
ESAIM: M2AN ESAIM: Mathematical Modelling and Numerical Analysis
Vol. 37, No 4, 2003, pp. 617–630

DOI: 10.1051/m2an:2003048

NUMERICAL SIMULATION OF CHEMOTACTIC BACTERIA AGGREGATION

VIA MIXED FINITE ELEMENTS

Americo Marrocco1

Abstract. We start from a mathematical model which describes the collective motion of bacteria
taking into account the underlying biochemistry. This model was first introduced by Keller-Segel [13].
A new formulation of the system of partial differential equations is obtained by the introduction of a
new variable (this new variable is similar to the quasi-Fermi level in the framework of semiconductor
modelling). This new system of P.D.E. is approximated via a mixed finite element technique. The
solution algorithm is then described and finally we give some preliminary numerical results. Especially
our method is well adapted to compute the concentration of bacteria.

Mathematics Subject Classification. 35Q, 65M, 92B, 92C.

1. Problem formulation

The equations for the collective motion of the bacteria can be derived (with no free parameters) from the
underlying biochemistry. The basic equations for the bacterial density ρ and the attractant concentration c are
(see [1–3, 13])

∂ρ

∂t
= Db ∇

2ρ −∇ · (kρ∇c) + aρ, (1)

∂c

∂t
= Dc ∇

2c + αρ, (2)

where
Db is the bacterial diffusion constant,

k is the chemotactic coefficient (or chemotactic sensitivity),

a is the rate of bacterial division,

α is the rate of attractant production,

Dc is the chemical diffusion constant.

The terms in equation (1) include the diffusion of bacteria, chemotactic drift and division of bacteria. Equa-
tion (2) expresses the diffusion and production of attractant. In this model, the production of attractants is
taken proportional to the bacterial density, as a first approach. But other models, certainly more realistic exists,
see for example the model given by equation (7).
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In [1] for example, typical numerical values are given for the various parameters,

Db = 7.10−6 cm2/s, Dc = 10−5 cm2/s,

k = 10−16 cm5/s, α = 103 /s/bacteria.

Taking a bacterial density ρ = 106/cm3 the length scale is about 260 microns and the time scale 100 s.
In some semi-solid media (like agar), the diffusion of bacteria is much slower than attactant diffusion which

motivate to drop the term with time derivative in equation (2). This limit case is also convenient for asymptotic
behaviour when considering other media. Notice that for other applications, the diffusion of attractants is
neglected, this is the case for angiogenesis, see [4] and the references therein.

In addition, cells divide much more slowly than the dynamics take place (the time scale for cell division is
about 2 hours) so that we can take a = 0 in (1) for an entry level model. The model used for the numerical
simulations is then the following

∂ρ

∂t
= Db ∇

2ρ −∇ · (kρ∇c), (3)

0 = Dc ∇
2c + αρ, (4)

which we re-write (for convenience)

− div(Dc gradc) − αρ = 0, (5)

∂ρ

∂t
− div(Db gradρ − kρ gradc) = 0. (6)

This last formulation ((5)-(6)), strongly looks like a classical model of transient drift-diffusion of electrons in
semiconductor media (nevertheless the term wich corresponds here to the attractant production is with an oppo-
site sign). The attractant concentration c corresponds to the electrostatic potential (ϕ), the bacterial density ρ
to the electron density (n), the chemotactic coefficient k to the electron mobility (µn). As in semiconductor
modelling framework, a new formulation of system ((5)-(6)) will be obtained by introduction of a variable which
is similar to the electron quasi-Fermi level and denoted by ϕn.

Note that we can find in the paper [1], one other model for equation (4)

0 = Dc ∇
2
c + αρ e−ρ/ρ∗ , (7)

which can be used when modelling the following fact: when the bacterial density becomes too high, the bac-
teria consume all the food sources (succinate and oxygen) in their local environment and cease producing the
attractant aspartate. The parameter ρ∗ is the cutoff bacterial density.

One of the problem that has attracted biologists and mathematicians is to understand pattern formation in
such models. The most noticeable, and complex also is the aggregation of bacteria [1, 2, 8, 9, 12]. In this paper
we investigate this pattern based on a mixed finite element method. We begin with another formulation based
on quasi-Fermi levels, then we describe the finite element algorithm and we present in a fourth section some
numerical results.

