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Abstract: In this paper, the Rosenau-KdV equation that is one of the significant equations in physics was discussed. The collo-
cation finite element method is implemented to find the numerical simulation of the dispersive shallow water waves
with Rosenau-KdV equation using the quintic B-spline basis functions. A linear stability analysis based on von Neu-
mann approximation theory of the numerical scheme is investigated. To demonstrate the precise and efficiency of the
proposed method, the motion of solitary wave is studied by calculating the error norms Ly and L. The invariants I3,
I, and their relative changes have been computed to define the conservation properties of the simulation. As a result,
the obtained results are found better than some recent results.
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1. Introduction

Many physical phenomena can be defined by the Korteweg-de Vries (KdV) equation which was discovered by
Korteweg and de Vries as the following [1-8]:

U;+UUy + Uyyy =0. (1)

Eq. (1) plays a important role in the study of nonlinear dispersive shallow water waves. These types of equations have
been significant class of nonlinear equations with numerical simulations in physical phenomena. The case of wave-
wave and wave-wall interactions can not be defined using the well-known KdV equation in the study of the dynamics
of dense discrete systems,. To accomplish this deficiency of the KdV equation, Rosenau equation was derived [9, 10]:

Ui+ Uxxxxt +Ux +UUx = 0. (2)

The theoretical results on existence, uniqueness and regularity of the solution for Eq. (2) was proved [11]. On the
numerical solutions of the Eq. (2), many studies have been performed by the scholars [12-17]. Then, for the further
consideration of the nonlinear wave, Jin-Ming Zuo developed the Rosenau-KdV equation and discussed the solitary
wave solutions and its periodic solutions in Ref.[18]

Ut + Uxxxxt + Ux + UUyx + Uyxx =0, 3)

where Uy is the viscous term and the independent variables x and ¢ indicate the spatial and temporal variables, re-
spectively. Recently, the solitary solutions for the generalized Rosenau-KdV equation with consuetudinary power law
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nonlinearity were examined [19-21]. Two invariants were given for the equation in [19, 20]. Especially, in [20] both the
singular single soliton solution was derived with the ansatz method and the perturbation theory was used. The ansatz
method is implemented to obtain the topological soliton (shock) solution of the generalized Rosenau-KdV equation
[21]. The G'/G expansion, ansatz and the exp-function methods are implemented to achieve several solutions to the
equation [22]. Singular solitons, solitary waves and shock waves with conservation laws of the Rosenau-KdV-RILW
equation are obtained [23]. The conservation laws of the Rosenau-KdV-RLW equation are computed with power law
nonlinearity by the aid of multiplier approach in Lie symmetry analysis [24]. Solutions of the perturbated Rosenau-
KdV-RIW equation are obtained [25]. A conservative three-level linear finite difference scheme for the numerical
solution of the initial-boundary value problem of the Rosenau-KdV equatin is suggested [26]. This is the only method
applied to obtain the numerical solution of the Rosenau-KdV equation in the literature.

In this paper, Rosenau-KdV equation is solved numerically by using collocation method with the quintic
B-spline basis functions.

2. Numerical scheme using quintic B-Spline basis functions

Let us take into consideration the Rosenau-KdV Eq. (3) by the following boundary conditions:

Ua,t)=0, U(Db1) =0,

Ux(a,1)=0, Ux(b,5)=0, >0. 4)

and the initial condition.
Ux,0)=f(x) a<x<b, (5)

To able to apply the numerical method, the solution region of the problem is restricted over an interval a < x < b.
The interval is partitioned into uniformly sized finite elements of length & by the knots x;, such that a = xp < x; <

b—

..<xy=bandh= Ta. The set of quintic B-spline functions {</)_2(x),(/)_1(x),...,¢N+1(x),<pN+2(x)} forms a basis
over the solution interval [a, b]. The numerical solution Uy (x, t) is represented in terms of the quintic B-spline basis
functions

N+2

Un(x, )= ), ¢j(x)5;(t) (6)
j=-2

where § j(#) are time dependent parameters to be defined from the boundary and collocation conditions.
Quintic B-splines ¢, (x) , (m= —-2(1) N + 2), at the knots x,,, are determined over the interval [a, b] by Ref.[27]

(x— xm—3)5» (X1m-3, Xm—2]
(X = Xm_3)° —6(x — Xm_2)°, (Xm—2, Xm-1]
(X = Xm-3)° —6(Xx = Xpp-2)° + 15(x — Xpm-1)°,  [Xm-1,%m]
(X = Xn-3)° = 6(x — Xpm—2)° + 15(X — Xp-1)°—

20(x = x)°, [(Xm) Xm+1]

1
Pm(x) =75 9 Q)

(X = Xm-3)° = 6(x — Xp—2)° + 15(xX — Xpp_1)°—
20(x — Xp)° + 15(x — Xm41)°

(X — Xm-3)° = 6(X — Xpp—2)° + 15(x — Xpp—1)°—
20(x = Xm)° + 15(x — Xp41)° — 6(x — Xm42)°
0, otherwise.

