ing liquid thread in the middle will form some small satellite

droplets. Moreover, the experimental work of Ref. 5 shows

that there can be a sequence of large and small drops formed

after the ends break off.

To examine more carefully the breakup procedure, we

have done the calculation on a 1923643128 mesh-grid. We

present the velocity field on the cross-sectional cut in the x-z

FIG. 17. Diagram of drop breakup in the ~Ca,Re! plane.

Circles represent evolution to steady state. Crosses rep-

resent breakup. Dashed curve interpolates critical val-

ues. l51, equal densities.

FIG. 18. Steady-state solutions for l

51, equal densities, and Ca50.3, for

increasing Reynolds numbers ~a! 0.0,

~b! 0.1, ~c! 0.5, ~d! 0.6. The drop

breaks up for Reynolds numbers just

above 0.6. Velocity vector fields are

shown for cross-sectional slices in the

x-z plane.
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plane in Fig. 12; the flow pattern is symmetrical and we need

to show only the right half field. The precise role of the

surface tension driven flow during breakup can be examined

from this figure. At time T536.0, the result of the competi-

tion between the external flow and the surface tension force

is a vortical motion inside the bulbous end of the drop, ex-

cept near the neck; the surface tension force drives a fast

flow motion toward the bulbous end while in the waist near

the center, the flow is much weaker. The consequence is that

the neck quickly and continually narrows ~the neck has the

same size as the mesh grid at this time!, while the width of

the central waist remains almost unchanged at time T538.0.

At T538.5, the drop breaks up at the neck and produces a

main drop and a middle liquid thread.

For the simulation on the 1923643128 mesh-grid, we

have used a time step Dt55.031023, and the Neumann

number is 2, eight times larger than the stable time step for

the corresponding explicit method. Although our scheme is

unconditionally stable for the viscous terms, we did not use

larger time steps, in order to avoid an overshoot in the com-

putations. This simulation required a total CPU time on ten

Origin 2000 processors on the order of two weeks.

As noted by Ref. 5 in his Sec. IV F 2, the largest daugh-

ter drop formed during breakup is always formed by the first

elongative end pinching. Our case of Ca50.42, l51 is just

above the critical capillary number, and the two main daugh-

ters contain almost all the volume of the initial drop; i.e.,

they are each ;0.5 of the initial volume. This would give an

estimate of the radii to be 0.51/3
50.79 of the initial drop

radius. Indeed, the maximum daughter drop radius in the

numerical simulation is slightly less at the third decimal

place, rounding to 0.79a , where a denotes the initial drop

radius. In the notation of Ref. 5 where Cax5axmmg/s , ax

denotes the daughter radius, Kx5Cax /Cac50.8, and K i

5Cai /Cac51.02. Hence, our result is in agreement with his

experimental result on maximum daughter drop size and

comparison with a binary model, which is plotted in his Fig.

4.6.2.e.

Figure 13 reproduces Fig. 4.3.1.a of Ref. 5, which is an

experimental observation of elongative end pinching. The

drop is polybutadiene and the matrix liquid is a corn-syrup

solution. The ratio of viscosities is l50.61 and the capillary

number is Ca50.68. The critical capillary number is stated

as 0.48. This sequence of events is qualitatively similar to

our results shown in Fig. 14 for the side-view and Fig. 15 for

the top-view for l51 and Ca50.45. The view from the top

of the computational domain provides the analogy with the

experimental pictures. The production of the largest drops at

the ends, followed by a small, then large, then small, drops

toward the middle of the neck, is reproduced in our compu-

tations. Figure 13 is described at length in Ref. 5 and we

summarize it here: ‘‘As the drop stretches, it first takes on an

ellipsoid shape. At some point, time about 2.45 s’’ in Fig. 13,

‘‘the drop changes from an ellipsoid shape to a ‘dumbbell’

shape similar to that observed in retractive end pinching. The

drop continues to stretch. The ‘bulbs’ at the end of the drop

achieve a stable diameter. The center portion of the drop

continues to thin. Eventually, a bridge develops between the

center portion of the drop ~time about 11.95 s in Fig. 13!.
This bridge is unstable and leads to the bulb pinching off to

form a new drop ~time about 16.75 s in Fig. 13!. If the drop

is large enough ~i.e., if the original volume is not totally used

up by the formation of the first bulb drops! the ends of the

center portion will ‘‘bulb up’’ in a process similar to retrac-

tive end pinching. A bridge will form between this subse-

quent bulb and the center portion of the drop and a second

bulb drop will break off.’’ The experimental observations of

breakup all ‘‘began with a breakup of the elongative end

pinching type. Subsequent end pinches and capillary wave

breakups were observed only when the shear rate exceeded

the critical shear rate by a sufficient amount.’’