2. New Formulation of the “Chemotaxis Model”

First of all we can introduce a scaling on the c variable (attractant concentration) via the parameter q (q has
no special physical meaning and is only introduced for numerical convenience),

c =
c̃

q
· (8)

The system ((5)-(6)), becomes

− div(Dc grad c̃) − qαρ = 0, (9)
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∂ρ

∂t
− div

[
Db gradρ −

k

q
ρ grad c̃

]
= 0, (10)

(+ ∂c̃
∂t could be added to the left hand side of (9) if the transient equation for the attractant diffusion was

considered). We introduce a new variable ϕn by setting

ρ = ρ(c̃, ϕn) = ρ0 e
c̃+ϕn

Z , (11)

where ρ0 is a constant (which corresponds to a given bacterial density, the variable c̃ and ϕn (or their sum) are

then equal to zero), and Z = q Db

k .
This class of variables is useful because we expect high values of ρ (collapse) and the potential ϕn is a more

reasonable quantity. The system of equations can now be written as

− div(Dc grad c̃) − α̃ρ(c̃, ϕn) = 0, (12)

∂ρ(c̃, ϕn)

∂t
− div(k̃ρ(c̃, ϕn) gradϕn) = 0, (13)

where

k̃ = k/q, α̃ = αq.

The system of equation ((12)-(13)) where the unknowns are c̃ and ϕn will be used for the numerical approxima-
tion. This system has to be completed with appropriate boundary condition on c̃ and ϕn and initial condition
for the bacterial density ρ.

Equation (12) is similar to the Poisson equation and equation (13) to the electron continuity equation in the
semiconductor framework.

3. Mixed finite element approximation and solution algorithm

3.1. Numerical approximation (M.F.E.)

Following [5, 6, 10, 11], and assuming that Dirichlet boundary condition on a part of the boundary (Γd) – of
the computational domain Ω – and Neumann boundary condition on the complementary boundary part (Γn)
hold for the variables c̃ and ϕn, we introduce the flux variables

�V = Dc grad c̃ , �Jρ = k̃ρ(c̃, ϕn) gradϕn, (14)

and an equivalent formulation of the system ((12)-(13)). The part of the boundary on which a Neumann con-
dition holds for the c̃ variable is not necessarly the same as the one for the ϕn variable. For this, an additional
index is used in the following equations:






− div �V − α̃ρ(c̃, ϕn) = 0 in Ω, (15)

�V = Dc grad c̃ in Ω, (16)

�V · �n = Dc · f1n on Γn1, (17)

c̃ = f1d on Γd1, (18)
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∂ρ(c̃, ϕn)

∂t
− div �Jρ = 0 in Ω, (19)

�Jρ = k̃ρ(c̃, ϕn) gradϕn in Ω, (20)

�Jρ · �n = k̃ρf2n on Γn2, (21)

ϕn = f2n on Γd2, (22)

f1d and f1n are given boundary conditions on c̃ (respectively of Dirichlet and Neumann type), and f2d and f2n

similarly for ϕn.
The system we have to consider is now made up of four equations ((15)-(16)-(19)-(20)) with the four unknowns

(c̃, �V , ϕn, �Jρ).
We consider now the following Sobolev spaces

H(div) = {w|w ∈ (L2(Ω))2, div w ∈ L2(Ω)}, (23)

V0,i = {w|w ∈ H(div), w · n = 0 on Γn,i}. (24)

Then, for sufficiently smooth data we can obtain the following equivalent dual mixed variational formulation
of the original problem.

Find �V ∈ H(div), c̃ ∈ L2(Ω),
�Jρ ∈ H(div), ϕn ∈ L2(Ω) such that





−

∫

Ω

div �V · v1 dx −

∫

Ω

α̃ρ(c̃, ϕn) · v1 dx = 0 ∀v1 ∈ L2(Ω), (25)

∫

Ω

[Dc]
−1 �V · �w1 dx +

∫

Ω

c̃ · div �w1 dx −

∫

Γd1

f1d · �w1 · �ndΓ = 0 ∀�w1 ∈ V0,1, (26)

�V · �n = Dc f1n on Γn,1, (27)





∫

Ω

∂ρ(c̃, ϕn)

∂t
· v2 dx −

∫

Ω

div �Jρ · v2 dx = 0 ∀v2 ∈ L2(Ω), (28)

∫

Ω

[k̃ρ(c̃, ϕn)]−1 �Jρ · �w2 dx +

∫

Ω

ϕn · div �w2 dx −

∫

Γd2

f2d · �w2 · �n dΓ = 0 ∀�w2 ∈ V0,2, (29)

�Jρ · �n = k̃ρ(c̃, ϕn) · f2n on Γn,2. (30)