[(Xma1, Xma2]

[Xm+2) Xm+3]

Each quintic B-spline covers six elements so that each element [x,,, X;;+1] is covered by six B-splines. A typical
finite interval [x,,, X;,+1] is mapped to the interval [0, 1] by a local coordinate transformation described by hé = x—x,,,
0 =< ¢ < 1. Thus, quintic B-splines (7) in terms of ¢ over [0, 1] can be given as the following:

Gm_2=1-5¢+1062 - 1083 +5¢4 - &3,
Gm-1 = 26—50¢ + 202 + 2083 — 2084 + 589,
¢bm =66—60&2 +3084 — 1080,

Gms1 = 26+50¢ + 2082 — 2083 —208* + 1085,
Omaz =1+5E+ 102 +1083 + 584 - 589,
¢m+3 = 55-

Using the nodal values of U,U’,U”,U"" and U'" at the knots x,;, are given in terms of the element parameters
6m by

8)

UnXpm, 8) = Upy =0 —2 + 260 ;-1 + 660 1 + 260 1y 1 + 0 mv2

U;n = é(_fsm—Z - 105m—1 + 106m+1 +5m+2),

U =238 m-2+20m-1— 60 +20 i1 +6ms2), ©)
U;;;’ = h_g(_6m—2 +26m—1 _26m+1 +5m+2);

U;yli = lhif(ﬁm—z _46m—1 + 66m _46m+1 + 5m+2);
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where the symbols’,”,”and '’ symbolize differentiation according to x, respectively. The splines ¢,,(x) and its four
principle derivatives vanish outside the interval [x,,-3, X;;+3]. Now we identify the collocation points with the knots
and use Eq. (9) to evaluate U,,, its space derivatives and substitute into Eq. (3) to obtain the set of the coupled ordinary
differential equations. For the linearization technique we get the following equation:

S m—z +268 ;_1 + 660 1 + 260 a1 + 20 mao
+@(6m—2 _45m—1 + 66m _45m+1 +6m+2)
+3(=6m-—2-106 -1+ 108 m+1 + O m+2) (10)
+22 (=8 5 ~ 108 1 + 108 11 + 8 ms2)
+%(_5m—2 + 2(sm—l _25m+1 +6m+2) =0
where
Zm=Up=0m_2+260;;-1+660,; +260:1+0ms2

and indicates derivative with respect to t. If time parameters §;’s and its time derivatives §;’s in Eq. (10) are discretized
by the Crank-Nicolson formula and usual finite difference approximation, respectively:
1 . 6n+1 —_o"
Si=-@"+6"Y , Si=—-— a1
T2 ! At
we obtain a recurrence relationship between two time levels n and 7n + 1 relating two unknown parameters 6 ;.”1, o
fori=m-2,m-1,...m+1,m+2

Y15nmt12 + YZaz;;ll + Y36nm+1 + Y45:1111 + YSaz;fz
n+1 (12)

= Y56m72 +Y46nm71 +7y30}, +7/261r1l1+1 +715;§1+2
where

Y1i=1-EQ+Z,)-M+K],

Y2 =1[26-10E(1 + Z;;) +2M — 4K],

Y3 =[66+6K],

Ya=1[26+10E(1 + Z;;) —2M —4K],

Ys=[1+EQ+Zy)+M+K],

= - - 30 — 120

m=0,1,...,N, E=g3Af, M—tht, K= i

(13)

For the linearization technique, the term U in non-linear term UU, is taken as
Zm=Up=0m-2+260,;_1+660,,+260,,,+1+0m2. (14)

The system (12) consists of (N + 1) linear equations including (N + 5) unknown parameters
(6-2,6_1...,6N+1,0n4+2) L. To obtain a unique solution to this system, we need four additional constraints. These are
got from the boundary conditions and can be used to eliminate §_»,0_1 and 0 y+1, O y+2 from the system (12) which
becomes later a matrix equation for the N + 1 unknowns d = (§¢,01,...,0 ) T of the form

Ad™*! = Bd". (15)
The matrices A and B are pentagonal (N + 1) x (N + 1) matrices and this matrix can be solved by usig the pen-
1
tagonal algorithm. However, two or three inner iterations are implemented to the term 6™ = §”" + > 6" -6"1) at

each time step to cope with the non-linearity caused by Z,,. Before the solution process begins iteratively, the initial
vector d® = (00,01,...,0n-1,0 N) must be determined by using the initial condition and the following derivatives at the
boundary conditions:

Un(x,0)=U (xp,0), m=0,1,2,..,N
(UnN)x(a,0) =0, (UN)x (b,0) =0, (16)
(UN)xx (a,0) =0, (UN)xx (b,0) =0,
So we have the following matrix form of the initial vector d°:
wd’ =B a7
[ 54 60 6 ]

25.25 67.50 26.25 1
1 26 66 26 1

1 26 66 26 1
where W =

1 26 66 26 1
1 26.25 67.50 25.25
6 60 54

do = (60r61)--~r6N—1r6N) and B = [U(X0,0),U(Xl,O) yeeey U(.X'N_l,o) ’ U(XN,O)]T.