Figure 16 shows our numerical computation for viscos-

FIG. 19. A sequence of deformation leading to breakup of drop for l51,

equal densities, Ca50.3, and Reynolds number 0.75. Cross-sectional slice in

the x-z plane through the center of the drop.

TABLE IV. Variation of Taylor deformation parameter D with Reynolds

number. l51,Ca50.3, equal densities.

Re 0.0 0.1 0.5 0.6 0.75

D 0.372 0.3968 0.45 0.4768 break
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ity ratio l50.77 and Ca50.55, with equal densities. These

parameters are closer to those of Fig. 13; the dynamics are

again similar to that of Fig. 15 for l51, Ca50.45. The drop

stretches from spheroidal to ellipsoidal then to the dumbbell

shape, the ends pinch off, producing the largest daughter

drops, followed by instabilities of the central portion, pro-

ducing small and large drops. Note that Fig. 16 even agrees

with the experimental picture in Fig. 13 in the production of

the primary large drop followed by a small drop, then a large

drop, then a small drop, then two large drops toward the

center of the neck.

V. EFFECT OF THE REYNOLDS NUMBER

In this section, we focus on the case l51, as the Rey-

nolds number is increased. Our computational domain is a

box of dimensions 23132, with a mesh of 64332364. As

we saw before, the placement of the walls has a minor effect

and the mesh is sufficient to produce quantitatively accurate

results. For zero Reynolds number, the case l51 and equal

densities has a critical capillary number of 0.41. For capillary

numbers below this value, Table III shows that breakup is

induced when the Reynolds number is increased past a criti-

cal value. The critical Reynolds number is small for Ca close

to 0.4, but increases rapidly as Ca decreases. This trend is

shown in Fig. 17, where the horizontal axis represents the

capillary numbers up to 0.4, and the vertical axis is the Rey-

nolds number. Computations were performed at a number of

points on this plot. The circles represent our numerical cal-

culations which yield steady-state solutions, and the crosses

yield breakup. The dashed curve represents critical values.

At each capillary number, the increase in Reynolds num-

ber deforms the drop from ellipsoidal to elongated. This is

illustrated for Ca50.3 in Fig. 18. In comparison with the

velocity fields for Stokes flow shown in Fig. 5, the increase

in Re leads to a markedly stronger velocity field in the drop

region. For example, Fig. 18~d! shows the strong vortical

motion inside the drop just below the critical Reynolds num-

ber. Table IV shows the accompanying increase in the Tay-

lor deformation parameter D for the steady-state solution, as

the Reynolds number is increased.

Figure 19 shows the evolution of the drop toward

breakup for Ca50.3 at Re50.75. The shapes here are analo-

gous to the sequence shown in Fig. 11 for the case of equal

viscosities, since the critical Reynolds number is still low.

Figure 20 shows the steady-state solutions for capillary

numbers 0.1, 0.15, 0.2, and 0.25 just below the critical Rey-

FIG. 20. Steady-state solutions at dif-

ferent capillary numbers for Reynolds

numbers just below break-up values.

l51, equal densities. Cross-sectional

slice in the x-z plane through the cen-

ter of the drop.
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nolds numbers. At each capillary number, the spherical drop

evolves to a steady solution up to roughly the value shown in

this figure. This figure shows that increasing the Reynolds

number leads to two effects. First, the symmetry across the

mid-plane of the steady state is lost, and it loses its ellipsoi-

dal shape. For the lower capillary numbers, the drop is more

vertically inclined than in the case of the higher capillary

numbers. Secondly, the flowfield inside the drop develops

more than one vortex. Two vortices are clearly visible for

Ca50.1, Re520, and Ca50.15, Re510. The lower the cap-

illary number, the stronger the interfacial tension which

keeps the drop together, and the higher the Reynolds number

that is required to break up the drop. At the higher Reynolds

numbers, the velocity fields show the distinct development of

more complicated dynamics in the drop region.

VI. CONCLUSION

A VOF method has been used to investigate the defor-

mation and breakup of a drop in simple shear flow. The

critical capillary number for breakup, the Taylor deformation

parameter D , and angle of orientation, have been checked

against previous works, including the experimental work of

Ref. 30 for viscosity ratios different from one. For low cap-

illary numbers where drop breakup does not occur in Stokes

flow, we have induced breakup with an increased Reynolds

number. The main advantage of our method is its mass con-

servation property, so that no rescaling of the mass is needed

during the calculation. Another advantage of the VOF

method lies in its ability to compute flows with changes in

topology. We have investigated the breakup of a drop for

supercritical capillary numbers and examined the end pinch-

ing mechanism. The capability of the VOF method to study

the drop dynamics beyond the steady state is confirmed with

comparisons on the details of the daughter drops with the

experimental data of Ref. 5.
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