For the numerical applications (as often it happens) we will have f1n ≡ f2n ≡ 0 so that we look for �V and �Jρ

in V0,1 and V0,2 respectively.
As in [6, 10, 14, 15] the previous formulation ((25)–(27)) and ((28)–(30)) allows us to realize easily a discrete

approximation via mixed finite elements.
We retain the lowest order M.F.E. of Raviart-Thomas (RT

0 ) for implementation. After a triangulation Th of
the computational domain Ω ⊂ R, we define the following finite dimensional spaces

Lh = {vh ∈ L2(Ω)|∀K ∈ Th, vh|K = constant}, (31)

Vh = {wh ∈ H(div)|∀K ∈ Th, wh(x, y)|K =
∣∣αK

βK
+ γK

∣∣x
y
}. (32)
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We assume also that Γn,i (i = 1, 2) is obtained by union of edges of triangles which belong to the mesh Th

and that

V0,i,h = V0,i ∩ Vh. (33)

Then the discrete formulation of the problem follows directly from ((25)–(30)) by replacing L2(Ω) by Lh

and V0,i by V0,i,h.

3.2. Solution algorithm

Refering again to the publications related to semiconductor area [5, 6, 10, 14, 15], various algorithms are

described for a “stationary” version of system ((25)–(30)) (i.e. without ∂ρ
∂t term !). Let us recall here the major

characteristics of these numerical schemes:
- association to each (stationary) equation (primal variable) of the system of an “artificial” transient equation;
- semi-implicit (Peaceman Rachford, Douglas Rachford) or implicit (Backward-Euler) time discretization

schemes for the “artificial” evolution equations. Use of local time steps;
- relaxation on the equations at each time step;
- for each time step, and for each equation of the system, solution of the nonlinear problem by Newton-

Raphson technique.
The fact that we associate an “evolution” equation and the use of implicit or semi-implicit schemes is an

other way to consider augmented Lagrangian techniques for the solution of saddle point problems [7] arising
from the mixed formulation. Local time steps are closely connected with the penalty functions in the framework
of Augmented Lagrangian techniques.

Special features of such an approach are relative simplicity and ease of implementation of model extensions. It
is easy to add one equation to the system without need of deep changes in the algorithm architecture. Equations
are handled successively in the algorithmic process. This numerical scheme, specially when using backward Euler
for time discretization, has appeared to be rather efficient for semiconductor device (drift diffusion model and
standard applied potentials). One can think reasonably that if the coupling between the equations of the system
is not “too strong” then the relaxation on the equations do not penalize strongly the (speed of) convergence of
the iterates towards the stationary solution of the whole system. This is certainly what happens in the static
drift diffusion model for regimes not so far from the equilibrium state.

Nevertheless this solution technique failed when applied to energy-transport models for semiconductors [9,12].
One equation (relative to electron temperature) has been added to the drift diffusion model and the constitutive
relation for the current density has been slightly modified. The previous numerical scheme works correctly only
for solutions very close to the equilibrium state. In order to recover the algorithmic behaviour, for typical load
range, similar to the behaviour, obtained when using the drift diffusion model, one has to consider simultaneously
(couple) the equations relative to the electron current continuity and the energy [9]. The implementation of
such numerical scheme in a little bit more complicated but seems a necessity to insure the convergence of the
iterative procedure.

In past few years we are also interested by the numerical simulation of the transient behaviour (physical
transient) of a semiconductor device governed by the drift diffusion model (numerical simulation of the switching
of a diode). The model is very close to the “chemotaxis model”.

After the semi-discretization in time, using fully implicit scheme, we have to deal with a sequence of “quasi-
static” problems which are similar to the static drift diffusion problem himself, but generally easier to solve
because the nonlinearities involved are of lower amplitude. The degree of nonlinearity may be controlled in
practice by the physical time step. For “very small time step” the operator governing the transient tends to the
identity operator (linear operator) and for sufficiently large time steps, the operator corresponds to the static
drift diffusion (fully non linear operator).

The first attempt for the numerical simulation of the transient behaviour was to apply the most efficient
scheme developped for the static drift diffusion model at each “quasi static” problem obtained via the semi-
discretization in time of the transient model. As the time step (physical time step) becomes smaller and smaller
the convergence of the iterates becomes more and more difficult to obtain and solution of quasi-static problems
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is not reached. The whole algorithm failed to converge. The only plausible explanation to this algorithm
behaviour is that, as the time step (physical time step) becomes smaller, the coupling between the equations
(Poisson equation and continuity equations) becomes stronger, and the relaxation strategy (decoupling) used
in the numerical algorithm is no more adapted. A more implicit scheme has to be used for the solution of the
quasi-static problems. The fully implicit scheme (on the system and not on each equation of the system) has
been implemented and convergence was restored.