This matrix system can be solved efficiently by using a variant of Thomas algorithm.
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3. Stability analysis

In order to apply the von Neumann stability analysis, the Rosenau-KdV equation can be linearized by supposing
that the quantity U in the nonlinear term UUx is locally constant. Replacing Fourier mode

5}1 = §nelikh (18)

where k is the mode number and # is the element size, into Eq. (12) gives the growth factor g of the form

_a- ib (19)
§= avin’
where
a=1ys+ (y2+vya) cos[hk] + (y1 +7ys) cos[2hk], 20)

b = (y4—v2)sin[hk] + (ys —y1) sin[2hk].

The modulus of |g| is 1, for this reason the linearized scheme is unconditionally stable.

4. Numerical experiments and discussion

In this section, to show the accuracy of the numerical simulation of dispersive shallow water waves with
Rosenau-KdV equation and to compare obtained results with both exact values and other results given in the litera-
ture, the L, and L, error norms are calculated by using the analytical solution in Eq. (21). We take into consideration
the motion of single solitary wave solution for three test problems. Accuracy and efficiency of the method is reckoned
by the error norm L;

N 2
L= U ~Un, = | Y Ut - ), (21)
J=1
and the error norm L,
Loo = | U U, = m]ax|U;Wf ~WN)j|  j=12.,N-1. 22)
Rosenau-KdV equation satisfies only two conservation laws given by Ref.[16]

b N n

L=/[ Udx=hY,_ U},
1 fa J=1"j 23)

I = [ U + U ldx = HE), (U2 + Uz,

In the simulation of solitary wave motion, the invariants I; and I» are observed to check the conversation of the
numerical algorithm.

4.1. The motion of single solitary wave

For this problem, the Rosenau-KdV Eq. (3) is considered for the boundary conditions U — 0 as x — +oo and the
initial condition

35 35 1
U(x,O)=(——+—\/313)sech4(—\/ —26+2v313x). (24)
24 312 24
Note that the analytical solution of the equation can be written as
35 35 1 / 1 1
Ux,t)=(——+—V313 h— -26+2v313|x—|-+—V313|1]. 25
(60 =( 24 312 )sec [24 (x (2 26 )) (25)

In this section, to apply numerical method we have considered three sets of parameters. First of all, we have
used the parameters & = 0.1 and A = 0.1 over the interval [-70, 100] to coincide with those of Ref.[26]. So, the solitary
wave has an amplitude 0.52632 and the computations are done up to time ¢ = 40 to obtain the invariants and error
norms Ly and L, at various times. Error norms Ly, L, and two invariants of the Rosenau-KdV equation are listed in
Table 1. It is seen from the table that the error norms are found to be small enough. The percentage of the relative
error of the conserved quantities I; and I, are calculated with respect to the conserved quantities at ¢ = 0. Percentage
of relative changes of I; and I, are found to be 1.177 x 10™7 %, 9.86 x 107® %, respectively. Fig. 1 shows the motion
of solitary wave with i = 0.1 and At = 0.1 at various time levels. The distributions of the errors at time ¢ = 40 are
illustrated for solitary waves amplitudes 0.52632 in Fig. 2.
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Table 1. The invariants and the error norms for single solitary wave with amplitude= 0.52632, h = 0.1, At = 0.1, =70 < x < 100.

t 0 10 20 30 40
L Present 5.4981750556 5.4981750556 5.4981750556 5.4981750555 5.4981750621
[26] 5.4977225480 5.4977249365 5.4977287449 5.4977319638 5.4977342352
I Present 1.9897841615 1.9897841624 1.9897841629 1.9897841633 1.9897841635
(26] 1.9845533653 1.9845950759 1.9846459641 1.9846798272 1.9847015013
Ly x 10° Present 0.000000 0.370348 0.665684 0.924741 1.187411
[26] 0.000000 1.641934 3.045414 4.241827 5.297873
Loo x 103 Present 0.000000 0.149073 0.253418 0.336342 0.422656
[26] 0.000000 0.631419 1.131442 1.533771 1.878952
0561
t=0 =20 t=40
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? 0.3
=

0.2

0.1 4

0.0

T T T T T T T T T 1
-60 -40 -20 0 20 40 60 80 100

Fig. 1. Single solitary wave with 2 =0.1, At=0.1, —70 < x < 100, ¢ = 0,20 and 40.
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Fig. 2. Error h=0.1, At=0.1, =70 < x < 100, ¢ = 40.