We describe now an adaptation of this numerical scheme as simply as possible.

A) Semi-discretization in time (physical time), by a fully implicit scheme (Backward-Euler).
The solution of the problem represents an approximation of the transient solution at different times Tn+1 =

Tn + δt (n = 0, 1, 2, 3, ...); the time step δt may be adapted if needed. The formulation of the sequence of
quasi-static problems is the following:

Find (c̃n+1, �V n+1, ϕn+1
n , �Jn+1

ρ ) solution of

− div �V n+1 − α̃ρ(c̃n+1, ϕn+1
n ) = 0, (34)

∫

Ω

[Dc]
−1�V n+1 · w1 dx +

∫

Ω

cn+1 div w1 dx −

∫

Γd1

f1d w1 · n dΓ = 0, ∀w1 ∈ V0,1,h, (35)

− div �Jρ +
1

δt
[ρ(c̃n+1, ϕn+1

n ) − ρ(c̃n, ϕn
n)] = 0, (36)

∫

Ω

[k̃ρ(c̃n+1, ϕn+1
n )]−1 �Jρ · w2 dx +

∫

Ω

ϕn+1
n · div w2 dx −

∫

Γd2

f2d w2 · n dΓ = 0, ∀w2 ∈ V0,2,h. (37)

B) Each quasi-static problem (index n) is solved via artificial transient [6,15]. The index of time discretization
is here k (Backward Euler scheme on the system of equation)

c̃k+1 − c̃k − ∆t1(x) div �V k+1 − ∆t1(x) · α̃ρ(c̃k+1, ϕk+1
n ) = 0, (38)

∫

Ω

[D0]
−1�V k+1 · w1 dx +

∫

Ω

ck+1 div w1 dx −

∫

Γd1

f1d w1 · n dΓ = 0, ∀w1 ∈ V0,1,h, (39)

ϕk+1
n − ϕk

n − ∆t2(x) div �Jk+1
ρ + ∆t2(x) ·

1

∂t
[ρ(c̃k+1, ϕk+1

n ) − ρn] = 0, (40)

∫

Ω

[k̃ρ(c̃k+1, ϕk+1
n ) �Jk+1

ρ · w2 dx +

∫

Ω

ϕk+1
n · div w2 dx −

∫

Γd2

f2d w2 · n dΓ = 0, ∀w2 ∈ V0,2,h. (41)

In (40) ρn is given (ρn = ρ(c̃n, ϕn
n)). In this process indexed with k, we can take c̃0 = c̃n and ϕ0

n = ϕn
n. The

unknowns are here (c̃k+1, �V k+1, ϕk+1
n , �Jk+1

ρ ). When the convergence with respect to k is obtained, then the

current solution gives (c̃n+1, �V n+1, ϕn+1
n , �Jn+1

ρ ).
As we use the lowest order Raviart-Thomas element, the equations (38) and (40) lead to scalar relation on

each elements T of the triangulation Th (it is natural in this approximation to take the “local time steps” ∆t1
and ∆t2 constant on each element T ).

C) At each step k, we have a non linear problem to solve. We use Newton-Raphson technique, the index of
iteration is now denoted by ℓ. We set:

�U =




c̃
�V
ϕn

�Jρ


 =




U1

U2

U3

U4


 . (42)
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Equations (38) and (39) can formally be written as

E1(c̃, �V , ϕn, ·) = E1(U1, U2, U3, U4) = E1(�U) = 0,

E2(c̃, �V , ·, ·) = E2(U1, U2, U3, U4) = E2(�U) = 0,

and so on, and finally the system ((38)–(41)) may be synthetized by

�E(�U) = 0. (43)

The Newton-Raphson rule applied to (43) gives

[
∂Ei

∂Uj

]

ℓ

δ�U ℓ = − �E(�U)ℓ, δ �U ℓ = �U ℓ+1 − �U ℓ, (44)

or equivalently

�U ℓ+1 = �U ℓ −

[
∂Ei

∂Uj

]
−1

ℓ

�E(�U)ℓ, (45)

where
[

∂Ei

∂Uj

]

ℓ
is the jacobian matrix of the application �E evaluated at step ℓ.