For the second case, the parameters i = 0.05 and At = 0.05 with interval [-70, 100] are taken. Hence, the solitary
wave has amplitude 0.52632 and the simulations are run up to time ¢ = 40 to obtain the invariants and the error
norms at several times. Error norms L, and Ly, and conserved quantities are reported in Table 2 together with the
results obtained in Ref.[26]. It can be easily seen from the table that the obtained error norms are smaller than those
given in Ref.[26]. The agreement between numerical and analytic solution is excellent. Percentage of relative changes
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Table 2. The invariants and the error norms for single solitary wave with amplitude= 0.52632, h = 0.05, At = 0.05, —=70 < x < 100.

37

t 0 10 20 30 40
L Present 5.4981692134 5.4981692136 5.4981692136 5.4981692134 5.4981692116
[26] 5.4980606845 5.4980608372 5.4980610805 5.4980612870 5.4980613985
I Present 1.9897831853 1.9897831855 1.9897831855 1.9897831854 1.9897831852
(26] 1.9843901753 1.9844010295 1.9844143675 1.9844232703 1.9844289740
Ly x 10* Present 0.000000 0.888297 1.823510 2.862236 3.842086
[26] 0.000000 4.113510 7.631169 10.62971 13.27645
Loo x 10* Present 0.000000 0.362314 0.649564 1.000742 1.320897
[26] 0.000000 1.582641 2.835874 3.843906 4.709118
0561
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Fig. 3. Single solitary wave with i = 0.05, At =0.05, =70 < x < 100, ¢ = 0,20 and 40.
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Fig. 4. Error h =0.05, At =0.05, —=70 < x < 100, ¢ =40.

of I and I, are found to be 3.30 x 1078 %, 6.7 x 102 %, respectively. Perspective views of the traveling solitons are
graphed at diverse time levels in Fig. 3. The distributions of the errors at time ¢ = 40 are drawn in Fig. 4.

Finally, for the third case, the parameters h = 0.025 and At = 0.025 with interval [-70, 100] are chosen. Therefore,
the solitary wave has amplitude 0.52632 and the experiments are run from the time ¢ = 0 to the time ¢ = 40 to obtain the
invariants and the error norms L, and L, at different times. Error norms L, and L, and conserved quantities are listed
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Table 3. The invariants and the error norms for single solitary wave with amplitude= 0.52632, i = 0.025, At = 0.025, —70 < x < 100.

t 0 10 20 30 40
L Present 5.4981698357 5.4981698365 5.4981698322 5.1981698290 5.4981698203
[26] 5.4981454184 5.4981454791 5.4981455454 5.4981456095 5.4981456591
I Present 1.9897809062 1.9897809077 1.9897809038 1.9897809019 1.9897808975
(26] 1.9843493353 1.9843521098 1.9843555206 1.9843578113 1.9843592922
Ly x 10* Present 0.000000 0.357060 0.925408 1.057023 1.183710
[26] 0.000000 1.028173 1.905450 2.650990 3.306738
Loo x 10° Present 0.000000 1.421479 3.264848 4.742297 4.846861
[26] 0.000000 3.965867 7.097948 9.610332 11.76011

in Table 3 together with the results obtained in Ref. [26]. The agreement between numerical and analytic solutions is
perfect. Percentage of relative changes of I; and I are found to be 2.812 x 1077 %, 4.369 x 10~* %, respectively. The
profiles of the solitary wave at different time levels are shown in Fig. 5. The distributions of the errors at time ¢ = 40
are depicted graphically for solitary waves amplitudes 0.52632 in Fig. 6.
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Fig. 5. Single solitary wave with & = 0.025, At =0.025, —70 < x < 100, ¢ = 0,20 and 40.
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Fig. 6. Error h = 0.025, At =0.025, —70 < x < 100, ¢ =40.
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Consequently, as seen from the three cases, the changes of the invariants are reasonable small and the quantity
of obtained error norms are better than the ones in earlier numerical methods.

5. Conclusion

In this study, finite element method has been successfully applied to show numerical simulaton of dispersive
shallow water waves with Rosenau-KdV equation. Here, collocation method with quintic B-spline basis functions has
been used. To show the accuracy of the method, we have calculated the error norms Ly, Lo, and the invariants I,
I>. Since the error norms are satisfactorily small during the simulations, single solitary wave motion is well presented
and conservation laws have been held satisfactorily constant in the course of the computer run. The obtained results
show that the presented method is more precise than results in previous numerical method. Thus, numerical results
demonstrate that presented method is a promising and powerful tool for solving the Rosenau-KdV equation. Main
advantages of the present technique are: it is simple, effective and moreover easy to understand.
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