The Newton-Raphson technique leads to a sequence of linear systems (indexed by ℓ). In our context of
approximation (M.F.E.-RT0) the size of each linear system is approximatively

2 × (NT + NA),

where NT is the number of triangles of the triangulation Th, and NA is the number of edges of the mesh.
On can reduce the size of linear system by eliminating the primal variables (i.e., c̃ and ϕn).
As a matter of fact, if we consider the first and third rows of relation (44), we can express explicitely the

primal variables (c̃ℓ+1, ϕℓ+1
n ) as functions of the dual variables �V ℓ+1 and �Jℓ+1

ρ by

[A]

[
c̃ℓ+1 − c̃ℓ

ϕℓ+1
n − ϕℓ

n

]
=

[
∆t1 · div δ�V ℓ

∆t2 div δ �Jℓ
ρ

]
−

[
E1(�U

ℓ)

E3(�U
ℓ)

]
. (46)

The matrix [A] is given by

[A] =




1 − ∆t1α̃ρ′c̃

∣∣
ℓ

−∆t1α̃ρ′ϕn

∣∣
ℓ

∆t2
δt

ρ′c̃
∣∣
ℓ

1 +
∆t2
δt

ρ′ϕn

∣∣
ℓ



 . (47)

By the definition of ρ in (11), the derivatives of ρ with respect to c̃ and ϕn are the same and the determinant
of A can be evaluated as

detA = 1 + ρ′c̃

(
∆t2
δt

− ∆t1 · α̃

)
. (48)

We can eventually act on the physical time step δt or the local time steps ∆t1 and ∆t2 in order to keep
detA �= 0 or even > 0.

Let us denote by B the inverse of matrix A

B = A−1. (49)
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Then the following relations are obtained for c̃ℓ+1 and ϕℓ+1
n

c̃ℓ+1 − c̃ℓ = δc̃ℓ = B11∆t1 div �V ℓ+1 − B11[c̃
ℓ − c̃k − ∆t1α̃ρℓ]

+ B12∆t2 div �Jℓ+1
ρ − B12

[
ϕℓ

n − ϕk
n +

∆t2
δt

(ρℓ − ρn)

]





, (50)

ϕℓ+1
n − ϕℓ

n = δϕℓ
n = B21∆t1 div �V ℓ+1 − B21[c̃

ℓ − c̃k − ∆t1α̃ρℓ]

+ B22∆t2 div �Jℓ+1
ρ − B22

[
ϕℓ

n − ϕk
n +

∆t2
δt

(ρℓ − ρn)

]





. (51)

These relations (50) and (51) are then used within the second and fourth rows of (45). Finally the linear system

we have to solve is relative to the unknowns �V ℓ+1 and �Jℓ+1
ρ only (i.e. of maximum size 2.NA). When the

convergence with respect to ℓ is reached then the solution at step k of the whole process is obtained.

4. Numerical applications

We take for Ω the rectangular domain L × ℓ (see Fig. 1) and we suppose that at T = 0 we have a uniform
distribution of bacteria with density ρ0.

ℓ

L ������
������
������

������
������
������

ΓS

ΓS

Figure 1. Simulation domain and reduction by symmetry.

From the definition of ρ in (11) it is natural to take at initial time

c̃ + ϕn = 0. (52)

By analogy with the drift diffusion model for semiconductor the variable c̃ is similar to the electrostatic
potential which is defined up to an additive constant. We can fix this constant by taking the value 0. On
the other hand we want to ensure in the following numerical approximation, the mass conservation (or volume
conservation) for the bacteria. From equation (13) this will be the case if we take the following boundary
condition on ϕn

∂ϕn

∂n
= 0 on Γ = ∂Ω. (53)

In short, we can take at initial time

ρ = ρ0 and c̃ = ϕn ≡ 0, (54)

and the boundary condition

c̃|Γ = 0,
∂ϕn

∂n

∣∣
Γ

= 0. (55)

Of course, by reason of symmetry we can consider only a quarter of the simulation domain Ω, namely
(L/2, ℓ/2), then we have to take the following boundary conditions on the boundaries of symmetry ΓS

∂c̃

∂n
= 0, and

∂ϕn

∂n
= 0 on ΓS . (56)
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The bacterial density is also assumed to be larger than a prescribed minimum value ρmin (projection). We
choose in our simulations

ρmin = 10−10/cm3. (57)

We present now a typical result obtained for the numerical simulation of the chemotaxis model on a rectangular
domain Ω = (1.5 cm × 0.5 cm). As mentioned above only a quarter of Ω is meshed and used for effective
computations. We can see in Figure 2 the triangular mesh used for the numerical simulations.

Figure 2. Meshes. The mesh contains 5433 triangles.

Two computations have been carried out:

a) the first with a production of attractants proportional to the bacterial density (model 1 given by
equation (4);
b) the second with a limited production of attractants (model 2 given by eq. (7), with threshold value
ρ∗ = 500ρo).

The initial uniform distribution of bacteria is taken ρ0 = 106/cm3. In (8) the scaling factor q is taken as 10−12

in order to obtain “relative small” values for c̃ and ϕn. The initial constant value ρ0 is marked on the figures.
The total amount of bacteria remain constant along the evolution process:

∫

Ω

ρ dx = Cte =

∫

Ω

ρ0 dx = ρ0 × Area(Ω).

The coordinates (x1, x2) are given in µm on the figures and a log scale is used for representation of the density ρ
(range from 10−10 to 10+10 (cm−3)).

Some other numerical simulations can be found in [16].

4.1. Numerical results with attractant production proportional to the bacteria density

Figure 3 present the bacteria density distribution after 100 s. A peak of concentration begins to appear at
the point ≈ (0.273, 0.25). If the process is continued, other peaks of concentration appear and we can see on
Figure 4, that at time 250 s, three other peaks are present at points ≈(0.457, 0.25), (0.592, 0.25), (0.698, 0.25).
These peaks of concentration remain at the same location during all the process in time. After 10 mn (Fig. 4)
the peaks contain respectively 56.46%, 13.53%, 16.67% and 13.42% of the total mass of the bacteria. For each
peak of concentration, the “local mass” is concentrated within one mesh element (which is the smallest part of
our discretization approach) and it seems that the distribution of bacteria tends to localized Dirac masses.
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Figure 3. Bacteria concentration, (Log. scale). Attractant production model 1. Computa-
tional domain: rectangle 0.75 cm × 0.25 cm. Distribution after 100 s. Initial concentration is
marked, observer position near (xmin, ymin).

4.2. Numerical results with limited attactant production

Figure 5 (top) presents the bacteria density distribution after 100 s. This distribution is qualitatively quite
similar to the distribution obtained with the previous model of attractant production (Fig. 3).

If the time process is continued, other peaks of concentration appear, like in the previous simulation, but the
first concentration peak travels towards the center of the domain (i.e. upper right corner of the computational
domain), “eating” successively all the other local peaks of bacteria concentration. Figures 5 (bottom) and 6
show the bacteria density distribution respectively at time 300 s, 600 s and 1000 s. We can see that at T = 1000 s
only one peak is present (at the center of the rectangle Ω) and that high density values are not localized over only
one mesh element. This model of attractant production seems to produce localized high densities of bacteria
(aggregation) which do not looks like Dirac masses. At time T = 1000 s (Fig. 6 – bottom –), the density ρ is
greather or equal than ρo – the initial density value – within 39 triangles, representing 0.145% of the total area
of Ω. These triangles contain 97.98% of the total mass of bacteria.

Conclusion

We have presented here a computational scheme which allows the simulation of chemotactic bacteria ag-
gregation. As theoretically predicted, the density redistribution during the evolution process appears to be
strongly dependent on the model used for the source (production) of attractants. With the first model (source
of attractants proportional to the bacterial density ρ), several isolated peaks of bacterial concentration may
appear – concentration localized over only one element, which is something like a Dirac mass at discrete level
– and remain more or less at the same place along the evolution process.

Introducing a cutoff value in the production of attractants, the first peak of bacterial concentration travels to
the center of the domain, “eliminating” all the secondary peaks. After a certain amount of time, high densities
values remain localized on small part of the domain (0.1 to 1%) but not only over one mesh element.
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Figure 4. Bacteria concentration, (Log. scale). Attractant production model 1. Com-
putational domain: rectangle 0.75 cm × 0.25 cm. Distribution after 250 and 600 s. Initial
concentration is marked, observer position near (xmin, ymin).
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Figure 5. Bacteria concentration, (Log. scale). Attractant production model 2 (ρ⋆ = 500ρ0).
Computational domain: rectangle 0.75 cm × 0.25 cm. Observer position near (xmin, ymin),
process time: 100 and 300 s.
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Figure 6. Bacteria concentration, (Log. scale). Attractant production model 2 (ρ⋆ = 500ρ0).
Computational domain: rectangle 0.75 cm × 0.25 cm. Observer position near (xmin, ymin),
process time: 600 and 1000 s.
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